1
|
Yuan S, Xu C, Jin M, Jiang X, Liu W, Xian M, Jin P. Stress-driven dynamic regulation of multiple genes to reduce accumulation of toxic aldehydes. Metab Eng 2025; 90:129-140. [PMID: 40086616 DOI: 10.1016/j.ymben.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/15/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Aldehydes are ubiquitous metabolites in living cells. As reactive electrophiles, they have the capacity to form adducts with cellular protein thiols and amines, leading to potential toxicity. Dynamic regulation has proven to be an effective strategy for addressing the accumulation of toxic metabolites. However, there are limited reports on applying dynamic control specifically to mitigate aldehyde accumulation. In this study, the cinnamaldehyde accumulation in the biosynthesis of cinnamylamine was used as a model to evaluate a two-way dynamic regulation strategy. First, we utilized whole-genome transcript arrays to identify the cinnamaldehyde-responsive promoters: the upregulated promoter P4 and the downregulated promoter Pd. They were then employed as biosensors to dynamically regulate the synthesis and consumption of cinnamaldehyde, mitigating its toxic effects on the host. This strategy successfully reduced cinnamaldehyde accumulation by 50 % and increased the production of cinnamylamine by 2.9 times. This study demonstrated a cinnamaldehyde-induced autoregulatory system that facilitated the conversion of cinnamic acid into cinnamylamine without the need for costly external inducers, presenting a promising and economically viable approach. The strategy also serves as a reference for alleviating the inhibitory effects of other toxic aldehydes on microorganisms. Additionally, the biosensors (Pd and P4) can respond to a range of aldehyde compounds, offering a rapid and sensitive method for detecting toxic aldehydes in both environmental samples and microorganisms, thus provide a valuable tool for screening strains enhanced aldehyde yield.
Collapse
Affiliation(s)
- Shan Yuan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China
| | - Miaomiao Jin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Guangzhou, 510640, Guangdong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, PR China; Shandong Energy Institute, Qingdao, 266101, Shandong, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, PR China.
| | - Ping Jin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, PR China.
| |
Collapse
|
2
|
Aborah M, Scarano F, Neto C. Gas Chromatography/Mass Spectrometry Chemical Profiling of Volatile Compounds from Cranberry Plant Byproducts as Potential Antibacterials, Antifungals, and Antioxidants. Molecules 2025; 30:2047. [PMID: 40363851 PMCID: PMC12074010 DOI: 10.3390/molecules30092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
The increasing resistance of microorganisms to currently used antimicrobials requires the urgent development of new effective treatments. Plant-based natural products can be an alternative solution. The aerial plant parts of the cranberry (Vaccinium macrocarpon) present a potential new source of antimicrobial secondary metabolites. Volatile essential oils were extracted from Stevens, Early Black, and Mullica Queen variety plants by steam distillation (SD) and the Clevenger method (CM), and their profiles were characterized by GC-MS. The extracts and two identified constituents, cinnamaldehyde and terpineol, were screened by the disc diffusion assay against Gram-positive B. cereus ATCC 11778 and S. aureus ATCC 25923 and Gram-negative bacteria E. coli ATCC 25922, P. aeruginosa ATCC 27853, and C. albicans ATCC 14053. Radical scavenging antioxidant activity was also determined using the DPPH assay. The CM extracts were rich in fatty acids, sesquiterpenes, and diterpenes, whereas the SD extracts contained more aldehydes, monoterpenes, and phenylpropanoids. All volatile extracts showed promising antioxidant activity; leaf extract activity was significantly higher than the vine (p < 0.05). The CM leaf and vine extracts exhibited antimicrobial activity against B. cereus, S. aureus, E. coli, and C. albicans compared to the SD, and the leaf extracts were more effective than the vine extracts. Individual constituents of leaf and vine extracts, cinnamaldehyde and α-terpineol, also showed antimicrobial activity against these organisms. The active constituents of the CM extracts are yet to be identified. A multivariate analysis revealed a particular pattern of inhibition of the tested organisms. Based on our results, cranberry volatile extracts have potential for future valorization as antibacterials, antifungals, and antioxidants.
Collapse
Affiliation(s)
- Martin Aborah
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA;
| | - Frank Scarano
- Department of Medical Laboratory Science, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA;
| | - Catherine Neto
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA;
| |
Collapse
|
3
|
Chen X, Liu P, Wang J, He X, Wang J, Chen H, Wang G. TMT-Based Quantitative Proteomics Revealed the Antibacterial Mechanism of Cinnamaldehyde against MRSA. J Proteome Res 2024; 23:4637-4647. [PMID: 39269200 DOI: 10.1021/acs.jproteome.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Natural plant extracts have demonstrated significant potential in alternative antibiotic therapies. Cinnamaldehyde (CA) has garnered considerable attention as a natural antibacterial agent. In this study, Tandem mass tag (TMT) quantitative proteomics combined with Western blot and RT-qPCR methods were employed to explore the antibacterial mechanism of CA against Methicillin-Resistant Staphylococcus aureus (MRSA) at the protein level. The results showed that a total of 254 differentially expressed proteins (DEPs) were identified in the control group and CA treatment group, of which 161 were significantly upregulated and 93 were significantly downregulated. DEPs related to nucleotide synthesis, homeostasis of the internal environment, and protein biosynthesis were significantly upregulated, while DEPs involved in the cell wall, cell membrane, and virulence factors were significantly downregulated. The results of GO and KEGG enrichment analyses demonstrated that CA could exert its antibacterial effects by influencing pyruvate metabolism, the tricarboxylic acid (TCA) cycle, teichoic acid biosynthesis, and the Staphylococcus aureus (S. aureus) infection pathway in MRSA. CA significantly inhibited the expression of recombinant protein MgrA (p < 0.05), significantly reduced the mRNA transcription levels of mgrA, hla, and sdrD genes (p < 0.05), and thermostability migration assays demonstrated that CA can directly interact with MgrA protein, thereby inhibiting its activity. These findings suggest that CA exerts its antibacterial mechanism by regulating the expression of related proteins, providing a theoretical basis for further development of clinical applications of antimicrobial agents derived from natural plant essential oils in the treatment of dairy cow mastitis.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Panpan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jingge Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaoqiang He
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jianchong Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorong Chen
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Guiqin Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
4
|
Karczewska M, Wang AY, Narajczyk M, Słomiński B, Szalewska-Pałasz A, Nowicki D. Antibacterial activity of t-cinnamaldehyde: An approach to its mechanistic principle towards enterohemorrhagic Escherichia coli (EHEC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155845. [PMID: 38964154 DOI: 10.1016/j.phymed.2024.155845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Compounds of natural origin are potent source of drugs with unique mechanisms of action. Among phytochemicals, trans-cinnamaldehyde (t-CA) exhibits a wide range of biological activity, thus has been used for centuries to fight bacterial and fungal infections. However, the molecular basis of these properties has not been fully covered. Considering that difficult-to-control infections are becoming a rising global problem, there is a need to elucidate the molecular potential of t-CA. PURPOSE To evaluate the antibacterial activity of t-CA against Shiga-toxigenic E. coli strains and elucidate its mechanism of action based on the inhibition of the virulence factor expression. METHODS The antimicrobial potential of t-CA was assessed with two-fold microdilution and time-kill assays. Further evaluation included bioluminescence suppression assays, quantification of reactive oxygen species (ROS) and assessment of NAD+/NADH ratios. Morphological changes post t-CA exposure were examined using transmission electron microscopy. RNA sequencing and radiolabeling of nucleotides elucidated the metabolic alterations induced by t-CA. Toxin expression level was monitored through the application of fusion proteins, monitoring of bacteriophage development, and fluorescence microscopy studies. Lastly, the therapeutic efficacy in vivo was assessed using Galleria mellonella infection model. RESULTS A comprehensive study of t-CA's bioactivity showed unique properties affecting bacterial metabolism and morphology, resulting in significant bacterial cell deformation and effective virulence inhibition. Elucidation of the underlying mechanisms indicated that t-CA activates the global regulatory system, the stringent response, manifested by its alarmone, (p)ppGpp, overproduction mediated by the RelA enzyme, thereby inhibiting bacterial proliferation. Intriguingly, t-CA effectively downregulates Shiga toxin gene expression via alarmone molecules, indicating its potential for therapeutic effect. In vivo validation demonstrated a significant improvement in larval survival rates post- t-CA treatment with 50 mg/kg (p < 0.05), akin to the efficacy observed with azithromycin, thus indicating its effectiveness against EHEC infections (p < 0.05). CONCLUSIONS Collectively, these results reveal the robust antibacterial capabilities of t-CA, warranting its further exploration as a viable anti-infective agent.
Collapse
Affiliation(s)
- Monika Karczewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ai Yan Wang
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Bartosz Słomiński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Dariusz Nowicki
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
5
|
Merino N, Berdejo D, Pagán E, Girard C, Kerros S, Spinozzi E, Pagán R, García-Gonzalo D. Phenotypic and Genotypic Comparison of Antimicrobial-Resistant Variants of Escherichia coli and Salmonella Typhimurium Isolated from Evolution Assays with Antibiotics or Commercial Products Based on Essential Oils. Pharmaceuticals (Basel) 2023; 16:1443. [PMID: 37895914 PMCID: PMC10610042 DOI: 10.3390/ph16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
On account of the widespread development and propagation of antimicrobial-resistant (AMR) bacteria, essential oils (EOs) have emerged as potential alternatives to antibiotics. However, as already observed for antibiotics, recent studies have raised concerns regarding the potential emergence of resistant variants (RVs) to EOs. In this study, we assessed the emergence of RVs in Escherichia coli and Salmonella enterica Typhimurium after evolution assays under extended exposure to subinhibitory doses of two commercial EOs (AEN and COLIFIT) as well as to two antibiotics (amoxicillin and colistin). Phenotypic characterization of RVs from evolution assays with commercial EOs yielded no relevant increases in the minimum inhibitory concentration (MIC) of E. coli and did not even modify MIC values in S. Typhimurium. Conversely, RVs of E. coli and S. Typhimurium isolated from evolution assays with antibiotics showed increased resistance. Genotypic analysis demonstrated that resistance to commercial EOs was associated with enhanced protection against oxidative stress and redirection of cell energy toward efflux activity, while resistance to antibiotics was primarily linked to modifications in the cell binding sites of antibiotics. These findings suggest that AEN and COLIFIT could serve as safe alternatives to antibiotics in combating the emergence and dissemination of antimicrobial resistance within the agrifood system.
Collapse
Affiliation(s)
- Natalia Merino
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Daniel Berdejo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Elisa Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | | | | | - Eleonora Spinozzi
- Chemistry Interdiscplinary Project (ChIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Diego García-Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| |
Collapse
|
6
|
Sun L, Van Loey A, Buvé C, Michiels CW. Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes. Microbiol Spectr 2023; 11:e0487722. [PMID: 37036358 PMCID: PMC10269891 DOI: 10.1128/spectrum.04877-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
The plant essential oil component trans-cinnamaldehyde (t-CIN) exhibits antibacterial activity against a broad range of foodborne pathogenic bacteria, including L. monocytogenes, but its mode of action is not fully understood. In this study, several independent mutants of L. monocytogenes with increased t-CIN tolerance were obtained via experimental evolution. Whole-genome sequencing (WGS) analysis revealed single-nucleotide-variation mutations in the yhfK gene, encoding an oxidoreductase of the short-chain dehydrogenases/reductases superfamily, in each mutant. The deletion of yhfK conferred increased sensitivity to t-CIN and several other α,β-unsaturated aldehydes, including trans-2-hexenal, citral, and 4-hydroxy-2-nonenal. The t-CIN tolerance of the deletion mutant was restored via genetic complementation with yhfK. Based on a gas chromatography-mass spectrometry (GC-MS) analysis of the culture supernatants, it is proposed that YhfK is an ene reductase that converts t-CIN to 3-phenylpropanal by reducing the C=C double bond of the α,β-unsaturated aldehyde moiety. YhfK homologs are widely distributed in Bacteria, and the deletion of the corresponding homolog in Bacillus subtilis also caused increased sensitivity to t-CIN and trans-2-hexenal, suggesting that this protein may have a conserved function to protect bacteria against toxic α,β-unsaturated aldehydes in their environments. IMPORTANCE While bacterial resistance against clinically used antibiotics has been well studied, less is known about resistance against other antimicrobials, such as natural compounds that could replace traditional food preservatives. In this work, we report that the food pathogen Listeria monocytogenes can rapidly develop an elevated tolerance against t-cinnamaldehyde, a natural antimicrobial from cinnamon, by single base pair changes in the yhfK gene. The enzyme encoded by this gene is an oxidoreductase, but its substrates and precise role were hitherto unknown. We demonstrate that the enzyme reduces the double bond in t-cinnamaldehyde and thereby abolishes its antibacterial activity. Furthermore, the mutations linked to t-CIN tolerance increased bacterial sensitivity to a related compound, suggesting that they modify the substrate specificity of the enzyme. Since the family of oxidoreductases to which YhfK belongs is of great interest in the mediation of stereospecific reactions in biocatalysis, our work may also have unanticipated application potential in this field.
Collapse
Affiliation(s)
- Lei Sun
- Department of Microbial and Molecular Systems and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Ann Van Loey
- Department of Microbial and Molecular Systems and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Carolien Buvé
- Department of Microbial and Molecular Systems and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Chris W. Michiels
- Department of Microbial and Molecular Systems and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Yuan S, Xu C, Jin M, Xian M, Liu W. Synergistic improvement of cinnamylamine production by metabolic regulation. J Biol Eng 2023; 17:14. [PMID: 36823535 PMCID: PMC9948449 DOI: 10.1186/s13036-023-00334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Aromatic primary amines (APAs) are key intermediates in the chemical industry with numerous applications. Efficient and mild biocatalytic synthesis is an excellent complement to traditional chemical synthesis. Our lab previously reported a whole-cell catalytic system for the synthesis of APAs catalyzed by carboxylic acid reductase from Neurospora crassa (ncCAR) and ω-transaminase from Ochrobactrum anthropi (OATA). However, the accumulation of toxic intermediates (aromatic aldehydes) during biocatalytic synthesis affected yields of APAs due to metabolic imbalance. RESULTS In this work, the biocatalytic synthesis of APAs (taking cinnamylamine as an example) was metabolically regulated by the overexpression or knockout of five native global transcription factors (TFs), the overexpression of eight native resistance genes, and optimization of promoters. Transcriptome analysis showed that knockout of the TF arcA increased the fluxes of NADPH and ATP in E. coli, while the rate of pyruvate metabolism was accelerated. In addition, the genes related to stress and detoxification were upregulated with the overexpression of resistance gene marA, which reduced the NADPH level in E. coli. Then, the expression level of soluble OATA increased by promoter optimization. Overall, arcA and marA could regulate the catalytic rate of NADPH- dependent ncCAR, while arcA and optimized promoter could regulate the catalytic rate of OATA. Lastly, the cinnamylamine yield of the best metabolically engineered strain S020 was increased to 90% (9 mM, 1.2 g/L), and the accumulation of cinnamaldehyde was below 0.9 mM. This work reported the highest production of cinnamylamine by biocatalytic synthesis. CONCLUSION This regulatory process provides a common strategy for regulating the biocatalytic synthesis of other APAs. Being entirely biocatalytic, our one-pot procedure provides considerable advantages in terms of environmental and safety impacts over reported chemical methods.
Collapse
Affiliation(s)
- Shan Yuan
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Chao Xu
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Miaomiao Jin
- grid.458500.c0000 0004 1806 7609CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong P.R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, Shandong, P.R. China.
| |
Collapse
|
8
|
Chen L, Zhao X, Li R, Yang H. Integrated metabolomics and transcriptomics reveal the adaptive responses of Salmonella enterica serovar Typhimurium to thyme and cinnamon oils. Food Res Int 2022; 157:111241. [DOI: 10.1016/j.foodres.2022.111241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
|
9
|
Self-sufficient whole-cell biocatalysis for 3-(aminomethyl) pyridine synthesis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Schapke J, Tavares A, Recamonde-Mendoza M. EPGAT: Gene Essentiality Prediction With Graph Attention Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1615-1626. [PMID: 33497339 DOI: 10.1109/tcbb.2021.3054738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Identifying essential genes and proteins is a critical step towards a better understanding of human biology and pathology. Computational approaches helped to mitigate experimental constraints by exploring machine learning (ML) methods and the correlation of essentiality with biological information, especially protein-protein interaction (PPI) networks, to predict essential genes. Nonetheless, their performance is still limited, as network-based centralities are not exclusive proxies of essentiality, and traditional ML methods are unable to learn from non-euclidean domains such as graphs. Given these limitations, we proposed EPGAT, an approach for Essentiality Prediction based on Graph Attention Networks (GATs), which are attention-based Graph Neural Networks (GNNs), operating on graph-structured data. Our model directly learns gene essentiality patterns from PPI networks, integrating additional evidence from multiomics data encoded as node attributes. We benchmarked EPGAT for four organisms, including humans, accurately predicting gene essentiality with ROC AUC score ranging from 0.78 to 0.97. Our model significantly outperformed network-based and shallow ML-based methods and achieved a very competitive performance against the state-of-the-art node2vec embedding method. Notably, EPGAT was the most robust approach in scenarios with limited and imbalanced training data. Thus, the proposed approach offers a powerful and effective way to identify essential genes and proteins.
Collapse
|
11
|
Van Liefferinge E, Forte C, Degroote J, Ovyn A, Van Noten N, Mangelinckx S, Michiels J. In vitro and in vivo antimicrobial activity of cinnamaldehyde and derivatives towards the intestinal bacteria of the weaned piglet. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2041113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Claudio Forte
- Dipartimento di Scienze Veterinarie, University of Turin, Grugliasco, Italy
| | - Jeroen Degroote
- Vakgroep Dierwetenschappen en Aquatische Ecologie, Ghent University, Gent, Belgium
| | - Anneke Ovyn
- Vakgroep Dierwetenschappen en Aquatische Ecologie, Ghent University, Gent, Belgium
| | - Noémie Van Noten
- Vakgroep Dierwetenschappen en Aquatische Ecologie, Ghent University, Gent, Belgium
| | - Sven Mangelinckx
- Vakgroep Groene Chemie en Technologie, Ghent University, Gent, Belgium
| | - Joris Michiels
- Vakgroep Dierwetenschappen en Aquatische Ecologie, Ghent University, Gent, Belgium
| |
Collapse
|
12
|
Nißl L, Westhaeuser F, Noll M. Antimycotic Effects of 11 Essential Oil Components and Their Combinations on 13 Food Spoilage Yeasts and Molds. J Fungi (Basel) 2021; 7:872. [PMID: 34682293 PMCID: PMC8537543 DOI: 10.3390/jof7100872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 01/08/2023] Open
Abstract
Food safety is important to reduce food spoilage microorganisms and foodborne pathogens. However, food safety is challenging, as customers' demand for natural preservatives is increasing. Essential oils (EOs) and their components (EOCs) are alternative antibacterial and antimycotic food additives. In this study, the minimal inhibitory concentrations (MIC) of 11 different EOCs against 13 food spoilage molds and yeasts were investigated via the microdilution method. Cinnamaldehyde (CA) revealed the lowest MIC for all tested strains and all EOCs (32.81-328.1 µg ml-1). However, CA is organoleptic and was therefore combined with other EOCs via the checkerboard method. Overall, 27 out of 91 combinations showed a synergistic effect, and both respective EOC concentrations could be reduced by maintaining MIC. Thereby, the combination with citral or citronellal showed promising results. The concentration-dependent effect of CA was studied in further detail on Saccharomyces cerevisiae, with CA causing delayed growth-kinetics and reduced total cell numbers. In addition, flow cytometric measurements combined with live-dead staining indicate the fungicidal effect of CA, due to decreasing total cell numbers and increasing relative amount of propidium iodide-positive cells. In this study, we demonstrated that CA is a potent candidate for the use as a natural preservative against food-relevant mold and yeasts showing fungistatic and fungicidal effects. Therefore, CA and EOC combinations with respective lower EOC concentrations reduce organoleptic reservations, which ease their application in the food industry.
Collapse
Affiliation(s)
| | | | - Matthias Noll
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany; (L.N.); (F.W.)
| |
Collapse
|
13
|
Sun L, Rogiers G, Michiels CW. The Natural Antimicrobial trans-Cinnamaldehyde Interferes with UDP-N-Acetylglucosamine Biosynthesis and Cell Wall Homeostasis in Listeria monocytogenes. Foods 2021; 10:foods10071666. [PMID: 34359536 PMCID: PMC8307235 DOI: 10.3390/foods10071666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Trans-cinnamaldehyde (t-CIN), an antimicrobial compound from cinnamon essential oil, is of interest because it inhibits various foodborne pathogens. In the present work, we investigated the antimicrobial mechanisms of t-CIN in Listeria monocytogenes using a previously isolated yvcK::Himar1 transposon mutant which shows hypersensitivity to t-CIN. Time-lapse microscopy revealed that t-CIN induces a bulging cell shape followed by lysis in the mutant. Complementation with wild-type yvcK gene completely restored the tolerance of yvcK::Himar1 strain to t-CIN and the cell morphology. Suppressor mutants which partially reversed the t-CIN sensitivity of the yvcK::Himar1 mutant were isolated from evolutionary experiments. Three out of five suppression mutations were in the glmU-prs operon and in nagR, which are linked to the biosynthesis of the peptidoglycan precursor uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlmU catalyzes the last two steps of UDP-GlcNAc biosynthesis and NagR represses the uptake and utilization of N-acetylglucosamine. Feeding N-acetylglucosamine or increasing the production of UDP-GlcNAc synthetic enzymes fully or partially restored the t-CIN tolerance of the yvcK mutant. Together, these results suggest that YvcK plays a pivotal role in diverting substrates to UDP-GlcNAc biosynthesis in L. monocytogenes and that t-CIN interferes with this pathway, leading to a peptidoglycan synthesis defect.
Collapse
|
14
|
Machas M, Kurgan G, Abed OA, Shapiro A, Wang X, Nielsen D. Characterizing Escherichia coli's transcriptional response to different styrene exposure modes reveals novel toxicity and tolerance insights. J Ind Microbiol Biotechnol 2021; 48:kuab019. [PMID: 33640981 PMCID: PMC9138201 DOI: 10.1093/jimb/kuab019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022]
Abstract
The global transcriptional response of Escherichia coli to styrene and potential influence of exposure source was determined by performing RNA sequencing (RNA-seq) analysis on both styrene-producing and styrene-exposed cells. In both cases, styrene exposure appears to cause both cell envelope and DNA damage, to which cells respond by down-regulating key genes/pathways involved in DNA replication, protein production, and cell wall biogenesis. Among the most significantly up-regulated genes were those involved with phage shock protein response (e.g. pspABCDE/G), general stress regulators (e.g. marA, rpoH), and membrane-altering genes (notably, bhsA, ompR, ldtC), whereas efflux transporters were, surprisingly, unaffected. Subsequent studies with styrene addition demonstrate how strains lacking ompR [involved in controlling outer membrane (OM) composition/osmoregulation] or any of tolQ, tolA, or tolR (involved in OM constriction) each displayed over 40% reduced growth relative to wild-type. Conversely, despite reducing basal fitness, overexpression of plsX (involved in phospholipid biosynthesis) led to 70% greater growth when styrene exposed. These collective differences point to the likely importance of OM properties in controlling native styrene tolerance. Overall, the collective behaviours suggest that, regardless of source, prolonged exposure to inhibitory styrene levels causes cells to shift from'growth mode' to 'survival mode', redistributing cellular resources to fuel native tolerance mechanisms.
Collapse
Affiliation(s)
- Michael Machas
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Omar A Abed
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Alyssa Shapiro
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-6106, USA
| | - David Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287-6106, USA
| |
Collapse
|
15
|
Henly EL, Norris K, Rawson K, Zoulias N, Jaques L, Chirila PG, Parkin KL, Kadirvel M, Whiteoak C, Lacey MM, Smith TJ, Forbes S. Impact of long-term quorum sensing inhibition on uropathogenic Escherichia coli. J Antimicrob Chemother 2021; 76:909-919. [PMID: 33406232 DOI: 10.1093/jac/dkaa517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Quorum sensing is an extracellular bacterial communication system used in the density-dependent regulation of gene expression and development of biofilms. Biofilm formation has been implicated in the establishment of catheter-associated urinary tract infections and therefore quorum sensing inhibitors (QSIs) have been suggested as anti-biofilm catheter coating agents. The long-term effects of QSIs in uropathogens is, however, not clearly understood. OBJECTIVES We evaluated the effects of repeated exposure to the QSIs cinnamaldehyde, (Z)-4-bromo-5(bromomethylene)-2(5H)-furanone-C30 (furanone-C30) and 4-fluoro-5-hydroxypentane-2,3-dione (F-DPD) on antimicrobial susceptibility, biofilm formation and relative pathogenicity in eight uropathogenic Escherichia coli (UPEC) isolates. METHODS MICs, MBCs and minimum biofilm eradication concentrations and antibiotic susceptibility were determined. Biofilm formation was quantified using crystal violet. Relative pathogenicity was assessed in a Galleria mellonella model. To correlate changes in phenotype to gene expression, transcriptomic profiles were created through RNA sequencing and variant analysis of genomes was performed in strain EC958. RESULTS Cinnamaldehyde and furanone-C30 led to increases in susceptibility in planktonic and biofilm-associated UPEC. Relative pathogenicity increased after cinnamaldehyde exposure (4/8 isolates), decreased after furanone-C30 exposure (6/8 isolates) and varied after F-DPD exposure (one increased and one decreased). A total of 9/96 cases of putative antibiotic cross-resistance were generated. Exposure to cinnamaldehyde or F-DPD reduced expression of genes associated with locomotion, whilst cinnamaldehyde caused an increase in genes encoding fimbrial and afimbrial-like adhesins. Furanone-C30 caused a reduction in genes involved in cellular biosynthetic processes, likely though impaired ribonucleoprotein assembly. CONCLUSIONS The multiple phenotypic adaptations induced during QSI exposure in UPEC should be considered when selecting an anti-infective catheter coating agent.
Collapse
Affiliation(s)
- E L Henly
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K Norris
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K Rawson
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - N Zoulias
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - L Jaques
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - P G Chirila
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - K L Parkin
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - M Kadirvel
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - C Whiteoak
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - M M Lacey
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - T J Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - S Forbes
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
16
|
Dietary cinnamaldehyde supplementation improves the growth performance, oxidative stability, immune function, and meat quality in finishing pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Li Y, Yu T, Wu T, Wang R, Wang H, Du H, Xu X, Xie D, Xu X. The dynamic transcriptome of pepper (Capsicum annuum) whole roots reveals an important role for the phenylpropanoid biosynthesis pathway in root resistance to Phytophthora capsici. Gene 2020; 728:144288. [DOI: 10.1016/j.gene.2019.144288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
|
18
|
Becerril R, Manso S, Nerín C. Metabolites identified as interaction products between EOs from food packaging and selected microorganisms. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019; 139:104405. [PMID: 31707126 DOI: 10.1016/j.fitote.2019.104405] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
Abstract
There is a continuing rise in the occurrence of multidrug-resistant bacterial infections. Antibiotic resistance to currently available antibiotics has become a global health issue leading to an urgent need for alternative antibacterial strategies. There has been a renewed interest in the development of antibacterial agents from natural sources, and trans-cinnamaldehyde is an example of a naturally occurring compound that has received significant attention in recent years. Trans-Cinnamaldehyde has been shown to possess substantial antimicrobial activity, as well as an array of other medicinal properties, and represents an intriguing hit compound from which a number of derivatives have been developed. In some cases, these derivatives have been shown to possess improved activity, not only compared to trans-cinnamaldehyde but also to commonly used antibiotics. Therefore, understanding the antibacterial mechanisms of action that these compounds elicit is imperative in order to facilitate their development and the development of new antibacterial agents that could exploit similar mechanistic approaches. The purpose of this review is to provide an overview of current knowledge on the antibacterial activity and mechanisms of action of cinnamaldehyde and its derivatives, and to highlight significant contributions made in this research area. It is hoped that the findings presented in this work will aid the future development of new antibacterial agents.
Collapse
Affiliation(s)
- Amanda A Doyle
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Cinnamaldehyde Induces Expression of Efflux Pumps and Multidrug Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01081-19. [PMID: 31383658 DOI: 10.1128/aac.01081-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023] Open
Abstract
Essential oils or their components are increasingly used to fight bacterial infections. Cinnamaldehyde (CNA), the main constituent of cinnamon bark oil, has demonstrated interesting properties in vitro against various pathogens, including Pseudomonas aeruginosa In the present study, we investigated the mechanisms and possible therapeutic consequences of P. aeruginosa adaptation to CNA. Exposure of P. aeruginosa PA14 to subinhibitory concentrations of CNA caused a strong albeit transient increase in the expression of operons that encode the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY/OprM. This multipump activation enhanced from 2- to 8-fold the resistance (MIC) of PA14 to various antipseudomonal antibiotics, including meropenem, ceftazidime, tobramycin, and ciprofloxacin. CNA-induced production of pump MexAB-OprM was found to play a major role in the adaption of P. aeruginosa to the electrophilic biocide, through the NalC regulatory pathway. CNA was progressively transformed by bacteria into the less toxic metabolite cinnamic alcohol (CN-OH), via yet undetermined detoxifying mechanisms. In conclusion, the use of cinnamon bark oil or cinnamaldehyde as adjunctive therapy to treat P. aeruginosa infections may potentially have antagonistic effects if combined with antibiotics because of Mex pump activation.
Collapse
|
21
|
Klumbys E, Zebec Z, Weise NJ, Turner NJ, Scrutton NS. Bio-derived Production of Cinnamyl Alcohol via a Three Step Biocatalytic Cascade and Metabolic Engineering. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2019; 20:658-663. [PMID: 31168294 PMCID: PMC6546598 DOI: 10.1039/c7gc03325g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The construction of biocatalytic cascades for the production of chemical precursors is fast becoming one of the most efficient approaches to multi-step synthesis in modern chemistry. However, despite the use of low solvent systems and renewably-resourced catalysts in reported examples, many cascades are still dependent on petrochemical starting materials, which as of yet cannot be accessed in a sustainable fashion. Herein we report the production of the versatile chemical building block cinnamyl alcohol from the primary metabolite and fermentation product L-phenylalanine. Through the combination of three biocatalyst classes (phenylalanine ammonia lyase, carboxylic acid reductase and alcohol dehydrogenase) the target compound could be reached in high purity, demonstrable at 100 mg scale achieving 53 % yield using ambient temperature and pressure in aqueous solution. This system represents a synthetic strategy in which all components present at time zero are biogenic and thus minimising damage to the environment. Further we extend this biocatalytic cascade by its inclusion in a L-phenylalanine overproducing strain of Escherichia coli. This metabolically engineered strain produces cinnamyl alcohol in mineral media using a glycerol and glucose as carbon source. This study demonstrates the potential to establish green routes to the synthesis of cinnamyl alcohol from a waste stream such as glycerol derived, for example, from lipase treated biodiesel.
Collapse
Affiliation(s)
- Evaldas Klumbys
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK, United Kingdom
| | - Ziga Zebec
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK, United Kingdom
| | - Nicholas J. Weise
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK, United Kingdom
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology (MIB), School of Chemistry, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK, United Kingdom
| |
Collapse
|
22
|
Doyle AA, Krämer T, Kavanagh K, Stephens JC. Cinnamaldehydes: Synthesis, antibacterial evaluation, and the effect of molecular structure on antibacterial activity. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
23
|
Stress Resistance Development and Genome-Wide Transcriptional Response of Escherichia coli O157:H7 Adapted to Sublethal Thymol, Carvacrol, and trans-Cinnamaldehyde. Appl Environ Microbiol 2018; 84:AEM.01616-18. [PMID: 30217837 DOI: 10.1128/aem.01616-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 01/05/2023] Open
Abstract
Thymol, carvacrol, and trans-cinnamaldehyde are essential oil (EO) compounds with broad-spectrum antimicrobial activities against foodborne pathogens, including Escherichia coli O157:H7. However, little is known regarding direct resistance and cross-resistance development in E. coli O157:H7 after adaptation to sublethal levels of these compounds, and information is scarce on microbial adaptive responses at a molecular level. The present study demonstrated that E. coli O157:H7 was able to grow in the presence of sublethal thymol (1/2T), carvacrol (1/2C), or trans-cinnamaldehyde (1/2TC), displaying an extended lag phase duration and a lower maximum growth rate. EO-adapted cells developed direct resistance against lethal EO treatments and cross-resistance against heat (58°C) and oxidative (50 mM H2O2) stresses. However, no induction of acid resistance (simulated gastric fluid, pH 1.5) was observed. RNA sequencing revealed a large number (310 to 338) of differentially expressed (adjusted P value [Padj ], <0.05; fold change, ≥5) genes in 1/2T and 1/2C cells, while 1/2TC cells only showed 27 genes with altered expression. In accordance with resistance phenotypes, the genes related to membrane, heat, and oxidative stress responses and genes related to iron uptake and metabolism were upregulated. Conversely, virulence genes associated with motility, biofilm formation, and efflux pumps were repressed. This study demonstrated the development of direct resistance and cross-resistance and characterized whole-genome transcriptional responses in E. coli O157:H7 adapted to sublethal thymol, carvacrol, or trans-cinnamaldehyde. The data suggested that caution should be exercised when using EO compounds as food antimicrobials, due to the potential stress resistance development in E. coli O157:H7.IMPORTANCE The present study was designed to understand transcriptomic changes and the potential development of direct and cross-resistance in essential oil (EO)-adapted Escherichia coli O157:H7. The results demonstrated altered growth behaviors of E. coli O157:H7 during adaptation in sublethal thymol, carvacrol, and trans-cinnamaldehyde. Generally, EO-adapted bacteria showed enhanced resistance against subsequent lethal EO, heat, and oxidative stresses, with no induction of acid resistance in simulated gastric fluid. A transcriptomic analysis revealed the upregulation of related stress resistance genes and a downregulation of various virulence genes in EO-adapted cells. This study provides new insights into microbial EO adaptation behaviors and highlights the risk of resistance development in adapted bacteria.
Collapse
|
24
|
Chen Z, Cheng H, Pan W, Zheng J, Li D, Lin F, Yu Z, Deng Q. Comparative genome and evolution analysis of the locus of enterocyte effacement from enteropathogenic Escherichia coli Deng and its transcriptional response to ciprofloxacin. J Med Microbiol 2018; 67:1368-1382. [PMID: 29989530 DOI: 10.1099/jmm.0.000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE In this study, we aimed to investigate the genomic characteristics and evolution of pathogenicity islands of an enteropathogenic Escherichia coli (EPEC) strain, and to obtain a transcriptional profile of EPEC under different concentrations of ciprofloxacin using microarray analysis. METHODOLOGY The complete EPEC Deng genome was sequenced and compared to genomes of 12 previously sequenced E. coli strains. A 180 min time course experiment was performed in which the effect of ciprofloxacin on EPEC Deng growth was evaluated. Microarray profiling was used to study the effect of varying ciprofloxacin pressure on genome-wide transcriptional expression. Differential expression of the genes identified using microarray data was confirmed using real-time quantitative reverse transcriptase PCR (RTQ). Target gene-defective recombineering strains were created to investigate the influence of the grlA gene on ciprofloxacin susceptibility. RESULTS Genomic comparisons revealed a close phylogenic relationship between EPEC Deng and E. coli strains O111_H_11128 and O26_H11_11368, with low genetic diversity among their type III secretion system genes and typically genetic variation in the map, tir, eae and espA genes of EPEC. It is noteworthy that 21 genes were down-regulated at all time points examined in the group exposed to 2 µg ml-1 of ciprofloxacin. A grlA-mutant derivative with increased susceptibility to ciprofloxacin was discovered. CONCLUSIONS The present findings provide an overview of the phylogenetic characteristics of EPEC Deng and its transcriptional response to ciprofloxacin, further suggesting that GrlA may play a clinically important role in EPEC responses to ciprofloxacin.
Collapse
Affiliation(s)
- Zhong Chen
- 1Department of Hospital infection Control, Quality control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China.,2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Hang Cheng
- 1Department of Hospital infection Control, Quality control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Weiguang Pan
- 2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Jinxin Zheng
- 2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Duoyun Li
- 2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Fojun Lin
- 2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Zhijian Yu
- 2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| | - Qiwen Deng
- 1Department of Hospital infection Control, Quality control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China.,2Department of Infectious Diseases, Shenzhen key laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan district, 518052 Shenzhen, PR China
| |
Collapse
|
25
|
De Filippis F, Parente E, Ercolini D. Recent Past, Present, and Future of the Food Microbiome. Annu Rev Food Sci Technol 2018; 9:589-608. [DOI: 10.1146/annurev-food-030117-012312] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Eugenio Parente
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
26
|
Synergistic Effect of the Lactoperoxidase System and Cinnamon Essential Oil on Total Flora andSalmonellaGrowth Inhibition in Raw Milk. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8547954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its antibacterial and antipathogenic effects, the heat treatment of milk induces undesirable changes that can be noted in the overall properties of ultrahigh temperature (UHT) milk, such as changes in nutritional and organoleptic properties. Our goal is to find new nonthermal antibacterial technologies for the preservation of raw milk (RM). This study investigates the possible synergistic effect of using a combination of the lactoperoxidase system (LS) and 3 μg mL−1of cinnamon essential oil (cinnamon EO) to inactivate the total flora of milk andSalmonellaHadar (S. Hadar). The LS was activated with 30 mg L−1sodium percarbonate and 14 mg L−1of sodium thiocyanate. Using this approach, we obtained a synergistic effect with a complete inhibition of the activity of the total flora of the milk andS.Hadar after 12 hours at 25°C. In addition, the attainment of synergy was defined when the inhibitory effect of the two compounds together was greater than the effect observed by each compound added alone. Moreover, the monitoring of the synergistic effect at 4°C for 5 days showed complete inhibition of total flora for 3 days and forS. Hadar it was up to 5 days. To summarize, the current study clearly identified a new inhibitory combination that may be used in food-based applications.
Collapse
|
27
|
Wang Y, Feng K, Yang H, Yuan Y, Yue T. Antifungal mechanism of cinnamaldehyde and citral combination against Penicillium expansum based on FT-IR fingerprint, plasma membrane, oxidative stress and volatile profile. RSC Adv 2018; 8:5806-5815. [PMID: 35539597 PMCID: PMC9078163 DOI: 10.1039/c7ra12191a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/20/2018] [Indexed: 11/21/2022] Open
Abstract
Cinnamaldehyde (Cin) and citral (Cit) have been studied as antimicrobial agents and natural preservatives, but their action modes are controversial, and the knowledge of their antifungal mechanism against P. expansum is still incomplete.
Collapse
Affiliation(s)
- Yuan Wang
- Northwest University
- College of Food Science and Engineering
- Xi'an
- China
- Northwest A&F University
| | - Kewei Feng
- Northwest A&F University
- State Key Laboratory of Crop Stress Biology in Arid Areas
- College of Agronomy
- Yangling 712100
- China
| | - Haihua Yang
- Northwest A&F University
- College of Food Science and Engineering
- Yangling
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing)
| | - Yahong Yuan
- Northwest A&F University
- College of Food Science and Engineering
- Yangling
- China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing)
| | - Tianli Yue
- Northwest University
- College of Food Science and Engineering
- Xi'an
- China
- Northwest A&F University
| |
Collapse
|
28
|
Friedman M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10406-10423. [PMID: 29155570 DOI: 10.1021/acs.jafc.7b04344] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cinnamaldehyde is a major constituent of cinnamon essential oils produced by aromatic cinnamon plants. This compound has been reported to exhibit antimicrobial properties in vitro in laboratory media and in animal feeds and human foods contaminated with disease-causing bacteria including Bacillus cereus, Campylobacter jejuni, Clostridium perfringens, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. This integrated review surveys and interprets our current knowledge of the chemistry, analysis, safety, mechanism of action, and antibiotic activities of cinnamaldehyde in food animal (cattle, lambs, calves, pigs, poultry) diets and in widely consumed liquid (apple, carrot, tomato, and watermelon juices, milk) and solid foods. Solid foods include various fruits (bayberries, blueberries, raspberries, and strawberries), vegetables (carrots, celery, lettuce, spinach, cucumbers, and tomatoes), meats (beef, ham, pork, and frankfurters), poultry (chickens and turkeys), seafood (oysters and shrimp), bread, cheese, eggs, infant formula, and peanut paste. The described findings are not only of fundamental interest but also have practical implications for food safety, nutrition, and animal and human health. The collated information and suggested research needs will hopefully facilitate and guide further studies needed to optimize the use of cinnamaldehyde alone and in combination with other natural antimicrobials and medicinal antibiotics to help prevent and treat food animal and human diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture , Albany, California 94710, United States
| |
Collapse
|
29
|
Visvalingam J, Ells TC, Yang X. Impact of persistent and nonpersistent generic Escherichia coli and Salmonella sp. recovered from a beef packing plant on biofilm formation by E. coli O157. J Appl Microbiol 2017; 123:1512-1521. [PMID: 28944561 DOI: 10.1111/jam.13591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/09/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
AIMS To examine the influence of meat plant Escherichia coli and Salmonella sp. isolates on E. coli O157 biofilm formation. METHODS AND RESULTS Biofilm formation was quantified by crystal violet staining (A570 nm ) and viable cell numbers for up to 6 days at 15°C. All five persistent E. coli genotypes formed strong biofilms when cultured alone or co-cultured with E. coli O157, with A570 nm values reaching ≥4·8 at day 4, while only two of five nonpersistent genotypes formed such biofilms. For E. coli O157:H7 co-culture biofilms with E. coli genotypes 136 and 533, its numbers were ≥1·5 and ≥1 log CFU per peg lower than those observed for its mono-culture biofilm at days 2 and 4, respectively. The number of E. coli O157:NM in similar co-culture biofilms was 1 log CFU per peg lower than in its mono-culture biofilm at day 4 and 6, respectively. Salmonella sp. lowered the number of E. coli O157:NM by 0·5 log unit, once, at day 6. CONCLUSION Generic E. coli may outcompete E. coli O157 strains while establishing biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Findings advance knowledge regarding inter-strain competition for a similar ecological niche and may aid development of biocontrol strategies for E. coli O157 in food processing environments.
Collapse
Affiliation(s)
- J Visvalingam
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - T C Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - X Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
30
|
Visvalingam J, Palaniappan K, Holley RA. In vitro enhancement of antibiotic susceptibility of drug resistant Escherichia coli by cinnamaldehyde. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Toxic Electrophiles Induce Expression of the Multidrug Efflux Pump MexEF-OprN in Pseudomonas aeruginosa through a Novel Transcriptional Regulator, CmrA. Antimicrob Agents Chemother 2017; 61:AAC.00585-17. [PMID: 28507116 DOI: 10.1128/aac.00585-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
The multidrug efflux system MexEF-OprN is produced at low levels in wild-type strains of Pseudomonas aeruginosa However, in so-called nfxC mutants, mutational alteration of the gene mexS results in constitutive overexpression of the pump, along with increased resistance of the bacterium to chloramphenicol, fluoroquinolones, and trimethoprim. In this study, analysis of in vitro-selected chloramphenicol-resistant clones of strain PA14 led to the identification of a new class of MexEF-OprN-overproducing mutants (called nfxC2) exhibiting alterations in an as-yet-uncharacterized gene, PA14_38040 (homolog of PA2047 in strain PAO1). This gene is predicted to encode an AraC-like transcriptional regulator and was called cmrA (for chloramphenicol resistance activator). In nfxC2 mutants, the mutated CmrA increases its proper gene expression and upregulates the operon mexEF-oprN through MexS and MexT, resulting in a multidrug resistance phenotype without significant loss in bacterial virulence. Transcriptomic experiments demonstrated that CmrA positively regulates a small set of 11 genes, including PA14_38020 (homolog of PA2048), which is required for the MexS/T-dependent activation of mexEF-oprN PA2048 codes for a protein sharing conserved domains with the quinol monooxygenase YgiN from Escherichia coli Interestingly, exposure of strain PA14 to toxic electrophilic molecules (glyoxal, methylglyoxal, and cinnamaldehyde) strongly activates the CmrA pathway and upregulates MexEF-OprN and, thus, increases the resistance of P. aeruginosa to the pump substrates. A picture emerges in which MexEF-OprN is central in the response of the pathogen to stresses affecting intracellular redox homeostasis.
Collapse
|
32
|
Global transcriptional response of Escherichia coli MG1655 cells exposed to the oxygenated monoterpenes citral and carvacrol. Int J Food Microbiol 2017. [PMID: 28644990 DOI: 10.1016/j.ijfoodmicro.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA microarrays were used to study the mechanism of bacterial inactivation by carvacrol and citral. After 10-min treatments of Escherichia coli MG1655 cells with 100 and 50ppm of carvacrol and citral, 76 and 156 genes demonstrated significant transcriptional differences (p≤0.05), respectively. Among the up-regulated genes after carvacrol treatment, we found gene coding for multidrug efflux pumps (acrA, mdtM), genes related to phage shock response (pspA, pspB, pspC, pspD, pspF and pspG), biosynthesis of arginine (argC, argG, artJ), and purine nucleotides (purC, purM). In citral-treated cells, transcription of purH and pyrB and pyrI was 2 times higher. Deletion of several differentially expressed genes confirmed the role of ygaV, yjbO, pspC, sdhA, yejG and ygaV in the mechanisms of E. coli inactivation by carvacrol and citral. These results would indicate that citral and carvacrol treatments cause membrane damage and activate metabolism through the production of nucleotides required for DNA and RNA synthesis and metabolic processes. Comparative transcriptomics of the response of E. coli to a heat treatment, which caused a significant change of the transcription of 1422 genes, revealed a much weaker response to both individual constituents of essential oils (ICs).·Thus, inactivation by citral or carvacrol was not multitarget in nature.
Collapse
|
33
|
Rogiers G, Kebede BT, Van Loey A, Michiels CW. Membrane fatty acid composition as a determinant of Listeria monocytogenes sensitivity to trans-cinnamaldehyde. Res Microbiol 2017; 168:536-546. [PMID: 28342836 DOI: 10.1016/j.resmic.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
Abstract
trans-Cinnamaldehyde, the major compound of cinnamon essential oil, is a potentially interesting natural antimicrobial food preservative. Although a number of studies have addressed its mode of action, the factors that determine bacterial sensitivity or tolerance to trans-cinnamaldehyde are poorly understood. We report the detailed characterization of a Listeria monocytogenes Scott A trans-cinnamaldehyde hypersensitive mutant defective in IlvE, which catalyzes the reversible transamination of branched-chain amino acids to the corresponding short-chain α-ketoacids. This mutant showed an 8.4 fold extended lag phase during growth in sublethal concentrations (4 mM), and faster inactivation in lethal concentrations of trans-cinnamaldehyde (6 mM). trans-Cinnamaldehyde hypersensitivity could be corrected by genetic complementation with the ilvE gene and supplementation with branched-chain α-ketoacids. Whole-cell fatty acid analyses revealed an almost complete loss of anteiso branched-chain fatty acids (BCFAs), which was compensated by elevated levels of unbranched saturated fatty acids and iso-BCFAs. Sub-inhibitory concentrations of trans-cinnamaldehyde induced membrane fatty acid adaptations predicted to reduce membrane fluidity, possibly as a response to counteract the membrane fluidizing effect of trans-cinnamaldehyde. These results demonstrate the role of IlvE in BCFA production and the role of membrane composition as an important determinant of trans-cinnamaldehyde sensitivity in L. monocytogenes.
Collapse
Affiliation(s)
- Gil Rogiers
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Microbiology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium.
| | - Biniam T Kebede
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Chris W Michiels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Center (LFoRCe), Laboratory of Food Microbiology, Kasteelpark Arenberg 22, 3001 Leuven, Belgium.
| |
Collapse
|
34
|
Wu WS, Jhou MJ. MVIAeval: a web tool for comprehensively evaluating the performance of a new missing value imputation algorithm. BMC Bioinformatics 2017; 18:31. [PMID: 28086746 PMCID: PMC5237319 DOI: 10.1186/s12859-016-1429-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Missing value imputation is important for microarray data analyses because microarray data with missing values would significantly degrade the performance of the downstream analyses. Although many microarray missing value imputation algorithms have been developed, an objective and comprehensive performance comparison framework is still lacking. To solve this problem, we previously proposed a framework which can perform a comprehensive performance comparison of different existing algorithms. Also the performance of a new algorithm can be evaluated by our performance comparison framework. However, constructing our framework is not an easy task for the interested researchers. To save researchers' time and efforts, here we present an easy-to-use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator) which implements our performance comparison framework. RESULTS MVIAeval provides a user-friendly interface allowing users to upload the R code of their new algorithm and select (i) the test datasets among 20 benchmark microarray (time series and non-time series) datasets, (ii) the compared algorithms among 12 existing algorithms, (iii) the performance indices from three existing ones, (iv) the comprehensive performance scores from two possible choices, and (v) the number of simulation runs. The comprehensive performance comparison results are then generated and shown as both figures and tables. CONCLUSIONS MVIAeval is a useful tool for researchers to easily conduct a comprehensive and objective performance evaluation of their newly developed missing value imputation algorithm for microarray data or any data which can be represented as a matrix form (e.g. NGS data or proteomics data). Thus, MVIAeval will greatly expedite the progress in the research of missing value imputation algorithms.
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Meng-Jhun Jhou
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Wang LH, Wang MS, Zeng XA, Gong DM, Huang YB. An in vitro investigation of the inhibitory mechanism of β-galactosidase by cinnamaldehyde alone and in combination with carvacrol and thymol. Biochim Biophys Acta Gen Subj 2017; 1861:3189-3198. [DOI: 10.1016/j.bbagen.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
|
36
|
Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7. Appl Environ Microbiol 2016; 82:6531-6540. [PMID: 27590808 DOI: 10.1128/aem.01702-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/20/2016] [Indexed: 02/08/2023] Open
Abstract
This study evaluated the inhibitory effect of cinnamon oil against Escherichia coli O157:H7 Shiga toxin (Stx) production and further explored the underlying mechanisms. The MIC and minimum bactericidal concentration (MBC) of cinnamon oil against E. coli O157:H7 were 0.025% and 0.05% (vol/vol), respectively. Cinnamon oil significantly reduced Stx2 production and the stx2 mRNA expression that is associated with diminished Vero cell cytotoxicity. Consistently, induction of the Stx-converting phage where the stx2 gene is located, along with the total number of phages, decreased proportionally to cinnamon oil concentration. In line with decreased Stx2 phage induction, cinnamon oil at 0.75× and 1.0× MIC eliminated RecA, a key mediator of SOS response, polynucleotide phosphorylase (PNPase), and poly(A) polymerase (PAP I), which positively regulate Stx-converting phages, contributing to reduced Stx-converting phage induction and Stx production. Furthermore, cinnamon oil at 0.75× and 1.0× MIC strongly inhibited the qseBC and luxS expression associated with decreased AI-2 production, a universal quorum sensing signaling molecule. However, the expression of oxidative stress response genes oxyR, soxR, and rpoS was increased in response to cinnamon oil at 0.25× or 0.5× MIC, which may contribute to stunted bacterial growth and reduced Stx2 phage induction and Stx2 production due to the inhibitory effect of OxyR on prophage activation. Collectively, cinnamon oil inhibits Stx2 production and Stx2 phage induction in E. coli O157:H7 in multiple ways. IMPORTANCE This study reports the inhibitory effect of cinnamon oil on Shiga toxin 2 phage induction and Shiga toxin 2 production. Subinhibitory concentrations (concentrations below the MIC) of cinnamon oil reduced Stx2 production, stx2 mRNA expression, and cytotoxicity on Vero cells. Subinhibitory concentrations of cinnamon oil also dramatically reduced both the Stx2 phage and total phage induction in E. coli O157:H7, which may be due to the suppression of RNA polyadenylation enzyme PNPase at 0.25× to 1.0× MIC and the downregulation of bacterial SOS response key regulator RecA and RNA polyadenylation enzyme PAP I at 0.75× or 1.0× MIC. Cinnamon oil at higher levels (0.75× and 1.0× MIC) eliminated quorum sensing and oxidative stress. Therefore, cinnamon oil has potential applications as a therapeutic to control E. coli O157:H7 infection through inhibition of bacterial growth and virulence factors.
Collapse
|
37
|
Roy R, Shilpa PP, Bagh S. A Systems Biology Analysis Unfolds the Molecular Pathways and Networks of Two Proteobacteria in Spaceflight and Simulated Microgravity Conditions. ASTROBIOLOGY 2016; 16:677-689. [PMID: 27623197 DOI: 10.1089/ast.2015.1420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED Bacteria are important organisms for space missions due to their increased pathogenesis in microgravity that poses risks to the health of astronauts and for projected synthetic biology applications at the space station. We understand little about the effect, at the molecular systems level, of microgravity on bacteria, despite their significant incidence. In this study, we proposed a systems biology pipeline and performed an analysis on published gene expression data sets from multiple seminal studies on Pseudomonas aeruginosa and Salmonella enterica serovar Typhimurium under spaceflight and simulated microgravity conditions. By applying gene set enrichment analysis on the global gene expression data, we directly identified a large number of new, statistically significant cellular and metabolic pathways involved in response to microgravity. Alteration of metabolic pathways in microgravity has rarely been reported before, whereas in this analysis metabolic pathways are prevalent. Several of those pathways were found to be common across studies and species, indicating a common cellular response in microgravity. We clustered genes based on their expression patterns using consensus non-negative matrix factorization. The genes from different mathematically stable clusters showed protein-protein association networks with distinct biological functions, suggesting the plausible functional or regulatory network motifs in response to microgravity. The newly identified pathways and networks showed connection with increased survival of pathogens within macrophages, virulence, and antibiotic resistance in microgravity. Our work establishes a systems biology pipeline and provides an integrated insight into the effect of microgravity at the molecular systems level. KEY WORDS Systems biology-Microgravity-Pathways and networks-Bacteria. Astrobiology 16, 677-689.
Collapse
Affiliation(s)
- Raktim Roy
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - P Phani Shilpa
- 1 Department of Chemistry and Biochemistry, Presidency University , Kolkata, India
| | - Sangram Bagh
- 2 Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics , Kolkata, India
| |
Collapse
|
38
|
Montagu A, Joly-Guillou ML, Rossines E, Cayon J, Kempf M, Saulnier P. Stress Conditions Induced by Carvacrol and Cinnamaldehyde on Acinetobacter baumannii. Front Microbiol 2016; 7:1133. [PMID: 27486453 PMCID: PMC4949268 DOI: 10.3389/fmicb.2016.01133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/07/2016] [Indexed: 12/27/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major cause of nosocomial infections. The ability of A. baumannii to display various resistance mechanisms against antibiotics has transformed it into a successful nosocomial pathogen. The limited number of antibiotics in development and the disengagement of the pharmaceutical industry have prompted the development of innovative strategies. One of these strategies is the use of essential oils, especially aromatic compounds that are potent antibacterial molecules. Among them, the combination of carvacrol and cinnamaldehyde has already demonstrated antibacterial efficacy against A. baumannii. The aim of this study was to determine the biological effects of these two compounds in A. baumannii, describing their effect on the rRNA and gene regulation under environmental stress conditions. Results demonstrated rRNA degradation by the carvacrol/cinnamaldehyde mixture, and this effect was due to carvacrol. Degradation was conserved after encapsulation of the mixture in lipid nanocapsules. Results showed an upregulation of the genes coding for heat shock proteins, such as groES, groEL, dnaK, clpB, and the catalase katE, after exposure to carvacrol/cinnamaldehyde mixture. The catalase was upregulated after carvacrol exposure wich is related to an oxidative stress. The combination of thiourea (hydroxyl radical scavenger) and carvacrol demonstrated a potent bactericidal effect. These results underline the development of defense strategies of the bacteria by synthesis of reactive oxygen species in response to environmental stress conditions, such as carvacrol.
Collapse
Affiliation(s)
- Angélique Montagu
- LUNAM UniversitéAngers, France
- INSERM U1066, Micro et Nanomédecines Biomimétiques, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Marie-Laure Joly-Guillou
- ATOMycA, INSERM Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of AngersAngers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | | | - Jérome Cayon
- Plateforme d’Analyse Cellulaire Et Moléculaire, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Marie Kempf
- ATOMycA, INSERM Atip-Avenir Team, CRCNA, Inserm U892, 6299 CNRS, University of AngersAngers, France
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Patrick Saulnier
- LUNAM UniversitéAngers, France
- INSERM U1066, Micro et Nanomédecines Biomimétiques, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| |
Collapse
|
39
|
Crozier L, Hedley PE, Morris J, Wagstaff C, Andrews SC, Toth I, Jackson RW, Holden NJ. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts. Front Microbiol 2016; 7:1088. [PMID: 27462311 PMCID: PMC4940412 DOI: 10.3389/fmicb.2016.01088] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
Collapse
Affiliation(s)
- Louise Crozier
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Pete E. Hedley
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, The University of ReadingReading, UK
| | - Simon C. Andrews
- School of Biological Sciences, The University of ReadingReading, UK
| | - Ian Toth
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| | | | - Nicola J. Holden
- Cell and Molecular Sciences, The James Hutton InstituteDundee, UK
| |
Collapse
|
40
|
Xue YF, Zhang M, Qi ZQ, Li YQ, Shi Z, Chen J. Cinnamaldehyde promotes root branching by regulating endogenous hydrogen sulfide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:909-914. [PMID: 25752512 DOI: 10.1002/jsfa.7164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Cinnamaldehyde (CA) has been widely applied in medicine and food preservation. However, whether and how CA regulates plant physiology is largely unknown. To address these gaps, the present study investigated the beneficial effect of CA on root branching and its possible biochemical mechanism. RESULTS The lateral root (LR) formation of pepper seedlings could be markedly induced by CA at specific concentrations without any inhibitory effect on primary root (PR) growth. CA could induce the generation of endogenous hydrogen sulfide (H2S) by increasing the activity of L-cysteine desulfhydrase in roots. By fluorescently tracking endogenous H2S in situ, it could be clearly observed that H2S accumulated in the outer layer cells of the PR where LRs emerge. Sodium hydrosulfide (H2S donor) treatment induced LR formation, while hypotaurine (H2S scavenger) showed an adverse effect. The addition of hypotaurine mitigated the CA-induced increase in endogenous H2S level, which in turn counteracted the inducible effect of CA on LR formation. CONCLUSION CA showed great potential in promoting LR formation, which was mediated by endogenous H2S. These results not only shed new light on the application of CA in agriculture but also extend the knowledge of H2S signaling in the regulation of root branching.
Collapse
Affiliation(s)
- Yan-Feng Xue
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Meng Zhang
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhong-Qiang Qi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - You-Qin Li
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, China, 50 Zhongling Street, Nanjing 210014, China
| |
Collapse
|
41
|
Safavi M, Shams-Ardakani M, Foroumadi A. Medicinal plants in the treatment of Helicobacter pylori infections. PHARMACEUTICAL BIOLOGY 2015; 53:939-960. [PMID: 25430849 DOI: 10.3109/13880209.2014.952837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Helicobacter pylori is a small, spiral, Gram-negative bacillus that plays a role in the pathogenesis of a number of diseases ranging from asymptomatic gastritis to gastric cancer. Schedule compliance, antibiotic drug resistance, and side-effects of triple or quadruple therapy have led to research for novel candidates from plants. OBJECTIVE The purpose of this paper is to review the most potent medicinal plants of recently published literature with anti-H. pylori activity. For centuries, herbals have been used by traditional healers around the world to treat various gastrointestinal tract disorders such as dyspepsia, gastritis, and peptic ulcer disease. The mechanism of action by which these botanicals exert their therapeutic properties has not been completely and clearly elucidated. Anti-H. pylori properties may be one of the possible mechanisms by which gastroprotective herbs treat gastrointestinal tract disorders. MATERIALS AND METHODS Electronic databases such as PubMed, Google scholar, EBSCO, and local databases were explored for medicinal plants with anti-H. pylori properties between 1984 and 2013 using key words "medicinal plants" and "Helicobacter pylori" or "anti-Helicobacter pylori". RESULTS A total of 43 medicinal plant species belonging to 27 families including Amaryllidaceae, Anacardiaceae, Apiaceae, Apocynaceae, Asclepiadoideae, Asteraceae, Bignoniaceae, Clusiaceae, Chancapiedra, Combretaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lythraceae, Menispermaceae, Myristicaceae, Myrtaceae, Oleaceae, Papaveraceae, Plumbaginaceae, Poaceae, Ranunculaceae, Rosaceae, and Theaceae were studied as herbs with potent anti-H. pylori effects. CONCLUSION Traditional folk medicinal use of some of these plants to treat gastric infections is substantiated by the antibacterial activity of their extracts against H. pylori.
Collapse
Affiliation(s)
- Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST) , Tehran , Iran
| | | | | |
Collapse
|
42
|
Nanocapsular dispersion of cinnamaldehyde for enhanced inhibitory activity against aflatoxin production by Aspergillus flavus. Molecules 2015; 20:6022-32. [PMID: 25853318 PMCID: PMC6272766 DOI: 10.3390/molecules20046022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/21/2023] Open
Abstract
Cinnamaldehyde (CA) is marginally soluble in water, making it challenging to evenly disperse it in foods, and resulting in lowered anti-A. flavus efficacy. In the present study, nano-dispersed CA (nano-CA) was prepared to increase its aqueous solubility. Free and nano-dispersed CA were compared in terms of their inhibitory activity against fungal growth and aflatoxin production of A. flavus both in Sabouraud Dextrose (SD) culture and in peanut butter. Our results indicated that free CA inhibited the mycelia growth and aflatoxin production of A. flavus with a minimal inhibitory concentration (MIC) value of 1.0 mM, but promoted the aflatoxin production at some concentrations lower than the MIC. Nano-CA had a lower MIC value of 0.8 mM against A. flavus, and also showed improved activity against aflatoxin production without the promotion at lower dose. The solidity of peanut butter had an adverse impact on the antifungal activity of free CA, whereas nano-dispersed CA showed more than 2-fold improved activity against the growth of A. flavus. Free CA still promoted AFB1 production at the concentration of 0.25 mM, whereas nano-CA showed more efficient inhibition of AFB1 production in the butter.
Collapse
|
43
|
Abstract
Aldehydes are a class of chemicals with many industrial uses. Several aldehydes are responsible for flavors and fragrances present in plants, but aldehydes are not known to accumulate in most natural microorganisms. In many cases, microbial production of aldehydes presents an attractive alternative to extraction from plants or chemical synthesis. During the past 2 decades, a variety of aldehyde biosynthetic enzymes have undergone detailed characterization. Although metabolic pathways that result in alcohol synthesis via aldehyde intermediates were long known, only recent investigations in model microbes such as Escherichia coli have succeeded in minimizing the rapid endogenous conversion of aldehydes into their corresponding alcohols. Such efforts have provided a foundation for microbial aldehyde synthesis and broader utilization of aldehydes as intermediates for other synthetically challenging biochemical classes. However, aldehyde toxicity imposes a practical limit on achievable aldehyde titers and remains an issue of academic and commercial interest. In this minireview, we summarize published efforts of microbial engineering for aldehyde synthesis, with an emphasis on de novo synthesis, engineered aldehyde accumulation in E. coli, and the challenge of aldehyde toxicity.
Collapse
|
44
|
Sheng L, Zhu MJ. Inhibitory effect of Cinnamomum cassia oil on non-O157 Shiga toxin-producing Escherichia coli. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Hua H, Xing F, Selvaraj JN, Wang Y, Zhao Y, Zhou L, Liu X, Liu Y. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production. PLoS One 2014; 9:e108285. [PMID: 25255251 PMCID: PMC4178002 DOI: 10.1371/journal.pone.0108285] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150-250 µL/L with fumigation and 250-500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥ 100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥ 75 µg/mL and ≥ 150 µg/mL respectively, while natural cinnamaldehyde couldn't fully inhibit OTA production at ≤ 200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.
Collapse
Affiliation(s)
- Huijuan Hua
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Fuguo Xing
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Jonathan Nimal Selvaraj
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yan Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yueju Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Lu Zhou
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Xiao Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
| | - Yang Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, P. R. China
- * E-mail:
| |
Collapse
|
46
|
Zhao H, Yang Q, Xie Y, Sun J, Tu H, Cao W, Wang S. Simultaneous determination of cinnamaldehyde and its metabolite in rat tissues by gas chromatography-mass spectrometry. Biomed Chromatogr 2014; 29:182-7. [PMID: 24898181 DOI: 10.1002/bmc.3254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
Cinnamaldehyde (CA), an active ingredient isolated from the traditional Chinese medicine Cortex Cinnamomi, has a wide range of bioactivities. To clarify the distribution characteristics of CA, a selective and sensitive method utilizing gas chromatography-mass spetrometry was initially developed for simultaneously determining the concentration of CA and its metabolite cinnamyl alcohol in rat tissues. Selected ion masses of m/z 131, 105 and 92 were chosen, and separation of the analytes was performed on a DB-5 ms (30 m × 0.25 mm, 0.25 µm, thickness) capillary column by gas chromatography-mass spectrometry. The calibration curves demonstrated good linearity and reproducibility over the range of 20-2000 and 20-4000 ng/mL for various tissue samples. Recoveries ranged from 86.8 to 107.5%, while intra- and interday relative standard deviations were all <11.3%. The analysis method was successfully applied in tissue distribution studies for CA and cinnamyl alcohol. As CA and cinnamyl alcohol may inter-convert to one another, simultaneous determination of both analytes provides a comparative and accurate data for tissue study. The concentrations of CA and cinnamyl alcohol remaining in spleen were the highest among the main organs, including heart, liver, spleen, lung, kidney and brain. In addition, there was no long-term accumulation of CA in rat tissues.
Collapse
Affiliation(s)
- Hang Zhao
- Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; The Cultivation Project of Collaborative Innovation Center for Chinese Medicine in QinBa Mountains, Xi'an, 710032, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Bergholz TM, Moreno Switt AI, Wiedmann M. Omics approaches in food safety: fulfilling the promise? Trends Microbiol 2014; 22:275-81. [PMID: 24572764 DOI: 10.1016/j.tim.2014.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/30/2022]
Abstract
Genomics, transcriptomics, and proteomics are rapidly transforming our approaches to the detection, prevention, and treatment of foodborne pathogens. Microbial genome sequencing in particular has evolved from a research tool into an approach that can be used to characterize foodborne pathogen isolates as part of routine surveillance systems. Genome sequencing efforts will not only improve outbreak detection and source tracking, but will also create large amounts of foodborne pathogen genome sequence data, which will be available for data-mining efforts that could facilitate better source attribution and provide new insights into foodborne pathogen biology and transmission. Although practical uses and application of metagenomics, transcriptomics, and proteomics data and associated tools are less prominent, these tools are also starting to yield practical food safety solutions.
Collapse
Affiliation(s)
- Teresa M Bergholz
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | | | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA.
| |
Collapse
|