1
|
Dong L, Li Y, Zhang Y, Su S. Cationic antimicrobial peptide CC34 potential anticancer and apoptotic induction on cancer cells. Amino Acids 2025; 57:28. [PMID: 40413361 PMCID: PMC12103485 DOI: 10.1007/s00726-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025]
Abstract
To evaluate the potential of antimicrobial peptide CC34 for use as therapeutic agents for gastric cancer SGC-7901 and hepatocellular carcinoma HepG-2. In this study, the antibacterial activity and antibacterial mechanism were tested by the minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, bacterial biofilm and NaCl permeability assays. Then, we assessed the hemolytic activity and cytotoxicity of CC34 for red blood cells and cancer cells, respectively. Apoptosis assay, cell cycle analysis, determination of intracellular ROS, western blot analysis caspase activity assay and ATP assay were further performed to investigate the mechanism of CC34 affected cancer cells. The novel peptide could inhibit Gram-negative and Gram-positive bacteria, with low hemolytic activity against mouse and chicken erythrocytes. Moreover, CC34 exhibited higher inhibitory activity against biofilm formation. In addition, our data showed that CC34 significantly suppressed cell proliferation, in a dose dependent manner. CC34 induced apoptosis, induced reactive oxygen species (ROS) generation, inhibited B-cell lymphoma-2 (Bcl-2) expression, increase B-cell lymphoma protein 2 associated X protein (Bax) expression, release of cytochrome c (Cyt C), promoted caspase-3 and - 9 activities and reduced cellular ATP levels in cancer cells. Our results indicate that CC34 with antimicrobial activity have a highly potent ability to induced apoptosis via mitochondrial-mediated apoptotic pathway in cancer cells.
Collapse
Affiliation(s)
- Liqiang Dong
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China.
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163316, China.
| | - Yunhe Li
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China
| | - Yaguang Zhang
- Heilongjiang Animal Husbandry Service, Harbin, 150000, China
| | - Shi Su
- School of Food and Pharmaceutical Engineering, Suihua University, Suihua, 152061, China
| |
Collapse
|
2
|
Angela T, Wahyuni S, Halim S. The effect of soaking heat-polymerized acrylic resin denture base in avocado seed extract ( Persea americana Mill.) on the inhibition of denture-plaque microorganisms biofilm growth. F1000Res 2025; 13:933. [PMID: 39925995 PMCID: PMC11806257 DOI: 10.12688/f1000research.152800.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 02/11/2025] Open
Abstract
Background Heat polymerized acrylic (HPA) resins are known to have high porosity that contributes to increased surface roughness and microcrack formation in stress areas. This facilitates the attachment and growth of polymicrobial biofilms contributing to increased antimicrobial resistance. This research aims to study avocado seeds effect on denture-plaque microorganism mono-species and polymicrobial biofilm on HPA resin. Methods This study uses 144 samples (n=144), namely HPA resin discs covered with mono-species and polymicrobial biofilms. The discs are soaked for 8 hours in the 5%, 10%, 15%, 20% avocado seed extract, positive control (alkaline peroxide), and negative control (aquadest). Each disc is shaken with a vortex mixer for 1 minute, and 100 μL is added into 96-well microplates with three times repetition and incubated for 24 hours. A microtiter plate biofilm formation assay is then conducted. The inhibition values are determined from the percentage inhibition value formula which requires absorption values from a microplate reader (595 nm). The research data are analyzed using a univariant test, and a one-way ANOVA test, accompanied by Welch ANOVA on non-homogenous data. Results In this research, it is found that the MBIC 50 of avocado seed extract against the mono-species of C. albicans (5%), C. glabrata (5%), A. odontolyticus (15%), S. gordonii (15%), S. aureus (10%), while against polymicrobial was 20%. There is a significant effect of soaking HPA resin in avocado seed extract on the inhibition of mono-species and polymicrobial biofilms with a value of p<0.001 (p<0.05). Conclusion The MBIC 50 of avocado seed extract in polymicrobial biofilm group is higher than that in the mono-species biofilm groups. Hence, 20% avocado seed extract is concluded as the effective concentration to inhibit denture-plaque microorganism biofilm.
Collapse
Affiliation(s)
- Thalia Angela
- Dental Undergraduate Study Program, Faculty of Dentistry, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Siti Wahyuni
- Department of Prosthodontics, University of Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Susanna Halim
- Faculty of Medicine, Dentistry and Health Sciences, Prima Indonesia University, Medan, North Sumatra, Indonesia
| |
Collapse
|
3
|
Nguyen KN, Sao L, Kyllo K, Hernandez D, Salomon S, Shah K, Oh D, Kao KC. Antibiofilm Activity of PDMS/TiO 2 against Candida glabrata through Inhibited Hydrophobic Recovery. ACS OMEGA 2024; 9:42593-42601. [PMID: 39431067 PMCID: PMC11483912 DOI: 10.1021/acsomega.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Coatings with antibiofilm properties are desirable for biomedical applications. Titanium dioxide (TiO2) has been explored as an antimicrobial agent in materials development primarily due to it being an excellent photocatalyst. Candida glabrata (C. glabrata) is an emerging human fungal pathogen with known high resistance to oxidative stress. Here, we fabricated a polydimethylsiloxane/titanium dioxide (PDMS/TiO2) nanocomposite coating and tested its antibiofilm activities against C. glabrata. The resulting nanocomposite exhibited >50% reduction in C. glabrata biofilm formation with 2.5 wt % TiO2 loading, even in the dark. Through ROS detection and surface characterization, the antibiofilm activity was attributed to the synergistic interaction of TiO2 nanoparticles with the PDMS matrix, which resulted in the impediment of hydrophobic recovery. This work provides a design strategy to develop antibiofilm coatings against C. glabrata.
Collapse
Affiliation(s)
- Khoi-Nguyen Nguyen
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Leena Sao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kevin Kyllo
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Danitza Hernandez
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Samantha Salomon
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kalp Shah
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Dahyun Oh
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Katy C. Kao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| |
Collapse
|
4
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
5
|
Asraoui F, El Mansouri F, Cacciola F, Brigui J, Louajri A, Simonetti G. Biofilm Inhibition of Inula viscosa (L.) Aiton and Globularia alypum L. Extracts Against Candida Infectious Pathogens and In Vivo Action on Galleria mellonella Model. Adv Biol (Weinh) 2023; 7:e2300081. [PMID: 37612795 DOI: 10.1002/adbi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The increasing importance of fungal infections has fueled the search for new beneficial alternatives substance from plant extracts. The current study investigates the antifungal and antibiofilm activity of Inula viscosa (L.) Aiton and Globularia alypum (L.) leaves extracts against Candida both in vitro and in vivo. The inhibition of planktonic and sessile Candida albicans and Candida glabrata growth using both leaf extracts are evaluated. Moreover; an in vivo infection model using Galleria mellonella larvae; infected and treated with the extracts are performed. All extracts show fungicidal activity; with a minimum fungicidal concentration (MFC) ranging from 128 to 512 µg mL-1 against the two selected strains of Candida. In particular, the best results are obtained with methanolic extract of I. viscosa and G. alypum with an MFC value of 128 µg mL-1 . The extracts are capable to prevent 90% of biofilm development at minor concentrations ranging from 100.71 ± 2.49 µg mL-1 to 380.4 ± 0.92 µg mL-1 . In vivo, tests on Galleria mellonella larvae show that the extracts increase the survival of the larvae infected with Candida. The attained results reveal that I. viscosa and G. alypum extracts may be considered as new antifungal agents and biofilm inhibiting agents for the pharmaceutical and agro-food field.
Collapse
Affiliation(s)
- Fadoua Asraoui
- Laboratory of Applied Biology and Pathologies, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan, 93000, Morocco
| | - Fouad El Mansouri
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, B.P. 416, Tangier, 90000, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, 98125, Italy
| | - Jamal Brigui
- Research Team: Materials, Environment and Sustainable Development (MEDD), Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, B.P. 416, Tangier, 90000, Morocco
| | - Adnane Louajri
- Laboratory of Applied Biology and Pathologies, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaâdi University, Tetouan, 93000, Morocco
| | - Giovanna Simonetti
- Dipartimento di Biologia Ambientale, Università degli Studi di Roma "La Sapienza", P.le Aldo Moro 5, Rome, 00185, Italy
| |
Collapse
|
6
|
Qiu J, Roza MP, Colli KG, Dalben YR, Maifrede SB, Valiatti TB, Novo VM, Cayô R, Grão-Velloso TR, Gonçalves SS. Candida-associated denture stomatitis: clinical, epidemiological, and microbiological features. Braz J Microbiol 2023; 54:841-848. [PMID: 36940013 PMCID: PMC10234952 DOI: 10.1007/s42770-023-00952-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/21/2023] Open
Abstract
OBJECTIVE The identification of Candida spp. in denture stomatitis, the clinical manifestations, and the antifungal susceptibility profile lead to a correct and individualized therapeutic management of the patients. This study is aimed at investigating the clinical manifestations and epidemiological and microbiological characteristics of Candida-associated denture stomatitis. DESIGN The samples were obtained by swabbing the oral mucosa of the subjects and then seeded onto Sabouraud Dextrose Agar and onto CHROMagar® Candida plates. The identification at the species level was confirmed by Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry. Clinical classification was performed according to the criteria proposed by Newton (1962): (i) pinpoint hyperemia, (ii) diffuse hyperemia, and (iii) granular hyperemia. For carrying out the antifungal susceptibility testing, we adopted the CLSI M27-S4 protocol. RESULTS C. albicans was the most prevalent species in our study. Regarding non-albicans Candida species, C. glabrata was the most common species isolated from the oral mucosa (n = 4, 14.8%), while in the prosthesis, it was C. tropicalis (n = 4, 14.8%). The most prevalent clinical manifestation was pinpoint hyperemia and diffuse hyperemia. Candida albicans, C. glabrata, and C. parapsilosis were susceptible to all the tested antifungals. Concerning fluconazole and micafungin, only two strains showed dose-dependent sensitivity (minimum inhibitory concentration (MIC), 1 μg/mL) and intermediate sensitivity (MIC, 0.25 μg/mL). One C. tropicalis strain was resistant to voriconazole (MIC, 8 μg/mL). CONCLUSIONS C. albicans was the most common species found in oral mucosa and prosthesis. The tested antifungal drugs showed great activity against most isolates. The most prevalent clinical manifestations were Newton's type I and type II.
Collapse
Affiliation(s)
- Jiuyan Qiu
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
| | - Milena P. Roza
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
| | - Karolyne G. Colli
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
| | - Yago R. Dalben
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
- Infectious Diseases Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Simone B. Maifrede
- Pathology Department, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Tiago B. Valiatti
- Alerta Laboratory, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Vinicius M. Novo
- Dental Science Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Rodrigo Cayô
- Alerta Laboratory, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
- Immunology and Microbiology Laboratory (LIB), Biological Sciences Department (DCB), Immunology and Microbiology Sector, Institute of Environmental Sciences, Chemical and Pharmaceutical Sciences (ICAQF), University of Federal São Paulo (UNIFESP), Diadema, SP Brazil
| | - Tânia Regina Grão-Velloso
- Dental Clinic Department, Health Sciences Center (CCS), Federal University Espírito Santo (UFES), Vitória, ES Brazil
- Dental Science Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| | - Sarah S. Gonçalves
- Center for Research in Medical Mycology (CIMM), Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), 1468, Marechal Campos Avenue, Vitória, ES 29.040-090 Brazil
- Infectious Diseases Postgraduate Program, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
- Pathology Department, Health Sciences Center (CCS), Federal University of Espírito Santo (UFES), Vitória, ES Brazil
| |
Collapse
|
7
|
Nesvizhsky YV, Voropaev AD, Afanasiev SS, Volchkova EV, Afanasiev MS, Voropaeva EA, Suleimanova ME, Budanova EV, Urban YN. The association between <i>Candida albicans</i> sensitivity to antimycotic drugs and the architecture of their microbial community in the oropharynx of HIV infected patients. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2023. [DOI: 10.36233/0372-9311-326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Relevance. Candida infection remains relevant due to the wide spread of antimycotic-resistant strains of Candida fungi, especially among immunocompromised individuals. It was previously discovered that the Candida spp. microbial community in the biotope of the oropharynx of HIV infected patients is characterized by a certain architecture: they can be present in this biotope in the form of a monoculture or as association of co-isolates. It has been suggested that the architecture of the Candida microbial community may influence their resistance to antimycotic drugs.
Purpose a comparative study of the association between the architecture of the C. albicans microbial community in the oropharynx of HIV infected patients with oropharyngeal candidiasis and their sensitivity to antimycotic drugs.
Materials and methods. A microbiological study of 52 isolates of Candida fungi (C. albicans, C. glabrata, C. tropicalis and C. krusei) from the oropharynx of 31 HIV infected patients with clinical manifestations of oropharyngeal candidiasis aged 20 to 69 years with almost equal gender distribution was carried out. In the form of monocultures, 18 isolates were isolated, while 34 were identified as co-isolates, which formed 16 homogeneous communities that included strains of the same species, and 18 heterogeneous ones that consisted of fungi of various species.
Results. It was found that heterogeneous communities of C. albicans were markedly distinguished by sensitivity to antimycotic drugs, in particular, by low sensitivity to imidazoles. Homogeneous communities practically did not differ from monocultural ones. The general properties of the C. non-albicans population were largely similar to those of C. albicans, but were characterized by lower heterogeneity in response to antimycotic drugs.
Conclusion. The architecture of the community of C. albicans isolated from the oropharynx of HIV infected patients with clinical manifestations of oropharyngeal candidiasis affects their sensitivity to antimycotic drugs. When selecting effective antimycotic therapy for such patients, it is necessary to take into account the structure of the Candida spp. community in the oropharynx.
Collapse
|
8
|
Costa RHF, Krawczyk-Santos AP, Martins Andrade JF, Barbalho GN, Almeida RM, Nóbrega YKM, Cunha-Filho M, Gelfuso GM, Taveira SF, Gratieri T. α-Cyclodextrin-based poly(pseudo)rotaxane for antifungal drug delivery to the vaginal mucosa. Carbohydr Polym 2023; 302:120420. [PMID: 36604082 DOI: 10.1016/j.carbpol.2022.120420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
This work aimed to evaluate poly(pseudo)rotaxanes (PPRs) potential for vaginal antifungal delivery. For this, PPRs containing terbinafine (TB) 2 % were obtained using two small surfactants, Kolliphor® RH40 and Gelucire® 48/16, and different α-cyclodextrin (α-CD) concentrations (5 and 10 %). PPRs were characterized by their physicochemical characteristics, irritation, and mucoadhesion capabilities. Formulations' performance was assessed in a vertical penetration model, which uses ex vivo entire porcine vagina. Conventional penetration experiments with excised vaginal tissue were performed as a control. Results showed all formulations were non-irritant according to the HET-CAM test. Furthermore, PPRs with 10 % αCD showed superior mucoadhesion (p < 0.05). Conventional horizontal penetration studies could not differentiate formulations (p > 0.05). However, PPRs with 10 % αCD presented a better performance in vertical ex vivo studies, achieving higher drug penetration into the vaginal mucosa (p < 0.05), which is probably related to the formulation's prolonged residence time. In addition, the antifungal activity of the formulations was maintained against Candida albicans and C. glabrata cultures. More importantly, the formulation's viscosity and drug delivery control had no negative impact on the antifungal activity. In conclusion, the best performance in a more realistic model evidenced the remarkable potential of PPRs for vaginal drug delivery.
Collapse
Affiliation(s)
- Rayssa H F Costa
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Anna Paula Krawczyk-Santos
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | | | - Geisa N Barbalho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Rosane M Almeida
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Yanna K M Nóbrega
- Clinical Microbiology and Immunology Laboratory, Department of Pharmacy, University of Brasilia (UnB), 70910-900 Brasilia, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás (UFG), 74605-170 Goiânia, GO, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), 70910-900 Brasília, DF, Brazil.
| |
Collapse
|
9
|
Costa PDS, Prado A, Bagon NP, Negri M, Svidzinski TIE. Mixed Fungal Biofilms: From Mycobiota to Devices, a New Challenge on Clinical Practice. Microorganisms 2022; 10:microorganisms10091721. [PMID: 36144323 PMCID: PMC9506030 DOI: 10.3390/microorganisms10091721] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.
Collapse
|
10
|
Silva SG, Paula P, da Silva JP, Mil-Homens D, Teixeira MC, Fialho AM, Costa R, Keller-Costa T. Insights into the Antimicrobial Activities and Metabolomes of Aquimarina ( Flavobacteriaceae, Bacteroidetes) Species from the Rare Marine Biosphere. Mar Drugs 2022; 20:423. [PMID: 35877716 PMCID: PMC9323603 DOI: 10.3390/md20070423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the ‘Sponge Microbiome Project’ dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.
Collapse
Affiliation(s)
- Sandra Godinho Silva
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Patrícia Paula
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - José Paulo da Silva
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Dalila Mil-Homens
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Miguel Cacho Teixeira
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Arsénio Mendes Fialho
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rodrigo Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Tina Keller-Costa
- IBB—Institute for Bioengineering and Biosciences and i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (S.G.S.); (P.P.); (D.M.-H.); (M.C.T.); (A.M.F.)
- Bioengeneering Department, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
11
|
Boahen A, Than LTL, Loke YL, Chew SY. The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Front Microbiol 2022; 13:787119. [PMID: 35694318 PMCID: PMC9179178 DOI: 10.3389/fmicb.2022.787119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
“Unity in strength” is a notion that can be exploited to characterize biofilms as they bestow microbes with protection to live freely, escalate their virulence, confer high resistance to therapeutic agents, and provide active grounds for the production of biofilms after dispersal. Naturally, fungal biofilms are inherently resistant to many conventional antifungals, possibly owing to virulence factors as their ammunitions that persistently express amid planktonic transition to matured biofilm state. These ammunitions include the ability to form polymicrobial biofilms, emergence of persister cells post-antifungal treatment and acquisition of resistance genes. One of the major disorders affecting vaginal health is vulvovaginal candidiasis (VVC) and its reoccurrence is termed recurrent VVC (RVVC). It is caused by the Candida species which include Candida albicans and Candida glabrata. The aforementioned Candida species, notably C. albicans is a biofilm producing pathogen and habitually forms part of the vaginal microbiota of healthy women. Latest research has implicated the role of fungal biofilms in VVC, particularly in the setting of treatment failure and RVVC. Consequently, a plethora of studies have advocated the utilization of probiotics in addressing these infections. Specifically, the excreted or released compounds of probiotics which are also known as postbiotics are being actively researched with vast potential to be used as therapeutic options for the treatment and prevention of VVC and RVVC. These potential sources of postbiotics are harnessed due to their proven antifungal and antibiofilm. Hence, this review discusses the role of Candida biofilm formation in VVC and RVVC. In addition, we discuss the application of pro-, pre-, post-, and synbiotics either individually or in combined regimen to counteract the abovementioned problems. A clear understanding of the role of biofilms in VVC and RVVC will provide proper footing for further research in devising novel remedies for prevention and treatment of vaginal fungal infections.
Collapse
|
12
|
Ashrit P, Sadanandan B, Shetty K, Vaniyamparambath V. Polymicrobial Biofilm Dynamics of Multidrug-Resistant Candida albicans and Ampicillin-Resistant Escherichia coli and Antimicrobial Inhibition by Aqueous Garlic Extract. Antibiotics (Basel) 2022; 11:antibiotics11050573. [PMID: 35625217 PMCID: PMC9137478 DOI: 10.3390/antibiotics11050573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
The polymicrobial biofilm of C. albicans with E. coli exhibits a dynamic interspecies interaction and is refractory to conventional antimicrobials. In this study, a high biofilm-forming multidrug-resistant strain of C. albicans overcomes inhibition by E. coli in a 24 h coculture. However, following treatment with whole Aqueous Garlic Extract (AGE), these individual biofilms of multidrug-resistant C. albicans M-207 and Ampicillin-resistant Escherichia coli ATCC 39936 and their polymicrobial biofilm were prevented, as evidenced by biochemical and structural characterization. This study advances the antimicrobial potential of AGE to inhibit drug-resistant C. albicans and bacterial-associated polymicrobial biofilms, suggesting the potential for effective combinatorial and synergistic antimicrobial designs with minimal side effects.
Collapse
Affiliation(s)
- Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru 560054, India; (P.A.); (V.V.)
| | - Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru 560054, India; (P.A.); (V.V.)
- Correspondence: or ; Tel.: +91-80-2308331; Fax: +91-80-2360-3124
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA;
| | | |
Collapse
|
13
|
Rhodotorula sp. and Trichosporon sp. are more Virulent After a Mixed Biofilm. Mycopathologia 2021; 187:85-93. [PMID: 34855103 DOI: 10.1007/s11046-021-00606-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
Rhodotorula spp. and Trichosporon spp. are opportunistic pathogens, and although an association between these two species in the same infection appears to be uncommon, it has been reported. This is the first study that aimed to evaluate the pathogenesis of a co-infection by R. mucilaginosa and T. asahii, using a new in vivo model, the Zophobas morio larvae. Suspensions from planktonic and biofilm-recovered cells were injected in the larvae as in monospecies as mixed (a ratio of 1:1 for both agents of a of 105 inoculum). Individual and mixed biofilms of R. mucilaginosa and T. asahii were produced for 24 and 48 h, and they were partially characterized by crystal violet and reduction of tetrazolium salt. When evaluating the impact of the planktonic suspension in vivo we verified that the fungi in monoculture were more able to kill the larvae than those from planktonic mixed suspension. On the other hand, regarding biofilm-recovered cells, there was an increase in the death of larvae infected for mixed suspensions. Moreover, the death rate was more pronounced when the larvae were infected with 48 h biofilm-recovered cells than the 24 h ones. T. asahii was the best producer of total biomass, mainly in 48 h. The metabolic activity for both yeasts organized in biofilm maintained the same pattern between 24 and 48 h. The present study proves a synergistic interaction between R. mucilaginosa and T. asahii after an experience in a mixed biofilm. Our results suggest that both species were benefited from this interaction, acquiring a greater potential for virulence after passing through the biofilm and this ability was acquired by the cells released from the biofilm.
Collapse
|
14
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:1529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
| |
Collapse
|
15
|
Li Q, Liu J, Chen M, Ma K, Wang T, Wu D, Yan G, Wang C, Shao J. Abundance interaction in Candida albicans and Candida glabrata mixed biofilms under diverse conditions. Med Mycol 2021; 59:158-167. [PMID: 32453815 DOI: 10.1093/mmy/myaa040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Candida albicans and Candida glabrata are frequently coisolated from the oral cavity in immunosuppressive or immunocompromised individuals. Their relationship is usually defined as competition as C. glabrata can inhibit growth of C. albicans in cohabitation. In this study, eight C. albicans isolates as well as two C. glabrata strains were used to investigate the effects of culture medium (Roswell Park Memorial Institute [RPMI]-1640, YPD, YND), incubation time (24 h, 48 h, 72 h, 96 h), initial inoculum (C. glabrata: C. albicans = 2:1, 1:1, 1:2), and medium state (static and dynamic states) on viable cell enumeration and relative abundance in both Candida SB and MB. The results showed that in most cases, C. glabrata and C. albicans SB and MB flourished in RPMI-1640 at 24 h under dynamic state compared with other conditions. Except YPD medium, there were high proportions of preponderance of C. albicans over C. glabrata in MB compared with SB. High initial inoculum promoted corresponding Candida number in both SB and MB and its abundance in MB relative to SB. This study revealed an impact of several environmental conditions on the formation of C. albicans and C. glabrata SB and MB and their abundance in MB in comparison with SB, deepening our understanding of both Candida interaction and their resistance mechanism in MB. LAY SUMMARY This study described the effects of diverse experimental conditions on the numbers of Candida albicans and Candida glabrata single biofilms and mixed biofilms and their abundance.
Collapse
Affiliation(s)
- Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Juanjuan Liu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Mengli Chen
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China
| | - Kelong Ma
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Guiming Yan
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, 436 Room, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Zhijing Building, No. 1 Qianjiang Road, Xinzhan District, Hefei 230012, Anhui, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Chinese Medicine, Xin'An Building, No. 103 Meishan Road, Shushan District, Hefei 230038, Anhui, China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
16
|
Bekkal Brikci Benhabib O, Boucherit-Otmani Z, Boucherit K, Djediat C. Interaction in a dual-species biofilm of Candida albicans and Candida glabrata co-isolated from intravascular catheter. Microb Pathog 2020; 152:104613. [PMID: 33227365 DOI: 10.1016/j.micpath.2020.104613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The use of catheters for vascular access may be associated with colonization by Candida species and their biofilm-forming ability. The latter can harbor two or more species of Candida yeast. In the sense, we conducted our study at the University Hospital of Tlemcen in west Algeria at the neuro-surgery unit, that aims (or which aims) to evaluate the ability to form mixed biofilm by dual-species Candida albicans/Candida glabrata co-isolated from intravascular catheters and their interaction in biofilm. That is the first report in Algeria. During this study, we took photographic images by scanning electron microscopy of 3 catheters implanted before 48 h and co-colonized by dual-species. From all taken samples, 34 catheters were altered by yeasts from which three were co-colonized by two Candida species and C. albicans established synergistic and competitive interactions with C. glabrata species in mixed biofilm tested.
Collapse
Affiliation(s)
| | - Z Boucherit-Otmani
- Laboratory Antibiotics Antifungals, Physico-chemical, Synthesis and Biological Activities, University of Tlemcen, Algeria
| | - K Boucherit
- Centre Universitaire Ain Témouchent, Algeria; Laboratory Antibiotics Antifungals, Physico-chemical, Synthesis and Biological Activities, University of Tlemcen, Algeria
| | - C Djediat
- Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
17
|
Araujo HC, Arias LS, Caldeirão ACM, Assumpção LCDF, Morceli MG, de Souza Neto FN, de Camargo ER, Oliveira SHP, Pessan JP, Monteiro DR. Novel Colloidal Nanocarrier of Cetylpyridinium Chloride: Antifungal Activities on Candida Species and Cytotoxic Potential on Murine Fibroblasts. J Fungi (Basel) 2020; 6:jof6040218. [PMID: 33053629 PMCID: PMC7712500 DOI: 10.3390/jof6040218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Nanocarriers have been used as alternative tools to overcome the resistance of Candida species to conventional treatments. This study prepared a nanocarrier of cetylpyridinium chloride (CPC) using iron oxide nanoparticles (IONPs) conjugated with chitosan (CS), and assessed its antifungal and cytotoxic effects. CPC was immobilized on CS-coated IONPs, and the nanocarrier was physico-chemically characterized. Antifungal effects were determined on planktonic cells of Candida albicans and Candida glabrata (by minimum inhibitory concentration (MIC) assays) and on single- and dual-species biofilms of these strains (by quantification of cultivable cells, total biomass and metabolic activity). Murine fibroblasts were exposed to different concentrations of the nanocarrier, and the cytotoxic effect was evaluated by MTT reduction assay. Characterization methods confirmed the presence of a nanocarrier smaller than 313 nm. IONPs-CS-CPC and free CPC showed the same MIC values (0.78 µg mL−1). CPC-containing nanocarrier at 78 µg mL−1 significantly reduced the number of cultivable cells for all biofilms, surpassing the effect promoted by free CPC. For total biomass, metabolic activity, and cytotoxic effects, the nanocarrier and free CPC produced statistically similar outcomes. In conclusion, the IONPs-CS-CPC nanocarrier was more effective than CPC in reducing the cultivable cells of Candida biofilms without increasing the cytotoxic effects of CPC, and may be a useful tool for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Heitor Ceolin Araujo
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Laís Salomão Arias
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Anne Caroline Morais Caldeirão
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
| | - Lanay Caroline de Freitas Assumpção
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Marcela Grigoletto Morceli
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
| | - Francisco Nunes de Souza Neto
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | | | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil;
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba SP 16015-050, Brazil; (H.C.A.); (L.S.A.); (F.N.d.S.N.); (J.P.P.)
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD—Master’s Degree), University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil;
- School of Dentistry, Presidente Prudente, University of Western São Paulo (UNOESTE), Presidente Prudente SP 19050-920, Brazil; (L.C.d.F.A.); (M.G.M.)
- Correspondence: or ; Tel.: +55-18-3229-1000
| |
Collapse
|
18
|
Usui Y, Wakabayashi Y, Shimizu T, Tahara YO, Miyata M, Nakamura A, Ito M. A Factor Produced by Kaistia sp. 32K Accelerated the Motility of Methylobacterium sp. ME121. Biomolecules 2020; 10:biom10040618. [PMID: 32316239 PMCID: PMC7226442 DOI: 10.3390/biom10040618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Motile Methylobacterium sp. ME121 and non-motile Kaistia sp. 32K were isolated from the same soil sample. Interestingly, ME121 was significantly more motile in the coculture of ME121 and 32K than in the monoculture of ME121. This advanced motility of ME121 was also observed in the 32K culture supernatant. A swimming acceleration factor, which we named the K factor, was identified in the 32K culture supernatant, purified, characterized as an extracellular polysaccharide (5–10 kDa), and precipitated with 70% ethanol. These results suggest the possibility that the K factor was directly or indirectly sensed by the flagellar stator, accelerating the flagellar rotation of ME121. To the best of our knowledge, no reports describing an acceleration in motility due to coculture with two or more types of bacteria have been published. We propose a mechanism by which the increase in rotational force of the ME121 flagellar motor is caused by the introduction of the additional stator into the motor by the K factor.
Collapse
Affiliation(s)
- Yoshiaki Usui
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan; (Y.U.); (Y.W.)
| | - Yuu Wakabayashi
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan; (Y.U.); (Y.W.)
| | - Tetsu Shimizu
- Faculty of Life and Environmental Sciences, and Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (T.S.); (A.N.)
| | - Yuhei O. Tahara
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (Y.O.T.); (M.M.)
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka 558-8585, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (Y.O.T.); (M.M.)
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka 558-8585, Japan
| | - Akira Nakamura
- Faculty of Life and Environmental Sciences, and Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (T.S.); (A.N.)
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma 374-0193, Japan; (Y.U.); (Y.W.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama 350-8585, Japan
- Correspondence: ; Tel.: +81-273-82-9202
| |
Collapse
|
19
|
Zangl I, Pap IJ, Aspöck C, Schüller C. The role of Lactobacillus species in the control of Candida via biotrophic interactions. MICROBIAL CELL 2019; 7:1-14. [PMID: 31921929 PMCID: PMC6946018 DOI: 10.15698/mic2020.01.702] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microbial communities have an important role in health and disease. Candida spp. are ubiquitous commensals and sometimes opportunistic fungal pathogens of humans, colonizing mucosal surfaces of the genital, urinary, respiratory and gastrointestinal tracts and the oral cavity. They mainly cause local mucosal infections in immune competent individuals. However, in the case of an ineffective immune defense, Candida infections may become a serious threat. Lactobacillus spp. are part of the human microbiome and are natural competitors of Candida in the vaginal environment. Lactic acid, low pH and other secreted metabolites are environmental signals sensed by fungal species present in the microbiome. This review briefly discusses the ternary interaction between host, Lactobacillus species and Candida with regard to fungal infections and the potential antifungal and fungistatic effect of Lactobacillus species. Our understanding of these interactions is incomplete due to the variability of the involved species and isolates and the complexity of the human host.
Collapse
Affiliation(s)
- Isabella Zangl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology (DAGZ), Tulln, Austria
| | - Ildiko-Julia Pap
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St Pölten, Austria
| | - Christoph Aspöck
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St Pölten, Austria
| | - Christoph Schüller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology (DAGZ), Tulln, Austria.,Bioactive Microbial Metabolites (BiMM), BOKU, Tulln, Austria
| |
Collapse
|
20
|
Li Q, Liu J, Shao J, Da W, Shi G, Wang T, Wu D, Wang C. Decreasing Cell Population of Individual Candida Species Does Not Impair the Virulence of Candida albicans and Candida glabrata Mixed Biofilms. Front Microbiol 2019; 10:1600. [PMID: 31354684 PMCID: PMC6637850 DOI: 10.3389/fmicb.2019.01600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
Candida albicans and Candida glabrata are two commonly seen opportunistic fungi in clinical settings and usually co-isolated from the population inflicted with denture stomatitis and oropharyngeal candidiasis. Although C. albicans and C. glabrata mixed biofilm is deemed to possess enhanced virulence compared with their individual counterparts (especially C. albicans single biofilm), the relevant descriptions and experimental evidence on the relationship of Candida virulence with their individual cell number in mixed biofilms are contradictory and insufficient. In this study, two standard C. glabrata isolate and eight C. albicans ones were used to test the cell quantities in their 24- and 48-h single and mixed biofilms. A series of virulence factors including antifungal resistance to caspofungin, secreted aspartic proteinase (SAP) and phospholipase (PL) levels, efflux pump function and β-glucan exposure were evaluated. Through this study, the declines of individual cell counting were observed in the 24- and 48-h Candida mixed biofilms compared with their single counterparts. However, the antifungal resistance to caspofungin, the SAP and phospholipase levels, the rhodamine 6G efflux and the efflux-related gene expressions were increased significantly or kept unchanged accompanying with reduced β-glucan exposure in the mixed biofilms by comparison with the single counterparts. These results reveal that there is a competitive interaction between C. albicans and C. glabrata strains in their co-culture without at the expense of the mixed biofilm virulence. This study presents a deep insight into the interaction between C. albicans and C. glabrata and provides new clues to combat against fungal infections caused by Candida mixed biofilms.
Collapse
Affiliation(s)
- Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Juanjuan Liu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.,Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC. Divergent Approaches to Virulence in C. albicans and C. glabrata: Two Sides of the Same Coin. Int J Mol Sci 2019; 20:E2345. [PMID: 31083555 PMCID: PMC6539081 DOI: 10.3390/ijms20092345] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
Candida albicans and Candida glabrata are the two most prevalent etiologic agents of candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be equally successful in causing human candidiasis. In this review, the virulence mechanisms employed by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems. Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.
Collapse
Affiliation(s)
- Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Mafalda Cavalheiro
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Diana Pereira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Romeu Viana
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Miguel C Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
22
|
Bezerra NVF, Brito ACM, Medeiros MMD, França Leite KL, Bezerra IM, Almeida LFD, Aires CP, Cavalcanti YW. Glucose supplementation effect on the acidogenicity, viability, and extracellular matrix of
Candida
single‐ and dual‐species biofilms. ACTA ACUST UNITED AC 2019; 10:e12412. [DOI: 10.1111/jicd.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/12/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Arella C. M. Brito
- School of Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | | | | | - Isis M. Bezerra
- School of Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Leopoldina F. D. Almeida
- Department of Clinical and Social Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| | - Carolina P. Aires
- Department of Physics, and Chemistry University of São Paulo Ribeirão Preto Paraíba Brazil
| | - Yuri W. Cavalcanti
- Department of Clinical and Social Dentistry Federal University of Paraíba João Pessoa Paraíba Brazil
| |
Collapse
|
23
|
Elbourne A, Truong VK, Cheeseman S, Rajapaksha P, Gangadoo S, Chapman J, Crawford RJ. The use of nanomaterials for the mitigation of pathogenic biofilm formation. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|