1
|
Tabari Shahandasht N, Bolandi M, Rahmati M, Jafarisani M. Enhancing Stirred Yogurt Quality With Hyaluronic Acid-Rich Rooster Comb Extract: Effects on Texture and Shelf Life. Food Sci Nutr 2025; 13:e4666. [PMID: 39803235 PMCID: PMC11717033 DOI: 10.1002/fsn3.4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties. This research evaluates rooster comb extract (RCE) as a natural additive to improve stirred yogurt's properties during 21 days of storage at 4°C. Two treatments with 0.8 and 0.9 g of RCE were added to stirred yogurt. Results showed a decrease in pH (from 3.89 to 4.38) and microbial counts (> 107 log CFU/g), along with an increase in titratable acidity (1.03%-1.48%) in RCE-enriched yogurt (p < 0.05). The 0.8 g RCE treatment showed reduced syneresis, lightness, and setting time compared to the control (p < 0.05). Rheological analysis indicated thixotropic shear-thinning behavior, accurately described by the Herschel-Bulkley model. All samples displayed solid viscoelastic properties, with the storage modulus exceeding the loss modulus in the linear viscoelastic region. While flavor and overall acceptability declined in enriched samples compared to controls (p < 0.05), no significant differences were found in other characteristics, including texture, color, and aroma (p > 0.05). In conclusion, RCE is a promising natural hydrocolloid for producing functional stirred yogurt, offering potential consumer benefits.
Collapse
Affiliation(s)
| | - Marzieh Bolandi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of MedicineShahroud University of Medical SciencesShahroudIran
| | - Moslem Jafarisani
- Clinical BiochemistryShahroud University of Medical SciencesShahroudIran
| |
Collapse
|
2
|
Liang S, Wang X, Li C, Liu L. Biological Activity of Lactic Acid Bacteria Exopolysaccharides and Their Applications in the Food and Pharmaceutical Industries. Foods 2024; 13:1621. [PMID: 38890849 PMCID: PMC11172363 DOI: 10.3390/foods13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Exopolysaccharides are natural macromolecular bioactive substances produced by lactic acid bacteria. With their unique physiological activity and structural characteristics, they are gradually showing broad application prospects in the food and pharmaceutical industries. Exopolysaccharides have various biological functions, such as exerting antioxidant and anti-tumor activities and regulating gut microbiota. Meanwhile, as a food additive, exopolysaccharides can significantly enhance the taste and quality of food, bringing consumers a better eating experience. In the field of medicine, exopolysaccharides have been widely used as drug carriers due to their non-toxic properties and good biocompatibility. This article summarizes the biological activities of exopolysaccharides produced by lactic acid bacteria, their synthesis, and their applications in food and pharmaceutical industries, aiming to promote further research and development in this field.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chun Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Libo Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Ponzio A, Rebecchi A, Zivoli R, Morelli L. Reuterin, Phenyllactic Acid, and Exopolysaccharides as Main Antifungal Molecules Produced by Lactic Acid Bacteria: A Scoping Review. Foods 2024; 13:752. [PMID: 38472865 PMCID: PMC10930965 DOI: 10.3390/foods13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary goal of this scoping review is to collect, analyze, and critically describe information regarding the role of the main compounds (reuterin, phenyllactic acid, and exopolysaccharides) produced by LAB that possess antifungal properties and provide some suggestions for further research. The use of lactic acid bacteria (LAB) to mitigate spoilage and extend the shelf life of foodstuffs has a long history. Recently, there has been a growing interest in the unique properties of these additions to the foodstuffs in which they are applied. In recent studies regarding biopreservation, significant attention has been given to the role of these microorganisms and their metabolites. This fascinating recent discipline aims not only to replace traditional preservation systems, but also to improve the overall quality of the final product. The biologically active by-products produced by lactic acid bacteria are synthesized under certain conditions (time, temperature, aerobiosis, acidity, water activity, etc.), which can be enacted through one of the oldest approaches to food processing: fermentation (commonly used in the dairy and bakery sectors). This study also delves into the biosynthetic pathways through which they are synthesized, with a particular emphasis on what is known about the mechanisms of action against molds in relation to the type of food.
Collapse
Affiliation(s)
- Andrea Ponzio
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| | - Rosanna Zivoli
- Soremartec Italia S.r.l. (Ferrero Group), P.le P. Ferrero 1, 12051 Alba, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (A.R.); (L.M.)
| |
Collapse
|
4
|
Rubio-Ribeaux D, da Costa RAM, Montero-Rodríguez D, do Amaral Marques NSA, Puerta-Díaz M, de Souza Mendonça R, Franco PM, Dos Santos JC, da Silva SS. Sustainable production of bioemulsifiers, a critical overview from microorganisms to promising applications. World J Microbiol Biotechnol 2023; 39:195. [PMID: 37171665 DOI: 10.1007/s11274-023-03611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Microbial bioemulsifiers are molecules of amphiphilic nature and high molecular weight that are efficient in emulsifying two immiscible phases such as water and oil. These molecules are less effective in reducing surface tension and are synthesized by bacteria, yeast and filamentous fungi. Unlike synthetic emulsifiers, microbial bioemulsifiers have unique advantages such as biocompatibility, non-toxicity, biodegradability, efficiency at low concentrations and high selectivity under different conditions of pH, temperature and salinity. The adoption of microbial bioemulsifiers as alternatives to their synthetic counterparts has been growing in ongoing research. This article analyzes the production of microbial-based emulsifiers, the raw materials and fermentation processes used, as well as the scale-up and commercial applications of some of these biomolecules. The current trend of incorporating natural compounds into industrial formulations indicates that the search for new bioemulsifiers will continue to increase, with emphasis on performance improvement and economically viable processes.
Collapse
Affiliation(s)
- Daylin Rubio-Ribeaux
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil.
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil.
| | - Rogger Alessandro Mata da Costa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Dayana Montero-Rodríguez
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Nathália Sá Alencar do Amaral Marques
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Mirelys Puerta-Díaz
- Pernambuco Institute of Agronomy, Recife, Pernambuco, 50761-000, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Rafael de Souza Mendonça
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, Recife, Pernambuco, 50050-590, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Paulo Marcelino Franco
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, 12.602-810, Brazil
- Faculty of Philosophy and Sciences, Campus Marília, São Paulo State University, São Paulo, 17.525-900, Brazil
| |
Collapse
|
5
|
Martín R, Benítez-Cabello A, Kulakauskas S, Viana MVC, Chamignon C, Courtin P, Carbonne C, Chain F, Pham HP, Derrien M, Bermúdez-Humarán LG, Chapot-Chartier MP, Smokvina T, Langella P. Over-production of exopolysaccharide by Lacticaseibacillus rhamnosus CNCM I-3690 strain cutbacks its beneficial effect on the host. Sci Rep 2023; 13:6114. [PMID: 37059733 PMCID: PMC10104810 DOI: 10.1038/s41598-023-32116-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Most lactobacilli produce extracellular polysaccharides that are considered to contribute to the probiotic effect of many strains. Lacticaseibacillus rhamnosus CNCM I-3690 is an anti-inflammatory strain able to counterbalance gut barrier dysfunction. In this study ten spontaneous variants of CNCM I-3690 with different EPS-production were generated and characterized by their ropy phenotype, the quantification of the secreted EPS and genetic analysis. Amongst them, two were further analysed in vitro and in vivo: an EPS over-producer (7292) and a low-producer derivative of 7292 (7358, with similar EPS levels than the wild type (WT) strain). Our results showed that 7292 does not have anti-inflammatory profile in vitro, and lost the capacity to adhere to the colonic epithelial cells as well as the protective effect on the permeability. Finally, 7292 lost the protective effects of the WT strain in a murine model of gut dysfunction. Notably, strain 7292 was unable to stimulate goblet cell mucus production and colonic IL-10 production, all key features for the beneficial effect of the WT strain. Furthermore, transcriptome analysis of colonic samples from 7292-treated mice showed a down-regulation of anti-inflammatory genes. Altogether, our results point out that the increase of EPS production in CNCM I-3690 impairs its protective effects and highlight the importance of the correct EPS synthesis for the beneficial effects of this strain.
Collapse
Affiliation(s)
- R Martín
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - A Benítez-Cabello
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Kulakauskas
- Dynamics of Bacterial Cell Wall Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M V C Viana
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - C Chamignon
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - P Courtin
- Dynamics of Bacterial Cell Wall Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - C Carbonne
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - F Chain
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - H P Pham
- Parean Biotechnologies, 35400, Saint-Malo, France
| | | | - L G Bermúdez-Humarán
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M P Chapot-Chartier
- Dynamics of Bacterial Cell Wall Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - T Smokvina
- Danone Nutricia Research, Palaiseau, France
| | - P Langella
- Commensal and Probiotics-Host Interactions Laboratory, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Dig Dis Sci 2022; 67:4654-4665. [PMID: 35133532 DOI: 10.1007/s10620-022-07382-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Crohn's disease and ulcerative colitis are characterized by chronic inflammatory processes and an imbalanced immune response along the gastrointestinal (GI) tract. Pharmacological treatments have been widely used, although their long-term application has adverse side effects. On the other hand, milks fermented with specific lactic acid bacteria (LAB) have been shown to be useful as alternative or complementary aids. Many metabolites such as peptides, exopolysaccharides, and short-chain fatty acids are produced during milk fermentation. These components have been shown to change the pH of the gastrointestinal lumen, aid intestine mucosal recovery, modulate the microbiota, and reduce the inflammatory response (innate and adaptive immune system), both in vitro and in vivo. Therefore, the objective of the present review is to describe how these bioactive compounds from fermented milk by specific LAB can decrease the deleterious symptoms of inflammatory bowel disease.
Collapse
|
8
|
Bockwoldt JA, Ehrmann MA. Characterisation of recombinant GH 3 β-glucosidase from β-glucan producing Levilactobacillus brevis TMW 1.2112. Antonie Van Leeuwenhoek 2022; 115:955-968. [PMID: 35661053 PMCID: PMC9296380 DOI: 10.1007/s10482-022-01751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/13/2022] [Indexed: 11/12/2022]
Abstract
Levilactobacillus (L.) brevis TMW 1.2112 is an isolate from wheat beer that produces O2-substituted (1,3)-β-D-glucan, a capsular exopolysaccharide (EPS) from activated sugar nucleotide precursors by use of a glycosyltransferase. Within the genome sequence of L. brevis TMW 1.2112 enzymes of the glycoside hydrolases families were identified. Glycoside hydrolases (GH) are carbohydrate-active enzymes, able to hydrolyse glycosidic bonds. The enzyme β-glucosidase BglB (AZI09_02170) was heterologous expressed in Escherichia coli BL21. BglB has a monomeric structure of 83.5 kDa and is a member of the glycoside hydrolase family 3 (GH 3) which strongly favoured substrates with β-glycosidic bonds. Km was 0.22 mM for pNP β-D-glucopyranoside demonstrating a high affinity of the recombinant enzyme for the substrate. Enzymes able to degrade the (1,3)-β-D-glucan of L. brevis TMW 1.2112 have not yet been described. However, BglB showed only a low hydrolytic activity towards the EPS, which was measured by means of the D-glucose releases. Besides, characterised GH 3 β-glucosidases from various lactic acid bacteria (LAB) were phylogenetically analysed to identify connections in terms of enzymatic activity and β-glucan formation. This revealed that the family of GH 3 β-glucosidases of LABs comprises most likely exo-active enzymes which are not directly associated with the ability of these LAB to produce EPS.
Collapse
Affiliation(s)
- Julia A Bockwoldt
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
9
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Brabazon D, Loscher C, Freeland B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022; 14:2938. [PMID: 35889895 PMCID: PMC9319976 DOI: 10.3390/nu14142938] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| |
Collapse
|
10
|
Vosough PR, Edalatian Dovom MR, Habibi Najafi MB, Javadmanesh A, Mayo B. Biodiversity of exopolysaccharide-producing lactic acid bacteria from Iranian traditional Kishk and optimization of EPS yield by Enterococcus spp. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Werning ML, Hernández-Alcántara AM, Ruiz MJ, Soto LP, Dueñas MT, López P, Frizzo LS. Biological Functions of Exopolysaccharides from Lactic Acid Bacteria and Their Potential Benefits for Humans and Farmed Animals. Foods 2022; 11:1284. [PMID: 35564008 PMCID: PMC9101012 DOI: 10.3390/foods11091284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) synthesize exopolysaccharides (EPS), which are structurally diverse biopolymers with a broad range of technological properties and bioactivities. There is scientific evidence that these polymers have health-promoting properties. Most commercialized probiotic microorganisms for consumption by humans and farmed animals are LAB and some of them are EPS-producers indicating that some of their beneficial properties could be due to these polymers. Probiotic LAB are currently used to improve human health and for the prevention and treatment of specific pathologic conditions. They are also used in food-producing animal husbandry, mainly due to their abilities to promote growth and inhibit pathogens via different mechanisms, among which the production of EPS could be involved. Thus, the aim of this review is to discuss the current knowledge of the characteristics, usage and biological role of EPS from LAB, as well as their postbiotic action in humans and animals, and to predict the future contribution that they could have on the diet of food animals to improve productivity, animal health status and impact on public health.
Collapse
Affiliation(s)
- María Laura Werning
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
| | - Annel M. Hernández-Alcántara
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - María Julia Ruiz
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Animal Health and Preventive Medicine, Faculty of Veterinary Sciences, National University of the Center of the Province of Buenos Aires, Buenos Aires 7000, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| | - María Teresa Dueñas
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastián, Spain;
| | - Paloma López
- Department of Microorganisms and Plant Biotechnology, Margarita Salas Center for Biological Research (CIB)-Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain; (A.M.H.-A.); (P.L.)
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis “Rodolfo Oscar DALLA SANTINA”, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral-National, Council of Scientific and Technical Research (UNL/CONICET), Esperanza 3080, SF, Argentina; (M.J.R.); (L.P.S.); (L.S.F.)
- Department of Public Health, Faculty of Veterinary Science, Litoral National University, Esperanza 3038, Argentina
| |
Collapse
|
12
|
Erginkaya Z, Konuray-Altun G. Potential biotherapeutic properties of lactic acid bacteria in foods. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Xiong Z, Chen H, Song X, Xia Y, Ai L. Rapid isolation of exopolysaccharide-producing Streptococcus thermophilus based on molecular marker screening. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:862-867. [PMID: 34173230 DOI: 10.1002/jsfa.11398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND As a natural food additive, exopolysaccharide (EPS) produced by Streptococcus thermophilus can improve product viscosity and texture. The protein EpsA is a putative pathway-specific transcriptional regulator for EPS biosynthesis in S. thermophilus. RESULTS According to comparative analysis of EPS biosynthetic gene clusters, a conserved region of epsA (609 bp) was employed to design primer pair epsA-F/R as a molecular marker for the isolation of EPS-producing (EPS+ ) S. thermophilus. Two EPS+ S. thermophiles strains, AR333 and S-3, were band-positive, whereas Lactococcus lactis NZ9000 (non-EPS-producing, EPS- ), Lactobacillus casei LC2W (EPS+ ) and L. plantarum AR113 (EPS+ ) were negative by polymerase chain reaction (PCR) amplicon bands using the epsA probe. This indicated good specificity of the epsA probe to EPS+ S. thermophilus. Moreover, based on PCR screening with the epsA probe, 23 positive strains were isolated and identified as S. thermophilus from our microbial library and natural fermented milk with 141.3-309.2 mg L-1 of EPS production, demonstrating the validity of our molecular marker screening method. CONCLUSION The designed molecular marker of epsA can rapidly screen EPS+ S. thermophilus, which has potential application in the dairy and other food industries. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huanlan Chen
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Jurášková D, Ribeiro SC, Silva CCG. Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties. Foods 2022; 11:156. [PMID: 35053888 PMCID: PMC8774684 DOI: 10.3390/foods11020156] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities.
Collapse
Affiliation(s)
| | | | - Celia C. G. Silva
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Azores, Portugal; (D.J.); (S.C.R.)
| |
Collapse
|
15
|
Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021; 10:1653. [PMID: 34359523 PMCID: PMC8305620 DOI: 10.3390/foods10071653] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Lactic acid bacteria (LAB) used in the food industry, mainly for the production of dairy products, are able to synthetize exopolysaccharides (EPS). EPS play a central role in the assessment of rheological and sensory characteristics of dairy products since they positively influence texture and organoleptic properties. Besides these, EPS have gained relevant interest for pharmacological and nutraceutical applications due to their biocompatibility, non-toxicity and biodegradability. These bioactive compounds may act as antioxidant, cholesterol-lowering, antimicrobial and prebiotic agents. This review provides an overview of exopolysaccharide-producing LAB, with an insight on the factors affecting EPS production, their dairy industrial applications and health benefits.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Mohammad Khairul Alam
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Carlo Perla
- Dalton Biotecnologie srl, Spoltore, 65010 Pescara, Italy;
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| |
Collapse
|
16
|
Abarquero D, Renes E, Fresno JM, Tornadijo ME. Study of exopolysaccharides from lactic acid bacteria and their industrial applications: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Abarquero
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - Erica Renes
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - José María Fresno
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology Faculty of Veterinary Science University of León León 24071 Spain
| |
Collapse
|
17
|
Soumya MP, Nampoothiri KM. An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. Int J Biol Macromol 2021; 184:1014-1025. [PMID: 34171260 DOI: 10.1016/j.ijbiomac.2021.06.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
There are many reports on exopolysaccharides of lactic acid bacteria (LAB EPS) such as isolation, production and applications. The LAB EPS have been proved to exhibit significantly improved texture and rheological properties in order to prevent syneresis of fermented foods. Furthermore, they are known to have many biological properties such as mouthwatering flavors, antioxidant activity, cholesterol lowering and antimicrobial activities. Considering their GRAS status, LAB EPS need to be explored for better titre and improved biological properties, where strain improvement by genetic engineering has a major role for making tailor-made EPS. The genetic overview of the EPS production by LAB is an auxiliary area of interest as the process and the biosynthetic pathway involves numerous genes and their proteins. Among them Glycosyltransferases (gtfs) are the key enzymes involved in EPS biosynthesis. Current knowledge of gtfs of LAB and its manipulation is limited. The present review spotlights the importance of glycosyltransferases and their specific role on the biosynthesis of LAB EPS and addresses the functionality and applicability of these enzymes and their products. It enfold the available literature including some patents in recent past to underline the fact that glycosyltransferases are un-reluctantly the key proteins involved in the EPS biosynthesis.
Collapse
Affiliation(s)
- M P Soumya
- Microbial Processes and Technology Division (MPTD), CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala 695 019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Assessment of some metabolic activities and potential probiotic properties of eight Enterococcus bacteria isolated from white cheese microbiota. Antonie van Leeuwenhoek 2021; 114:1259-1274. [PMID: 34086120 DOI: 10.1007/s10482-021-01599-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
In the present study, eight strains of Enterococcus spp. were isolated from Turkish and Iranian white cheese test pieces. Enterococcus spp. strains were identified as Enterococcus faecium (6 strains) and E. faecalis (2) with 16S rDNA sequence analysis. All Enterococcus spp. strains showed susceptibility to the most of antibiotics tested in this investigation. The amount of produced acid (0.59-1.17%), hydrogen peroxide (0.65-3.91 µg/ml), and exopolysaccharide (252-362 mg/L) of these strains were determined. These strains possess the ability to inhibit Escherichia coli ATCC 35,218, Salmonella enteritidis ATCC 13,076, and Salmonella typhimurium MU 80. E. faecium RI53 and RI 42 strains were determined as the most resistant to acid (1.86 and 1.56 OD, respectively) and also exhibited high percentage of aggregation (54.1 and 51.7%, respectively). E. faecium RI 42 exhibited a higher growth viability in gastric and intestinal juice. E. faecium RI 53 and RI 42 are determined as optimal potential probiotic candidates for utilization in cheese preparations.
Collapse
|
19
|
Segli F, Melian C, Vignolo G, Castellano P. Inhibition of a spoilage exopolysaccharide producer by bioprotective extracts from Lactobacillus acidophilus CRL641 and Latilactobacillus curvatus CRL705 in vacuum-packaged refrigerated meat discs. Meat Sci 2021; 178:108509. [PMID: 33857706 DOI: 10.1016/j.meatsci.2021.108509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The effect of bioprotective extracts (BEs) from Lactobacillus acidophilus CRL641 (BE-1) and Latilactobacillus curvatus CRL705 (BE-2) against the exopolysaccharide producer Latilactobacillus sakei CRL1407 in vacuum-packaged meat discs at 4 °C was evaluated. Lat. sakei CRL1407 was able to grow in control samples from 2.80 to 7.77 log CFU/g after 38 days. BE-1 and BE-2 reduced bacterial growth by 2.11 and 1.35 log CFU/g, respectively, but their combination led to a greater growth reduction (3.31 log CFU/g). The antimicrobial activity was detected in treated samples with BE-1 and BE-1 + BE-2 until day 16, while with BE-2 only at the initial time. The pH values remained constant in the discs treated with the BEs combination, whereas the greatest drop in pH was observed in control samples. The minor lipid oxidation without perceptible color changes was detected in the presence of BE-1 and BE-1 + BE-2. The combination of BEs as biocontrol agent plus conventional preservation barriers could extend the fresh meat shelf-life without quality loss.
Collapse
Affiliation(s)
- Franco Segli
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC Tucumán, Argentina.
| |
Collapse
|
20
|
Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021; 10:foods10040821. [PMID: 33920106 PMCID: PMC8070337 DOI: 10.3390/foods10040821] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, and rheological properties, thus contributing to the development of its typical sensorial properties. Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autolysis of other lactic acid bacteria (LAB), control pathogens and deterioration microorganisms, and may offer beneficial effects to the health of their hosts. They could in principle be employed as adjunct/protective/probiotic cultures; however, due to their propensity to acquire genetic determinants of virulence and antibiotic resistance, together with the opportunistic character of some of its members, this genus does not possess Qualified Presumption of Safety (QPS) status. It is, however, noteworthy that some putative virulence factors described in foodborne enterococci may simply reflect adaptation to the food environment and to the human host as commensal. Further research is needed to help distinguish friend from foe among enterococci, eventually enabling exploitation of the beneficial aspects of specific cheese-associated strains. This review aims at discussing both beneficial and deleterious roles played by enterococci in artisanal cheeses, while highlighting the need for further research on such a remarkably hardy genus.
Collapse
|
21
|
Exopolysaccharide from Lactobacillus plantarum HY7714 Protects against Skin Aging through Skin-Gut Axis Communication. Molecules 2021; 26:molecules26061651. [PMID: 33809637 PMCID: PMC8002305 DOI: 10.3390/molecules26061651] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Skin aging occurs inevitably as a natural result of physiological changes over time. In particular, solar exposure of the skin accounts for up to 90% of skin damage. Numerous studies have examined the ability of dietary constituents to prevent skin aging, and recent research has emphasized the role of functional probiotics in intestinal function and skin aging. However, the mechanism of the interactions between aging and probiotics has not been elucidated yet. The aim of this study was to determine the role of exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) identified as Lactobacillus plantarum HY7714 in regulating tight junctions in intestinal epithelial cells and increasing moisture retention in human dermal fibroblasts cells. We observed that HY7714 EPS controlled intestinal tight junctions in Caco-2 cells by upregulating the genes encoding occludin-1 (OCL-1) and zonula occluden-1 (ZO-1). In addition, HY7714 EPS effectively improved UVB-induced cytotoxicity and hydration capacity in HS68 cells by downregulating production of metalloproteinases (MMPs) and reactive oxygen species (ROS). In summary, HY7714 EPS is an effective anti-aging molecule in skin and may have therapeutic potential against skin diseases and UVB-induced damage. Therefore, HY7714 EPS serves as a functional substance in skin-gut axis communication.
Collapse
|
22
|
Zhang Y, Dai X, Jin H, Man C, Jiang Y. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. J Dairy Sci 2021; 104:4023-4032. [PMID: 33551164 DOI: 10.3168/jds.2020-19448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
This study aimed to predict the optimal carbon source for higher production of exopolysaccharides (EPS) by Lactobacillus paracasei TD 062, and to evaluate the effect of this carbon source on the production and monosaccharide composition of EPS. We evaluated the EPS production capacity of 20 strains of L. paracasei under the same conditions. We further investigated L. paracasei TD 062, which showed the highest EPS-producing activity (0.609 g/L), by examining the associated biosynthesis pathways for EPS. Genomics revealed that fructose, mannose, trehalose, glucose, galactose, and lactose were carbon sources that L. paracasei TD 062 could use to produce EPS. We identified an EPS synthesis gene cluster that could participate in transport, export, and sugar chain synthesis, and generate 6 sugar nucleotides. Experimental results showed that the sugar content of the EPS produced using fermentation with the optimized carbon source (fructose, mannose, trehalose, glucose, galactose, and lactose) increased by 115%. Furthermore, use of the optimized carbon source changed the monosaccharide content of the associated EPS. The results of enzyme activity measurements showed significant increases in the activity of 2 key enzymes involved in the glycoside synthesis pathway. Our study revealed that optimizing the carbon source provided for fermentation not only increased the production of EPS, but also affected the composition of the monosaccharides by increasing enzyme activity in the underlying synthesis pathways, suggesting an important role for carbon source in the production of EPS by L. paracasei TD 062.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaofei Dai
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Haonan Jin
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China; Kangyuan Dairy Co. Ltd., Yangzhou University, Yangzhou 225004, China.
| |
Collapse
|
23
|
Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int J Biol Macromol 2021; 173:79-89. [PMID: 33482209 DOI: 10.1016/j.ijbiomac.2021.01.110] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 01/16/2021] [Indexed: 01/08/2023]
Abstract
Exopolysaccharides (EPS) are important bioproducts produced by some genera of lactic acid bacteria. EPS are famous for their shelf-life improving properties, techno-functional enhancing abilities in food and dairy industries, besides their beneficial health effects. Furthermore, exopolysaccharides have many prospective and well-established contributions in the field of drugs and diagnostic industry. In this review, classification of EPS produced by LAB was presented. Moreover, current and potential applications of EPS in food, dairy, baking industries, cereal-based, and functional products were described. Also, some clinical and pharmaceutical applications of EPS such as intelligent drug delivery systems (microsystems and nanosystems for sustained delivery), interpenetrating polymer networks (IPNs), anticancer drug-targeting, recombinant macromolecular biopharmaceuticals, gene delivery, tissue engineering, and role of EPS in diagnostics were highlighted. Finally, future prospects concerning enhancing EPS production, minimizing costs of their production, and exploring their contribution in further applications were discussed.
Collapse
|
24
|
Segli F, Melian C, Muñoz V, Vignolo G, Castellano P. Bioprotective extracts from Lactobacillus acidophilus CRL641 and Latilactobacillus curvatus CRL705 inhibit a spoilage exopolysaccharide producer in a refrigerated meat system. Food Microbiol 2021; 97:103739. [PMID: 33653518 DOI: 10.1016/j.fm.2021.103739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
The effect of bioprotective extracts (BEs) from Latilactobacillus curvatus CRL705 and Lactobacillus acidophilus CRL641 against Latilactobacillus sakei CRL1407 was evaluated in a refrigerated meat model system under vacuum and aerobic conditions at 4 and 10 °C. As shown by culturing, the BE-1 from L. acidophilus completely inhibited the spoilage strain, while that from Lat. Curvatus CRL705 (BE-2) and its combination with BE-1 exerted a bacteriostatic effect. The antimicrobial activity and exopolysaccharide production correlated with the efficacy of inhibitory treatment while final pH decrease was higher in control samples. When flow cytometry was applied, a lack of correlation with plate counting was found; counts under the detection limit for BE-1 at 21 and 28 days at 4 and 10 °C represented between 64.15 and 73.70% of dead cells. Thus, the concurrence of lactic acid bacteria as biocontrol agents and the use of more accurate tools to prevent the growth of deteriorating species will contribute to the extension of fresh meat shelf-life without quality loss.
Collapse
Affiliation(s)
- Franco Segli
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Virginia Muñoz
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina
| | - Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, Tucumán, Argentina.
| |
Collapse
|
25
|
Oerlemans MM, Akkerman R, Ferrari M, Walvoort MT, de Vos P. Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Valdez AL, Delgado OD, Fariña JI. Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydr Polym 2020; 260:117505. [PMID: 33712177 DOI: 10.1016/j.carbpol.2020.117505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Exopolysaccharide (EPS) secretion by Sclerotium rolfsii ATCC 201126 in submerged cultures, already identified as high-osmolarity responsive, was assessed by reducing C-source without compromising EPS yields. A designed medium with 80 g sucrose L-1 (MOPT80) was tested at 3 L-bioreactor scale at different temperature, agitation, aeration and pH (uncontrolled vs. controlled) values. Optimal operative conditions (200 rpm, 28 °C, 0.5 vvm and initial pH -pHi- 4.5) were validated, as well as the possibility to work at pHi 5.5 to reduce biomass production. Purified EPSs produced in MOPT80 at optimal and other valid operative conditions exhibited refined grade (<1 % proteins and ash, 3-4 % reducing sugars, 87-99 % total sugars). EPS purity, MW and rheological parameters led to discourage pH controlled at 4.5. Relatively constant MW (6-8 × 106 Da) and outstanding viscosifying ability were found. Polyphasic EPS analysis (titre, purity, macromolecular features and rheological fitness) would support to properly select production conditions.
Collapse
Affiliation(s)
- Alejandra L Valdez
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| | - Osvaldo D Delgado
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina; Universidad Nacional de Catamarca (UNCa), Facultad de Ciencias Exactas y Naturales, Centro de Biología Molecular y Biotecnología (CEBIOTEC), Av. Belgrano 300, (K4751XAK) S.F.V., Catamarca, Catamarca, Argentina.
| | - Julia I Fariña
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| |
Collapse
|
27
|
Behare PV, Mazhar S, Pennone V, McAuliffe O. Evaluation of lactic acid bacteria strains isolated from fructose-rich environments for their mannitol-production and milk-gelation abilities. J Dairy Sci 2020; 103:11138-11151. [PMID: 33010917 DOI: 10.3168/jds.2020-19120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Mannitol is a sugar alcohol, or polyol, widely used in the food industry because of its low-calorie properties. Industrial production of mannitol is difficult and expensive. However, certain bacterial species are known to produce mannitol naturally, including certain lactic acid bacteria and fructophilic lactic acid bacteria (LAB). In this study, bacterial strains isolated from fructose-rich sources, including flowers, leaves, and honey, were identified by 16S rRNA sequence analysis as Leuconostoc, Fructobacillus, Lactococcus, and Lactobacillus species and 4 non-LAB species. DNA profiles generated by pulsed-field gel electrophoresis discriminated 32 strains of Leuconostoc mesenteroides and 6 Fructobacillus strains. Out of 41 LAB strains isolated, 32 were shown to harbor the mdh gene, which encodes the mannitol dehydrogenase enzyme, and several showed remarkable fructose tolerance even at 50% fructose concentrations, indicating their fructophilic nature. Several of the strains isolated, including Leuconostoc mesenteroides strains DPC 7232 and DPC 7261, Fructobacillus fructosus DPC 7237, and Fructobacillus fructosus DPC 7238, produced higher mannitol concentrations than did the positive control strain Limosilactobacillus reuteri DSM 20016 during an enzymatic screening assay. Mannitol concentrations were also examined via HPLC in 1% fructose de Man, Rogosa, and Sharpe medium (FMRS) or 1% fructose milk (FM). Among the strains, Fructobacillus fructosus DPC 7238 displayed high fructose utilization (9.27 g/L), high mannitol yield (0.99 g of mannitol/g of fructose), and greatest volumetric productivities (0.46 g/L per h) in FMRS. However, Leuconostoc mesenteroides DPC 7261 demonstrated the highest fructose utilization (8.99 g/L), mannitol yield (0.72 g of mannitol/g of fructose), and volumetric productivities (0.04 g/L per h) in FM. Storage modulus G' (>0.1 Pa) indicated a shorter gelation time for Limosilactobacillus reuteri DSM 20016 (8.73 h), followed by F. fructosus DPC 7238 (11.57 h) and L. mesenteroides DPC 7261 (14.52 h). Our results show that fructose-rich niches can be considered important sources of fructophilic LAB strains, with the potential to be used as starter cultures or adjunct cultures for the manufacture of mannitol-enriched fermented dairy products and beverages.
Collapse
Affiliation(s)
- Pradip V Behare
- Dairy Microbiology Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute, Karnal-132001, Haryana, India
| | - Shahneela Mazhar
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
| | - Olivia McAuliffe
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland; VistaMilk SFI Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland.
| |
Collapse
|
28
|
Anekella K, Pérez-Díaz IM. Characterization of robust Lactobacillus plantarum and Lactobacillus pentosus starter cultures for environmentally friendly low-salt cucumber fermentations. J Food Sci 2020; 85:3487-3497. [PMID: 32893884 DOI: 10.1111/1750-3841.15416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/04/2023]
Abstract
Seven candidates for starter cultures for cucumber fermentations belonging to the Lactobacillus pentosus and Lactobacillus plantarum species were characterized based on physiological features desired for pickling. The isolates presented variable carbohydrate utilization profile on API® 50CHL test strips. The L. pentosus strains were unable to utilize d-xylose in MRS broth or the M medium. The lactobacilli were unable to produce histamine, tyramine, putrescine, and cadaverine in biogenic amine broth containing the necessary precursors. Production of d-lactic acid by the lactobacilli, detected enzymatically, was stimulated by growth in MRS broth as compared to cucumber juice medium (CJM). The lactobacilli utilized malic acid in the malate decarboxylase medium. Exopolyssacharide biosynthesis related genes were amplified from the lactobacilli. A sugar type-dependent-ropy phenotype was apparent for all the cultures tested in MRS and CJM. The genes associated with bacteriocin production were detected in the lactobacilli, but not the respective phenotypes. The antibiotic susceptibility profile of the lactobacilli mimics that of other L. plantarum starter cultures. It is concluded that the lactobacilli strains studied here are suitable starter cultures for cucumber fermentation. PRACTICAL APPLICATION: The availability of such starter cultures enables the implementation of low salt cucumber fermentations that can generate products with consistent biochemistry and microbiological profile.
Collapse
Affiliation(s)
- Kartheek Anekella
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ilenys M Pérez-Díaz
- USDA-Agriculture Research Service-Food Science & Market Quality and Handling Research Unit, 322 Schaub Hall, Raleigh, 27695, USA
| |
Collapse
|
29
|
Milanović V, Osimani A, Garofalo C, Belleggia L, Maoloni A, Cardinali F, Mozzon M, Foligni R, Aquilanti L, Clementi F. Selection of cereal-sourced lactic acid bacteria as candidate starters for the baking industry. PLoS One 2020; 15:e0236190. [PMID: 32702068 PMCID: PMC7377444 DOI: 10.1371/journal.pone.0236190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023] Open
Abstract
The quality of sourdough bread mainly depends on metabolic activities of lactic acid bacteria (LAB). The exopolysaccharides (EPS) produced by LAB affect positively the technological and nutritional properties of the bread, while phytases improve the bioavailability of the minerals by reducing its phytate content. In the present study, a pool of 152 cereal-sourced LAB were screened for production of phytases and EPS for potential use as sourdough starter cultures for the baking industry. There was large heterogeneity in the phytase activity observed among the screened isolates, with 95% showing the ability to degrade sodium phytate on plates containing Sourdough Simulation Medium (SSM). The isolates Lactobacillus brevis LD65 and Lactobacillus plantarum PB241 showed the highest enzymatic activity, while the isolates ascribed to Weissella confusa were characterized by low or no phytase activity. Only 18% of the screened LAB produced EPS, which were distinguished as ropy or mucoid phenotypes on SSM supplemented with sucrose. Almost all the EPS producers carried one or more genes (epsD/E and/or epsA) involved in the production of heteropolysaccharides (HePS), whereas the isolates ascribed to Leuconostoc citreum and W. confusa carried genes involved in the production of both HePS and homopolysaccharides (HoPS). Monosaccharide composition analysis of the EPS produced by a selected subset of isolates revealed that all the HePS included glucose, mannose, and galactose, though at different ratios. Furthermore, a few isolates ascribed to L. citreum and W. confusa and carrying the gtf gene produced β-glucans after fermentation in an ad hoc formulated barley flour medium. Based on the overall results collected, a subset of candidate sourdough starter cultures for the baking industry was selected, including Lb. brevis LD66 and L. citreum PB220, which showed high phytase activity and positive EPS production.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Belleggia
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Massimo Mozzon
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Foligni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail: (FC); (LA)
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail: (FC); (LA)
| |
Collapse
|
30
|
McDonnell B, Hanemaaijer L, Bottacini F, Kelleher P, Lavelle K, Sadovskaya I, Vinogradov E, Ver Loren van Themaat E, Kouwen T, Mahony J, van Sinderen D. A cell wall-associated polysaccharide is required for bacteriophage adsorption to the Streptococcus thermophilus cell surface. Mol Microbiol 2020; 114:31-45. [PMID: 32073719 DOI: 10.1111/mmi.14494] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Abstract
Streptococcus thermophilus strain ST64987 was exposed to a member of a recently discovered group of S. thermophilus phages (the 987 phage group), generating phage-insensitive mutants, which were then characterized phenotypically and genomically. Decreased phage adsorption was observed in selected bacteriophage-insensitive mutants, and was partnered with a sedimenting phenotype and increased cell chain length or aggregation. Whole genome sequencing of several bacteriophage-insensitive mutants identified mutations located in a gene cluster presumed to be responsible for cell wall polysaccharide production in this strain. Analysis of cell surface-associated glycans by methylation and NMR spectroscopy revealed a complex branched rhamno-polysaccharide in both ST64987 and phage-insensitive mutant BIM3. In addition, a second cell wall-associated polysaccharide of ST64987, composed of hexasaccharide branched repeating units containing galactose and glucose, was absent in the cell wall of mutant BIM3. Genetic complementation of three phage-resistant mutants was shown to restore the carbohydrate and phage resistance profiles of the wild-type strain, establishing the role of this gene cluster in cell wall polysaccharide production and phage adsorption and, thus, infection.
Collapse
Affiliation(s)
- Brian McDonnell
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Francesca Bottacini
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Philip Kelleher
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Katherine Lavelle
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Irina Sadovskaya
- Équipe BPA, Université du Littoral Côte d'Opale, Institut Régional Charles Violette EA 7394, USC Anses-ULCO, Boulogne-sur-Mer, France
| | - Evgeny Vinogradov
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, ON, Canada
| | | | - Thijs Kouwen
- DSM Biotechnology Center, Delft, the Netherlands
| | - Jennifer Mahony
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Surber G, Jaros D, Rohm H. Shear and extensional rheology of acid milk gel suspensions with varying ropiness. J Texture Stud 2019; 51:111-119. [PMID: 31226221 DOI: 10.1111/jtxs.12458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/05/2019] [Accepted: 06/16/2019] [Indexed: 11/28/2022]
Abstract
Exopolysaccharides (EPS) synthesized by lactic acid bacteria during fermentation significantly affect the rheology of set-style acid milk gels and that of acid gel suspensions, produced from the gels by stirring. In this study, shear and uniaxial extensional flow of acid gel suspensions made with seven single strains of Streptococcus thermophilus or Lactococcus lactis was investigated. Six strains produced ropy EPS, and maximum filament length determined by using a continuous stretching method was up to four times higher than filament length of an EPS-negative control strain. The systems containing ropy EPS showed a different response to shear and extensional deformation. In shear rheology, higher apparent viscosities and an enhanced structural breakdown was observed for acid gel suspensions with more pronounced ropiness. Breakup time and extensional viscosity, determined by using a Capillary Breakup Extensional Rheometer (CaBER™), significantly increased with increasing ropiness. The increase of extensional viscosity with increasing ropiness was, however, much higher than the effects of ropiness on shear viscosity. As relaxation times also depended on ropiness, it is concluded that ropiness is caused by EPS-EPS interactions that can be better discriminated in extensional rheology. PRACTICAL APPLICATIONS: To improve the texture of fermented milk, lactic acid bacteria that are able to produce ropy exopolysaccharides (EPS) are increasingly used in the dairy industry. The EPS exhibit a significant influence on processing properties and sensory characteristics of the resulting products, which can be estimated by means of shear and extensional rheology. The current work provides information on these respective properties of acid gel suspensions, which facilitate product design by supporting the selection of appropriate starter cultures.
Collapse
Affiliation(s)
- Georg Surber
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
33
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
34
|
Abstract
Production of exopolysaccharides by lactic acid bacteria is a common phenomenon. Structural information of these widely diverse biopolymers is rendered by the monosaccharide composition, the anomeric configurations, the type of glycosidic linkages, the presence of repeating units and noncarbohydrate substituents, and finally the presentation of a chemical molecular structure or composite model. The detailed structural analysis of polysaccharides is a time-consuming pursuit, including the use of different techniques, such as chemical degradation methods (e.g., hydrolysis), separation methods (e.g., SEC-chromatography and HPLC/HPAEC), and identification methods (e.g., GLC-EIMS and 1H/13C NMR spectroscopy). In this chapter, some analytical methods are described and demonstrated for two different exopolysaccharides from lactic acid bacteria.
Collapse
Affiliation(s)
- Gerrit J Gerwig
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
35
|
Tukenmez U, Aktas B, Aslim B, Yavuz S. The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro. Sci Rep 2019; 9:8268. [PMID: 31164685 PMCID: PMC6547643 DOI: 10.1038/s41598-019-44753-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is one of the most common cancer around the world. Exopolysaccharides (EPSs) produced by lactobacilli as potential prebiotics have been found to have an anti-tumor effect. In this study, lyophilized EPSs of four Lactobacillus spp. for their impact on apoptosis in colon cancer cells (HT-29) was evaluated using flow cytometry. The relationship between capability of a lactobacilli-EPS to induce apoptosis and their monosaccharide composition, molecular weight (MW), and linkage type was investigated by HPLC, SEC, and NMR, respectively. Changes in apoptotic-markers were examined by qPCR and Western Blotting. EPSs were capable of inhibiting proliferation in a time-dependent manner and induced apoptosis via increasing the expression of Bax, Caspase 3 and 9 while decreasing Bcl-2 and Survivin. All EPSs contained mannose, glucose, and N-acetylglucosamine with different relative proportions. Some contained arabinose or fructose. MW ranged from 102-104Da with two or three fractions. EPS of L. delbrueckii ssp. bulgaricus B3 having the highest amount of mannose and the lowest amount of glucose, showed the highest apoptosis induction. In conclusion, lactobacilli-EPSs inhibit cell proliferation in HT-29 via apoptosis. Results suggest that a relationship exists between the ability of EPS to induce apoptosis and its mannose and glucose composition.
Collapse
Affiliation(s)
| | - Busra Aktas
- Faculty of Arts and Science, Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Belma Aslim
- Faculty of Science, Department of Biology, Gazi University, Ankara, Turkey
| | - Serkan Yavuz
- Faculty of Science, Department of Chemistry, Gazi University, Ankara, Turkey
| |
Collapse
|
36
|
Bachtarzi N, Kharroub K, Ruas-Madiedo P. Exopolysaccharide-producing lactic acid bacteria isolated from traditional Algerian dairy products and their application for skim-milk fermentations. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Surface properties and exopolysaccharide production of surface-associated microorganisms isolated from a dairy plant. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01482-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
38
|
Ruiz Rodríguez LG, Mohamed F, Bleckwedel J, Medina R, De Vuyst L, Hebert EM, Mozzi F. Diversity and Functional Properties of Lactic Acid Bacteria Isolated From Wild Fruits and Flowers Present in Northern Argentina. Front Microbiol 2019; 10:1091. [PMID: 31164879 PMCID: PMC6536596 DOI: 10.3389/fmicb.2019.01091] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/30/2019] [Indexed: 02/03/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of converting carbohydrate substrates into organic acids (mainly lactic acid) and producing a wide range of metabolites. Due to their interesting beneficial properties, LAB are widely used as starter cultures, as probiotics, and as microbial cell factories. Exploring LAB present in unknown niches may lead to the isolation of unique species or strains with relevant technological properties. Autochthonous rather than allochthonous starter cultures are preferred in the current industry of fermented food products, due to better adaptation and performance of autochthonous strains to the matrix they originate from. In this work, the lactic microbiota of eight different wild tropical types of fruits and four types of flowers were studied. The ability of the isolated strains to produce metabolites of interest to the food industry was evaluated. The presence of 21 species belonging to the genera Enterococcus, Fructobacillus, Lactobacillus, Lactococcus, Leuconostoc, and Weissella was evidenced by using culture-dependent techniques. The isolated LAB corresponded to 95 genotypically differentiated strains by applying rep-PCR and sequencing of the 16S rRNA gene; subsequently, representative strains of the different isolated species were studied for technological properties, such as fast growth rate and acidifying capacity; pectinolytic and cinnamoyl esterase activities, and absence of biogenic amine biosynthesis. Additionally, the strains' capacity to produce ethyl esters as well as mannitol was evaluated. The isolated fruit- and flower-origin LAB displayed functional properties that validate their potential use in the manufacture of fermented fruit-based products setting the background for the design of novel functional foods.
Collapse
Affiliation(s)
- Luciana G Ruiz Rodríguez
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Florencia Mohamed
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Juliana Bleckwedel
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Roxana Medina
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elvira M Hebert
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Fernanda Mozzi
- Technology and Development Laboratory, Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
39
|
Surber G, Mende S, Jaros D, Rohm H. Clustering of Streptococcus thermophilus Strains to Establish a Relation between Exopolysaccharide Characteristics and Gel Properties of Acidified Milk. Foods 2019; 8:E146. [PMID: 31052192 PMCID: PMC6560422 DOI: 10.3390/foods8050146] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
In situ produced extracellular polysaccharides (EPS) from lactic acid bacteria are generally known to affect the texture of fermented dairy products; however, the interplay between EPS and product properties is still poorly understood. The aim of this study was to establish a relationship between concentration and properties of EPS, and gel formation of milk analysed by noninvasive Multispeckle Diffusing Wave Spectroscopy. Twenty Streptococcus thermophilus strains were classified with respect to EPS concentration (8-126 mg GE/kg) and ropiness (thread length: 15-80 mm). Five groups identified by cluster analysis demonstrate the high strain-to-strain variability even within one species of lactic acid bacteria. Results from acidification and gelation experiments averaged per cluster indicate that fermentation time and gel stiffness is higher for strains that produce ropy EPS. A further increase in gel stiffness was detected for strains that also produced cell-bound EPS, which underlines the importance of both ropy and cell-bound EPS for improving acid gel properties. The results may be helpful for a proper selection of EPS-producing starter cultures.
Collapse
Affiliation(s)
- Georg Surber
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Susann Mende
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
40
|
Heteropolysaccharide-producing bifidobacteria for the development of functional dairy products. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Chen Y, Zhang M, Ren F. A Role of Exopolysaccharide Produced by Streptococcus thermophilus in the Intestinal Inflammation and Mucosal Barrier in Caco-2 Monolayer and Dextran Sulphate Sodium-Induced Experimental Murine Colitis. Molecules 2019; 24:molecules24030513. [PMID: 30708992 PMCID: PMC6384629 DOI: 10.3390/molecules24030513] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Exopolysaccharide (EPS) produced by probiotics may play an important role in gastrointestinal disease prevention, including ulcerative colitis. However, there is no literature reporting on the intervention effects of purified EPS. The aim of this study was to investigate the alleviating effect of the purified EPS produced by Streptococcus thermophilus MN-BM-A01 on murine model of colitis induced by dextran sulphate sodium (DSS). A water-soluble heteropolysaccharide (EPS-1) isolated from MN-BM-A01 was composed of rhamnose, glucose, galactose, and mannose in a molar ratio of 12.9:26.0:60.9:0.25, with molecular weight of 4.23 × 105 Da. After EPS-1 administration, the disease severity of mouse colitis was significantly alleviated, mainly manifesting as the decrease of disease activity index and mitigated colonic epithelial cell injury. Meanwhile, pro-inflammatory cytokines levels (tumor necrosis factor-α, interleukin-6, and interferon-γ) were significantly suppressed, the reduced expressions of tight junction protein (claudin-1, occludin, and E-canherin) were counteracted. In addition, the results in vitro showed that EPS-1 protected intestinal barrier integrity from the disruption by lipopolysaccharide in Caco-2 monolayer, increased expression of tight junction and alleviated pro-inflammatory response. Collectively, our study confirmed the protective effects of purified EPS produced by Streptococcus thermophilus on acute colitis via alleviating intestinal inflammation and improving mucosal barrier function.
Collapse
Affiliation(s)
- Yun Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
42
|
Prechtl RM, Wefers D, Jakob F, Vogel RF. Structural characterization of the surface-associated heteropolysaccharide of Lactobacillus plantarum TMW 1.1478 and genetic analysis of its putative biosynthesis cluster. Carbohydr Polym 2018; 202:236-245. [PMID: 30286997 DOI: 10.1016/j.carbpol.2018.08.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/08/2018] [Accepted: 08/26/2018] [Indexed: 12/22/2022]
Abstract
Microbial exopolysaccharides (EPS) like xanthan are widely exploited as natural biopolymers in diverse industrial sectors. In foods, in-situ EPS formation by starter cultures allows the manufacturing of "clean labeled" products with improved textural and nutritional properties. We performed structural analyses of the cell surface-associated EPS produced by Lactobacillus plantarum TMW 1.1478, which is a promising starter culture for fermented foods. Chromatographic analyses and NMR experiments suggested an acetylated heptameric repeating unit comprised of glucose, rhamnose and galactose as major components, whereas analysis of the macromolecular HePS structure suggested an apparent molecular mass of Mr ∼2 × 106 and a root mean square (RMS) radius of ca. 60 nm. Genetic analyses enabled the identification of the respective EPS biosynthesis cluster, and its modular organization supports the chemically identified, novel EPS structure. The obtained results broaden the understanding of complex EPS formation from activated sugar nucleotides by Lactobacillus plantarum.
Collapse
Affiliation(s)
- Roman M Prechtl
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany
| | - Daniel Wefers
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Frank Jakob
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany.
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München (TUM), Freising, Germany
| |
Collapse
|
43
|
Adebayo-Tayo B, Ishola R, Oyewunmi T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00271. [PMID: 29992104 PMCID: PMC6036864 DOI: 10.1016/j.btre.2018.e00271] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 01/17/2023]
Abstract
Characterization, antioxidant and immunomodulatory potential of exopolysaccharide (EPS) produced by wild type and mutant Weissella confusa was investigated. The EPS production ranged from 5490.2 to 5580.7 mg/L. Wild type Weissella confusa (WWCEPS) had the highest EPS production. Eight (8) sugar moieties were present in the EPS. Galactose had the highest EPS composition (34.6 mg/100 g and 33.5 mg/100 g EPS) in Wild type Weissella confusa EPS (WWCEPS) and mutant Weissella confusa EPS (MWCEPS). Wild type Weissella confusa and mutant Weissella confusa EPS had antioxidant capacity. The scavenging assay for the antioxidant increased in a dose dependent (0.5-10 mg/mL) manner. Wild type Weissella confusa EPS had the highest 1,1-Diphemy 1-2-picryl-hydrazyl (DPPH) capacity, total antioxidant activity, hydrogen peroxide and reducing power activity (71%, 1.9%, 86.7% and 1.9%). The mice injected peritorially with mutant Weissella confusa EPS had the highest IgG and IgM (68-87 mg/dL and 64-70 mg/dL). IgA of the mice treated with Wild type Weissella confusa EPS increased from 67 to 73 mg/dL. Wild type and mutant Weissella confusa EPS had immunomodulatory activity on the treated mice.
Collapse
Affiliation(s)
- Bukola Adebayo-Tayo
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Racheal Ishola
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Titiloye Oyewunmi
- Immunology Unit, Department of Chemical Pathology, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
44
|
A functional and genetic overview of exopolysaccharides produced by Lactobacillus plantarum. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Khanal SN, Lucey JA. Effect of fermentation temperature on the properties of exopolysaccharides and the acid gelation behavior for milk fermented by Streptococcus thermophilus strains DGCC7785 and St-143. J Dairy Sci 2018; 101:3799-3811. [DOI: 10.3168/jds.2017-13203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
|
46
|
Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Lynch KM, Zannini E, Coffey A, Arendt EK. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu Rev Food Sci Technol 2018; 9:155-176. [DOI: 10.1146/annurev-food-030117-012537] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Gangoiti M, Puertas A, Hamet M, Peruzzo P, Llamas M, Medrano M, Prieto A, Dueñas M, Abraham A. Lactobacillus plantarum CIDCA 8327: An α-glucan producing-strain isolated from kefir grains. Carbohydr Polym 2017; 170:52-59. [DOI: 10.1016/j.carbpol.2017.04.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
|
49
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
50
|
New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017; 199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure-function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.
Collapse
|