1
|
Sułowicz S, Borymski S, Dulski M, Nowak A, Markowicz A. Functional gene array and non-target soil microorganisms in nanopesticides captan@ZnO 35-45nm and captan@SiO 2 20-30nm environmental risk assessment. CHEMOSPHERE 2025; 377:144347. [PMID: 40121762 DOI: 10.1016/j.chemosphere.2025.144347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/08/2024] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Currently there are no widely recognized standards for assessing the environmental risk of nanopesticides. Therefore, whether they are safer than conventional pesticide products remains open to discussion. We used non-target soil microorganisms as indicators of environmental change and applied functional gene arrays (FGAs) using GeoChip 5.0S targeting 151 000 genes involved in ecologically relevant functions. We synthesized nanofungicides in which the active substance captan was bound to inorganic nanocarriers (ZnO and SiO2) to examine the functional capabilities of microbial communities. During a 100-day microcosm study, changes in soil were compared to the effect of pesticide and nanocarriers alone. Based on 72 functional gene diversity profiles, we conducted environmental risk assessment of nanopesticides. Nanoagrochemicals affected the alpha and beta diversity of microbial functional genes, and the most profound negative effect was detected for captan, impacting carbon cycling and the organic remediation process from day 30. Additionally, the effect of nanopesticides changed during the experiment. On day 42, the effect was nanocarrier-dependent, and an increase of genes involved in denitrification (nirS, norB), archaeal conversion of N2 to NH3 and fungal N-assimilation was observed, especially for SiO2-treated set-ups. After 100 days, the negative effect was mainly related to the active substance released from the nanocarrier impacting the nitrate reductase gene (narG) and genes from the denitrification and nitrogen fixation subcategory. Analysis of microarrays did not indicate a recovery process for carbon cycling. Moreover, pesticide and nanoagrochemicals affected arsenic detoxification (aoxB, arsM, arsC), which may lead to an elevation of toxic As(III) availability. Our study indicated that FGAs are a sensitive method, revealing long-term changes previously undetected by other methods, including next-generation sequencing (NGS). This is the first study to confirm the usefulness of GeoChips for the evaluation of microbial redundancy as an important factor for fair environmental risk assessment of nanopesticides.
Collapse
Affiliation(s)
- Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland.
| | - Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
| | - Mateusz Dulski
- University of Silesia, Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Anna Nowak
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
2
|
Wang R, Yang S, Zhao W. Microbial Community Responses and Nitrogen Cycling in the Nitrogen-Polluted Urban Shi River Revealed by Metagenomics. Microorganisms 2025; 13:1007. [PMID: 40431180 DOI: 10.3390/microorganisms13051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Nitrogen pollution in urban rivers, exacerbated by rapid urbanization, poses a growing threat to water quality. Microbial communities are essential in mediating nitrogen cycling and mitigating pollution in these ecosystems. This study integrated three-year (2021-2023) water quality monitoring with metagenomic sequencing to investigate microbial community dynamics, nitrogen cycling processes, and their responses to nitrogen pollution in the Shi River, Qinhuangdao, China. Nitrogen pollution was predominantly derived from industrial discharges from enterprises in the Shi River Reservoir upstream (e.g., coolant and chemical effluents), agricultural runoff, untreated domestic sewage (particularly from catering and waste in Pantao Valley), and livestock farming effluents. Total nitrogen (TN) concentrations ranged from 2.22 to 6.44 mg/L, exceeding China's Class V water standard (2.0 mg/L, GB 3838-2002), with the highest level at the urbanized W4 site (6.44 mg/L). Nitrate nitrogen (NO3-N) accounted for 60-80% of TN. Metagenomic analysis revealed Fragilaria, Microcystis, and Flavobacterium thriving (up to 15% relative abundance) under nitrogen stress, with nitrogen metabolism genes (narG, nifH, nirK) enriched at polluted sites (W2, W4), narG reaching 26% at W1. Dissolved oxygen positively correlated with nitrate reductase gene abundance, while ammonia nitrogen inhibited it. Burkholderiales and Limnohabitans dominated denitrification, offering insights into sustainable urban river management.
Collapse
Affiliation(s)
- Ran Wang
- College of Heilongjiang River and Lake Chief, Heilongjiang University, Harbin 150080, China
| | - Shang Yang
- College of Heilongjiang River and Lake Chief, Heilongjiang University, Harbin 150080, China
| | - Wei Zhao
- College of Heilongjiang River and Lake Chief, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
3
|
Lezcano MÁ, Bornemann TLV, Sánchez-García L, Carrizo D, Adam PS, Esser SP, Cabrol NA, Probst AJ, Parro V. Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments. MICROBIOME 2024; 12:176. [PMID: 39300577 PMCID: PMC11411797 DOI: 10.1186/s40168-024-01878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The Andean Altiplano hosts a repertoire of high-altitude lakes with harsh conditions for life. These lakes are undergoing a process of desiccation caused by the current climate, leaving terraces exposed to extreme atmospheric conditions and serving as analogs to Martian paleolake basins. Microbiomes in Altiplano lake terraces have been poorly studied, enclosing uncultured lineages and a great opportunity to understand environmental adaptation and the limits of life on Earth. Here we examine the microbial diversity and function in ancient sediments (10.3-11 kyr BP (before present)) from a terrace profile of Laguna Lejía, a sulfur- and metal/metalloid-rich saline lake in the Chilean Altiplano. We also evaluate the physical and chemical changes of the lake over time by studying the mineralogy and geochemistry of the terrace profile. RESULTS The mineralogy and geochemistry of the terrace profile revealed large water level fluctuations in the lake, scarcity of organic carbon, and high concentration of SO42--S, Na, Cl and Mg. Lipid biomarker analysis indicated the presence of aquatic/terrestrial plant remnants preserved in the ancient sediments, and genome-resolved metagenomics unveiled a diverse prokaryotic community with still active microorganisms based on in silico growth predictions. We reconstructed 591 bacterial and archaeal metagenome-assembled genomes (MAGs), of which 98.8% belonged to previously unreported species. The most abundant and widespread metabolisms among MAGs were the reduction and oxidation of S, N, As, and halogenated compounds, as well as aerobic CO oxidation, possibly as a key metabolic trait in the organic carbon-depleted sediments. The broad redox and CO2 fixation pathways among phylogenetically distant bacteria and archaea extended the knowledge of metabolic capacities to previously unknown taxa. For instance, we identified genomic potential for dissimilatory sulfate reduction in Bacteroidota and α- and γ-Proteobacteria, predicted an enzyme for ammonia oxidation in a novel Actinobacteriota, and predicted enzymes of the Calvin-Benson-Bassham cycle in Planctomycetota, Gemmatimonadota, and Nanoarchaeota. CONCLUSIONS The high number of novel bacterial and archaeal MAGs in the Laguna Lejía indicates the wide prokaryotic diversity discovered. In addition, the detection of genes in unexpected taxonomic groups has significant implications for the expansion of microorganisms involved in the biogeochemical cycles of carbon, nitrogen, and sulfur. Video Abstract.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain.
- IMDEA Water Institute, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain.
| | - Till L V Bornemann
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Laura Sánchez-García
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Daniel Carrizo
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| | - Panagiotis S Adam
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Nathalie A Cabrol
- SETI Institute, 339 Bernardo Avenue, Suite 200, Mountain View, CA, 94043, USA
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Víctor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, 28850, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
4
|
Tan S, Huang Y, Yang H, Zhang S, Tang X. Microbial communities and denitrification mechanisms of pyrite autotrophic denitrification coupled with three-dimensional biofilm electrode reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11107. [PMID: 39155705 DOI: 10.1002/wer.11107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Denitrification is of great significance for low C/N wastewater treatment. In this study, pyrite autotrophic denitrification (PAD) was coupled with a three-dimensional biofilm electrode reactor (BER) to enhance denitrification. The effect of current on denitrification was extensively studied. The nitrate removal of the PAD-BER increased by 14.90% and 74.64% compared to the BER and the PAD, respectively. In addition, the electron utilization, extracellular polymeric substances secretion, and denitrification enzyme activity (NaR and NiR) were enhanced in the PAD-BER. The microbial communities study displayed that Dokdonella, Hydrogenophaga, Nitrospira, and Terrimonas became the main genera for denitrification. Compared with the PAD and the BER, the abundance of the key denitrification genes narG, nirK, nirS, and nosZ were all boosted in the PAD-BER. This study indicated that the enhanced autotrophic denitrifiers and denitrification genes were responsible for the improved denitrification in the PAD-BER. PRACTITIONER POINTS: PAD-BER displayed higher nitrate removal, EPS, NAR, and NIR activity. The three types of denitrification (HD, HAD, and PAD) and their contribution percentage in the PAD-BER were analyzed. HAD was dominant among the three denitrification processes in PAD-BER. Microbial community composition and key denitrification genes were tested to reveal the denitrification mechanisms.
Collapse
Affiliation(s)
- Shenyu Tan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Yu Huang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Heng Yang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Shiyang Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Chen J, Tang X, Wu X, Li B, Tang X, Lin X, Li P, Chen H, Huang F, Deng X, Xie X, Wei C, Zou Y, Qiu G. Relating the carbon sources to denitrifying community in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 361:142329. [PMID: 38763396 DOI: 10.1016/j.chemosphere.2024.142329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Carbon source is a key factor determining the denitrifying effectiveness and efficiency in wastewater treatment plants (WWTPs). Whereas, the relationships between diverse and distinct denitrifying communities and their favorable carbon sources in full-scale WWTPs were not well-understood. This study performed a systematic analysis of the relationships between the denitrifying community and carbon sources by using 15 organic compounds from four categories and activated sludge from 8 full-scale WWTPs. Results showed that, diverse denitrifying bacteria were detected with distinct relative abundances in 8 WWTPs, such as Haliangium (1.98-4.08%), Dechloromonas (2.00-3.01%), Thauera (0.16-1.06%), Zoogloea (0.09-0.43%), and Rhodoferax (0.002-0.104%). Overall, acetate resulted in the highest denitrifying activities (1.21-4.62 mg/L/h/gMLSS), followed by other organic acids (propionate, butyrate and lactate, etc.). Detectable dissimilatory nitrate reduction to ammonium (DNRA) was observed for all 15 carbon sources. Methanol and glycerol resulted in the highest DRNA. Acetate, butyrate, and lactate resulted in the lowest DNRA. Redundancy analysis and 16S cDNA amplicon sequencing suggested that carbon sources within the same category tended to correlate to similar denitrifiers. Methanol and ethanol were primarily correlated to Haliangium. Glycerol and amino acids (glutamate and aspartate) were correlated to Inhella and Sphaerotilus. Acetate, propionate, and butyrate were positively correlated to a wide range of denitrifiers, explaining the high efficiency of these carbon sources. Additionally, even within the same genus, different amplicon sequence variants (ASVs) performed distinctly in terms of carbon source preference and denitrifying capabilities. These findings are expected to benefit carbon source formulation and selection in WWTPs.
Collapse
Affiliation(s)
- Jinling Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xuewei Wu
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China.
| | - Biping Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Pengfei Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou, 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Fu Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Yao Zou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Society of Environmental Sciences, Guangzhou, 510000, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Pathak A, Marquez M, Stothard P, Chukwujindu C, Su JQ, Zhou Y, Zhou XY, Jagoe CH, Chauhan A. A seasonal study on the microbiomes of Diploid vs. Triploid eastern oysters and their denitrification potential. iScience 2024; 27:110193. [PMID: 38984199 PMCID: PMC11231605 DOI: 10.1016/j.isci.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Oyster reefs are hotspots of denitrification mediated removal of dissolved nitrogen (N), however, information on their denitrifier microbiota is scarce. Furthermore, in oyster aquaculture, triploids are often preferred over diploids, yet again, microbiome differences between oyster ploidies are unknown. To address these knowledge gaps, farmed diploid and triploid oysters were collected over an annual growth cycle and analyzed using shotgun metagenomics and quantitative microbial elemental cycling (QMEC) techniques. Regardless of ploidy, Psychrobacter genus was abundant, with positive correlations found for genes of central metabolism, DNA metabolism, and carbohydrate metabolism. MAGs (metagenome-assembled genomes) yielded multiple Psychrobacter genomes harboring norB, narH, narI, and nirK denitrification genes, indicating their functional relevance within the eastern oysters. QMEC analysis indicated the predominance of carbon (C) and nitrogen (N) cycling genes, with no discernable patterns between ploidies. Among the N-cycling genes, the nosZII clade was overrepresented, suggesting its role in the eastern oyster's N removal processes.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Mario Marquez
- Texas Sea Grant College Program, 4115 TAMU Eller O&M 306, Texas A&M University, College Station, TX 77843, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, General Services Bldg, Edmonton, AB 2-31 T6G 2H1, Canada
| | - Christian Chukwujindu
- Material & Energy Technology Department, Projects Development Institute, Emene Industrial Layout, Enugu-Nigeria 400104
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charles H. Jagoe
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| |
Collapse
|
7
|
Mishra S, Zhang X, Yang X. Plant communication with rhizosphere microbes can be revealed by understanding microbial functional gene composition. Microbiol Res 2024; 284:127726. [PMID: 38643524 DOI: 10.1016/j.micres.2024.127726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Understanding rhizosphere microbial ecology is necessary to reveal the interplay between plants and associated microbial communities. The significance of rhizosphere-microbial interactions in plant growth promotion, mediated by several key processes such as auxin synthesis, enhanced nutrient uptake, stress alleviation, disease resistance, etc., is unquestionable and well reported in numerous literature. Moreover, rhizosphere research has witnessed tremendous progress due to the integration of the metagenomics approach and further shift in our viewpoint from taxonomic to functional diversity over the past decades. The microbial functional genes corresponding to the beneficial functions provide a solid foundation for the successful establishment of positive plant-microbe interactions. The microbial functional gene composition in the rhizosphere can be regulated by several factors, e.g., the nutritional requirements of plants, soil chemistry, soil nutrient status, pathogen attack, abiotic stresses, etc. Knowing the pattern of functional gene composition in the rhizosphere can shed light on the dynamics of rhizosphere microbial ecology and the strength of cooperation between plants and associated microbes. This knowledge is crucial to realizing how microbial functions respond to unprecedented challenges which are obvious in the Anthropocene. Unraveling how microbes-mediated beneficial functions will change under the influence of several challenges, requires knowledge of the pattern and composition of functional genes corresponding to beneficial functions such as biogeochemical functions (nutrient cycle), plant growth promotion, stress mitigation, etc. Here, we focus on the molecular traits of plant growth-promoting functions delivered by a set of microbial functional genes that can be useful to the emerging field of rhizosphere functional ecology.
Collapse
Affiliation(s)
- Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| | - Xianxian Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China.
| |
Collapse
|
8
|
González M, Cerda Á, Rodríguez C, Serrano J, Leiva E. Coupling of the Feammox - Anammox pathways by using a sequential discontinuous bioreactor. BIORESOURCE TECHNOLOGY 2024; 395:130334. [PMID: 38242238 DOI: 10.1016/j.biortech.2024.130334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Treating nitrogenous compounds in wastewater is a contemporary challenge, prompting novel approaches for ammonium (NH4+) conversion to molecular nitrogen (N2). This study explores the classic anaerobic ammonium oxidation process (Anammox) coupled to the iron-dependent anaerobic ammonium oxidation process (Feammox) in a sequential discontinuous bioreactor (SBR) for NH4+ removal. Feammox and Anammox cultures were individually enriched and combined, optimizing the coupling, and identifying key variables influencing the enrichment process. Adding sodium acetate as a carbon source significantly reduces Fe3+ to Fe2+, indicating Feammox activity. Both Anammox and Feammox processes were successfully operated in SBRs, achieving efficient NH4+ removal (Anammox: 64.6 %; Feammox: 43.4 %). Combining these pathways in a single SBR enhances the NH4+ removal capacity of 50.8 %, improving Feammox efficiency. The Feammox process coupled with Anammox may generate the nitrite (NO2-) needed for Anammox. This research contributes to biotechnological advancements for sustainable nitrogenous compound treatment in SBRs.
Collapse
Affiliation(s)
- Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile
| | - Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
9
|
Cisternas J, Rodríguez C, Serrano J, Leiva E. Study of the key biotic and abiotic parameters influencing ammonium removal from wastewaters by Fe 3+-mediated anaerobic ammonium oxidation (Feammox). CHEMOSPHERE 2023; 339:139463. [PMID: 37480952 DOI: 10.1016/j.chemosphere.2023.139463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
The release of ammonia (as NH4+) into water bodies causes serious environmental problems. Therefore, the removal of ammonia from wastewater effluents has become a worldwide concern. New autotrophic biological alternatives for ammonia removal could reduce the limitations of conventional organic carbon-dependent nitrification-denitrification methods. Here, the potential of anaerobic ammonium oxidation coupled to Fe3+ reduction (a process known as Feammox) is studied in wastewater treatment plants of the yeast and beer production industry, not related to ammonium or iron treatment. This process is presented as a viable option to improve the efficiency of ammonia removal from wastewater. The results of this study show that enrichments under Feammox conditions achieved removals of 28.19-32.25% of the total NH4+. The highest rates of ammonium removal and Fe3+ reduction were achieved using FeCl3 as iron source and pH = 7.0. Different environmental conditions for the enrichments were studied and it was found that the use of sodium acetate as a carbon source and an incubation temperature of 35 °C presented higher rates of iron reduction and higher increase in nitrate concentration, related to ammonium oxidative processes. Likewise, the presence of relevant species of the iron and nitrogen cycles as Ferrovum myxofaciens, Geobacter spp, Shewanella spp, Albidiferax ferrireducens and Anammox was verified, supporting the findings of this study. These results provide information that may be relevant to the potential applicability of Feammox to treat wastewater with high ammonia load and could help develop cost-effective and environmentally friendly methods for ammonium removal in wastewater treatment plants.
Collapse
Affiliation(s)
- Jaime Cisternas
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
10
|
Lu C, Zhu Q, Qiu M, Fan X, Luo J, Liang Y, Ma Y. Effects of different soil water holding capacities on vegetable residue return and its microbiological mechanism. Front Microbiol 2023; 14:1257258. [PMID: 37744912 PMCID: PMC10513456 DOI: 10.3389/fmicb.2023.1257258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
With the gradual expansion of the protected vegetable planting area, dense planting stubbles and increasing labor cost, the treatment of vegetable residues has become an urgent problem to be solved. Soil bacterial community structure plays an important role in vegetable residue return and is susceptible to environmental changes. Therefore, understanding the influences of different soil water holding capacities on plant residue decomposition and soil bacterial communities is important for biodegradation. During the whole incubation period, the weight loss ratio of plant residue with 100% water holding capacity was 69.60 to 75.27%, which was significantly higher than that with 60% water holding capacity in clay and sandy soil, indicating that high water holding capacity promoted the decomposition of plant residue. The degradation of lignin and cellulose was also promoted within 14 days. Furthermore, with the increase in soil water holding capacity, the contents of NH4+ increased to 5.36 and 4.54 times the initial value in the clay and sandy soil, respectively. The increase in napA and nrfA resulted in the conversion of NO3- into NH4+. The increase in water holding capacity made the bacterial network structure more compact and changed the keystone bacteria. The increase in water holding capacity also increased the relative abundance of Firmicutes at the phylum level and Symbiobacterium, Clostridium at the genus level, which are all involved in lignin and cellulose degradation and might promote their degradation. Overall, these findings provide new insight into the effects of different soil water holding capacities on the degradation of plant residues in situ and the corresponding bacterial mechanisms.
Collapse
Affiliation(s)
- Chao Lu
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Nanjing, China
| | - Qian Zhu
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Nanjing, China
| | - Meihua Qiu
- Jiangsu Province Station of Farmland Quality and Agro-Environmental Protection, Nanjing, China
| | - Xinhui Fan
- Jiangsu Province Station of Farmland Quality and Agro-Environmental Protection, Nanjing, China
| | - Jia Luo
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Nanjing, China
| | - Yonghong Liang
- Jiangsu Province Station of Farmland Quality and Agro-Environmental Protection, Nanjing, China
| | - Yan Ma
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Agricultural Experimental Station for Agricultural Environment, Nanjing, China
| |
Collapse
|
11
|
Sanow S, Kuang W, Schaaf G, Huesgen P, Schurr U, Roessner U, Watt M, Arsova B. Molecular Mechanisms of Pseudomonas-Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:536-548. [PMID: 36989040 DOI: 10.1094/mpmi-10-22-0223-cr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Stefan Sanow
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Weiqi Kuang
- College of life and Environmental Sciences, Hunan University of Arts and Science, China
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Pitter Huesgen
- Central institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Germany
| | - Ulrich Schurr
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| | - Ute Roessner
- Research School of Biology, The Australian National University, Acton, 2601 Australian Capital Territory, Australia
| | - Michelle Watt
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
| | - Borjana Arsova
- Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
| |
Collapse
|
12
|
Manfredini A, Malusà E, Pinzari F, Canfora L. Quantification of nitrogen cycle functional genes from viable archaea and bacteria in paddy soil. J Appl Microbiol 2023; 134:lxad169. [PMID: 37516446 DOI: 10.1093/jambio/lxad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
AIMS One of the main challenges of culture-independent soil microbiology is distinguishing the microbial community's viable fraction from dead matter. Propidium monoazide (PMA) binds the DNA of dead cells, preventing its amplification. This dye could represent a robust means to overcome the drawbacks of other selective methods, such as ribonucleic acid-based analyses. METHODS AND RESULTS We quantified functional genes from viable archaea and bacteria in soil by combining the use of PMA and quantitative polymerase chain reaction. Four N-cycle-related functional genes (bacterial and archaeal ammonia monooxygenase, nitrate reductase, and nitrite reductase) were successfully quantified from the living fraction of bacteria and archaea of a paddy soil. The protocol was also tested with pure bacterial cultures and soils with different physical and chemical properties. CONCLUSIONS The experiment results revealed a contrasting impact of mineral and organic fertilizers on the abundance of microbial genes related to the N-cycle in paddy soil.
Collapse
Affiliation(s)
- Andrea Manfredini
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Roma, Italy
| | - Eligio Malusà
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, 31015 Conegliano, Italy
- National Institute of Horticultural Research, 96-100 Skierniewice, Poland
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy (CNR), 00010 Montelibretti, Italy
- Life Sciences Department, Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, 00184 Roma, Italy
| |
Collapse
|
13
|
Lian T, Cheng L, Liu Q, Yu T, Cai Z, Nian H, Hartmann M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME COMMUNICATIONS 2023; 3:71. [PMID: 37433864 PMCID: PMC10336055 DOI: 10.1038/s43705-023-00282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Waterlogging in soil can limit the availability of nitrogen to plants by promoting denitrification and reducing nitrogen fixation and nitrification. The root-associated microorganisms that determine nitrogen availability at the root-soil interface can be influenced by plant genotype and soil type, which potentially alters the nitrogen uptake capacity of plants in waterlogged soils. In a greenhouse experiment, two soybean genotypes with contrasting capacities to resist waterlogging stress were grown in Udic Argosol and Haplic Alisol soils with and without waterlogging, respectively. Using isotope labeling, high-throughput amplicon sequencing and qPCR, we show that waterlogging negatively affects soybean yield and nitrogen absorption from fertilizer, atmosphere, and soil. These effects were soil-dependent and more pronounced in the waterlogging-sensitive than tolerant genotype. The tolerant genotype harbored more ammonia oxidizers and less nitrous oxide reducers. Anaerobic, nitrogen-fixing, denitrifying and iron-reducing bacteria such as Geobacter/Geomonas, Sphingomonas, Candidatus Koribacter, and Desulfosporosinus were proportionally enriched in association with the tolerant genotype under waterlogging. These changes in the rhizosphere microbiome might ultimately help the plant to improve nitrogen uptake under waterlogged, anoxic conditions. This research contributes to a better understanding of the adaptability of soybean genotypes under waterlogging stress and might help to formulate fertilization strategies that improve nitrogen use efficiency of soybean. Schematic representation of the effects of waterlogging on nitrogen uptake and rhizosphere microbiota in dependence of soil type and soybean genotype.
Collapse
Affiliation(s)
- Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Zhao Q, Li J, Deng L, Jia T, Zhao Y, Li X, Peng Y. From hybrid process to pure biofilm anammox process: Suspended sludge biomass management contributing to high-level anammox enrichment in biofilms. WATER RESEARCH 2023; 236:119959. [PMID: 37058918 DOI: 10.1016/j.watres.2023.119959] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The application of mainstream anammox is highly desirable for municipal wastewater treatment. However, enrichment of anammox bacteria (AnAOB) is challenging, particularly given the vicious competition from denitrifying bacteria (DB). Here, suspended sludge biomass management, a novel operational strategy for hybrid process (suspended sludge/biofilm), was investigated for 570 days based on a modified anaerobic-anoxic-oxic system treating municipal wastewater. By successively decreasing the suspended sludge concentration, the traditional hybrid process was successfully upgraded to a pure biofilm anammox process. During this process, both the nitrogen removal efficiency (NRE) and rate (NRR) were significantly improved (P < 0.001), from 62.1 ± 4.5% to 79.2 ± 3.9% and from 48.7 ± 9.7 to 62.3 ± 9.0 g N/(m3·d), respectively. Mainstream anammox was improved in the following: Candidatus Brocadia was enriched from 0.70% to 5.99% in anoxic biofilms [from (9.94 ± 0.99) × 108 to (1.16 ± 0.01) × 1010 copies/g VSS, P < 0.001]; the in situ anammox reaction rate increased from 8.8 ± 1.9 to 45.5 ± 3.2 g N/(m3·d) (P < 0.001); the anammox contribution to nitrogen removal rose from 9.2 ± 2.8% to 67.1 ± 8.3% (P < 0.001). Core bacterial microbiome analysis, functional gene quantification, and a series of ex situ batch experiments demonstrated that the stepwise decreases in suspended sludge concentration effectively mitigated the vicious competition of DB against AnAOB, enabling high-level AnAOB enrichment. This study presents a straightforward and effective strategy for enriching AnAOB in municipal wastewater, shedding fresh light on the application and upgradation of mainstream anammox.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Cui H, Feng Y, Yin Z, Qu K, Wang L, Li J, Jin T, Bai Y, Cui Z. Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114791. [PMID: 36934547 DOI: 10.1016/j.ecoenv.2023.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.
Collapse
Affiliation(s)
- Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Jiaxin Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tongtong Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Bai
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
16
|
Yuan S, Han X, Yin X, Su P, Zhang Y, Liu Y, Zhang J, Zhang D. Nitrogen transformation promotes the anaerobic degradation of PAHs in water level fluctuation zone of the Three Gorges Reservoir in Yangtze River, China: Evidences derived from in-situ experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161034. [PMID: 36549540 DOI: 10.1016/j.scitotenv.2022.161034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose a great threat to human health and ecological system safety. The interception of nitrogen is common found in the riparian zone. However, there is no evidence on how nitrogen addition affects the anaerobic degradation of PAHs in soil of the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) in Yangtze River, China. Here, we investigated the PAHs degradation rate, the variation of key functional genes and microbial communities after nitrogen addition in soil that experienced a flooding period of water-level-fluctuation. The results revealed that the ∑16PAHs were decreased 16.19 %-36.65 % and more 3-5-rings PAHs were biodegraded with nitrogen addition in WLFZ. The most genes involved in PAHs-anaerobic degradation and denitrification were up-regulated by nitrate addition, and phyla Firmicutes, Actinobacteria and Proteobacteria were more advantages in nitrogen addition groups. The Tax4Fun based genome function analysis revealed that the microbial activity of PAHs-degradation increased with nitrate addition. The co-occurrence network analysis indicated that nitrogen addition accelerated the metabolism of nitrogen and PAHs. It is the first time to provide the direct experimental evidences that nitrogen transformation in the WLFZ soil promotes anaerobic PAHs degradation. This work is of importance to understand the effect of nitrogen intercepted in the WLFZ soil of TGR in Yangtze River, China.
Collapse
Affiliation(s)
- Shupei Yuan
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xinkuan Han
- Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China; College of Life Sciences, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Xiangyang Yin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Peixing Su
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yiying Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yinfei Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Juntong Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, People's Republic of China; Department of Environmental Science, College of Environment and Ecology, Chongqing University, Chongqing 400044, People's Republic of China.
| |
Collapse
|
17
|
Vuillemin A. Nitrogen cycling activities during decreased stratification in the coastal oxygen minimum zone off Namibia. Front Microbiol 2023; 14:1101902. [PMID: 36846760 PMCID: PMC9950273 DOI: 10.3389/fmicb.2023.1101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
Productive oxygen minimum zones are regions dominated by heterotrophic denitrification fueled by sinking organic matter. Microbial redox-sensitive transformations therein result in the loss and overall geochemical deficit in inorganic fixed nitrogen in the water column, thereby impacting global climate in terms of nutrient equilibrium and greenhouse gases. Here, geochemical data are combined with metagenomes, metatranscriptomes, and stable-isotope probing incubations from the water column and subseafloor of the Benguela upwelling system. The taxonomic composition of 16S rRNA genes and relative expression of functional marker genes are used to explore metabolic activities by nitrifiers and denitrifiers under decreased stratification and increased lateral ventilation in Namibian coastal waters. Active planktonic nitrifiers were affiliated with Candidatus Nitrosopumilus and Candidatus Nitrosopelagicus among Archaea, and Nitrospina, Nitrosomonas, Nitrosococcus, and Nitrospira among Bacteria. Concurrent evidence from taxonomic and functional marker genes shows that populations of Nitrososphaeria and Nitrospinota were highly active under dysoxic conditions, coupling ammonia and nitrite oxidation with respiratory nitrite reduction, but minor metabolic activity toward mixotrophic use of simple nitrogen compounds. Although active reduction of nitric oxide to nitrous oxide by Nitrospirota, Gammaproteobacteria, and Desulfobacterota was tractable in bottom waters, the produced nitrous oxide was apparently scavenged at the ocean surface by Bacteroidota. Planctomycetota involved in anaerobic ammonia oxidation were identified in dysoxic waters and their underlying sediments, but were not found to be metabolically active due to limited availability of nitrite. Consistent with water column geochemical profiles, metatranscriptomic data demonstrate that nitrifier denitrification is fueled by fixed and organic nitrogen dissolved in dysoxic waters, and prevails over canonical denitrification and anaerobic oxidation of ammonia when the Namibian coastal waters and sediment-water interface on the shelf are ventilated by lateral currents during austral winter.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
18
|
Torregrosa-Crespo J, Miralles-Robledillo JM, Bernabeu E, Pire C, Martínez-Espinosa RM. Denitrification in hypersaline and coastal environments. FEMS Microbiol Lett 2023; 370:fnad066. [PMID: 37422443 PMCID: PMC10423024 DOI: 10.1093/femsle/fnad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
As the association of denitrification with global warming and nitrogen removal from ecosystems has gained attention in recent decades, numerous studies have examined denitrification rates and the distribution of denitrifiers across different environments. In this minireview, reported studies focused on coastal saline environments, including estuaries, mangroves, and hypersaline ecosystems, have been analysed to identify the relationship between denitrification and saline gradients. The analyses of the literature and databases stated the direct effect of salinity on the distribution patterns of denitrifiers. However, few works do not support this hypothesis thus making this topic controversial. The specific mechanisms by which salinity influences denitrifier distribution are not fully understood. Nevertheless, several physical and chemical environmental parameters, in addition to salinity, have been shown to play a role in structuring the denitrifying microbial communities. The prevalence of nirS or nirK denitrifiers in ecosystems is a subject of debate in this work. In general terms, in mesohaline environments, the predominant nitrite reductase is NirS type and, NirK is found predominantly in hypersaline environments. Moreover, the approaches used by different researchers are quite different, resulting in a huge amount of unrelated information, making it difficult to establish comparative analysis. The main techniques used to analyse the distribution of denitrifying populations along salt gradients have been also discussed.
Collapse
Affiliation(s)
- Javier Torregrosa-Crespo
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Eric Bernabeu
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology, and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef” (IMEM), University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
19
|
Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, Angove MJ, Ngo HH, Guo W, Puadel SR. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120272. [PMID: 36167167 DOI: 10.1016/j.envpol.2022.120272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N2O) emissions, which are accelerating at an unprecedented rate. N2O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N2O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N2O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N2O generation. The authors also estimate the N2O-N emission mainly due to anthropogenic activities will be around 8.316 Tg N2O-N yr-1 in 2050. In order to minimize and tackle the N2O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Collapse
Affiliation(s)
- Babita Aryal
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Roshni Gurung
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Aline F Camargo
- Federal University of Santa Catarina, Post-graduation Program in Biotechnology and Biosciences, Florianopólis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Bandita Mainali
- School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC, 3550, Australia; School of Engineering, Macquarie University, Sydney, Australia
| | - Michael J Angove
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bendigo, VIC-3550, Australia
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Shukra Raj Puadel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuwan University, Pulchowk, Lalitpur, 44700, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
20
|
Karuriya S, Choudhary S. Simultaneous heterotrophic nitrification and aerobic denitrification potential of Paenibacillus sp. strain GLM-08 isolated from lignite mine waste and its role ammonia removal from mine waste water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:3223-3235. [PMID: 36579880 DOI: 10.2166/wst.2022.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Paenibacillus sp. strain GLM-08 was isolated from a lignite mine waste site in the Barmer basin, Rajasthan, India. The strain is efficient in heterotrophic nitrification and aerobic denitrification. This bacterium could remove approximately more than 95% of NH4+, NO3-, and NO2- in 24 h. The average nitrogen (N) removal rate of the strain was found to be 4.775 mg/L/H, 5.66 mg/L/H, and 5.01 mg/L/H for NH4+, NO3-, and NO2-, respectively. Bioaugmentation of mine wastewater with Paenibacillus sp. strain GLM-08 demonstrated N removal of 86.6% under conditions of a high load of NH4+. The presence of potential genetic determinants (nxrB, nirS, and nosZ) having role in heterotrophic nitrification and aerobic denitrification was confirmed by PCR based analysis. The findings show that this bacterium performs simultaneous nitrification and denitrification and has a high nitrogen removal efficiency indicating the potential application of the strain in the treatment of wastewater.
Collapse
Affiliation(s)
- Silisti Karuriya
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| | - Sangeeta Choudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Rajasthan 304022, India E-mail:
| |
Collapse
|
21
|
Hu R, Liu S, Huang W, Nan Q, Strong PJ, Saleem M, Zhou Z, Luo Z, Shu F, Yan Q, He Z, Wang C. Evidence for Assimilatory Nitrate Reduction as a Previously Overlooked Pathway of Reactive Nitrogen Transformation in Estuarine Suspended Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14852-14866. [PMID: 36098560 DOI: 10.1021/acs.est.2c04390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Suspended particulate matter (SPM) contributes to the loss of reactive nitrogen (Nr) in estuarine ecosystems. Although denitrification and anaerobic ammonium oxidation in SPM compensate for the current imbalance of global nitrogen (N) inputs and sinks, it is largely unclear whether other pathways for Nr transformation exist in SPM. Here, we combined stable isotope measurements with metagenomics and metatranscriptomics to verify the occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in the SPM of the Pearl River Estuary (PRE). Surprisingly, the conventional functional genes of DNRA (nirBD) were abundant and highly expressed in SPM, which was inconsistent with a low potential rate. Through taxonomic and comparative genomic analyses, we demonstrated that nitrite reductase (NirBD) in conjunction with assimilatory nitrate reductase (NasA) performed assimilatory nitrate reduction (ANR) in SPM, and diverse alpha- and gamma-proteobacterial lineages were identified as key active heterotrophic ANR bacteria. Moreover, ANR was predicted to have a relative higher occurrence than denitrification and DNRA in a survey of Nr transformation pathways in SPM across the PRE spanning 65 km. Collectively, this study characterizes a previously overlooked pathway of Nr transformation mediated by heterotrophic ANR bacteria in SPM and has important implications for our understanding of N cycling in estuaries.
Collapse
Affiliation(s)
- Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Songfeng Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Weiming Huang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Qiong Nan
- Max Planck Institute for Marine Microbiology, 28359Bremen, Germany
- Institute of Environmental Science and Technology, College of Environment and Resource Science, Zhejiang University, Hangzhou310029, PR China
| | - P J Strong
- School of Biology and Environmental Science, Centre for Agriculture and the Bioeconomy.Queensland University of Technology, BrisbaneQLD 4001, Australia
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, Alabama36104, United States
| | - Zhengyuan Zhou
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Zhiwen Luo
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Fangqi Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
22
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
23
|
Shen J, Liu H, Zhou H, Chen R. Specific characteristics of the microbial community in the groundwater fluctuation zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76066-76077. [PMID: 35665458 DOI: 10.1007/s11356-022-21166-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Groundwater level fluctuation is a common natural phenomenon that causes alternate changes in oxygen, moisture, and biogeochemical processes in sediments. Microbes are sensitive to these environmental changes. Therefore, a specific microbial community is proposed to form in the groundwater fluctuation zone (GFZ). The vertical distributions of microbial abundance, diversity, and functional microbes and genes in sediment profiles were investigated, focusing on the GFZ, using high-throughput 16S rRNA gene sequencing, qPCR, and the Functional Annotation of Prokaryotic Taxa (FAPROTAX) approach. The relationships between chemical variables and microbial community structure were investigated by redundancy analysis (RDA). Results showed that the microbial abundance and microbial community richness and diversity were higher in the sediments of the GFZ. The nitrate reducers prefer to stay just below the groundwater level in the GFZ. The predominant microbes in the GFZ functioned as nitrifiers and Fe-oxidizers. The specific community in the GFZ is mainly related to NO3- and Fe(III) in the sediment. Consequently, the biochemical processes nitrification and Fe- and Mn-oxidation sequentially happen above the nitrate-reduction zone near the groundwater level in the GFZ. These results provide new knowledge in the biogeochemistry cycle of the GFZ and its disturbance on the vertical distribution and transport of biogenic elements and contaminants.
Collapse
Affiliation(s)
- Junhao Shen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Huazhong Zhou
- Plant Protection Station of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Rong Chen
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
24
|
Su W, Wang S, Yang J, Yu Q, Wirth S, Huang X, Qi W, Zhang X, Li H. Corpse decay of wild animals leads to the divergent succession of nrfA-type microbial communities. Appl Microbiol Biotechnol 2022; 106:5287-5300. [PMID: 35802158 DOI: 10.1007/s00253-022-12065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022]
Abstract
Animal carcasses introduce large amounts of nitrates and ammonium into the soil ecosystem. Some of this ammonium is transformed from nitrite through the nrfA-type microbial community. However, it is unclear how nrfA-type microorganisms respond to the decomposition of corpses. This study applied high-throughput sequencing to characterize the ecological succession of nrfA-type microbial communities in grassland soil. Our results showed that Cyclobacterium and Trueperella were the predominant genera for nrfA-type communities in soil with a decomposing corpse (experimental group), while Cyclobacterium and Archangium were dominant in soil without a corpse (control group). The alpha diversity indexes and the resistance and resilience indexes of the microbial communities initially increased and then decreased during decomposition. Compared with the control group, nrfA-encoding community structure in the experimental group gradually became divergent with succession and temporal turnover accelerated. Network analysis revealed that the microbial communities of the experimental group had more complex interactions than those of the control groups. Moreover, the bacterial community assembly in the experimental group was governed by stochastic processes, and the communities of the experimental group had a weaker dispersal capacity than those of the control group. Our results reveal the succession patterns of the nrfA-type microbial communities during degradation of wild animal corpses, which can offer references for demonstrating the ecological mechanism underlying the changes in the nrfA-type microbial community during carcass decay. KEY POINTS: • Corpse decay accelerates the temporal turnover of the nrfA-type community in soil. • Corpse decay changes the ecological succession of the nrfA-type community in soil. • Corpse decay leads to a complex co-occurrence pattern of the nrfA-type community in soil.
Collapse
Affiliation(s)
- Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Stephan Wirth
- Leibniz-Centre for Agricultural Landscape Research (ZALF), Institute of Landscape Biogeochemistry, Eberswalder Str. 84, 15374, Muncheberg, Germany
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanpeng Qi
- Genesky Biotechnologies Inc., Shanghai, 201315, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration On Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China.
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China. .,State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
25
|
Wang X, Xie GJ, Tian N, Dang CC, Cai C, Ding J, Liu BF, Xing DF, Ren NQ, Wang Q. Anaerobic microbial manganese oxidation and reduction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153513. [PMID: 35101498 DOI: 10.1016/j.scitotenv.2022.153513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Manganese is a vital heavy metal abundant in terrestrial and aquatic environments. Anaerobic manganese redox reactions mediated by microorganisms have been recognized for a long time, which promote elements mobility and bioavailability in the environment. Biological anaerobic redox of manganese serves two reactions, including Mn(II) oxidation and Mn(IV) reduction. This review provides a comprehensive analysis of manganese redox cycles in the environment, closely related to greenhouse gas mitigation, the fate of nutrients, microbial bioremediation, and global biogeochemical cycle, including nitrogen, sulfur, and carbon. The oxidation and reduction of manganese occur cyclically and simultaneously in the environment. Anaerobic reduction of Mn(IV) receives electrons from methane, ammonium and sulfide, while Mn(II) can function as an electron source for manganese-oxidizing microorganisms for autotrophic denitrification and photosynthesis. The anaerobic redox transition between Mn(II) and Mn(IV) promotes a dynamic biogeochemical cycle coupled to microorganisms in water, soil and sediment environments. The discussion of reaction mechanisms, microorganism diversity, environmental influence bioremediation and application identify the research gaps for future investigation, which provides promising opportunities for further development of biotechnological applications to remediate contaminated environments.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ning Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
26
|
Zhao L, Brugel S, Ramasamy KP, Andersson A. Response of Coastal Shewanella and Duganella Bacteria to Planktonic and Terrestrial Food Substrates. Front Microbiol 2022; 12:726844. [PMID: 35250896 PMCID: PMC8888917 DOI: 10.3389/fmicb.2021.726844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Global warming scenarios indicate that in subarctic regions, the precipitation will increase in the future. Coastal bacteria will thus receive increasing organic carbon sources from land runoff. How such changes will affect the function and taxonomic composition of coastal bacteria is poorly known. We performed a 10-day experiment with two isolated bacteria: Shewanella baltica from a seaside location and Duganella sp. from a river mouth, and provided them with a plankton and a river extract as food substrate. The bacterial growth and carbon consumption were monitored over the experimental period. Shewanella and Duganella consumed 40% and 30% of the plankton extract, respectively, while the consumption of the river extract was low for both bacteria, ∼1%. Shewanella showed the highest bacterial growth efficiency (BGE) (12%) when grown on plankton extract, while when grown on river extract, the BGE was only 1%. Duganella showed low BGE when grown on plankton extract (< 1%) and slightly higher BGE when grown on river extract (2%). The cell growth yield of Duganella was higher than that of Shewanella when grown on river extract. These results indicate that Duganella is more adapted to terrestrial organic substrates with low nutritional availability, while Shewanella is adapted to eutrophied conditions. The different growth performance of the bacteria could be traced to genomic variations. A closely related genome of Shewanella was shown to harbor genes for the sequestration of autochthonously produced carbon substrates, while Duganella contained genes for the degradation of relatively refractive terrestrial organic matter. The results may reflect the influence of environmental drivers on bacterial community composition in natural aquatic environments. Elevated inflows of terrestrial organic matter to coastal areas in subarctic regions would lead to increased occurrence of bacteria adapted to the degradation of complex terrestrial compounds with a low bioavailability.
Collapse
Affiliation(s)
- Li Zhao
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Sonia Brugel
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Hörnefors, Sweden
| |
Collapse
|
27
|
Zhao B, Li X, Wang Y, Tan X, Qi W, Li H, Wei J, You Y, Shi W, Zhang Q. Dissimilatory nitrate reduction and functional genes in two subtropical rivers, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68155-68173. [PMID: 34264489 DOI: 10.1007/s11356-021-15197-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), are important pathways of nitrate transformation in the aquatic environments. In this study, we investigated potential rates of denitrification, anammox, and DNRA in the sediments of two subtropical rivers, Jinshui River and Qi River, with different intensities of human activities in their respective catchment, China. Our objectives were to assess the seasonality of dissimilatory nitrate reduction rates, quantify their respective contributions to nitrate reduction, and reveal the relationship between dissimilatory nitrate reduction rates, functional gene abundances, and physicochemicals in the river ecosystems. Our results showed higher rates of denitrification and anammox in the intensively disturbed areas in autumn and spring, and higher potential DNRA in the slightly disturbed areas in summer. Generally, denitrification, anammox, and DNRA were higher in summer, autumn, and spring, respectively. Relative contributions of nitrate reduction from denitrification, anammox, and DNRA were quite different in different seasons. Dissimilatory nitrate reduction rates and gene abundances correlated significantly with water temperature, dissolved organic carbon (DOC), sediment total organic carbon (SOC), NO3-, NH4+, DOC/NO3-, iron ions, and sulfide. Understanding dissimilatory nitrate reduction is essential for restoring nitrate reduction capacity and improving and sustaining ecohealth of the river ecosystems.
Collapse
Affiliation(s)
- Binjie Zhao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinshuai Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Tan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wenhua Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongran Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
- College of Science, Tibet University, Lhasa, 850000, China
| | - Yong You
- College of Land and Resources, China West Normal University, Nanchong, 637009, China
| | - Wenjun Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
28
|
Tao Y, Zhang L, Su Z, Dai T, Zhang Y, Huang B, Wen D. Nitrogen-cycling gene pool shrunk by species interactions among denser bacterial and archaeal community stimulated by excess organic matter and total nitrogen in a eutrophic bay. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105397. [PMID: 34157564 DOI: 10.1016/j.marenvres.2021.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial densities, functional genes, and their responses to environment factors have been studied for years, but still a lot remains unknown about their interactions with each other. In this study, the abundances of 7 nitrogen cycling genes in the sediments from Hangzhou Bay were analyzed along with bacterial and archaeal 16S rRNA abundances as the biomarkers of their densities. The amount of organic matter (OM) and total nitrogen (TN) strongly positively correlated with each other and microbial densities, while total phosphate (TP) and ammonia-nitrogen (NH3-N) did not. Most studied genes were density suppressed, while nirS was density stable, and nosZ and hzo were density irrelevant. This suggests eutrophication could limit inorganic nitrogen cycle pathways and the removal of nitrogen in the sediment and emit more greenhouse gases. This study provides a new insight of microbial community structures, functions and their interactions in the sediments of eutrophic bays.
Collapse
Affiliation(s)
- Yile Tao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Institute of Environmental Engineering, ETH Zurich, Zurich, 8093, Switzerland; Advanced Analytical Technologies, Empa, Ueberlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Liyue Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yan Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan, 316021, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
29
|
Yue P, Zuo X, Li K, Cui X, Wang S, Misselbrook T, Liu X. The driving effect of nitrogen-related functional microorganisms under water and nitrogen addition on N 2O emission in a temperate desert. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145470. [PMID: 33581515 DOI: 10.1016/j.scitotenv.2021.145470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and a precursor of ozone depletion in the upper atmosphere, thus contributing to climate change and biological safety. The mechanisms and response characteristics of N2O emission in desert soils to precipitation and nitrogen (N) deposition are still unclear. To further elucidate this, an in-situ experiment was conducted in the Gurbantunggut Desert, a temperate desert in China, between June and September 2015 and 2016. The response in N2O flux to water addition (equivalent to 5 mm precipitation) was very transient in summer, only lasting one to two days. This was attributed to the rapid decrease in soil moisture following the water addition, due to the high temperature and drought conditions, and there was no significant change in N2O emission or in the abundance of N-related key functional genes. In contrast, N2O emissions increased significantly in response to N addition. This was associated with an increase in functional gene abundances of amoA (ammonia oxidizing bacteria (AOB)) and ammonia-oxidizing archaea (AOA), which responded positively to increasing soil NH4+-N content, but were inhibited by increasing soil NO3--N content. The abundance of the nirS (nitrate reductase) gene was significantly increased by increasing soil NO3--N content. Interestingly, the indirect effect of increased soil moisture in enhancing N2O emission by increasing the abundance of AOA was offset by a direct effect of soil moisture in inhibiting soil N2O emission. Overall, N2O emissions were mainly controlled by AOA rather than AOB in summer, and were more sensitive to soil available N than to soil moisture in this temperate desert.
Collapse
Affiliation(s)
- Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoqing Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shaokun Wang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Tom Misselbrook
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Asamoto CK, Rempfert KR, Luu VH, Younkin AD, Kopf SH. Enzyme-Specific Coupling of Oxygen and Nitrogen Isotope Fractionation of the Nap and Nar Nitrate Reductases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5537-5546. [PMID: 33687201 DOI: 10.1021/acs.est.0c07816] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dissimilatory nitrate reduction (DNR) to nitrite is the first step in denitrification, the main process through which bioavailable nitrogen is removed from ecosystems. DNR is catalyzed by both cytosolic (Nar) and periplasmic (Nap) nitrate reductases and fractionates the stable isotopes of nitrogen (14N, 15N) and oxygen (16O, 18O), which is reflected in residual environmental nitrate pools. Data on the relationship between the pattern in oxygen vs nitrogen isotope fractionation (18ε/15ε) suggests that systematic differences exist between marine and terrestrial ecosystems that are not fully understood. We examined the 18ε/15ε of nitrate-reducing microorganisms that encode Nar, Nap, or both enzymes, as well as gene deletion mutants of Nar and Nap to test the hypothesis that enzymatic differences alone could explain the environmental observations. We find that the distribution of 18ε/15ε fractionation ratios of all examined nitrate reductases forms two distinct peaks centered around an 18ε/15ε proportionality of 0.55 (Nap) and 0.91 (Nar), with the notable exception of the Bacillus Nar reductases, which cluster isotopically with the Nap reductases. Our findings may explain differences in 18ε/15ε fractionation between marine and terrestrial systems and challenge current knowledge about Nar 18ε/15ε signatures.
Collapse
Affiliation(s)
- Ciara K Asamoto
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kaitlin R Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Victoria H Luu
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Adam D Younkin
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
31
|
Gross Ammonification and Nitrification Rates in Soil Amended with Natural and NH4-Enriched Chabazite Zeolite and Nitrification Inhibitor DMPP. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using zeolite-rich tuffs for improving soil properties and crop N-use efficiency is becoming popular. However, the mechanistic understanding of their influence on soil N-processes is still poor. This paper aims to shed new light on how natural and NH4+-enriched chabazite zeolites alter short-term N-ammonification and nitrification rates with and without the use of nitrification inhibitor (DMPP). We employed the 15N pool dilution technique to determine short-term gross rates of ammonification and nitrification in a silty-clay soil amended with two typologies of chabazite-rich tuff: (1) at natural state and (2) enriched with NH4+-N from an animal slurry. Archaeal and bacterial amoA, nirS and nosZ genes, N2O-N and CO2-C emissions were also evaluated. The results showed modest short-term effects of chabazite at natural state only on nitrate production rates, which was slightly delayed compared to the unamended soil. On the other hand, the addition of NH4+-enriched chabazite stimulated NH4+-N production, N2O-N emissions, but reduced NO3−-N production and abundance of nirS-nosZ genes. DMPP efficiency in reducing nitrification rates was dependent on N addition but not affected by the two typologies of zeolites tested. The outcomes of this study indicated the good compatibility of both natural and NH4+-enriched chabazite zeolite with DMPP. In particular, the application of NH4+-enriched zeolites with DMPP is recommended to mitigate short-term N losses.
Collapse
|
32
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
33
|
Yang J, Wan Y, Zhang M, Cao Z, Leng X, Zhao D, An S. Accelerated nitrogen consumption in sediment by Tubifex tubifex and its significance in eutrophic sediment remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115925. [PMID: 33139096 DOI: 10.1016/j.envpol.2020.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Sediment remediation in eutrophic aquatic ecosystems is imperative, but effective ecological measures are scarce. A pilot-scale trial investigated sediment remediation by the addition of Tubifex tubifex. The results showed that the addition of T. tubifex accelerated sediment organic matter (OM) and nitrogen (N) loss, with averages of 7.7% and 75.1% increased loss (IL) compared to treatments without T. tubifex in the 60-day experiment, respectively. The percentages of the increased in water to the IL in sediment were only 0.6%, 0.21%, 2.1% and 6.3% for NH4+-N, NOx--N, TN and COD, respectively, at the end of the experiment. The absolute abundances of the nitrifying genes AOA and AOB; the denitrifying genes napA, nirS, nirK, cnorB and nosZ; and the anaerobic ammonia oxidation gene anammox increased 2.3- to 11.0-fold with the addition of T. tubifex. Therefore, the addition of T. tubifex is an effective strategy for sediment remediation by accelerating OM and N loss in sediment without substantially increasing the water N concentration.
Collapse
Affiliation(s)
- Jiqiang Yang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Yun Wan
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Miao Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Zhifan Cao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China.
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093, Jiangsu, PR China; Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, Jiangsu, PR China
| |
Collapse
|
34
|
Rahman MM, Khanom A, Biswas SK. Effect of Pesticides and Chemical Fertilizers on the Nitrogen Cycle and Functional Microbial Communities in Paddy Soils: Bangladesh Perspective. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:243-249. [PMID: 33452610 DOI: 10.1007/s00128-020-03092-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The concept of the Nitrogen (N) cycle has been modified over the years based on certain new pathways, including comammox, anammox, and DNRA (dissimilatory nitrate reduction to ammonium). Comammox, nitrification, anammox, denitrification, DNRA, and nitrogen fixation pathways play key roles in the N cycle in paddy soils. Pesticides and chemical fertilizers' effects on the N cycle in paddy soils together with the possible manifestation of these newly discovery pathways are the focus of this review. Both chemical fertilizers and pesticides' overuse affect nitrifying archaea/bacteria and denitrifying and anammox bacteria, while heavy metals affect the nitrification rates in paddy soils. To add extra value to this study, we quantified the comammox amoA single copy gene from the Nitrospira strain 'Nitrospira inopinata'. This review will help researchers access the latest information on the N cycle, particularly in the light of the most recent discoveries.
Collapse
Affiliation(s)
- M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh.
| | - Azmerry Khanom
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Shudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
35
|
Chen Q, Fan J, Ming H, Su J, Wang Y, Wang B. Effects of environmental factors on denitrifying bacteria and functional genes in sediments of Bohai Sea, China. MARINE POLLUTION BULLETIN 2020; 160:111621. [PMID: 32919123 DOI: 10.1016/j.marpolbul.2020.111621] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The ability of denitrifying microorganisms to respond to different ecological pressures remains unknown, especially in marine sediments rich in various heavy metals. Here, gene abundance and transcriptional abundance of five functional denitrification genes (narG, nirK, nirS, norB, and nosZ) in Bohai Sea sediments were examined, and high-throughput Illumina sequencing was used to analyze the community structure of nirK and nirS denitrifying bacteria. The nirS- and nirK-type denitrifying bacteria were classified into different genera. The heavy metal content in sediments was negatively correlated with transcriptional abundance of denitrifying genes, and RNA: DNA ratio for each gene was highest in central Bohai Sea. These results indicated the distribution of nitrite reductase denitrifying bacterial communities was affected by depth, total nitrogen, total phosphorus and sediment grain size. Heavy metal contamination in sediment environment may negatively regulate the transcriptional abundance of denitrifying genes and cause geographical differences in the denitrifying bacterial community structure.
Collapse
Affiliation(s)
- Quanrui Chen
- National Marine Environmental Monitoring Center, Dalian 116023, China; Xiamen University, Xiamen 361000, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Hongxia Ming
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Jie Su
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yantao Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China; Dalian Ocean University, Dalian 116000, China
| | - Bin Wang
- Dalian Ocean University, Dalian 116000, China
| |
Collapse
|
36
|
Giannopoulos G, Hartop KR, Brown BL, Song B, Elsgaard L, Franklin RB. Trace Metal Availability Affects Greenhouse Gas Emissions and Microbial Functional Group Abundance in Freshwater Wetland Sediments. Front Microbiol 2020; 11:560861. [PMID: 33117308 PMCID: PMC7561414 DOI: 10.3389/fmicb.2020.560861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated the effects of trace metal additions on microbial nitrogen (N) and carbon (C) cycling using freshwater wetland sediment microcosms amended with micromolar concentrations of copper (Cu), molybdenum (Mo), iron (Fe), and all combinations thereof. In addition to monitoring inorganic N transformations (NO3 -, NO2 -, N2O, NH4 +) and carbon mineralization (CO2, CH4), we tracked changes in functional gene abundance associated with denitrification (nirS, nirK, nosZ), dissimilatory nitrate reduction to ammonium (DNRA; nrfA), and methanogenesis (mcrA). With regards to N cycling, greater availability of Cu led to more complete denitrification (i.e., less N2O accumulation) and a higher abundance of the nirK and nosZ genes, which encode for Cu-dependent reductases. In contrast, we found sparse biochemical evidence of DNRA activity and no consistent effect of the trace metal additions on nrfA gene abundance. With regards to C mineralization, CO2 production was unaffected, but the amendments stimulated net CH4 production and Mo additions led to increased mcrA gene abundance. These findings demonstrate that trace metal effects on sediment microbial physiology can impact community-level function. We observed direct and indirect effects on both N and C biogeochemistry that resulted in increased production of greenhouse gasses, which may have been mediated through the documented changes in microbial community composition and shifts in functional group abundance. Overall, this work supports a more nuanced consideration of metal effects on environmental microbial communities that recognizes the key role that metal limitation plays in microbial physiology.
Collapse
Affiliation(s)
- Georgios Giannopoulos
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Katherine R Hartop
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Bonnie L Brown
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Bongkeun Song
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, United States
| | - Lars Elsgaard
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
37
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
38
|
Park HJ, Kwon JH, Yun J, Cho KS. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1459-1467. [PMID: 32960129 DOI: 10.1080/10934529.2020.1812321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A new nitrous oxide (N2O)-reducing bacterium was isolated from a consortium that was enriched using advanced wastewater treatment sludge as an inoculum and N2O as the sole nitrogen source. The isolated facultative anaerobe was identified as Azospira sp. HJ23. Azospira sp. HJ23 exhibited optimum N2O-reducing activity with a C/N ratio of 62 at pH 6 in the temperature range of 37 °C to 40 °C. The optimum carbon source for N2O reduction was a mixture of glucose and acetate. The maximum rate of N2O reduction by Azospira sp. HJ23 was 4.8 mmol·g-dry cell-1·h-1, and its N2O-reducing activity was higher than other known N2O reducers. Azospira sp. HJ23 possessed several functional genes for denitrification. These included narG (NO3- reductase), nirK (NO2- reductase), norB (NO reductase), and nosZ (N2O reductase) genes. These results suggest that Azospira sp. HJ23 can be applied in the denitrification process to minimalize N2O emission.
Collapse
Affiliation(s)
| | | | | | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Jiang X, Gao G, Zhang L, Tang X, Shao K, Hu Y, Cai J. Role of algal accumulations on the partitioning between N 2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes. WATER RESEARCH 2020; 183:116075. [PMID: 32745673 DOI: 10.1016/j.watres.2020.116075] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 06/15/2020] [Indexed: 05/24/2023]
Abstract
Cyanobacterial blooms change benthic nitrogen (N) cycling in eutrophic lake ecosystems by affecting organic carbon (OC) delivery and changing in nutrients availability. Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are critical dissimilatory nitrate reduction pathways that determine N removal and N recycling in aquatic environments. A mechanistic understanding of the influence of algal accumulations on partitioning among these pathways is currently lacking. In the present study, a manipulative experiment in aquarium tanks was conducted to determine the response of dissimilatory nitrate reduction pathways to changes in algal biomass, and the interactive effects of OC and nitrate. Potential dinitrogen (N2) production and DNRA rates, and related functional gene abundances were determined during incubation of 3-4 weeks. The results indicated that high algal biomass promoted DNRA but not N2 production. The concentrations of dissolved organic carbon were the primary factor affecting DNRA rates. Low nitrate availability limited N2 production rates in treatments with algal pellets and without nitrate addition. Meanwhile, the AOAamoA gene abundance was significantly correlated with the nrfA and nirS gene abundances, suggesting that coupled nitrification-denitrification/DNRA was prevalent. Partitioning between N2 production and DNRA was positively correlated with the ratios of dissolved organic carbon to nitrate. Correspondingly, in Lake Taihu during summer to fall, the relatively high organic carbon/nitrate might favorably facilitate DNRA over denitrification, subsequently sustaining cyanobacterial blooms.
Collapse
Affiliation(s)
- Xingyu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yang Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Raggi L, García-Guevara F, Godoy-Lozano EE, Martínez-Santana A, Escobar-Zepeda A, Gutierrez-Rios RM, Loza A, Merino E, Sanchez-Flores A, Licea-Navarro A, Pardo-Lopez L, Segovia L, Juarez K. Metagenomic Profiling and Microbial Metabolic Potential of Perdido Fold Belt (NW) and Campeche Knolls (SE) in the Gulf of Mexico. Front Microbiol 2020; 11:1825. [PMID: 32903729 PMCID: PMC7438803 DOI: 10.3389/fmicb.2020.01825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
The Gulf of Mexico (GoM) is a particular environment that is continuously exposed to hydrocarbon compounds that may influence the microbial community composition. We carried out a metagenomic assessment of the bacterial community to get an overall view of this geographical zone. We analyzed both taxonomic and metabolic markers profiles to explain how the indigenous GoM microorganims participate in the biogeochemical cycling. Two geographically distant regions in the GoM, one in the north-west (NW) and one in the south-east (SE) of the GoM were analyzed and showed differences in their microbial composition and metabolic potential. These differences provide evidence the delicate equilibrium that sustains microbial communities and biogeochemical cycles. Based on the taxonomy and gene groups, the NW are more oxic sediments than SE ones, which have anaerobic conditions. Both water and sediments show the expected sulfur, nitrogen, and hydrocarbon metabolism genes, with particularly high diversity of the hydrocarbon-degrading ones. Accordingly, many of the assigned genera were associated with hydrocarbon degradation processes, Nitrospira and Sva0081 were the most abundant in sediments, while Vibrio, Alteromonas, and Alcanivorax were mostly detected in water samples. This basal-state analysis presents the GoM as a potential source of aerobic and anaerobic hydrocarbon degradation genes important for the ecological dynamics of hydrocarbons and the potential use for water and sediment bioremediation processes.
Collapse
Affiliation(s)
- Luciana Raggi
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- CONACYT-Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - E. Ernestina Godoy-Lozano
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Centro de Investigación Sobre Enfermedades Infecciosas, Departamento de Bioinformática en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | | | | | | | - Antonio Loza
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Alexei Licea-Navarro
- Laboratorio de Inmunología Molecular y Biotoxinas, Departamento de Innovación Biomedica, CICESE, Ensenada, Mexico
| | - Liliana Pardo-Lopez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juarez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
41
|
Diazotrophic Anaeromyxobacter Isolates from Soils. Appl Environ Microbiol 2020; 86:AEM.00956-20. [PMID: 32532868 DOI: 10.1128/aem.00956-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation is an essential reaction in a major pathway for supplying nitrogen to terrestrial environments. Previous culture-independent analyses based on soil DNA/RNA/protein sequencing could globally detect the nitrogenase genes/proteins of Anaeromyxobacter (in the class Deltaproteobacteria), commonly distributed in soil environments and predominant in paddy soils; this suggests the importance of Anaeromyxobacter in nitrogen fixation in soil environments. However, direct experimental evidence is lacking; there has been no research on the genetic background and ability of Anaeromyxobacter to fix nitrogen. Therefore, we verified the diazotrophy of Anaeromyxobacter based on both genomic and culture-dependent analyses using Anaeromyxobacter sp. strains PSR-1 and Red267 isolated from soils. Based on the comparison of nif gene clusters, strains PSR-1 and Red267 as well as strains Fw109-5, K, and diazotrophic Geobacter and Pelobacter in the class Deltaproteobacteria contain the minimum set of genes for nitrogenase (nifBHDKEN). These results imply that Anaeromyxobacter species have the ability to fix nitrogen. In fact, Anaeromyxobacter PSR-1 and Red267 exhibited N2-dependent growth and acetylene reduction activity (ARA) in vitro Transcriptional activity of the nif gene was also detected when both strains were cultured with N2 gas as a sole nitrogen source, indicating that Anaeromyxobacter can fix and assimilate N2 gas by nitrogenase. In addition, PSR-1- or Red267-inoculated soil showed ARA activity and the growth of the inoculated strains on the basis of RNA-based analysis, demonstrating that Anaeromyxobacter can fix nitrogen in the paddy soil environment. Our study provides novel insights into the pivotal environmental function, i.e., nitrogen fixation, of Anaeromyxobacter, which is a common soil bacterium.IMPORTANCE Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid evidence and validation from genomic and culture-based analyses that Anaeromyxobacter fixes nitrogen. This study demonstrates that Anaeromyxobacter harboring nitrogenase genes exhibits diazotrophic ability; moreover, N2-dependent growth was demonstrated in vitro and in the soil environment. Our findings indicate that nitrogen fixation is important for Anaeromyxobacter to survive under nitrogen-deficient environments and provide a novel insight into the environmental function of Anaeromyxobacter, which is a common bacterium in soils.
Collapse
|
42
|
Ma J, Liu H, Zhang C, Ding K, Chen R, Liu S. Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137587. [PMID: 32135291 DOI: 10.1016/j.scitotenv.2020.137587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Oxygen can enter into reductive aquifer through natural and artificial processes. However, the joint response of groundwater chemistry and functional microbial communities to oxygenation is not well understood due to the gap between taxonomic and functional microbial composition. Here, two wells named CZK15 and CZK22 at the second confined aquifer in Central China were in situ aerated, and the chemical parameters of groundwater and microbial communities in bio-trapping sand sediment were analysed during aeration. The microbial metabolic functions related to C, N, S, Fe transformation were predicted by Functional Annotation of Prokaryotic Taxa (FAPROTAX) approach and some key functional genes, such as phe, nah, narG, and soxB were verified by the real-time quantitative Polymerase Chain Reaction (qPCR) method. The biomass was promoted, microbial diversity fluctuated, and microbial composition changed remarkably with aeration mainly constrained by reduction-oxidation (redox) variation and SO42- concentration. Among functional microbes, aerobic chemoheterotrophs including aromatic compound degraders (also especially for relative abundance of phe and some nah gene) and methylotrophs are dramatically enriched interpreting dissolved oxygen (DO) consumption and total organic carbon (TOC) decomposing in sediment. Whilst fermenters and methanogen expectedly decreased during aeration. Denitrifying microbes and narG gene relative abundance increased corresponding to the NO3- increase after aeration, while microbes for N2 fixation, ammonification, and nitrification decreased relating to the source of NH4+. The sulfide oxidation causing increased SO42- was reflected by the blooming of sulfur-oxidizing microbes and soxB gene. Some sulfate reducers persisted in sediment after aeration due to sufficient SO42- as substrate. Fe(II) was mainly chemically oxidized as iron-oxidizing microbes were of low abundance and tended to decrease with aeration. The iron-reducing bacteria Geobacteraceae increased with aeration corresponding to the increased Fe(III) oxides formation. The findings of this study could have important implications in understanding the biogeochemical behaviours with cyclic redox conditions.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Hui Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Chen Zhang
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Kang Ding
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Rong Chen
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Shan Liu
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| |
Collapse
|
43
|
Ruprecht JE, Glamore WC, Dafforn KA, Wemheuer F, Crane SL, van Dorst J, Johnston EL, Mitrovic SM, Turner IL, Ferrari BC, Birrer SC. A novel real-world ecotoxicological dataset of pelagic microbial community responses to wastewater. Sci Data 2020; 7:158. [PMID: 32461582 PMCID: PMC7253417 DOI: 10.1038/s41597-020-0496-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/20/2020] [Indexed: 11/08/2022] Open
Abstract
Real-world observational datasets that record and quantify pressure-stressor-response linkages between effluent discharges and natural aquatic systems are rare. With global wastewater volumes increasing at unprecedented rates, it is urgent that the present dataset is available to provide the necessary information about microbial community structure and functioning. Field studies were performed at two time-points in the Austral summer. Single-species and microbial community whole effluent toxicity (WET) testing was performed at a complete range of effluent concentrations and two salinities, with accompanying environmental data to provide new insights into nutrient and organic matter cycling, and to identify ecotoxicological tipping points. The two salinity regimes were chosen to investigate future scenarios based on a predicted salinity increase at the study site, typical of coastal regions with rising sea levels globally. Flow cytometry, amplicon sequencing of 16S and 18S rRNA genes and micro-fluidic quantitative polymerase-chain reactions (MFQPCR) were used to determine chlorophyll-a and total bacterial cell numbers and size, as well as taxonomic and functional diversity of pelagic microbial communities. This strong pilot dataset could be replicated in other regions globally and would be of high value to scientists and engineers to support the next advances in microbial ecotoxicology, environmental biomonitoring and estuarine water quality modelling.
Collapse
Affiliation(s)
- J E Ruprecht
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - W C Glamore
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - K A Dafforn
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Earth and Environmental Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - F Wemheuer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - S L Crane
- Ferrari Lab, School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - J van Dorst
- Ferrari Lab, School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - E L Johnston
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - S M Mitrovic
- Freshwater and Estuarine Research Group, School of Life Sciences, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - I L Turner
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - B C Ferrari
- Ferrari Lab, School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - S C Birrer
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
44
|
Han X, Peng S, Zhang L, Lu P, Zhang D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. CHEMOSPHERE 2020; 247:125968. [PMID: 32069733 DOI: 10.1016/j.chemosphere.2020.125968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
It was revealed that Anammox process promotes the anaerobic degradation of benzene under denitrification. This study investigates the effect of dissimilatory nitrate reduction to ammonium (DNRA) and exogenous ammonium on anaerobic ammonium oxidation bacteria (AnAOB) during the anaerobic degradation of benzene under denitrification. The results indicate that anammox occurs synergistically with organisms using the DNRA pathway, such as Draconibacterium and Ignavibacterium. Phylogenetic analysis showed 64% (16/25) and 36% (5/25) hzsB gene sequences, a specific biomarker of AnAOB, belonged to Candidatus 'Brocadia fuldiga' and Candidatus 'Kuenenia', respectively. Exogenous ammonium addition enhanced the anammox process and accelerated benzene degradation at a 1.89-fold higher average rate compared to that in the absence of exogenous ammonium and AnAOB belonged to Ca. 'Kuenenia' (84%) and Ca. 'Brocadia fuldiga' (16%). These results indicate that Ca. 'Brocadia fuldiga' could also play a role in DNRA. However, the diversity of abcA and bamA, the key anaerobic benzene metabolism biomarkers, remained unchanged. These findings suggest that anammox occurrence may be coupled with DNRA or exogenous ammonium and that anammox promotes anaerobic benzene degradation under denitrifying conditions. The results of this study contribute to understanding the co-occurrence of DNRA and Anammox and help explore their involvement in degradation of benzene, which will be crucial for directing remediation strategies of benzene-contaminated anoxic environment.
Collapse
Affiliation(s)
- Xinkuan Han
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Shuchan Peng
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| |
Collapse
|
45
|
Potgieter SC, Dai Z, Venter SN, Sigudu M, Pinto AJ. Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs. mSphere 2020; 5:e00274-20. [PMID: 32350093 PMCID: PMC7193043 DOI: 10.1128/msphere.00274-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
Ammonia availability due to chloramination can promote the growth of nitrifying organisms, which can deplete chloramine residuals and result in operational problems for drinking water utilities. In this study, we used a metagenomic approach to determine the identity and functional potential of microorganisms involved in nitrogen biotransformation within chloraminated drinking water reservoirs. Spatial changes in the nitrogen species included an increase in nitrate concentrations accompanied by a decrease in ammonium concentrations with increasing distance from the site of chloramination. This nitrifying activity was likely driven by canonical ammonia-oxidizing bacteria (i.e., Nitrosomonas) and nitrite-oxidizing bacteria (i.e., Nitrospira) as well as by complete-ammonia-oxidizing (i.e., comammox) Nitrospira-like bacteria. Functional annotation was used to evaluate genes associated with nitrogen metabolism, and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction, and nitric oxide reduction. Furthermore, we assembled 47 high-quality metagenome-assembled genomes (MAGs) representing a highly diverse assemblage of bacteria. Of these, five MAGs showed high coverage across all samples, which included two Nitrosomonas, Nitrospira, Sphingomonas, and Rhizobiales-like MAGs. Systematic genome-level analyses of these MAGs in relation to nitrogen metabolism suggest that under ammonia-limited conditions, nitrate may be also reduced back to ammonia for assimilation. Alternatively, nitrate may be reduced to nitric oxide and may potentially play a role in regulating biofilm formation. Overall, this study provides insight into the microbial communities and their nitrogen metabolism and, together with the water chemistry data, improves our understanding of nitrogen biotransformation in chloraminated drinking water distribution systems.IMPORTANCE Chloramines are often used as a secondary disinfectant when free chlorine residuals are difficult to maintain. However, chloramination is often associated with the undesirable effect of nitrification, which results in operational problems for many drinking water utilities. The introduction of ammonia during chloramination provides a potential source of nitrogen either through the addition of excess ammonia or through chloramine decay. This promotes the growth of nitrifying microorganisms and provides a nitrogen source (i.e., nitrate) for the growth for other organisms. While the roles of canonical ammonia-oxidizing and nitrite-oxidizing bacteria in chloraminated drinking water systems have been extensively investigated, those studies have largely adopted a targeted gene-centered approach. Further, little is known about the potential long-term cooccurrence of complete-ammonia-oxidizing (i.e., comammox) bacteria and the potential metabolic synergies of nitrifying organisms with their heterotrophic counterparts that are capable of denitrification and nitrogen assimilation. This study leveraged data obtained for genome-resolved metagenomics over a time series to show that while nitrifying bacteria are dominant and likely to play a major role in nitrification, their cooccurrence with heterotrophic organisms suggests that nitric oxide production and nitrate reduction to ammonia may also occur in chloraminated drinking water systems.
Collapse
Affiliation(s)
- Sarah C Potgieter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Zihan Dai
- Infrastructure and Environment Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Cholet F, Ijaz UZ, Smith CJ. Reverse transcriptase enzyme and priming strategy affect quantification and diversity of environmental transcripts. Environ Microbiol 2020; 22:2383-2402. [PMID: 32285609 DOI: 10.1111/1462-2920.15017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/08/2020] [Indexed: 12/28/2022]
Abstract
Reverse-transcriptase-quantitative PCR (RT-Q-PCR) and RT-PCR amplicon sequencing, provide a convenient, target-specific, high-sensitivity approach for gene expression studies and are widely used in environmental microbiology. Yet, the effectiveness and reproducibility of the reverse transcription step has not been evaluated. Therefore, we tested a combination of four commercial reverse transcriptases with two priming techniques to faithfully transcribe 16S rRNA and amoA transcripts from marine sediments. Both enzyme and priming strategy greatly affected quantification of the exact same target with differences of up to 600-fold. Furthermore, the choice of RT system significantly changed the communities recovered. For 16S rRNA, both enzyme and priming had a significant effect with enzyme having a stronger impact than priming. Inversely, for amoA only the change in priming strategy resulted in significant differences between the same samples. Specifically, more OTUs and better coverage of amoA transcripts diversity were obtained with GS priming indicating this approach was better at recovering the diversity of amoA transcripts. Moreover, sequencing of RNA mock communities revealed that, even though transcript α diversities (i.e., OTU counts within a sample) can be biased by the RT, the comparison of β diversities (i.e., differences in OTU counts between samples) is reliable as those biases are reproducible between environments.
Collapse
Affiliation(s)
- Fabien Cholet
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, G12 8LT, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, G12 8LT, UK
| | - Cindy J Smith
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, G12 8LT, UK
| |
Collapse
|
47
|
Jiang R, Yang F, Gou W, He R, Zhang X. The potential rate and microbial communities of dissimilatory nitrate reduction to ammonium in Pearl River Estuary. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/467/1/012122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Schulze-Makuch D, Haque S, Beckles D, Schmitt-Kopplin P, Harir M, Schneider B, Stumpp C, Wagner D. A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136087. [PMID: 31874397 DOI: 10.1016/j.scitotenv.2019.136087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Terrestrial mud volcanoes are unique structures driven by tectonic pressure and fluids from the deep subsurface. These structures are mainly found in active tectonic zones, such as the area near the Los Bajos Fault in Trinidad. Here we report a chemical and microbiological characterization of three mud volcanoes, which included analyses of multiple liquid and solid samples from the mud volcanoes. Our study confirms previous suggestions that at least some of the mud volcano fluids are a mixture of deeper salt-rich water and surficial/precipitation water. No apparent water quality differences were found between sampling sites north and south of a major geological fault line. Microbiological analyses revealed diverse communities, both aerobic and anaerobic, including sulfate reducers, methanogens, carbon dioxide fixing and denitrifying bacteria. Several identified species were halophilic and likely derived from the deeper salt-rich subsurface water, while we also cultivated pathogenic species from the Vibrionaceae, Enterobacteriaceae, Shewanellaceae, and Clostridiaceae. These microorganisms were likely introduced into the mud volcano fluids both from surface water or shallow ground-water, and perhaps to a more minor degree by rain water. The identified pathogens are a major health concern that needs to be addressed.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Experimental Limnology, Leibniz Institute of Groundwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany.
| | - Shirin Haque
- University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Denise Beckles
- University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Mourad Harir
- Research Unit Analytical Biogeochemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany; Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences Vienna, 1190 Wien, Austria
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; University of Potsdam, Institute of Geosciences, 14476 Potsdam, Germany
| |
Collapse
|
49
|
Kang SM, Asaf S, Khan AL, Lubna, Khan A, Mun BG, Khan MA, Gul H, Lee IJ. Complete Genome Sequence of Pseudomonas psychrotolerans CS51, a Plant Growth-Promoting Bacterium, Under Heavy Metal Stress Conditions. Microorganisms 2020; 8:E382. [PMID: 32182882 PMCID: PMC7142416 DOI: 10.3390/microorganisms8030382] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/02/2022] Open
Abstract
In the current study, we aimed to elucidate the plant growth-promoting characteristics of Pseudomonas psychrotolerans CS51 under heavy metal stress conditions (Zn, Cu, and Cd) and determine the genetic makeup of the CS51 genome using the single-molecule real-time (SMRT) sequencing technology of Pacific Biosciences. The results revealed that inoculation with CS51 induced endogenous indole-3-acetic acid (IAA) and gibberellins (GAs), which significantly enhanced cucumber growth (root shoot length) and increased the heavy metal tolerance of cucumber plants. Moreover, genomic analysis revealed that the CS51 genome consisted of a circular chromosome of 5,364,174 base pairs with an average G+C content of 64.71%. There were around 4774 predicted protein-coding sequences (CDSs) in 4859 genes, 15 rRNA genes, and 67 tRNA genes. Around 3950 protein-coding genes with function prediction and 733 genes without function prediction were identified. Furthermore, functional analyses predicted that the CS51 genome could encode genes required for auxin biosynthesis, nitrate and nitrite ammonification, the phosphate-specific transport system, and the sulfate transport system, which are beneficial for plant growth promotion. The heavy metal resistance of CS51 was confirmed by the presence of genes responsible for cobalt-zinc-cadmium resistance, nickel transport, and copper homeostasis in the CS51 genome. The extrapolation of the curve showed that the core genome contained a minimum of 2122 genes (95% confidence interval = 2034.24 to 2080.215). Our findings indicated that the genome sequence of CS51 may be used as an eco-friendly bioresource to promote plant growth in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; (S.A.); (A.L.K.); (A.K.)
| | - Bong-Gyu Mun
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (L.); (H.G.)
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-G.M.); (M.A.K.)
| |
Collapse
|
50
|
Zhou Z, Chen J, Gu W, Gu JD. Biogeographic pattern of the nirS gene-targeted anammox bacterial community and composition in the northern South China Sea and a coastal Mai Po mangrove wetland. Appl Microbiol Biotechnol 2020; 104:3167-3181. [PMID: 32036435 DOI: 10.1007/s00253-020-10415-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
Functional genes, namely hzo/hao, nirS, hzs, and ccs gene, are efficient with high specificity for detecting anammox bacteria. Sc-nirS and An-nirS primer sets were proposed for targeting Scalindua/non-Scalindua anammox bacterial groups; previously, they have not been assessed for biogeographic study on marine-terrestrial transitional systems, specifically marine and terrestrial ecosystems. Here, we report phylogenetic distribution pattern of anammox bacteria in both northern South China Sea (nSCS) and Mai Po wetland (a coastal mangrove) using nirS gene-based primers. A well-delineated biogeographic distribution pattern from ocean to continental shelf was evident by combining both gene-based analyses as previously depicted using 16S rRNA as the biomarker. Furthermore, factors affecting the abundance and composition of An-nirS genes in Mai Po wetland were identified as substrate (NO3-/NO2- concentration) and anoxic/oxic condition in association to depth. An-nirS gene abundance was from 2.6 × 103 to 1.2-1.4 × 104 copies/g dry sediment in nSCS; and it was around 5 × 103 and 1-2 × 104 copies/g dry sediment in surface and subsurface sediments of Mai Po wetland, respectively. In addition, nirS gene abundance and distribution pattern of denitrifiers and anammox bacteria in the wetland indicates a competition relationship between them. Mangrove vegetation affected the community composition of An-nirS gene considerably, and a more homogeneous distribution pattern was observed in the mangrove forest than intertidal mudflats. Sc/An-nirS gene-based biogeographic insights on anammox bacteria have shed lights on the compositional and potential functional dynamics and emphasized the importance of molecular tools on refining the current microbial ecological patterns.
Collapse
Affiliation(s)
- Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Jing Chen
- School of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan Province, People's Republic of China
| | - Wenjie Gu
- Guangdong Academy of Agricultural Sciences, 29 Jinying Road, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|