1
|
Liu Y, Ong SL, Gedye K, Truglio M, Prabakar S. Behind the scenes: metagenomic analysis of bacterial communities in sustainable depilation of sheepskin. J Appl Microbiol 2024; 135:lxae244. [PMID: 39293811 DOI: 10.1093/jambio/lxae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
AIM The leather industry is embracing eco-friendly technologies for both regulatory compliance and sustainable growth. While enzymatic depilation provides a greener alternative to traditional beamhouse methods, its complexity often leads to higher costs. To address this, we examined the performance of sheepskins' native bacterial flora in acetic acid conditions with low-environmental impact. METHODS AND RESULTS Utilizing metagenomic techniques, we analyzed the bacterial community dynamics during the depilation process. This investigation revealed a notable increase in microbial diversity and richness in acetic acid treatments compared to water treatments. At the class level, a post-processing decrease in Gammaproteobacteria dominance was observed, while Actinomycetia numbers surged in the acetic acid group. In contrast, the water group showed an increase in Bacteroidia. Order-level analysis indicated reductions in Pseudomonadales and increases in Actinomycetales with acetic acid treatment, whereas Flavobacteriales was more prevalent in water-treated liquors. At the family level, Moraxellaceae decreased and Micrococcaceae increased in the acetic acid group, in contrast to the marked rise of Weeksellaceae in the water group. Temporal analyses further highlighted the evolving bacterial landscapes under different treatments. Moreover, acetic acid treatment fostered a stable microbial community, beneficial for sustainable leather processing. Functional pathways were predicted using PICRUSt2. It showed that significantly enriched degradation pathways in the water group were less abundant in the acetic acid group, potentially preventing substrate matrix damage during depilation. CONCLUSION The study underscores the transformative potential of acetic acid for the leather industry, offering a pathway to reduce pollution while maintaining economic viability. By enhancing our understanding of microbial interactions during depilation, this study opens avenues for refining these eco-friendly techniques. Our findings advocate for a shift towards greener depilation methods and contribute to the broader dialogue on sustainable manufacturing practices, emphasizing the importance of leveraging indigenous microbial communities for environmental and economic gains.
Collapse
Affiliation(s)
- Yang Liu
- New Zealand Leather and Shoe Research Association, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Siew Ling Ong
- New Zealand Leather and Shoe Research Association, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| | - Kristene Gedye
- Massey Genome Service, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Mauro Truglio
- Microbiology and Virology Unit, IRCCS San Gallicano Dermatological Institute, Istituti Fisioterapici Ospitalieri (IFO) Via Fermo Ognibene, 23, 00144 Roma RM, Italy
| | - Sujay Prabakar
- New Zealand Leather and Shoe Research Association, PO Box 8094, Hokowhitu, Palmerston North 4446, New Zealand
| |
Collapse
|
2
|
Davis SN, Klumker SM, Mitchell AA, Coppage MA, Labonté JM, Quigg A. Life in the PFAS lane: The impact of perfluoroalkyl substances on photosynthesis, cellular exudates, nutrient cycling, and composition of a marine microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171977. [PMID: 38547969 DOI: 10.1016/j.scitotenv.2024.171977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou's evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Shaley M Klumker
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Alexis A Mitchell
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Marshall A Coppage
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843, USA
| |
Collapse
|
3
|
Sonthiphand P, Rueangmongkolrat N, Uthaipaisanwong P, Kusonmano K, Mhuantong W, Termsaithong T, Limthamprasert C, Chotpantarat S, Luepromchai E. Soil Microbiomes and their Arsenic Functional Genes in Chronically High-Arsenic Contaminated Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:49. [PMID: 38466428 DOI: 10.1007/s00128-024-03866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Microbial arsenic transformations play essential roles in controlling pollution and ameliorating risk. This study combined high-throughput sequencing and PCR-based approaches targeting both the 16 S rRNA and arsenic functional genes to investigate the temporal and spatial dynamics of the soil microbiomes impacted by high arsenic contamination (9.13 to 911.88 mg/kg) and to investigate the diversity and abundance of arsenic functional genes in soils influenced by an arsenic gradient. The results showed that the soil microbiomes were relatively consistent and mainly composed of Actinobacteria (uncultured Gaiellales and an unknown_67 - 14 bacterium), Proteobacteria, Firmicutes (particularly, Bacillus), Chloroflexi, and Acidobacteria (unknown_Subgroup_6). Although a range of arsenic functional genes (e.g., arsM, arsC, arrA, and aioA) were identified by shotgun metagenomics, only the arsM gene was detected by the PCR-based method. The relative abundance of the arsM gene accounted for 0.20%-1.57% of the total microbial abundance. Combining all analyses, arsenic methylation mediated by the arsM gene was proposed to be a key process involved in the arsenic biogeochemical cycle and mitigation of arsenic toxicity. This study advances our knowledge about arsenic mechanisms over the long-term in highly contaminated soils.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| | - Nattanan Rueangmongkolrat
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, Thailand
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Teerasit Termsaithong
- Learning Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Theoretical and Computational Physics (TCP) group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chanida Limthamprasert
- Department of Biology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Srilert Chotpantarat
- Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- Research Unit of Site Remediation on Metals Management from Industry and Mining (Site Rem), Chulalongkorn University, Bangkok, Thailand
| | - Ekawan Luepromchai
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Bornbusch SL, Bamford A, Thacher P, Crosier A, Marinari P, Bortner R, Garelle D, Livieri T, Santymire R, Comizzoli P, Maslanka M, Maldonado JE, Koepfli KP, Muletz-Wolz CR, DeCandia AL. Markers of fertility in reproductive microbiomes of male and female endangered black-footed ferrets (Mustela nigripes). Commun Biol 2024; 7:224. [PMID: 38396133 PMCID: PMC10891159 DOI: 10.1038/s42003-024-05908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reproductive microbiomes contribute to reproductive health and success in humans. Yet data on reproductive microbiomes, and links to fertility, are absent for most animal species. Characterizing these links is pertinent to endangered species, such as black-footed ferrets (Mustela nigripes), whose populations show reproductive dysfunction and rely on ex-situ conservation husbandry. To understand microbial contributions to animal reproductive success, we used 16S rRNA amplicon sequencing to characterize male (prepuce) and female (vaginal) microbiomes of 59 black-footed ferrets at two ex-situ facilities and in the wild. We analyzed variation in microbiome structure according to markers of fertility such as numbers of viable and non-viable offspring (females) and sperm concentration (males). Ferret vaginal microbiomes showed lower inter-individual variation compared to prepuce microbiomes. In both sexes, wild ferrets harbored potential soil bacteria, perhaps reflecting their fossorial behavior and exposure to natural soil microbiomes. Vaginal microbiomes of ex-situ females that produced non-viable litters had greater phylogenetic diversity and distinct composition compared to other females. In males, sperm concentration correlated with varying abundances of bacterial taxa (e.g., Lactobacillus), mirroring results in humans and highlighting intriguing dynamics. Characterizing reproductive microbiomes across host species is foundational for understanding microbial biomarkers of reproductive success and for augmenting conservation husbandry.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA.
- Department of Nutrition Science, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA.
| | | | - Piper Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
| | - Adrienne Crosier
- Center for Animal Care Services, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Paul Marinari
- Center for Animal Care Services, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Robyn Bortner
- National Black-Footed Ferret Conservation Center, US Fish and Wildlife Service, Carr, CO, USA
| | - Della Garelle
- National Black-Footed Ferret Conservation Center, US Fish and Wildlife Service, Carr, CO, USA
| | | | | | - Pierre Comizzoli
- Center for Species Survival, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Center for Species Survival, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Alexandra L DeCandia
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Kang W, Xiao Y, Li W, Cheng A, Cheng C, Jia Z, Yu L. Paddy cultivation in degraded karst wetland soil can significantly improve the physiological and ecological functions of carbon-fixing resident microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168187. [PMID: 37972785 DOI: 10.1016/j.scitotenv.2023.168187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Microorganisms play an important role in carbon fixation in karst wetland soils. However, the carbon fixation capacity of karst wetland soils and active microorganisms involved in the carbon fixation process are poorly understood. In this study, carbon fixation capacity and active microorganisms involved in the fixation of inorganic carbon into organic carbon were studied in native, naturally degraded, and reclaimed karst wetland soils by the combination of stable isotope probing (SIP) and high-throughput sequencing. Under light conditions, the soil carbon fixation capacity ranked: the reclaimed wetland soil (1.58 mg C kg-1 day-1) > native wetland soil (1.43 mg C kg-1 day-1) > degraded wetland soil (0.62 mg C kg-1 day-1). In the dark, the soils ranked: the native wetland soil (0.24 mg C kg-1 day-1) > reclaimed wetland soil (0.18 mg C kg-1 day-1) > degraded wetland soil (0.06 mg C kg-1 day-1). Active microorganisms fixing inorganic carbon in the karst wetland soils were mainly Sulfurovum, Thermovirga, Dethiosulfatibacter, Allochromatium, Methylorubrum, and Bradyrhizobium. Thus, paddy cultivation can restore the carbon fixation capacity of microorganisms in the degraded karst wetland soil. This study provides an experimental basis for improving soil carbon fixation capacity and repairing degraded soil in karst wetlands.
Collapse
Affiliation(s)
- Weihua Kang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yutian Xiao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China.
| | - Aoqi Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Congyu Cheng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
| |
Collapse
|
6
|
Ashok GC, Prakash Pradhan S, Kumar Karki K, Khadka A, Bhandari A, Prasad Pandey B. Antioxidant and Enzyme Inhibitory Potential of Streptomyces sp. G-18 Grown in Various Media. Int J Microbiol 2023; 2023:6439466. [PMID: 37583475 PMCID: PMC10425256 DOI: 10.1155/2023/6439466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023] Open
Abstract
Streptomyces are bacteria well known for producing bioactive secondary metabolites which are commonly found in diverse habitats. The biosynthesis of metabolites from Streptomyces is influenced by various factors such as the growth medium, environmental conditions, and gene regulation. This study aimed to investigate the influence of different growth media on biomass production and the antioxidant and enzyme inhibitory potential of a crude extract obtained from Streptomyces sp. G-18 isolated from high altitudinal soil of Nepal. The highest dry weight growth was observed in R2YE medium (184 mg/L), followed by R5 (144 mg/L), YEME (38 mg/L), and R5M media (30 mg/L). The crude extract showed notable antioxidant activities against free radicals. The highest alpha-amylase inhibition was observed in the R2YE medium, and worthy lipase and tyrosinase inhibition was observed in the YEME medium. However, only the R2YE medium exhibited inhibitory potential against elastase and acetylcholinesterase, while crude extracts from R5, YEME, and R5 modified did not show any such activity. Overall, our findings suggest that the production of bioactive secondary metabolites in Streptomyces sp. G-18 was significantly influenced by the growth medium. This strain may be a promising source of enzyme inhibitors with potential applications in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- G. C. Ashok
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | | | - Krishna Kumar Karki
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Aakriti Khadka
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Aishwarya Bhandari
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| | - Bishnu Prasad Pandey
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, Nepal
| |
Collapse
|
7
|
Sorn S, Hara-Yamamura H, Vet S, Xiao M, Hoek EMV, Honda R. Biological treatment of perfluorooctanesulfonic acid (PFOS) using microbial capsules of a polysulfone membrane. CHEMOSPHERE 2023; 329:138585. [PMID: 37028728 DOI: 10.1016/j.chemosphere.2023.138585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent organic substance that has been extensively applied in many industries and causes severe, widespread adverse health impacts on humans and the environment. The development of an effective PFOS treatment method with affordable operational costs has been expected. This study proposes the biological treatment of PFOS using microbial capsules enclosing a PFOS-reducing microbial consortium. The objective of this study was to evaluate the performance of the polymeric membrane encapsulation technique for the biological removal of PFOS. First, a PFOS-reducing bacterial consortium, composed of Paracoccus (72%), Hyphomicrobium (24%), and Micromonosporaceae (4%), was enriched from activated sludge by acclimation and subsequent subculturing with PFOS containing media. The bacterial consortium was first immobilized in alginate gel beads, then enclosed in membrane capsules by coating the gel beads with a 5% or 10% polysulfone (PSf) membrane. The introduction of microbial membrane capsules could increase PFOS reduction to between 52% and 74% compared with free cell suspension, which reduced by 14% over three weeks. Microbial capsules coated with 10% PSf membrane demonstrated the highest PFOS reduction at 80% and physical stability for six weeks. Candidate metabolites including perfluorobutanoic acid (PFBA) and 3,3,3- trifluoropropionic acid were detected by FTMS, suggesting the possible biological degradation of PFOS. In microbial membrane capsules, the initial adsorption of PFOS on the shell membrane layer enhanced subsequent biosorption and biological degradation by PFOS-reducing bacteria immobilized in the core alginate gel beads. The 10%-PSf microbial capsules exhibited a thicker membrane layer with the fabric structure of a polymer network, which maintained longer physical stability than 5%-PSf microbial capsules. This outcome suggests the potential application of microbial membrane capsules to PFOS-contaminated water treatment.
Collapse
Affiliation(s)
- Sovannlaksmy Sorn
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Sreyla Vet
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Minhao Xiao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Eric M V Hoek
- Department of Civil and Environmental Engineering, University of California, Los Angeles, USA
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Department of Civil and Environmental Engineering, University of California, Los Angeles, USA.
| |
Collapse
|
8
|
Grandbois RM, Santschi PH, Xu C, Mitchell JM, Kaplan DI, Yeager CM. Iodide uptake by forest soils is principally related to the activity of extracellular oxidases. Front Chem 2023; 11:1105641. [PMID: 36936531 PMCID: PMC10019592 DOI: 10.3389/fchem.2023.1105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
129I is a nuclear fission decay product of concern because of its long half-life (16 Ma) and propensity to bioaccumulate. Microorganisms impact iodine mobility in soil systems by promoting iodination (covalent binding) of soil organic matter through processes that are not fully understood. Here, we examined iodide uptake by soils collected at two depths (0-10 and 10-20 cm) from 5 deciduous and coniferous forests in Japan and the United States. Autoclaved soils, and soils amended with an enzyme inhibitor (sodium azide) or an antibacterial agent (bronopol), bound significantly less 125I tracer (93%, 81%, 61% decrease, respectively) than the untreated control soils, confirming a microbial role in soil iodide uptake. Correlation analyses identified the strongest significant correlation between 125I uptake and three explanatory variables, actinobacteria soil biomass (p = 6.04E-04, 1.35E-02 for Kendall-Tau and regression analysis, respectively), soil nitrogen content (p = 4.86E-04, 4.24E-03), and soil oxidase enzyme activity at pH 7.0 using the substrate L-DOPA (p = 2.83E-03, 4.33E-04) and at pH 5.5 using the ABTS (p = 5.09E-03, 3.14E-03). Together, the results suggest that extracellular oxidases, primarily of bacterial origin, are the primary catalyst for soil iodination in aerobic, surface soils of deciduous and coniferous forests, and that soil N content may be indicative of the availability of binding sites for reactive iodine species.
Collapse
Affiliation(s)
- Russell M. Grandbois
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University—Galveston, Galveston, TX, United States
| | - Peter H. Santschi
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University—Galveston, Galveston, TX, United States
| | - Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University—Galveston, Galveston, TX, United States
| | - Joshua M. Mitchell
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Daniel I. Kaplan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Chris M. Yeager
- Chemical Diagnostics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
9
|
Jiang C, Zeng H. Unique Habitat of Karst Tiankengs Changes the Taxonomy and Potential Metabolism of Soil Microbial Communities. Microbiol Spectr 2023; 11:e0231622. [PMID: 36648219 PMCID: PMC9927240 DOI: 10.1128/spectrum.02316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Microbial communities in karst ecosystems have been extensively studied. However, in a class of deep-lying habitats with unique climates (karst tiankeng), the structure and ecological functions of microorganisms receive little attention, which is essential for understanding the biogeochemistry of karst tiankeng. Herein, microorganisms from inside (ITK) and outside (OTK) karst tiankengs were analyzed by high-throughput sequencing and multivariate statistical analysis. The results showed that the structure and function of soil bacterial communities inside and outside karst tiankengs were significantly different. The ITK microbial communities presented significantly higher Shannon diversity due to the abundant nutrients in karst tiankeng soil. Random molecular ecological network analysis revealed that the ITK network was simpler and more vulnerable and may be susceptible to environmental changes. More positive links within the network indicate that microorganisms adapt to the karst tiankeng through synergies. The keystones in karst tiankeng were mainly involved in the decomposition of soil organic matter and carbon/nitrogen cycles. Although soil total phosphorus and available potassium regulate microbial community structure variation, dispersal limitation is the predominant ecological process within the microbial community in karst tiankeng. In addition, the functional profiles of the microbial communities reveal that some human diseases (such as infectious diseases) exist in OTK. Collectively, these findings have enhanced our understanding of microbial interactions, ecological functions, and community composition processes in karst tiankeng ecosystems. IMPORTANCE Constrained by the trapped terrain, a unique ecosystem has formed in karst tiankeng. Soil microorganisms are essential for the formation and maintenance of ecosystems, but soil microbial ecology research in karst tiankeng is still lacking. In this study, representative habitats inside and outside karst tiankeng were selected to study the taxonomy and potential metabolism of soil microbial communities. The results show that the unique habitat of karst tiankeng reshapes the composition, structure, and function of soil microbial communities. Our results contribute to enhancing our understanding of sustainable recovery strategies in fragile ecosystems and understanding the biodiversity value of karst tiankeng under climate change.
Collapse
Affiliation(s)
- Cong Jiang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Hui Zeng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
10
|
Ma W, Du W, Gu K, Xu M, Yin Y, Sun Y, Wu J, Zhu J, Guo H. Elevated CO 2 exacerbates effects of TiO 2 nanoparticles on rice (Oryza sativa L.) leaf transcriptome and soil bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159689. [PMID: 36302435 DOI: 10.1016/j.scitotenv.2022.159689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Elevated CO2 affects the plant rhizosphere and can therefore affect the fate and toxicity of soil contaminants. However, little is known about how the effects of nanoparticles on plants and soil bacteria will change under future CO2 levels. A free-air CO2 enrichment system with two CO2 levels (ambient, 390 μmol mol-1; elevated, 590 μmol mol-1) was used to investigate the responses of rice (Oryza sativa L.) and soil bacteria to titanium dioxide nanoparticles (nano-TiO2, 0 and 200 mg kg-1). Results showed that nano-TiO2 alone did not significantly affect rice growth but affected soil bacteria involved in the carbon and sulfur cycles. Elevated CO2 alone increased rice plant biomass and up-regulated genes related to ribosomes, but its combination with nano-TiO2 down-regulated genes related to photosynthesis and photosynthetic antennae. Elevated CO2 also exacerbated the disturbance by nano-TiO2 to soil bacteria involved in carbon and nitrogen cycles, and consequently inhibited the rice growth. These findings provide a reference for the comprehensive evaluation for the risk of soil pollution.
Collapse
Affiliation(s)
- Wenqian Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Kaihua Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Rodríguez-Fonseca MF, Ruiz-Balaguera S, Valero MF, Sánchez-Suárez J, Coy-Barrera E, Díaz LE. Freshwater-Derived Streptomyces: Prospective Polyvinyl Chloride (PVC) Biodegraders. ScientificWorldJournal 2022; 2022:6420003. [PMID: 36419778 PMCID: PMC9678452 DOI: 10.1155/2022/6420003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2024] Open
Abstract
Polyvinyl chloride (PVC) is widely used in industrial applications, such as construction and clothing, owing to its chemical, physical, and environmental resistance. Owing to the previous characteristics, PVC is the third most consumed plastic worldwide and, consequently, an increasing waste accumulation-related problem. The current study evaluated an in-house collection of 61 Actinobacteria strains for PVC resin biodegradation. Weight loss percentage was measured after the completion of incubation. Thermo-gravimetric analysis was subsequently performed using the PVC incubated with the three strains exhibiting the highest weight loss. GC-MS and ionic exchange chromatography analyses were also performed using the culture media supernatant of these three strains. After incubation, 14 strains had a PVC weight loss percentage higher than 50% in ISP-2 broth. These 14 strains were identified as Streptomyces strains. Strains 208, 250, and 290 showed the highest weight loss percentages (57.6-61.5% range). The thermal stability of PVC after bacterial exposure using these three strains was evaluated, and a modification of the representative degradation stages of nonincubated PVC was observed. Additionally, GC-MS analysis revealed the presence of aromatic compounds in the inoculated culture media, and ionic exchange chromatography showed chloride release in the supernatant. A mathematical relation between culture conditions and PVC weight loss was also found for strains 208 and 290, showing an accuracy up to 97.99%. These results highlight the potential of the freshwater-derived Streptomyces strains as candidates for the PVC biodegradation strategy and constitute the first approach to a waste management control scale-up process.
Collapse
Affiliation(s)
- Maria Fernanda Rodríguez-Fonseca
- Process Design and Management, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Sonia Ruiz-Balaguera
- Conservation, Bioprospecting, and Sustainable Development Group, Environmental Engineering Program, Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110911, Colombia
| | - Manuel Fernando Valero
- Energy, Materials and Environment Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Jeysson Sánchez-Suárez
- Environmental Engineering Program, School of Exact Sciences and Engineering, Universidad Sergio Arboleda, Bogotá 111071, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luis Eduardo Díaz
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
12
|
Nazari MT, Machado BS, Marchezi G, Crestani L, Ferrari V, Colla LM, Piccin JS. Use of soil actinomycetes for pharmaceutical, food, agricultural, and environmental purposes. 3 Biotech 2022; 12:232. [PMID: 35996673 PMCID: PMC9391553 DOI: 10.1007/s13205-022-03307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
In this article, we reviewed the international scientific production of the last years on actinomycetes isolated from soil aiming to report recent advances in using these microorganisms for different applications. The most promising genera, isolation conditions and procedures, pH, temperature, and NaCl tolerance of these bacteria were reported. Based on the content analysis of the articles, most studies have focused on the isolation and taxonomic description of new species of actinomycetes. Regarding the applications, the antimicrobial potential (antibacterial and antifungal) prevailed among the articles, followed by the production of enzymes (cellulases and chitinases, etc.), agricultural uses (plant growth promotion and phytopathogen control), bioremediation (organic and inorganic contaminants), among others. Furthermore, a wide range of growth capacity was verified, including temperatures from 4 to 60 °C (optimum: 28 °C), pH from 3 to 13 (optimum: 7), and NaCl tolerance up to 32% (optimum: 0-1%), which evidence a great tolerance for actinomycetes cultivation. Streptomyces was the genus with the highest incidence among the soil actinomycetes and the most exploited for different uses. Besides, the interest in isolating actinomycetes from soils in extreme environments (Antarctica and deserts, for example) is growing to explore the adaptive capacities of new strains and the secondary metabolites produced by these microorganisms for different industrial interests, especially for pharmaceutical, food, agricultural, and environmental purposes.
Collapse
Affiliation(s)
- Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Bruna Strieder Machado
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Giovana Marchezi
- Faculty of Engineering and Architecture, University of Passo Fundo, BR 285, Passo Fundo, RS Brazil
| | - Larissa Crestani
- Graduate Program Chemical Engineering (PPGEQ), Federal University of Santa Maria (UFSM), Santa Maria, RS Brazil
| | - Valdecir Ferrari
- Graduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| | - Jeferson Steffanello Piccin
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, Campus I, L1 Building. BR 285, Bairro São José, Passo Fundo, RS CEP: 99052-900 - Zip Code 611 Brazil
| |
Collapse
|
13
|
Shamim A, Sanka Loganathachetti D, Chandran S, Masmoudi K, Mundra S. Salinity of irrigation water selects distinct bacterial communities associated with date palm (Phoenix dactylifera L.) root. Sci Rep 2022; 12:12733. [PMID: 35882908 PMCID: PMC9325759 DOI: 10.1038/s41598-022-16869-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/18/2022] [Indexed: 01/18/2023] Open
Abstract
Saline water irrigation has been used in date palm (Phoenix dactylifera L.) agriculture as an alternative to non-saline water due to water scarcity in hyper-arid environments. However, the knowledge pertaining to saline water irrigation impact on the root-associated bacterial communities of arid agroecosystems is scarce. In this study, we investigated the effect of irrigation sources (non-saline freshwater vs saline groundwater) on date palm root-associated bacterial communities using 16S rDNA metabarcoding. The bacterial richness, Shannon diversity and evenness didn't differ significantly between the irrigation sources. Soil electrical conductivity (EC) and irrigation water pH were negatively related to Shannon diversity and evenness respectively, while soil organic matter displayed a positive correlation with Shannon diversity. 40.5% of total Operational Taxonomic Units were unique to non-saline freshwater irrigation, while 26% were unique to saline groundwater irrigation. The multivariate analyses displayed strong structuring of bacterial communities according to irrigation sources, and both soil EC and irrigation water pH were the major factors affecting bacterial communities. The genera Bacillus, Micromonospora and Mycobacterium were dominated while saline water irrigation whereas contrasting pattern was observed for Rhizobium, Streptomyces and Acidibacter. Taken together, we suggest that date-palm roots select specific bacterial taxa under saline groundwater irrigation, which possibly help in alleviating salinity stress and promote growth of the host plant.
Collapse
Affiliation(s)
- Azra Shamim
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | | | - Subha Chandran
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, UAE.
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
14
|
Senn S, Bhattacharyya S, Presley G, Taylor AE, Nash B, Enke RA, Barnard-Kubow KB, Ford J, Jasinski B, Badalova Y. The Functional Biogeography of eDNA Metacommunities in the Post-Fire Landscape of the Angeles National Forest. Microorganisms 2022; 10:microorganisms10061218. [PMID: 35744735 PMCID: PMC9229275 DOI: 10.3390/microorganisms10061218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Wildfires have continued to increase in frequency and severity in Southern California due in part to climate change. To gain a further understanding of microbial soil communities’ response to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial microbiomes were studied from different wildfire areas in the Gold Creek Preserve within the Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI amplicon sequencing. Sequencing datasets from December 2020 and June 2021 samplings were analyzed using QIIME2, ranacapa, stats, vcd, EZBioCloud, and mixomics. Significant differences were found among bacterial and fungal taxa associated with different fire areas in the Gold Creek Preserve. There was evidence of seasonal shifts in the alpha diversity of the bacterial communities. In the sparse partial least squares analysis, there were strong associations (r > 0.8) between longitude, elevation, and a defined cluster of Amplicon Sequence Variants (ASVs). The Chi-square test revealed differences in fungi−bacteria (F:B) proportions between different trails (p = 2 × 10−16). sPLS results focused on a cluster of Green Trail samples with high elevation and longitude. Analysis revealed the cluster included the post-fire pioneer fungi Pyronema and Tremella. Chlorellales algae and possibly pathogenic Fusarium sequences were elevated. Bacterivorous Corallococcus, which secretes antimicrobials, and bacterivorous flagellate Spumella were associated with the cluster. There was functional redundancy in clusters that were differently composed but shared similar ecological functions. These results implied a set of traits for post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed organic matter and aromatic/oily compounds, potential pathogenicity and parasitism, antimicrobials, and N-metabolism.
Collapse
Affiliation(s)
- Savanah Senn
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Correspondence:
| | - Sharmodeep Bhattacharyya
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald Presley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Anne E. Taylor
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Ray A. Enke
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Karen B. Barnard-Kubow
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Jillian Ford
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Brandon Jasinski
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Yekaterina Badalova
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| |
Collapse
|
15
|
Hariharan J, Buckley DH. Elevational Gradients Impose Dispersal Limitation on Streptomyces. Front Microbiol 2022; 13:856263. [PMID: 35592003 PMCID: PMC9113539 DOI: 10.3389/fmicb.2022.856263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
Dispersal governs microbial biogeography, but the rates and mechanisms of dispersal remain poorly characterized for most microbial taxa. Dispersal limitation is driven by limits on dissemination and establishment, respectively. Elevation gradients create striking patterns of biogeography because they produce steep environmental gradients at small spatial scales, and these gradients offer a powerful tool to examine mechanisms of dispersal limitation. We focus on Streptomyces, a bacterial genus common to soil, by using a taxon-specific phylogenetic marker, the RNA polymerase-encoding rpoB gene. By targeting Streptomyces, we assess dispersal limitation at finer phylogenetic resolution than is possible using whole community analyses. We characterized Streptomyces diversity at local spatial scales (100 to 3,000 m) in two temperate forest sites located in the Adirondacks region of New York State: Woods Lake (<100 m elevation change), and Whiteface Mountain (>1,000 m elevation change). Beta diversity varied considerably at both locations, indicative of dispersal limitation acting at local spatial scales, but beta diversity was significantly higher at Whiteface Mountain. Beta diversity varied across elevation at Whiteface Mountain, being lowest at the mountain’s base. We show that Streptomyces taxa exhibit elevational preferences, and these preferences are phylogenetically conserved. These results indicate that habitat preferences influence Streptomyces biogeography and suggest that barriers to establishment structure Streptomyces communities at higher elevations. These data illustrate that Streptomyces biogeography is governed by dispersal limitation resulting from a complex mixture of stochastic and deterministic processes.
Collapse
Affiliation(s)
- Janani Hariharan
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
16
|
You F, Lu P, Huang L. Characteristics of prokaryotic and fungal communities emerged in eco-engineered waste rock - Eucalyptus open woodlands at Ranger uranium mine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151571. [PMID: 34767894 DOI: 10.1016/j.scitotenv.2021.151571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Diverse prokaryotic and fungal communities in soil and litters are the structural basis for driving tree litter decomposition and inherent nutrient cycling in infertile Eucalyptus open woodlands. The present investigation characterized the composition and co-occurrence network of prokaryotic and fungal communities in litter and surface soil layers in 9-year old revegetated trial landforms at Ranger uranium mine, Northern Territory, Australia. The revegetated landforms consisted of soil-subsystems engineered from waste rocks and plant-subsystems of young, novel and native Eucalyptus open woodlands. The analysis of litters and surface soil layer revealed highly diverse microbial communities in the young Eucalyptus open woodland systems, which were composed of an average 1155 prokaryotic and 236 fungal OTUs. In the microbial communities, abundant bacterial communities were affiliated to Actinobacteria (30.2%), Proteobacteria (25.3%) and Chloroflexi (16.9%); and fungal communities were highly dominated by Ascomycota (63.4%) and Basidiomycota (23.6%). These OTUs were highly connected, forming microbial modules with >50% of predicted genes associated with metabolism of organics in the open woodland. Soil microbial communities present in the wet season contained a relatively high abundance of ammonium oxidizing archaea, plant associated bacteria, and fungal groups adapted to higher N availability, particularly those from the laterite + waste rock site. The elevated microbial activities in the litters and surface soil of lateritic soil + waste rock landform were attributed to the improved water and nutrient availability by increased fine fraction of laterites. Our study provides evidence that the features of prokaryotic and fungal communities in this eco-engineered and young waste rock - open Eucalyptus woodland systems are consistent with characteristics of microbial communities of native Eucalyptus woodlands to drive the decomposition of low N tree litters.
Collapse
Affiliation(s)
- Fang You
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ping Lu
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia; Energy Resources of Australia, Darwin, NT 0800, Australia
| | - Longbin Huang
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
17
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
18
|
Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100108. [PMID: 35243445 PMCID: PMC8861581 DOI: 10.1016/j.crmicr.2022.100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
An easy set-up of the co-cultures from 2 different microorganisms (filamentous fungi and bacteria) from different microbial domains resulting into a greater and more diverse metabolic and lignocellulolytic content. An over expression of several key enzymatic lignocellulolytic activities is observed during the co-coculture due to elicitation. An elicitation of some specific biosynthetic cluster genes is observed due to the activation of those the complexity of the carbon compounds present in the lignocellulose. An elicitation of some specific biosynthetic cluster genes is observed only during the co-culture experiment. A specific microbial crosstalk and interaction exists at the species level between the 3 Streptomyces and the fungi leading to a specific of lignocellulolytic enzyme and secondary metabolite production.
Lignocellulose, the most abundant biomass on Earth, is a complex recalcitrant material mainly composed of three fractions: cellulose, hemicelluloses and lignins. In nature, lignocellulose is efficiently degraded for carbon recycling. Lignocellulose degradation involves numerous microorganisms and their secreted enzymes that act in synergy. Even they are efficient, the natural processes for lignocellulose degradation are slow (weeks to months). In this study, the objective was to study the synergism of some microorganisms to achieve efficient and rapid lignocellulose degradation. Wheat bran, an abundant co-product from milling industry, was selected as lignocellulosic biomass. Mono-cultures and co-cultures involving one A.niger strain fungi never sequenced before (DSM 1957) and either one of three different Streptomyces strains were tested in order to investigate the potentiality for efficient lignocellulose degradability. Comparative genomics of the strain Aspergillus niger DSM 1957 revealed that it harboured the maximum of AA, CBM, CE and GH among its closest relative strains. The different co-cultures set-up enriched the metabolic diversity and the lignocellulolytic CAZyme content. Depending on the co-cultures, an over-expression of some enzymatic activities (xylanase, glucosidase, arabinosidase) was observed in the co-cultures compared to the mono-cultures suggesting a specific microbial cross-talk depending on the microbial partner. Moreover, metabolomics for each mono and co-culture was performed and revealed an elicitation of the production of secondary metabolites and the activation of silent biosynthetic cluster genes depending on the microbial co-culture. This opens opportunities for the bioproduction of molecules of interest from wheat bran.
Collapse
|
19
|
Metagenomic Analyses of Plant Growth-Promoting and Carbon-Cycling Genes in Maize Rhizosphere Soils with Distinct Land-Use and Management Histories. Genes (Basel) 2021; 12:genes12091431. [PMID: 34573413 PMCID: PMC8466292 DOI: 10.3390/genes12091431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Many studies have shown that the maize rhizosphere comprises several plant growth-promoting microbes, but there is little or no study on the effects of land-use and management histories on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial genes in the rhizosphere of plants, especially those associated with plant growth promotion and carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient mobilization, including nifA, fixJ, norB, pstA, kefA and B, and ktrB were significantly more abundant (α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance of 12 genes, including all those involved in the degradation of methane were more significant (α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils. α-diversity indices were different across the samples and significant differences were observed in the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM, p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO3) was the most influential physicochemical parameter (p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across the samples. The results indicate that land-use and management histories impact the composition and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The study widens our understanding of the effects of anthropogenic activities on plant health and major biogeochemical processes in soils.
Collapse
|
20
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6001. [PMID: 34204975 PMCID: PMC8199887 DOI: 10.3390/ijerph18116001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|
21
|
Hu D, Baskin JM, Baskin CC, Liu R, Yang X, Huang Z. A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:538-546. [PMID: 33596107 DOI: 10.1094/mpmi-01-21-0014-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Seed mucilage plays important roles in the adaptation of desert plants to the stressful environment. Artemisia sphaerocephala is an important pioneer plant in the Central Asian cold desert, and it produces a large quantity of seed mucilage. Seed mucilage of A. sphaerocephala can be degraded by soil microbes, but it is unknown which microorganisms can degrade mucilage or how the mucilage-degrading microorganisms affect rhizosphere microbial communities or root nutrients. Here, mucilage-degrading microorganisms were isolated from the rhizosphere of A. sphaerocephala, were screened by incubation with mucilage stained with Congo red, and were identified by sequencing and phylogenetic analyses. Fungal-bacterial networks based on high-throughput sequencing of rhizosphere microbes were constructed to explore the seasonal dynamic of interactions between a mucilage-degrading microorganism and its closely related microorganisms. The structural equation model was used to analyze effects of the mucilage-degrading microorganism, rhizosphere fungal-bacterial communities, and soil physicochemical properties on root C and N. The fungus Phanerochaete chrysosporium was identified as a mucilage-degrading microorganism. Relative abundance of the mucilage-degrading fungus (MDF) was highest in May. Subnetworks showed that the abundance of fungi and bacteria closely related to the MDF also were highest in May. Interactions between the MDF and related fungi and bacteria were positive, which might enhance mucilage degradation. In addition, the MDF might regulate root C and N by affecting rhizosphere microbial community structure. Our results suggest that MDF from the rhizosphere strengthens the plant-soil-microbe continuum, thereby potentially regulating microbial interactions and root nutrients of A. sphaerocephala.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, U.S.A
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Rong Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuejun Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhenying Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
22
|
Long term crop rotation effect on subsequent soybean yield explained by soil and root-associated microbiomes and soil health indicators. Sci Rep 2021; 11:9200. [PMID: 33911170 PMCID: PMC8080707 DOI: 10.1038/s41598-021-88784-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Crop rotation is an important management tactic that farmers use to manage crop production and reduce pests and diseases. Long-term crop rotations may select groups of microbes that form beneficial or pathogenic associations with the following crops, which could explain observed crop yield differences with different crop sequences. To test this hypothesis, we used two locations each with four long-term (12–14-year), replicated, rotation treatments: continuous corn (CCC), corn/corn/soybean (SCC), corn/soybean (CSC), and soybean/corn (SCS). Afterwards, soybean was planted, and yield and soil health indicators, bulk soil microbiome, and soybean root-associated microbiome were assessed. Soybean yields, as well as soil protein, and POXC as soil health indicators were higher following CCC than in the other three treatments at both locations. A bacterial taxon in family JG30-KF-AS9 was enriched in CCC, whereas Microvirga, Rhodomicrobium, and Micromonosporaceae were enriched in SCS. Several ascomycetes explain lowered yield as soybean pathogens in SCS. Surprisingly, Tumularia, Pyrenochaetopsis and Schizothecium were enriched in soybean roots after CCC, suggesting corn pathogens colonizing soybean roots as nonpathogens. Our finding of associations between soil health indicators related to microbiomes and soybean yield has wide-ranging implications, opening the possibility of manipulating microbiomes to improve crop yield potential.
Collapse
|
23
|
Bao Y, Dolfing J, Guo Z, Chen R, Wu M, Li Z, Lin X, Feng Y. Important ecophysiological roles of non-dominant Actinobacteria in plant residue decomposition, especially in less fertile soils. MICROBIOME 2021; 9:84. [PMID: 33827695 PMCID: PMC8028251 DOI: 10.1186/s40168-021-01032-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Microbial-driven decomposition of plant residues is integral to carbon sequestration in terrestrial ecosystems. Actinobacteria, one of the most widely distributed bacterial phyla in soils, are known for their ability to degrade plant residues in vitro. However, their in situ importance and specific activity across contrasting ecological environments are not known. Here, we conducted three field experiments with buried straw in combination with microcosm experiments with 13C-straw in paddy soils under different soil fertility levels to reveal the ecophysiological roles of Actinobacteria in plant residue decomposition. RESULTS While accounting for only 4.6% of the total bacterial abundance, the Actinobacteria encoded 16% of total abundance of carbohydrate-active enzymes (CAZymes). The taxonomic and functional compositions of the Actinobacteria were, surprisingly, relatively stable during straw decomposition. Slopes of linear regression models between straw chemical composition and Actinobacterial traits were flatter than those for other taxonomic groups at both local and regional scales due to holding genes encoding for full set of CAZymes, nitrogenases, and antibiotic synthetases. Ecological co-occurrence network and 13C-based metagenomic analyses both indicated that their importance for straw degradation increased in less fertile soils, as both links between Actinobacteria and other community members and relative abundances of their functional genes increased with decreasing soil fertility. CONCLUSIONS This study provided DNA-based evidence that non-dominant Actinobacteria plays a key ecophysiological role in plant residue decomposition as their members possess high proportions of CAZymes and as a group maintain a relatively stable presence during plant residue decomposition both in terms of taxonomic composition and functional roles. Their importance for decomposition was more pronounced in less fertile soils where their possession functional genes and interspecies interactions stood out more. Our work provides new ecophysiological angles for the understanding of the importance of Actinobacteria in global carbon cycling. Video abstract.
Collapse
Affiliation(s)
- Yuanyuan Bao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Zhiying Guo
- Soil Subcenter of Chinese Ecological Research Network, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| | - Ruirui Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China
| |
Collapse
|
24
|
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym 2021; 255:117388. [DOI: 10.1016/j.carbpol.2020.117388] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
|
25
|
Chiba A, Uchida Y, Kublik S, Vestergaard G, Buegger F, Schloter M, Schulz S. Soil Bacterial Diversity Is Positively Correlated with Decomposition Rates during Early Phases of Maize Litter Decomposition. Microorganisms 2021; 9:microorganisms9020357. [PMID: 33670245 PMCID: PMC7916959 DOI: 10.3390/microorganisms9020357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the effects of different levels of soil- and plant-associated bacterial diversity on the rates of litter decomposition, and bacterial community dynamics during its early phases. We performed an incubation experiment where soil bacterial diversity (but not abundance) was manipulated by autoclaving and reinoculation. Natural or autoclaved maize leaves were applied to the soils and incubated for 6 weeks. Bacterial diversity was assessed before and during litter decomposition using 16S rRNA gene metabarcoding. We found a positive correlation between litter decomposition rates and soil bacterial diversity. The soil with the highest bacterial diversity was dominated by oligotrophic bacteria including Acidobacteria, Nitrospiraceae, and Gaiellaceae, and its community composition did not change during the incubation. In the less diverse soils, those taxa were absent but were replaced by copiotrophic bacteria, such as Caulobacteraceae and Beijerinckiaceae, until the end of the incubation period. SourceTracker analysis revealed that litter-associated bacteria, such as Beijerinckiaceae, only became part of the bacterial communities in the less diverse soils. This suggests a pivotal role of oligotrophic bacteria during the early phases of litter decomposition and the predominance of copiotrophic bacteria at low diversity.
Collapse
Affiliation(s)
- Akane Chiba
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (A.C.); (Y.U.)
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Crop Physiology, TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
| | - Yoshitaka Uchida
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; (A.C.); (Y.U.)
| | - Susanne Kublik
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Section of Bioinformatics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Franz Buegger
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany;
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- TUM School of Life Science, Technical University of Munich, 85354 Freising, Germany
| | - Stefanie Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Centre for Environmental Health, 85764 Neuherberg, Germany; (S.K.); (G.V.); (M.S.)
- Correspondence: ; Tel.: +49-(0)89-3187-3054
| |
Collapse
|
26
|
Palma-Cano LE, Piñon-Castillo HA, Tarango-Rivero SH, Carbon A, Salas-Leiva J, Muñoz-Castellanos LN, Cravo-Laureau C, Duran R, Orrantia-Borunda E. Effect of organic and conventional farming on soil bacterial diversity of pecan tree (Carya illinoensis K. Kosh) orchard across two phenological stages. Lett Appl Microbiol 2021; 72:556-569. [PMID: 33453128 DOI: 10.1111/lam.13452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.
Collapse
Affiliation(s)
- L E Palma-Cano
- Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - H A Piñon-Castillo
- Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | - A Carbon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - J Salas-Leiva
- Centro de Investigación en Materiales Avanzados, Chihuahua, México.,Cátedra-CONACyT, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - L N Muñoz-Castellanos
- Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, Chihuahua, México
| | - C Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - R Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | | |
Collapse
|
27
|
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front Microbiol 2021; 11:583120. [PMID: 33488536 PMCID: PMC7821382 DOI: 10.3389/fmicb.2020.583120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| | - Helena Gimeno-Valero
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
28
|
Dyrka W, Coustou V, Daskalov A, Lends A, Bardin T, Berbon M, Kauffmann B, Blancard C, Salin B, Loquet A, Saupe SJ. Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes. J Mol Biol 2020; 432:6005-6027. [PMID: 33058872 DOI: 10.1016/j.jmb.2020.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
In filamentous fungi, amyloid signaling sequences allow Nod-like receptors (NLRs) to activate downstream cell-death inducing proteins with HeLo and HeLo-like (HELL) domains and amyloid RHIM and RHIM-related motifs control immune defense pathways in mammals and flies. Herein, we show bioinformatically that analogous amyloid signaling motifs exist in bacteria. These short motifs are found at the N terminus of NLRs and at the C terminus of proteins with a domain we term BELL. The corresponding NLR and BELL proteins are encoded by adjacent genes. We identify 10 families of such bacterial amyloid signaling sequences (BASS), one of which (BASS3) is homologous to RHIM and a fungal amyloid motif termed PP. BASS motifs occur nearly exclusively in bacteria forming multicellular structures (mainly in Actinobacteria and Cyanobacteria). We analyze experimentally a subset of seven of these motifs (from the most common BASS1 family and the RHIM-related BASS3 family) and find that these sequences form fibrils in vitro. Using a fungal in vivo model, we show that all tested BASS-motifs form prions and that the NLR-side motifs seed prion-formation of the corresponding BELL-side motif. We find that BASS3 motifs show partial prion cross-seeding with mammalian RHIM and fungal PP-motifs and that proline mutations on key positions of the BASS3 core motif, conserved in RHIM and PP-motifs, abolish prion formation. This work expands the paradigm of prion amyloid signaling to multicellular prokaryotes and suggests a long-term evolutionary conservation of these motifs from bacteria, to fungi and animals.
Collapse
Affiliation(s)
- Witold Dyrka
- Politechnika Wrocławska, Wydział Podstawowych Problemów Techniki, Katedra Inżynierii Biomedycznej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Virginie Coustou
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Asen Daskalov
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Alons Lends
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Thierry Bardin
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Mélanie Berbon
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Brice Kauffmann
- IECB, UMS 3033, US 001, CNRS, Université de Bordeaux, 2 Rue Robert Escarpit, 33607 Pessac, France
| | - Corinne Blancard
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Bénédicte Salin
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248 CBMN, IECB, CNRS, Université de Bordeaux, Allee Geoffroy Saint-Hilaire, 33607 Pessac, France
| | - Sven J Saupe
- Non-self Recognition in Fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 1 Rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France.
| |
Collapse
|
29
|
Castañeda-Cisneros YE, Mercado-Flores Y, Anducho-Reyes MA, Álvarez-Cervantes J, Ponce-Lira B, Evangelista-Martínez Z, Téllez-Jurado A. Isolation and Selection of Streptomyces Species from Semi-arid Agricultural Soils and Their Potential as Producers of Xylanases and Cellulases. Curr Microbiol 2020; 77:3460-3472. [PMID: 32797266 DOI: 10.1007/s00284-020-02160-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022]
Abstract
The Mezquital Valley (MV), Mexico, is a semi-arid region whose main economic activity is agriculture, this zone is characterized by the use of wastewater for crop irrigation. This condition has increased the amount nutrients in soils, organic carbon content and native microorganisms. The Streptomyces species are a group of saprophytic bacteria that represent between 20 and 60% of the total microbial population in soils, capable of producing metabolites of commercial importance. In this work, Streptomyces species were isolated from agricultural soils of the MV and was evaluated the production of endoglucanases (CMCase) and xylanases (Xyl) in Solid-State Cultivation (SSC). From soil samples, 73 possible strains of Streptomyces species were isolated for their ability to produce CMCase and Xyl in SSC. The study also included its characterization by morphological characteristics. Of the isolated microorganisms, 38 strains were selected as strong enzyme producers according to the measurement of the halo generated in plate and by growth on barley straw as only carbon source. Two different sizes of barley straw particle were tested, finding that the greatest enzymatic activity was observed in particle size 12. Three strains of Streptomyces species were chosen which presented the best catalytic capacities, a maximum of 100.69 AU Xyl/gram dry matter (gdm), 82 AU Xyl/gdm and 26.02 AU CMCase/gdm for strains 30, 28 and 12, respectively. The strains were identified by ribosomal gen16s sequence and identified as S. flavogriseus, S. virginiae and S. griseoaurantiacus. It is the first report of endogluconase and xylanolytic activity by S. virginiae isolated from a semi-arid soil.
Collapse
Affiliation(s)
- Y E Castañeda-Cisneros
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - Y Mercado-Flores
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - M A Anducho-Reyes
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - J Álvarez-Cervantes
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico
| | - B Ponce-Lira
- Department of Agrobiotechnology Engineering, Polytechnic University of Francisco I. Madero, Carretera Tepatepec-San Juan Tepa, C.P.42660, Francisco I. Madero, Hidalgo, Mexico
| | - Z Evangelista-Martínez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco. AC, Parque Científico Tecnológico de Yucatán, Sierra Papacal-Chuburná Puerto, C.P.97302, Mérida, Yucatán, Mexico
| | - A Téllez-Jurado
- AgroBiotechnology Laboratory, Polytechnic University of Pachuca, Carr. Pachuca-Cd. Sahagún, km 20, Ex-Hacienda de Santa Bárbara, C.P. 43830, Zempoala, Hidalgo, Mexico.
| |
Collapse
|
30
|
Kraut-Cohen J, Zolti A, Shaltiel-Harpaz L, Argaman E, Rabinovich R, Green SJ, Minz D. Effects of tillage practices on soil microbiome and agricultural parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135791. [PMID: 31810706 DOI: 10.1016/j.scitotenv.2019.135791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
No-tillage (NT) is a common soil-conservation management practice with known agricultural advantages and drawbacks. However, its short- and long-term effects on the soil microbiome have not been well established. Here, we compared conventional (CT), minimal (MT) and NT practices in two agricultural fields in the north of Israel over a period of 3 years. Edaphic properties, plant-associated pests, weed species abundance and soil microbial community structure were assessed to examine the effects of tillage. Tillage significantly altered physical and chemical soil properties, and a significant increase in hydrolytic and redox microbial activities was observed in NT soils from both sites. Consistent with this, the microbial community structure of NT samples diverged significantly over time from those of CT samples. Repetitive tillage and even a single tillage event caused significant changes in the relative abundance of microorganisms at taxonomic levels ranging from phylum to OTU. However, no significant difference between treatments was found in microbial community alpha-diversity or crop yield. Conversely, higher levels of weed diversity and some pests number were found in NT samples. Overall, we demonstrate that tillage plays a major role in shaping microbial community structure, and in influencing additional environmental, ecological and agricultural soil parameters.
Collapse
Affiliation(s)
- Judith Kraut-Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel.
| | - Avihai Zolti
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel; Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Liora Shaltiel-Harpaz
- Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona, 11016, Israel; Department of Environmental Sciences, Tel Hai College, Upper Galilee, 12210, Israel
| | - Eli Argaman
- Soil Erosion Research Station, Soil Conservation & Drainage Division, Ministry of Agriculture & Rural Development, Israel
| | | | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
31
|
Ogawa A, Takakura K, Hirai N, Kanematsu H, Kuroda D, Kougo T, Sano K, Terada S. Biofilm Formation Plays a Crucial Rule in the Initial Step of Carbon Steel Corrosion in Air and Water Environments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E923. [PMID: 32092999 PMCID: PMC7079648 DOI: 10.3390/ma13040923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
In this study, we examined the relationship between the effect of a zinc coating on protecting carbon steel against biofilm formation in both air and water environments. SS400 carbon steel coupons were covered with a zinc thermal spray coating or copper thermal spray coating. Coated coupons were exposed to either air or water conditions. Following exposure, the surface conditions of each coupon were observed using optical microscopy, and quantitatively analyzed using an x-ray fluorescence analyzer. Debris on the surface of the coupons was used for biofilm analysis including crystal violet staining for quantification, Raman spectroscopic analysis for qualification, and microbiome analysis. The results showed that the zinc thermal spray coating significantly inhibited iron corrosion as well as biofilm formation in both air and water environments. The copper thermal spray coating, however, accelerated iron corrosion in both air and water environments, but accelerated biofilm formation only in a water environment. microbially-influenced-corrosion-related bacteria were barely detected on any coupons, whereas biofilms were detected on all coupons. To summarize these results, electrochemical corrosion is dominant in an air environment and microbially influenced corrosion is strongly involved in water corrosion. Additionally, biofilm formation plays a crucial rule in carbon steel corrosion in both air and water, even though microbially-influenced-corrosion-related bacteria are barely involved in this corrosion.
Collapse
Affiliation(s)
- Akiko Ogawa
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (K.T.); (N.H.)
| | - Keito Takakura
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (K.T.); (N.H.)
| | - Nobumitsu Hirai
- Department of Chemistry and Biochemistry, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (K.T.); (N.H.)
| | - Hideyuki Kanematsu
- Department of Material Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (H.K.); (D.K.); (T.K.)
| | - Daisuke Kuroda
- Department of Material Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (H.K.); (D.K.); (T.K.)
| | - Takeshi Kougo
- Department of Material Science and Engineering, National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Japan; (H.K.); (D.K.); (T.K.)
| | | | - Satoshi Terada
- Department of Materials Science and Biotechnology, University of Fukui, Fukui 910-8507, Japan;
| |
Collapse
|
32
|
Soil Bacterial Community and Soil Enzyme Activity Depending on the Cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. DIVERSITY 2019. [DOI: 10.3390/d11120246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aims to determine the effects of crops and their cultivation regimes on changes in the soil microbiome. Three plant species were selected for the study: Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense, that were cultivated in soils with a similar particle size fraction. Field experiments were performed on the area of the Iławski Lake District (north-eastern Poland) at the Production and Experimental Station ‘Bałcyny’ (53°35′49″ N, 19°51′20″ E). In soil samples counts, organotrophic bacteria and actinobacteria were quantified, and the colony development index (CD) and ecophysiological diversity index (EP) were computed. In addition, a 16S amplicon sequencing encoding gene was conducted based on the hypervariable region V3–V4. Further analyses included an evaluation of the basic physiochemical properties of the soil and the activities of dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase. Analyses carried out in the study demonstrated that the rhizosphere of Triticum aestivum had a more beneficial effect on bacteria development than those of Brassica napus and Pisum sativum ssp. arvense, as indicated by the values of the ecophysiological diversity index (EP) and OTU abundance calculated for individual taxa in the soils in which the studied crops were grown. More OTUs of the taxa Alphaproteobacteria, Gammaproteobacteria, Clostridia, Sphingomonadales, Rhodospirillales, Xanthomonadales, Streptomycetaceae, Pseudonocardiaceae, Acetobacteraceae, Solibacteraceae, Kaistobacter, Cohnella, Azospirillum, Cryptosporangium, Rhodoplanes, and Saccharopolyspora were determined in the bacteriome structure of the soil from Triticum aestivum cultivation than in the soils from the cultivation of Brassica napus and Pisum sativum ssp. arvense. Also, the activities of most of the analyzed enzymes, including urease, catalase, alkaline phosphatase, β-glucosidase, and arylsulfatase, were the higher in the soil sown with Triticum aestivum than in those with the other two plant species.
Collapse
|
33
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
34
|
Oh HN, Park D, Seong HJ, Kim D, Sul WJ. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol 2019; 57:865-873. [PMID: 31571125 DOI: 10.1007/s12275-019-9217-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/25/2022]
Abstract
Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil's metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.
Collapse
Affiliation(s)
- Han Na Oh
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Doyoung Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dockyu Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
35
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
36
|
Degradation profile of nixtamalized maize pericarp by the action of the microbial consortium PM-06. AMB Express 2019; 9:85. [PMID: 31197616 PMCID: PMC6565776 DOI: 10.1186/s13568-019-0812-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/08/2019] [Indexed: 11/25/2022] Open
Abstract
The nixtamalized maize pericarp (NMP) is a plentiful by-product of the tortilla industry and an important source of fermentable sugars. The aim of this study was to describe the degradation profile of NMP by the action of a consortium (PM-06) obtained from the native microbial community of this residue. The degradation was analyzed in terms of the changes in the community dynamics, production of enzymes (endo-xylanase and endo-cellulase), physicochemical parameters, and substrate chemical and microstructural characteristics, to understand the mechanisms behind the process. The consortium PM-06 degraded 86.8 ± 3.3% of NMP after 192 h of growth. Scanning electron microscopy images, and the composition and weight of the residual solids, showed that degradation was sequential starting with the consumption of hemicellulose. Xylanase was the highest enzyme activity produced, with a maximum value of 12.45 ± 0.03 U mL−1. There were fluctuations in the pH during the NMP degradation, starting with the acidification of the culture media and finishing with a pH close to 8.5. The most abundant species in the consortium, at the moment of maximum degradation activity, were Aneurinibacillus migulanus, Paenibacillus macerans, Bacillus coagulans, Microbacterium sp. LCT-H2, and Bacillus thuringiensis. The diversity of PM-06 provided metabolic abilities that in combination helped to produce an efficient process. The consortium PM-06 generated a set of different tools that worked coordinated to increase the substrate availability through the solubilization of components and elimination of structural diffusion barriers. This is the first report about the degradation of NMP using a microbial consortium.
Collapse
|
37
|
Houfani AA, Větrovský T, Navarrete OU, Štursová M, Tláskal V, Beiko RG, Boucherba N, Baldrian P, Benallaoua S, Jorquera MA. Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. MICROBIAL ECOLOGY 2019; 77:713-725. [PMID: 30209585 DOI: 10.1007/s00248-018-1251-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Soil microorganisms are important mediators of carbon cycling in nature. Although cellulose- and hemicellulose-degrading bacteria have been isolated from Algerian ecosystems, the information on the composition of soil bacterial communities and thus the potential of their members to decompose plant residues is still limited. The objective of the present study was to describe and compare the bacterial community composition in Algerian soils (crop, forest, garden, and desert) and the activity of cellulose- and hemicellulose-degrading enzymes. Bacterial communities were characterized by high-throughput 16S amplicon sequencing followed by the in silico prediction of their functional potential. The highest lignocellulolytic activity was recorded in forest and garden soils whereas activities in the agricultural and desert soils were typically low. The bacterial phyla Proteobacteria (in particular classes α-proteobacteria, δ-proteobacteria, and γ-proteobacteria), Firmicutes, and Actinobacteria dominated in all soils. Forest and garden soils exhibited higher diversity than agricultural and desert soils. Endocellulase activity was elevated in forest and garden soils. In silico analysis predicted higher share of genes assigned to general metabolism in forest and garden soils compared with agricultural and arid soils, particularly in carbohydrate metabolism. The highest potential of lignocellulose decomposition was predicted for forest soils, which is in agreement with the highest activity of corresponding enzymes.
Collapse
Affiliation(s)
- Aicha Asma Houfani
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Oscar U Navarrete
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile
| | - Martina Štursová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Vojtěch Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada
| | - Nawel Boucherba
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Said Benallaoua
- Laboratoire de Microbiologie Appliquée (LMA), Département de Microbiologie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algérie
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departmento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
- Scientific and Biotechnological Bioresource Nucleus, Universidad de La Frontera, Ave. Franciosco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
38
|
Raut S, Polley HW, Fay PA, Kang S. Bacterial community response to a preindustrial-to-future CO 2 gradient is limited and soil specific in Texas Prairie grassland. GLOBAL CHANGE BIOLOGY 2018; 24:5815-5827. [PMID: 30230661 DOI: 10.1111/gcb.14453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Rising atmospheric CO2 concentration directly stimulates plant productivity and affects nutrient dynamics in the soil. However, the influence of CO2 enrichment on soil bacterial communities remains elusive, likely due to their complex interactions with a wide range of plant and soil properties. Here, we investigated the bacterial community response to a decade long preindustrial-to-future CO2 gradient (250-500 ppm) among three contrasting soil types using 16S rRNA gene amplicon sequencing. In addition, we examined the effect of seasonal variation and plant species composition on bacterial communities. We found that Shannon index (H') and Faith's phylogenetic diversity (PD) did not change in response to the CO2 gradient (R2 = 0.01, p > 0.05). CO2 gradient and season also had a negligible effect on overall community structure, although silty clay soil communities were better structured on a CO2 gradient (p < 0.001) among three soils. Similarly, CO2 gradient had no significant effect on the relative abundance of different phyla. However, we observed soil-specific variation of CO2 effects in a few individual families. For example, the abundance of Pirellulaceae family decreased linearly with CO2 gradient, but only in sandy loam soils. Conversely, the abundance of Micromonosporaceae and Gaillaceae families increased with CO2 gradient in clay soils. Soil water content (SWC) and nutrient properties were the key environmental constraints shaping bacterial community structure, one manifestation of which was a decline in bacterial diversity with increasing SWC. Furthermore, the impact of plant species composition on community structure was secondary to the strong influence of soil properties. Taken together, our findings indicate that bacterial communities may be largely unresponsive to indirect effects of CO2 enrichment through plants. Instead, bacterial communities are strongly regulated by edaphic conditions, presumably because soil differences create distinct environmental niches for bacteria.
Collapse
Affiliation(s)
- Swastika Raut
- Department of Biology, Baylor University, Waco, Texas
| | - Herbert W Polley
- Grassland, Soil and Water Research Laboratory, Department of Agriculture, Agricultural Research Service, Temple, Texas
| | - Philip A Fay
- Grassland, Soil and Water Research Laboratory, Department of Agriculture, Agricultural Research Service, Temple, Texas
| | - Sanghoon Kang
- Department of Biology, Baylor University, Waco, Texas
| |
Collapse
|