1
|
Cao-Garcia FJ, Walker JE, Board S, Alonso-Caballero A. Mechanical forces and ligand binding modulate Pseudomonas aeruginosa PilY1 mechanosensitive protein. Life Sci Alliance 2025; 8:e202403111. [PMID: 40054876 PMCID: PMC11891296 DOI: 10.26508/lsa.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/12/2025] Open
Abstract
Surface sensing initiates bacterial colonization of substrates. The protein PilY1 plays key roles during this process-surface detection, host adhesion, and motility-while experiencing mechanical perturbations of varying magnitudes. In Pseudomonas aeruginosa, the adhesion and motility functions of PilY1 are associated with integrin and calcium ligand-binding sites; however, how mechanical forces influence PilY1's dynamics and its interactions with these ligands remain unknown. Here, using single-molecule magnetic tweezers, we reveal that PilY1 is a mechanosensor protein that exhibits different behaviors depending on the force load. At high forces (>20 pN), PilY1 unfolds through a hierarchical sequence of intermediates, whose mechanical stability increases with calcium binding. This enhanced stability may help counteract type IV pilus retraction forces during motility. At low forces (<7 pN), we identify the dynamics of the integrin-binding domain, which is reminiscent of the behavior of mechanosensor proteins. Integrin binding induces a force-dependent conformational change in this domain, shortening its unfolded extension. Our findings suggest that PilY1 roles are force- and ligand-modulated, which could entail a mechanical-based compartmentalization of its functions.
Collapse
Affiliation(s)
- Francisco J Cao-Garcia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain
- IMDEA Nanociencia, Madrid, Spain
| | - Jane E Walker
- Department of Physics, King´s College London, London, UK
| | | | | |
Collapse
|
2
|
Huynh U, King J, Zastrow ML. Calcium modulates growth and biofilm formation of Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. Sci Rep 2025; 15:14246. [PMID: 40274962 PMCID: PMC12022101 DOI: 10.1038/s41598-025-98577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Lactobacillaceae are a large, diverse family of Gram-positive lactic acid-producing bacteria. As gut microbiota residents in many mammals, these bacteria are beneficial for health and frequently used as probiotics. Lactobacillaceae abundance in the gastrointestinal tract has been correlated with gastrointestinal pathologies and infection. Microbiota residents must compete for nutrients, including essential metal ions like calcium, zinc, and iron. Recent animal and human studies have revealed that dietary calcium can positively influence the diversity of the gut microbiota and abundance of intestinal Lactobacillaceae species, but the underlying molecular mechanisms remain poorly understood. Here, we investigated the impacts of calcium on the growth and biofilm formation of two distinct Lactobacillaceae species found in the gut microbiota, Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. We found that calcium ions differentially affect both growth and biofilm formation of these species. In general, calcium supplementation promotes the growth of both species, albeit with some variations in the extent to which different growth parameters were impacted. Calcium ions strongly induce biofilm formation of L. acidophilus ATCC 4356 but not L. plantarum ATCC 14917. Based on bioinformatic analyses and experimental chelator studies, we hypothesize that surface proteins specific to L. acidophilus ATCC 4356, like S-layer proteins, are responsible for Ca2+-induced biofilm formation. The ability of bacteria to form biofilms has been linked with their ability to colonize in the gut microbiota. This work shows how metal ions like Ca2+ may be important not just as nutrients for bacteria growth, but also for their ability to facilitate cell-cell interactions and possibly colonization in the gut microbiota.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - John King
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Scala V, Salustri M, Merfa MV, Beccaccioli M, Lascala L, De La Fuente L, Reverberi M. XadA-like adhesin XADA2 regulates biofilm formation in X. fastidiosa subsp. fastidiosa putatively by engaging oleic-acid derived oxylipins. Mol Biol Rep 2025; 52:263. [PMID: 39998686 PMCID: PMC11861136 DOI: 10.1007/s11033-025-10259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The oxylipins 10-HpOME and 7,10-DiHoME derive from oleic acid and have been extensively studied for their ability to regulate contractions, microcolony formation and biofilm formation in the model organism Pseudomonas aeruginosa. METHODS AND RESULTS Xylella fastidiosa subsp. pauca strain de Donno has been reported to produce 10-HpOME and 7,10-DiHOME in vivo when inoculated in the model plant Nicotiana tabacum or in naturally occurring infected olive trees. In this study, we deciphered the relationship among cell adhesion and oxylipins in Xylella fastidiosa subsp. fastidiosa (Temecula1 strain) and subsp. multiplex (AlmaEM3 strain). The role of the PD0744 gene, encoding for XadA2, a non-fimbrial adhesin belonging to the trimeric autotransporter family, probably involved in the surface attachment required in the initial phase of biofilm formation was investigated. PD0744 deletion mutants in two X. fastidiosa strains were generated, through homologous recombination, and the impact of its deletion on bacterial lifestyle was assessed. In vitro assays were performed to characterize the mutant phenotype, particularly in twitching motility and its capability to grow and form biofilm. Mutants showed a reduced twitching motility and biofilm formation compared to wild type strains. HPLC-MS/MS analysis revealed a decrease in 7,10-DiHOME production together with an increase of its precursor 10-HpOME in the mutants. CONCLUSIONS 7,10-DiHOME could be a crucial signaling molecule to promote biofilm formation and twitching motility, whose synthesis likely depends on a signal transduction requiring the presence of the adhesin XadA2 and thus not working if this protein is depleted. These results help understanding the complex regulation of biofilm formation in this devastating pathogen.
Collapse
Affiliation(s)
- Valeria Scala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US.
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US.
| | - Manuel Salustri
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US
| | - Marcus Vinicius Merfa
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US
| | - Marzia Beccaccioli
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US
| | - Leonardo Lascala
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US
| | - Leonardo De La Fuente
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US.
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US.
| | - Massimo Reverberi
- Council for Agricultural Research and Economics, Research Centre for Plant Protection and Certification of Rome, 00156, Rome, Italy.
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy.
- Department of Plant Pathology, Infectious Diseases Institute, College of Food, Agricultural, and Environmental Sciences, Columbus, US.
- Department of Entomology and Plant Pathology, Auburn University, Auburn, OH, US.
| |
Collapse
|
4
|
Moll L, Badosa E, De La Fuente L, Montesinos E, Planas M, Bonaterra A, Feliu L. Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa. PLANT DISEASE 2025; 109:327-340. [PMID: 39254847 DOI: 10.1094/pdis-07-24-1414-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates and mobile independent cells that move by twitching motility. The latter is essential for the systemic colonization of the host and is mediated through type IV pili. In previous reports, it has been demonstrated that peptides can affect different key processes of X. fastidiosa, but their effect on motility has never been assessed. In the present work, peptides previously identified and newly designed analogs were studied for their effect in vitro on the motility of X. fastidiosa, and their protective effect against almond leaf scorch was determined. By assessing the twitching fringe width in colonies and using microfluidic chambers, the inhibitory effect of BP100 on twitching motility was demonstrated. Interestingly, type IV pili of BP100-treated cells were similar in frequency and length and presented no morphological differences when compared with the nontreated control. The application of BP100 by endotherapy in almond plants inoculated with X. fastidiosa under greenhouse conditions significantly reduced population levels and showed less affected xylem vessels, which correlated with decreased disease symptoms. Therefore, BP100 is a promising candidate to manage almond leaf scorch caused by X. fastidiosa.[Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Luis Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV, Campus Montilivi, University of Girona, 17003 Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17003 Girona, Spain
| |
Collapse
|
5
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
6
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
7
|
Ferreira MV, Naranjo E, Denis N, Cobine P, De La Fuente L, Siri MI. Calcium modulation of bacterial wilt disease on potato. Appl Environ Microbiol 2024; 90:e0024224. [PMID: 38690890 PMCID: PMC11107177 DOI: 10.1128/aem.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Ralstonia solanacearum species complex (RSSC) is a phytopathogenic bacterial group that causes bacterial wilt in several crops, being potato (Solanum tuberosum) one of the most important hosts. The relationship between the potato plant ionome (mineral and trace elements composition) and the resistance levels to this pathogen has not been addressed until now. Mineral content of xylem sap, roots, stems and leaves of potato genotypes with different levels of resistance to bacterial wilt was assessed in this work, revealing a positive correlation between divalent calcium (Ca) cation concentrations and genotype resistance. The aim of this study was to investigate the effect of Ca on bacterial wilt resistance, and on the growth and virulence of RSSC. Ca supplementation significantly decreased the growth rate of Ralstonia pseudosolanacearum GMI1000 in minimal medium and affected several virulence traits such as biofilm formation and twitching motility. We also incorporate for the first time the use of microfluidic chambers to follow the pathogen growth and biofilm formation in conditions mimicking the plant vascular system. By using this approach, a reduction in biofilm formation was observed when both, rich and minimal media, were supplemented with Ca. Assessment of the effect of Ca amendments on bacterial wilt progress in potato genotypes revealed a significant delay in disease progress, or a complete absence of wilting symptoms in the case of partially resistant genotypes. This work contributes to the understanding of Ca effect on virulence of this important pathogen and provides new strategies for an integrated control of bacterial wilt on potato. IMPORTANCE Ralstonia solanacearum species complex (RSSC) includes a diverse group of bacterial strains that cause bacterial wilt. This disease is difficult to control due to pathogen aggressiveness, persistence, wide range of hosts, and wide geographic distribution in tropical, subtropical, and temperate regions. RSSC causes considerable losses depending on the pathogen strain, host, soil type, environmental conditions, and cultural practices. In potato, losses of $19 billion per year have been estimated for this pathogen worldwide. In this study, we report for the first time the mineral composition found in xylem sap and plant tissues of potato germplasm with different levels of resistance to bacterial wilt. This study underscores the crucial role of calcium (Ca) concentration in the xylem sap and stem in relation to the resistance of different genotypes. Our in vitro experiments provide evidence of Ca's inhibitory effect on the growth, biofilm formation, and twitching movement of the model RSSC strain R. pseudosolanacearum GMI1000. This study introduces a novel element, the Ca concentration, which should be included into the integrated disease control management strategies for bacterial wilt in potatoes.
Collapse
Affiliation(s)
- María Virginia Ferreira
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Nicol Denis
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Paul Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - María Inés Siri
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
De La Fuente L, Navas-Cortés JA, Landa BB. Ten Challenges to Understanding and Managing the Insect-Transmitted, Xylem-Limited Bacterial Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:869-884. [PMID: 38557216 DOI: 10.1094/phyto-12-23-0476-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Juan A Navas-Cortés
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Blanca B Landa
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
9
|
Yuan L, Zhang Y, Mi Z, Zheng X, Wang S, Li H, Yang Z. Calcium-mediated modulation of Pseudomonas fluorescens biofilm formation. J Dairy Sci 2024; 107:1950-1966. [PMID: 37949404 DOI: 10.3168/jds.2023-23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biofilm formation is usually affected by many environmental factors, including divalent cations. The purpose of the current work was to analyze how calcium (Ca2+) affects the biofilm formation of dairy Pseudomonas fluorescens isolates by investigating their growth, swarming motility, biofilm-forming capacity, extracellular polymeric substance production, and biofilm structures. Moreover, the regulation mechanism of Ca2+ involved in its biofilm formation was explored through RNA-sequencing analysis. This work revealed that supplementation of 5, 10, 15, and 20 mM Ca2+ significantly reduced the swarming motility of P. fluorescens strains (P.F2, P.F4, and P.F17), but the biofilm-forming ability and polysaccharide production were increased after the supplementation of 5 and 10 mM Ca2+. By the supplementation of Ca2+, complex structures with more cell clusters glued together in P. fluorescens P.F4 biofilms were confirmed by scanning electron microscopy, and increased biomass and coverage of P. fluorescens P.F4 biofilms were observed by confocal laser scanning microscopy. In addition, RNA-sequencing results showed that P. fluorescens P.F4 showed a transcriptional response to the supplementation of 10 mM Ca2+, and a total of 137 genes were significantly expressed. The differential genes were represented in 4 upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (nonribosomal peptide structures, quorum sensing, biosynthesis of siderophore group nonribosomal peptides, and phenylalanine metabolism), and 4 downregulated KEGG pathways (flagellar assembly, amino sugar and nucleotide sugar metabolism, nitrotoluene degradation, and cationic antimicrobial peptide resistance). The results indicate that Ca2+ might serve as an enhancer to substantially trigger the biofilm formation of dairy P. fluorescens isolates in the dairy industry.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Yanhe Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zizhuo Mi
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Huaxiang Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
10
|
Fan L, Dai H, Zhou W, Yuan L, Yang J, Yang Z, Jiao XA. Unraveling the significance of calcium as a biofilm promotion signal for Bacillus licheniformis strains isolated from dairy products. Food Res Int 2024; 182:114145. [PMID: 38519175 DOI: 10.1016/j.foodres.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.
Collapse
Affiliation(s)
- Luyao Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin, Heilongjiang 150030, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Jia Yang
- Yangzhou Institute for Food and Drug Control, Yangzhou, Jiangsu 225106, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
11
|
Ugolini GS, Wang M, Secchi E, Pioli R, Ackermann M, Stocker R. Microfluidic approaches in microbial ecology. LAB ON A CHIP 2024; 24:1394-1418. [PMID: 38344937 PMCID: PMC10898419 DOI: 10.1039/d3lc00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Microbial life is at the heart of many diverse environments and regulates most natural processes, from the functioning of animal organs to the cycling of global carbon. Yet, the study of microbial ecology is often limited by challenges in visualizing microbial processes and replicating the environmental conditions under which they unfold. Microfluidics operates at the characteristic scale at which microorganisms live and perform their functions, thus allowing for the observation and quantification of behaviors such as growth, motility, and responses to external cues, often with greater detail than classical techniques. By enabling a high degree of control in space and time of environmental conditions such as nutrient gradients, pH levels, and fluid flow patterns, microfluidics further provides the opportunity to study microbial processes in conditions that mimic the natural settings harboring microbial life. In this review, we describe how recent applications of microfluidic systems to microbial ecology have enriched our understanding of microbial life and microbial communities. We highlight discoveries enabled by microfluidic approaches ranging from single-cell behaviors to the functioning of multi-cellular communities, and we indicate potential future opportunities to use microfluidics to further advance our understanding of microbial processes and their implications.
Collapse
Affiliation(s)
- Giovanni Stefano Ugolini
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Miaoxiao Wang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Roberto Pioli
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
- Laboratory of Microbial Systems Ecology, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédéral de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland.
| |
Collapse
|
12
|
Nayak R, Halder J, Rajwar TK, Pradhan D, Rai VK, Dubey D, Kar B, Ghosh G, Rath G. Metronidazole loaded chitosan-phytic acid polyelectrolyte complex nanoparticles as mucoadhesive vaginal delivery system for bacterial vaginosis. Int J Biol Macromol 2024; 255:128212. [PMID: 37989434 DOI: 10.1016/j.ijbiomac.2023.128212] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Bacterial vaginosis (BV) is a recurring infection that is difficult to treat due to the limited bioavailability of antimicrobials. In this study, Metronidazole (MTZ)-loaded chitosan nanoparticles (MCSNP) were synthesized employing phytic acid (PA) as a crosslinking agent for treating bacterial vaginosis. The prepared MCSNPs were characterized for size, shape, surface charge, compatibility, cytotoxicity, biofilm inhibition, and in-vitro/in-vivo antimicrobial activities. Morphological examination revealed that nanoparticles generated from 0.535 % w/v chitosan and 0.112 % w/v PA were non-spherical, discontinuous, and irregular, with zeta potential ranging from 25.00 ± 0.45 to 39 ± 0.7. The results of DSC and XRD demonstrated no change in the physical state of the drug in the finished formulation. The optimized formulation demonstrates a cumulative drug release of about 98 ± 1.5 % within 8 h. Antimicrobial studies demonstrated that the optimized formulation had enhanced efficacy against acid-adapted BV pathogens, with a MIC value of 0.9 ± 0.1 μg/mL. Compared to the MTZ alone, the in-vivo antibacterial results of in the case of developed nanoparticles showed a four-fold reduction in bacterial count in female Swiss albino mice. Based on the experimental findings, it was concluded that MCSNPs, due to their excellent physiochemical and antibacterial properties, could serve as a potential topical alternative for treating BV.
Collapse
Affiliation(s)
- Reena Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debasmita Dubey
- Medical Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
13
|
Zhou G, Wang Q, Wang Y, Wen X, Peng H, Peng R, Shi Q, Xie X, Li L. Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms 2023; 11:1690. [PMID: 37512863 PMCID: PMC10385648 DOI: 10.3390/microorganisms11071690] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Gram-negative bacteria depend on their cell membranes for survival and environmental adaptation. They contain two membranes, one of which is the outer membrane (OM), which is home to several different outer membrane proteins (Omps). One class of important Omps is porins, which mediate the inflow of nutrients and several antimicrobial drugs. The microorganism's sensitivity to antibiotics, which are predominantly targeted at internal sites, is greatly influenced by the permeability characteristics of porins. In this review, the properties and interactions of five common porins, OmpA, OmpC, OmpF, OmpW, and OmpX, in connection to porin-mediated permeability are outlined. Meanwhile, this review also highlighted the discovered regulatory characteristics and identified molecular mechanisms in antibiotic penetration through porins. Taken together, uncovering porins' functional properties will pave the way to investigate effective agents or approaches that use porins as targets to get rid of resistant gram-negative bacteria.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qian Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yingsi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xia Wen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hong Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ruqun Peng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liangqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
14
|
Román-Écija M, Navas-Cortés JA, Velasco-Amo MP, Arias-Giraldo LF, Gómez LM, Fuente LDL, Landa BB. Two Xylella fastidiosa subsp. multiplex Strains Isolated from Almond in Spain Differ in Plasmid Content and Virulence Traits. PHYTOPATHOLOGY 2023; 113:960-974. [PMID: 36576402 DOI: 10.1094/phyto-06-22-0234-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is a major threat to agriculture and the environment worldwide. Recent devastating outbreaks in Europe highlight the potential of this pathogen to cause emergent diseases. X. fastidiosa subsp. multiplex ESVL and IVIA5901 strains that belong to sequence type 6 were isolated from almond orchards within the outbreak area in Alicante province (Spain). Both strains share more than 99% of the chromosomal sequences (average nucleotide identity), but the ESVL strain harbors two plasmids (pXF64-Hb_ESVL and pUCLA-ESVL). Here, virulence phenotypes and genome content were compared between both strains, using three strains from the United States as a reference for the phenotypic analyses. Experiments in microfluidic chambers, used as a simulation of xylem vessels, showed that twitching motility was absent in the IVIA5901 strain, whereas the ESVL strain had reduced twitching motility. In general, both Spanish strains had less biofilm formation, less cell aggregation, and lower virulence in tobacco compared with U.S. reference strains. Genome analysis of the two plasmids from ESVL revealed 51 unique coding sequences that were absent in the chromosome of IVIA5901. Comparison of the chromosomes of both strains showed some unique coding sequences and single-nucleotide polymorphisms in each strain, with potential deleterious mutations. Genomic differences found in genes previously associated with adhesion and motility might explain the differences in the phenotypic traits studied. Although additional studies are necessary to infer the potential role of X. fastidiosa plasmids, our results indicate that the presence of plasmids should be considered in the study of the mechanisms of pathogenicity and adaptation in X. fastidiosa to new environments. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - J A Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M P Velasco-Amo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L F Arias-Giraldo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L M Gómez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - L De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - B B Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
15
|
Liang H, Zhang J, Hu J, Li X, Li B. Fluoroquinolone Residues in the Environment Rapidly Induce Heritable Fluoroquinolone Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4784-4795. [PMID: 36917150 DOI: 10.1021/acs.est.2c04999] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
16
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
Merfa MV, Zhu X, Shantharaj D, Gomez LM, Naranjo E, Potnis N, Cobine PA, De La Fuente L. Complete functional analysis of type IV pilus components of a reemergent plant pathogen reveals neofunctionalization of paralog genes. PLoS Pathog 2023; 19:e1011154. [PMID: 36780566 PMCID: PMC9956873 DOI: 10.1371/journal.ppat.1011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Type IV pilus (TFP) is a multifunctional bacterial structure involved in twitching motility, adhesion, biofilm formation, as well as natural competence. Here, by site-directed mutagenesis and functional analysis, we determined the phenotype conferred by each of the 38 genes known to be required for TFP biosynthesis and regulation in the reemergent plant pathogenic fastidious prokaryote Xylella fastidiosa. This pathogen infects > 650 plant species and causes devastating diseases worldwide in olives, grapes, blueberries, and almonds, among others. This xylem-limited, insect-transmitted pathogen lives constantly under flow conditions and therefore is highly dependent on TFP for host colonization. In addition, TFP-mediated natural transformation is a process that impacts genomic diversity and environmental fitness. Phenotypic characterization of the mutants showed that ten genes were essential for both movement and natural competence. Interestingly, seven sets of paralogs exist, and mutations showed opposing phenotypes, indicating evolutionary neofunctionalization of subunits within TFP. The minor pilin FimT3 was the only protein exclusively required for natural competence. By combining approaches of molecular microbiology, structural biology, and biochemistry, we determined that the minor pilin FimT3 (but not the other two FimT paralogs) is the DNA receptor in TFP of X. fastidiosa and constitutes an example of neofunctionalization. FimT3 is conserved among X. fastidiosa strains and binds DNA non-specifically via an electropositive surface identified by homolog modeling. This protein surface includes two arginine residues that were exchanged with alanine and shown to be involved in DNA binding. Among plant pathogens, fimT3 was found in ~ 10% of the available genomes of the plant associated Xanthomonadaceae family, which are yet to be assessed for natural competence (besides X. fastidiosa). Overall, we highlight here the complex regulation of TFP in X. fastidiosa, providing a blueprint to understand TFP in other bacteria living under flow conditions.
Collapse
Affiliation(s)
- Marcus V. Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Laura M. Gomez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wu RX, Zhang Y, Guo ZQ, Zhao B, Guo JS. Role of Ca2+ and Mg2+ in changing biofilm structure and enhancing biofilm formation of P. stutzeri strain XL-2. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Outer membrane protein of OmpF contributes to swimming motility, biofilm formation, osmotic response as well as the transcription of maltose metabolic genes in Citrobacter werkmanii. World J Microbiol Biotechnol 2022; 39:15. [PMID: 36401137 DOI: 10.1007/s11274-022-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
Bacterial outer membrane proteins (Omps) are essential for environmental sensing, stress responses, and substance transport. Our previous study discovered that OmpA contributes to planktonic growth, biocide resistance, biofilm formation, and swimming motility in Citrobacter werkmanii, whereas the molecular functions of OmpF in this strain are largely unknown. Thus, in this study, the ompF gene was firstly knocked out from the genome of C. werkmanii using a homologous recombination method, and its phenotypical alternations of ∆ompF were then thoroughly characterized using biochemical and molecular approaches with the parental wild type (WT) and complementary (∆ompF-com) strains. The results demonstrated that the swimming ability of ∆ompF on semi-solid plates was reduced compared to WT due to the down-regulation of flgC, flgH, fliK, and fliF. Meanwhile, ompF deletion reduces biofilm formation on both glass and polystyrene surfaces due to decreased cell aggregation. Furthermore, ompF inactivation induced different osmotic stress (carbon sources and metal ions) responses in its biofilms when compared to WT and ∆ompF-com. Finally, a total of 6 maltose metabolic genes of lamB, malE, malK, malG, malM, and malF were all up-regulated in ∆ompF. The gene knockout and HPLC results revealed that the MalEFGK2 cluster was primarily responsible for maltose transport in C. werkmanii. Furthermore, we discovered for the first time that the upstream promoter of OmpF and its transcription can be combined with and negatively regulated by MalT. Overall, OmpF plays a role in a variety of biochemical processes and molecular functions in C. werkmanii, and it may even act as a targeted site to inhibit biofilm formation.
Collapse
|
20
|
ompX contribute to biofilm formation, osmotic response and swimming motility in Citrobacter werkmanii. Gene X 2022; 851:147019. [DOI: 10.1016/j.gene.2022.147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022] Open
|
21
|
Chalke S, Vidovic S, Fletcher GC, Palmer J, Flint S. Differential effects of magnesium, calcium, and sodium on Listeria monocytogenes biofilm formation. BIOFOULING 2022; 38:786-795. [PMID: 36210503 DOI: 10.1080/08927014.2022.2131398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Listeria monocytogenes is a gram-positive foodborne pathogen that causes outbreaks of listeriosis associated with a diverse range of foods. L. monocytogenes forms biofilms as a strategy to enhance its survival in the environment. These biofilms then provide a source of contamination in processing plant environments. Cations like magnesium, calcium, and sodium are commonly found in the environment and are important to bacteria to maintain their homeostasis. It is, therefore, valuable to understand the relationship between these cations and biofilm formation. In this study, four isolates of L. monocytogenes from seafood processing environments were used to investigate the influence of magnesium, calcium, and sodium (1, 10, and 50 mM) on biofilms. The isolates selected were defined as being either a low biofilm former, a high biofilm former, an outbreak isolate, and a persistent isolate from the seafood industry. The study showed that the divalent cations magnesium and calcium increased biofilm formation compared with the monovalent cation, sodium. Fifty mM concentrations of the divalent cations significantly enhanced biofilm formation. The cations did not have a significant effect on the initial stages of biofilm formation but appeared to influence the later stages of biofilm development.
Collapse
Affiliation(s)
- Saili Chalke
- Food Safety and Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Sinisa Vidovic
- Food Safety and Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Graham C Fletcher
- Food Safety and Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jon Palmer
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Steve Flint
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
23
|
Ge Q, Zhu X, Cobine PA, De La Fuente L. The Copper-Binding Protein CutC Is Involved in Copper Homeostasis and Affects Virulence in the Xylem-Limited Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2022; 112:1620-1629. [PMID: 35196066 DOI: 10.1094/phyto-11-21-0488-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is an essential element that can be toxic if homeostasis is disrupted. Xylella fastidiosa, a xylem-limited plant pathogenic bacterium that causes disease in many economically important crops worldwide, has been exposed to Cu stress caused by wide application of Cu-containing antimicrobials used to control other diseases. However, X. fastidiosa Cu homeostasis mechanisms are still poorly understood. The potentially Cu-related protein CutC, which is involved in Cu tolerance in Escherichia coli and humans, has not been analyzed functionally in plant pathogenic bacteria. We demonstrate that recombinantly expressed X. fastidiosa CutC binds Cu and deletion of cutC gene (PD0586) in X. fastidiosa showed increased sensitivity to Cu-shock compared with wild type (WT) strain TemeculaL. When infecting plants in the greenhouse, cutC mutant showed decreased disease incidence and severity compared with WT but adding Cu exaggerated severity. Interestingly, the inoculation of cutC mutant caused reduced symptoms in the acropetal regions of plants. We hypothesize that X. fastidiosa cutC is involved in Cu homeostasis by binding Cu in cells, leading to Cu detoxification, which is crucial to withstand Cu-shock stress. Unveiling the role of cutC gene in X. fastidiosa facilitates further understanding of Cu homeostasis in bacterial pathogens.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Xinyu Zhu
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, U.S.A
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
24
|
Calcium Determines
Lactiplantibacillus plantarum
Intraspecies Competitive Fitness. Appl Environ Microbiol 2022; 88:e0066622. [PMID: 35852360 PMCID: PMC9361822 DOI: 10.1128/aem.00666-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of individual nutrients for microbial strain robustness and coexistence in habitats containing different members of the same species is not well understood. To address this for Lactiplantibacillus plantarum in food fermentations, we performed comparative genomics and examined the nutritive requirements and competitive fitness for L. plantarum strains B1.1 and B1.3 isolated from a single sample of teff injera fermentation batter. Compared to B1.1 and other L. plantarum strains, B1.3 has a smaller genome, limited biosynthetic capacities, and large mobilome. Despite these differences, B1.3 was equally competitive with B1.1 in a suspension of teff flour. In commercially sourced, nutrient-replete MRS (cMRS) medium, strain B1.3 reached 3-fold-higher numbers than B1.1 within 2 days of passage. Because B1.3 growth and competitive fitness were poor in mMRS medium (here called mMRS), a modified MRS medium lacking beef extract, we used mMRS to identify nutrients needed for robust B1.3 growth. No improvement was observed when mMRS was supplemented with nucleotides, amino acids, vitamins, or monovalent metals. Remarkably, the addition of divalent metal salts increased the growth rate and cell yields of B1.3 in mMRS. Metal requirements were confirmed by inductively coupled plasma mass spectrometry, showing that total B1.3 intracellular metal concentrations were significantly (up to 2.7-fold) reduced compared to B1.1. Supplemental CaCl2 conferred the greatest effect, resulting in equal growth between B1.1 and B1.3 over five successive passages in mMRS. Moreover, calcium supplementation reversed a B1.3 strain-specific, stationary-phase, flocculation phenotype. These findings show how L. plantarum calcium requirements affect competitive fitness at the strain level. IMPORTANCE Ecological theory states that the struggle for existence is stronger between closely related species. Contrary to this assertion, fermented foods frequently sustain conspecific individuals, in spite of their high levels of phylogenetic relatedness. Therefore, we investigated two isolates of Lactiplantibacillus plantarum, B1.1 and B1.3, randomly selected from a single batch of teff injera batter. These strains spanned the known genomic and phenotypic range of the L. plantarum species, and in laboratory culture medium used for strain screening, B1.3 exhibited poor growth and was outcompeted by the more robust strain B1.1. Nonetheless, B1.1 and B1.3 were equally competitive in teff flour. This result shows how L. plantarum has adapted for coexistence in that environment. The capacity for the single macronutrient calcium to restore B1.3 competitive fitness in laboratory culture medium suggests that L. plantarum intraspecies diversity found in food systems is fine-tuned to nutrient requirements at the strain level.
Collapse
|
25
|
Catalano A, Ceramella J, Iacopetta D, Mariconda A, Scali E, Bonomo MG, Saturnino C, Longo P, Aquaro S, Sinicropi MS. Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees. Antibiotics (Basel) 2022; 11:947. [PMID: 35884201 PMCID: PMC9312276 DOI: 10.3390/antibiotics11070947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| |
Collapse
|
26
|
Momenijavid M, Salimizand H, Korani A, Dianat O, Nouri B, Ramazanzadeh R, Ahmadi A, Rostamipour J, Khosravi MR. Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm. Sci Rep 2022; 12:7595. [PMID: 35534609 PMCID: PMC9085741 DOI: 10.1038/s41598-022-11780-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Calcium hydroxide Ca(OH)2 has been used as an intracanal medicament to targets microbial biofilms and avert secondary infection in the root canal system. This study evaluated the effects of this material on the morphology and physicochemical properties of an established in-vitro biofilm of Enterococcus faecalis. A biofilm of E. faecalis was grown in multichannel plates. The chemicals including Ca2+, OH-, and saturated Ca(OH)2 (ie 21.6 mM) were prepared in order to evaluate which component eradicated or amplified biofilm structure. Various biochemical and microscopic methods were used to investigate the properties of the biofilm. Biofilms treated with Ca(OH)2 absorbed more Ca2+ because of the alkaline pH of the environment and the ions affected the physicochemical properties of the E. faecalis biofilm. A denser biofilm with more cavities and a granular surface was observed in the presence of Ca2+ ions. This resulted in a decrease in the surface-to-biofilm ratio with increases in its biomass, thickness, colony size, and volume. Calcium hydroxide did not destroy E. faecalis biofilms but rather contributed to the biofilm structure. This in-vitro study sheds light on a missing link in the formation of E. faecalis biofilm in which the Ca2+ in Ca(OH)2.
Collapse
Affiliation(s)
- Mahere Momenijavid
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Himen Salimizand
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Aazam Korani
- Food Laboratory, Vice Chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Omid Dianat
- Division of Endodontics, Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Bijan Nouri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jino Rostamipour
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Rastegar Khosravi
- Department of Endodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
27
|
Pang X, Song X, Chen M, Tian S, Lu Z, Sun J, Li X, Lu Y, Yuk HG. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf 2022; 21:1657-1676. [PMID: 35181977 DOI: 10.1111/1541-4337.12922] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Most foodborne pathogens have biofilm-forming capacity and prefer to grow in the form of biofilms. Presence of biofilms on food contact surfaces can lead to persistence of pathogens and the recurrent cross-contamination of food products, resulting in serious problems associated with food safety and economic losses. Resistance of biofilm cells to conventional sanitizers urges the development of natural alternatives to effectively inhibit biofilm formation and eradicate preformed biofilms. Lactic acid bacteria (LAB) produce bacteriocins which are ribosomally synthesized antimicrobial peptides, providing a great source of nature antimicrobials with the advantages of green and safe properties. Studies on biofilm control by newly identified bacteriocins are increasing, targeting primarily onListeria monocytogenes, Staphylococcus aureus, Salmonella, and Escherichia coli. This review systematically complies and assesses the antibiofilm property of LAB bacteriocins in controlling foodborne bacterial-biofilms on food contact surfaces. The bacteriocin-producing LAB genera/species, test method (inhibition and eradication), activity spectrum and surfaces are discussed, and the antibiofilm mechanisms are also argued. The findings indicate that bacteriocins can effectively inhibit biofilm formation in a dose-dependent manner, but are difficult to disrupt preformed biofilms. Synergistic combination with other antimicrobials, incorporation in nanoconjugates and implementation of bioengineering can help to strengthen their antibiofilm activity. This review provides an overview of the potential and application of LAB bacteriocins in combating bacterial biofilms in food processing environments, assisting in the development and widespread use of bacteriocin as a promising antibiofilm-agent in food industries.
Collapse
Affiliation(s)
- Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaoye Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Minjie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| |
Collapse
|
28
|
Dewangan NK, Tran N, Wang-Reed J, Conrad JC. Bacterial aggregation assisted by anionic surfactant and calcium ions. SOFT MATTER 2021; 17:8474-8482. [PMID: 34586147 DOI: 10.1039/d1sm00479d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We identify factors leading to aggregation of bacteria in the presence of a surfactant using absorbance and microscopy. Two marine bacteria, Marinobacter hydrocarbonoclasticus SP17 and Halomonas titanicae Bead 10BA, formed aggregates of a broad size distribution in synthetic sea water in the presence of an anionic surfactant, dioctyl sodium sulfosuccinate (DOSS). Both DOSS at high concentrations and calcium ions were necessary for aggregate formation, but DOSS micelles were not required for aggregation. Addition of proteinase K but not DNase1 eliminated aggregate formation over two hours. Finally, swimming motility also enhanced aggregate formation.
Collapse
Affiliation(s)
- Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Nhi Tran
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Jing Wang-Reed
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| |
Collapse
|
29
|
Ge Q, Cobine PA, De La Fuente L. The Influence of Copper Homeostasis Genes copA and copB on Xylella fastidiosa Virulence Is Affected by Sap Copper Concentration. PHYTOPATHOLOGY 2021; 111:1520-1529. [PMID: 33554639 DOI: 10.1094/phyto-12-20-0531-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes diseases worldwide in crops such as grape, citrus, and olive. Although copper (Cu)-containing compounds are not used for management of X. fastidiosa-caused diseases, they are widely used in X. fastidiosa hosts in vineyards and orchards. The accumulation of Cu in soils and, therefore, plant saps, could be a challenge for X. fastidiosa survival. Here, the molecular basis of Cu homeostasis was studied in relation to virulence. Although homologous Cu-related genes copA (X. fastidiosa loci PD0100) and copB (PD0101) have been characterized in other bacteria, their functions differ among bacterial species. In vitro, both copA and copB mutants were more sensitive to Cu than the wild-type (WT) strain. Interestingly, the copA mutant was more sensitive to Cu shock, while the copB mutant was more sensitive to chronic Cu treatments. In tobacco greenhouse experiments with normal watering, both mutants reduced virulence compared with WT. But when Cu was added as a drench treatment, both copA and copB mutants had increased disease severity approximately 20 and 50% compared with mutants without Cu added, respectively, which were significantly higher than the approximately 5% observed for WT under the same conditions. These results indicate that the pathogen's Cu homeostasis affects virulence and is influenced by Cu concentration in the environment. Understanding Cu homeostasis in X. fastidiosa will help discern the outcome of Cu treatments and the adaptation of this pathogen to the xylem of plants that have been exposed to high Cu concentrations because of agricultural practices.
Collapse
Affiliation(s)
- Qing Ge
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
30
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|
31
|
Morales-García AL, Walton R, Blakeman JT, Banwart SA, Harding JH, Geoghegan M, Freeman CL, Rolfe SA. The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca 2+ and Na . LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9838-9850. [PMID: 34347486 PMCID: PMC8397393 DOI: 10.1021/acs.langmuir.1c01410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.
Collapse
Affiliation(s)
- Ana L. Morales-García
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Rachel Walton
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jamie T. Blakeman
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Steven A. Banwart
- Department
of Civil and Structural Engineering, The
University of Sheffield, Sheffield S3 7HQ, U.K.
| | - John H. Harding
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Mark Geoghegan
- Department
of Physics and Astronomy, The University
of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
| | - Colin L. Freeman
- Department
of Materials Science and Engineering, The
University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Stephen A. Rolfe
- Department
of Animal and Plant Sciences, The University
of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| |
Collapse
|
32
|
Assessment of Ionomic, Phenolic and Flavonoid Compounds for a Sustainable Management of Xylella fastidiosa in Morocco. SUSTAINABILITY 2021. [DOI: 10.3390/su13147818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Morocco belongs to the countries ranked at a high-risk level for entry, establishment, and spread of Xylella fastidiosa, which has recently re-emerged as a plant pathogen of global importance causing olive quick decline syndrome (OQDS). Symptomatic infection by X. fastidiosa leads to devastating diseases and important economic losses. To prevent such losses and damages, countries without current outbreaks like Morocco need to first understand their host plant responses to X. fastidiosa. The assessment of the macro and micro-elements content (ionome) in leaves can give basic and useful information along with being a powerful tool for the sustainable management of diseases caused by this devastating pathogen. Herein, we compare the leaf ionome of four important autochthonous Moroccan olive cultivars (‘Picholine Marocaine’, ‘Haouzia’, ‘Menara’, and ‘Meslalla’), and eight Mediterranean varieties introduced in Morocco (‘Arbequina’, ‘Arbosana’, ‘Leccino’, ‘Ogliarola salentina’, ‘Cellina di Nardo’, ‘Frantoio’, ‘Leucocarpa’, and ‘Picholine de Languedoc’), to develop hypotheses related to the resistance or susceptibility of the Moroccan olive trees to X. fastidiosa infection. Leaf ionomes, mainly Ca, Cu, Fe, Mg, Mn, Na, Zn, and P, were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). These varieties were also screened for their total phenolics and flavonoids content. Data were then involved in a comparative scheme to determine the plasticity of the pathogen. Our results showed that the varieties ‘Leccino’, ’Arbosana’, ‘Arbequina’ consistently contained higher Mn, Cu, and Zn and lower Ca and Na levels compared with the higher pathogen-sensitive ‘Ogliarola salentina’ and ‘Cellina di Nardò’. Our findings suggest that ‘Arbozana’, ‘Arbiquina’, ‘Menara’, and ‘Haouzia’ may tolerate the infection by X. fastidiosa to varying degrees, provides additional support for ‘Leccino’ having resistance to X. fastidiosa, and suggests that both ‘Ogliarola salentina’ and ‘Cellina di Nardö’ are likely sensitive to X. fastidiosa infection.
Collapse
|
33
|
Tischner Z, Sebők R, Kredics L, Allaga H, Vargha M, Sebestyén Á, Dobolyi C, Kriszt B, Magyar D. Mycological Investigation of Bottled Water Dispensers in Healthcare Facilities. Pathogens 2021; 10:pathogens10070871. [PMID: 34358021 PMCID: PMC8308914 DOI: 10.3390/pathogens10070871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
The usage of bottled water dispensers (BWDs) has spread worldwide. Despite their popularity, few studies have dealt with their microbial contaminants, and little attention is given to their fungal contamination. To our knowledge this is the first mycological study of BWDs in Europe. 36 devices have been examined in Budapest, Hungary. Despite of the strictly regulated water hygiene system in Hungary, molds and yeasts were detected in 86.8% of the samples, 56.76% were highly contaminated. Elevated heterotrophic plate counts were also observed in all samples compared to that of Hungarian drinking water. As all physical and chemical water quality characteristics have met the relevant national and European parametric values and neither totally explained the results of microbial counts, the effect of usage and maintenance habits of the devices were examined. Fungal concentrations were affected by the time elapsed since disinfection, days remaining until expiration of bottles, month of sampling and exposure to sunlight during storage. Microbes are able to proliferate in the bottled water and disperse inside the BWDs. Many of the detected fungal species (Sarocladium kiliense, Acremonium sclerotigenum/egyptiacum, Exophiala jeanselmei var. lecanii-corni, Exophiala equina, Meyerozyma guilliermondii, Cystobasidium slooffiae, Aspergillus jensenii, Bisifusarium biseptatum) are opportunistic pathogens for subpopulations of sensitive age groups and patients with immunodeficient conditions, including cystic fibrosis. Thus BWDs may pose a health risk to visitors of healthcare institutions, especially to patients with oral lesions in dental surgeries. The study draws attention to the need to investigate microbial contamination of these devices in other countries as well.
Collapse
Affiliation(s)
- Zsófia Tischner
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
- Correspondence: (Z.T.); (R.S.)
| | - Rózsa Sebők
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
- Correspondence: (Z.T.); (R.S.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (L.K.); (H.A.)
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (L.K.); (H.A.)
| | - Márta Vargha
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| | - Ágnes Sebestyén
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| | - Csaba Dobolyi
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (C.D.); (B.K.)
| | - Donát Magyar
- National Public Health Center, H-1097 Budapest, Hungary; (M.V.); (Á.S.); (D.M.)
| |
Collapse
|
34
|
Keskin ZB, Kahraman H. Effect of calcium on Pseudomonas aeruginasa and Bacillus cereus metabolites. BRAZ J BIOL 2021; 82:e243189. [PMID: 34133571 DOI: 10.1590/1519-6984.243189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022] Open
Abstract
The effects of Calcium (Ca+2) on virulence and some parameters should be analyzed in this study. Pseudomonas aeruginosa Gram (-) and Bacillus cereus Gram (+) were used. Both bacteria are soil bacteria. In this study; the effect of Ca+2 on protease, amylase, LasB elastolytic assay, H2O2, pyorubin and biofilm on metabolites of these bacteria were investigated during 24 hour time. In this study, the effect of Ca+2 on the production of some secondary metabolites on P. aeruginosa and B. cereus was investigated and presented for the first time by us.
Collapse
Affiliation(s)
- Z B Keskin
- Inonu University, Institute of Science, Department of Biology, Malatya, Turkey
| | - H Kahraman
- Inonu University, Faculty of Art and Science, Department of Biology, Malatya, Turkey
| |
Collapse
|
35
|
Ly KL, Hu P, Pham LHP, Luo X. Flow-assembled chitosan membranes in microfluidics: recent advances and applications. J Mater Chem B 2021; 9:3258-3283. [PMID: 33725061 PMCID: PMC8369861 DOI: 10.1039/d1tb00045d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The integration of membranes in microfluidic devices has been extensively exploited for various chemical engineering and bioengineering applications over the past few decades. To augment the applicability of membrane-integrated microfluidic platforms for biomedical and tissue engineering studies, a biologically friendly fabrication process with naturally occurring materials is highly desired. The in situ preparation of membranes involving interfacial reactions between parallel laminar flows in microfluidic networks, known as the flow-assembly technique, is one of the most biocompatible approaches. Membranes of many types with flexible geometries have been successfully assembled inside complex microchannels using this facile and versatile flow-assembly approach. Chitosan is a naturally abundant polysaccharide known for its pronounced biocompatibility, biodegradability, good mechanical stability, ease of modification and processing, and film-forming ability under near-physiological conditions. Chitosan membranes assembled by flows in microfluidics are freestanding, robust, semipermeable, and well-aligned in microstructure, and show high affinity to bioactive reagents and biological components (e.g. biomolecules, nanoparticles, or cells) that provide facile biological functionalization of microdevices. Here, we discuss the recent developments and optimizations in the flow-assembly of chitosan membranes and chitosan-based membranes in microfluidics. Furthermore, we recapitulate the applications of the chitosan membrane-integrated microfluidic platforms dedicated to biology, biochemistry, and drug release fields, and envision the future developments of this important platform with versatile functions.
Collapse
Affiliation(s)
- Khanh L Ly
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | |
Collapse
|
36
|
Ge Q, Liu R, Cobine PA, Potnis N, De La Fuente L. Phenotypic and Phylogenetic Characterization of Cu Homeostasis among Xylella fastidiosa Strains. Pathogens 2021; 10:pathogens10040495. [PMID: 33924015 PMCID: PMC8073393 DOI: 10.3390/pathogens10040495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Xylella fastidiosa is a bacterial pathogen causing severe diseases and asymptomatic colonization in more than 600 plants worldwide. Copper (Cu) is a widely used antimicrobial treatment for various plant diseases, including those affecting X. fastidiosa hosts. Cu homeostasis among X. fastidiosa strains from different geographical locations and host species has not been characterized. Here, we assessed minimum inhibitory concentration (MIC) of Cu for 54 X. fastidiosa strains. We observed strain-level variation in MIC values within each subspecies. We hypothesized that these differences could be explained by sequence variation in Cu homeostasis genes. Phylogenies based on copA, copB, copL, and cutC were created using 74 genomes (including 43 strains used in vitro) of X. fastidiosa, showing that the phylogenetic clustering of Cu homeostasis associated with clustering was based on core genome phylogenies, rather than on pattern of MIC. No association was found among Cu MIC, subspecies classification, and host and location of isolation, probably due to uneven and limited group of strains whose genomes are available. Further analysis focused on a subgroup of isolates from Georgia’s vineyards that shared similar Cu-related phenotypes. Further research is needed to better understand the distribution of Cu homeostasis for this pathogen.
Collapse
Affiliation(s)
- Qing Ge
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Ranlin Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA;
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Q.G.); (R.L.); (N.P.)
- Correspondence: ; Tel.: +1-334-844-2582
| |
Collapse
|
37
|
Trabalza S, Buonaurio R, Del Pino AM, Palmerini CA, van den Burg HA, Moretti C. A Spectrofluorophotometrical Method Based on Fura-2-AM Probe to Determine Cytosolic Ca 2+ Level in Pseudomonas syringae Complex Bacterial Cells. Bio Protoc 2021; 11:e3949. [PMID: 33855111 DOI: 10.21769/bioprotoc.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/02/2022] Open
Abstract
Calcium signaling is an emerging mechanism by which bacteria respond to environmental cues. To measure the intracellular free-calcium concentration in bacterial cells, [Ca2+]i, a simple spectrofluorometric method based on the chemical probe Fura 2-acetoxy methyl ester (Fura 2-AM) is here presented using Pseudomonad bacterial cells. This is an alternative and quantitative method that can be completed in a short period of time with low costs, and it does not require the induction of heterologously expressed protein-based probes like Aequorin. Furthermore, it is possible to verify the properties of membrane channels involved in Ca2+ entry from the extracellular matrix. This method is in particular valuable for measuring [Ca2+]i in the range of 0.1-39.8 µM in small cells like those of prokaryotes.
Collapse
Affiliation(s)
- Simone Trabalza
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy.,Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, the Netherlands
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Alberto M Del Pino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Carlo A Palmerini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, the Netherlands
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
38
|
Monteiro MP, Hernandez-Montelongo J, Sahoo PK, Hernández Montelongo R, de Oliveira DS, Piazzeta MHO, García Sandoval JP, de Souza AA, Gobbi AL, Cotta MA. Functionalized microchannels as xylem-mimicking environment: Quantifying X. fastidiosa cell adhesion. Biophys J 2021; 120:1443-1453. [PMID: 33607085 DOI: 10.1016/j.bpj.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022] Open
Abstract
Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.
Collapse
Affiliation(s)
- Moniellen P Monteiro
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Jacobo Hernandez-Montelongo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| | - Prasana K Sahoo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Rosaura Hernández Montelongo
- Departamento de Electrónica, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Douglas S de Oliveira
- Campus Avançado de Jandaia do Sul, Universidade Federal do Paraná, Jandaia do Sul, Paraná, Brasil
| | - Maria H O Piazzeta
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Juan P García Sandoval
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Alessandra A de Souza
- Instituto Agronômico de Campinas, Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brasil
| | - Angelo L Gobbi
- Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais/CNPEM, Campinas, São Paulo, Brasil
| | - Mônica A Cotta
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil.
| |
Collapse
|
39
|
Phenotypic Characterization and Transformation Attempts Reveal Peculiar Traits of Xylella fastidiosa Subspecies pauca Strain De Donno. Microorganisms 2020; 8:microorganisms8111832. [PMID: 33233703 PMCID: PMC7699976 DOI: 10.3390/microorganisms8111832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Xylella fastidiosa subsp. pauca strain De Donno has been recently identified as the causal agent of a severe disease affecting olive trees in a wide area of the Apulia Region (Italy). While insights on the genetics and epidemiology of this virulent strain have been gained, its phenotypic and biological traits remained to be explored. We investigated in vitro behavior of the strain and compare its relevant biological features (growth rate, biofilm formation, cell-cell aggregation, and twitching motility) with those of the type strain Temecula1. The experiments clearly showed that the strain De Donno did not show fringe on the agar plates, produced larger amounts of biofilm and had a more aggregative behavior than the strain Temecula1. Repeated attempts to transform, by natural competence, the strain De Donno failed to produce a GFP-expressing and a knockout mutant for the rpfF gene. Computational prediction allowed us to identify potentially deleterious sequence variations most likely affecting the natural competence and the lack of fringe formation. GFP and rpfF- mutants were successfully obtained by co-electroporation in the presence of an inhibitor of the type I restriction-modification system. The availability of De Donno mutant strains will open for new explorations of its interactions with hosts and insect vectors.
Collapse
|
40
|
Grapevine phenolic compounds influence cell surface adhesion of Xylella fastidiosa and bind to lipopolysaccharide. PLoS One 2020; 15:e0240101. [PMID: 33007036 PMCID: PMC7531785 DOI: 10.1371/journal.pone.0240101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial phytopathogen Xylella fastidiosa specifically colonizes the plant vascular tissue through a complex process of cell adhesion, biofilm formation, and dispersive movement. Adaptation to the chemical environment of the xylem is essential for bacterial growth and progression of infection. Grapevine xylem sap contains a range of plant secondary metabolites such as phenolics, which fluctuate in response to pathogen infection and plant physiological state. Phenolic compounds are often involved in host-pathogen interactions and influence infection dynamics through signaling activity, antimicrobial properties, and alteration of bacterial phenotypes. The effect of biologically relevant concentrations of phenolic compounds coumaric acid, gallic acid, epicatechin, and resveratrol on growth of X. fastidiosa was assessed in vitro. None of these compounds inhibited bacterial growth, but epicatechin and gallic acid reduced cell-surface adhesion. Cell-cell aggregation decreased with resveratrol treatment, but the other phenolic compounds tested had minimal effect on aggregation. Expression of attachment (xadA) and aggregation (fimA) related genes were altered by presence of the phenolic compounds, consistent with observed phenotypes. All four of the phenolic compounds bound to purified X. fastidiosa lipopolysaccharide (LPS), a major cell-surface component. Information regarding the impact of chemical environment on pathogen colonization in plants is important for understanding the infection process and factors associated with host susceptibility.
Collapse
|
41
|
Liu X, Zhang K, Liu Y, Zou D, Wang D, Xie Z. Effects of Calcium and Signal Sensing Systems on Azorhizobium caulinodans Biofilm Formation and Host Colonization. Front Microbiol 2020; 11:563367. [PMID: 33072026 PMCID: PMC7533552 DOI: 10.3389/fmicb.2020.563367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/22/2022] Open
Abstract
Biofilm formation is important for establishing plants-microbe associations. The role of calcium on biofilm formation has been studied in many bacteria except rhizobia. In this study, we investigated the role of calcium for biofilm formation in Azorhizobium caulindans, which forms nodules in the stem and root of its host plant Sesbania rostrata. We found that calcium is essential for A. caulindans biofilm formation, in addition to the presence of extracellular matrix components, eDNA and proteins. Also, calcium-mediated biofilm formation was tested with chemotaxis, motility, cyclic di-GMP synthesis, and quorum sensing mutants. Finally, calcium was found to promote S. rostrata root colonization of A. caulinodans. In total, these results show that calcium is essential for A. caulindans biofilm formation, and it affects the interaction between A. caulinodans and host plant.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiye Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Desheng Zou
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
42
|
de Souza JB, Almeida-Souza HO, Zaini PA, Alves MN, de Souza AG, Pierry PM, da Silva AM, Goulart LR, Dandekar AM, Nascimento R. Xylella fastidiosa subsp. pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int J Mol Sci 2020; 21:E6769. [PMID: 32942709 PMCID: PMC7555403 DOI: 10.3390/ijms21186769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Xylella fastidiosa colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of X. fastidiosa. The reference strain 9a5c produces a robust biofilm compared to Fb7 that remains mostly planktonic, and both were isolated from symptomatic citrus trees. This work deepens our understanding of these distinct behaviors at the molecular level, by comparing the cellular and secreted proteomes of these two CVC strains. Out of 1017 identified proteins, 128 showed differential abundance between the two strains. Different protein families were represented such as proteases, hemolysin-like proteins, and lipase/esterases, among others. Here we show that the lipase/esterase LesA is among the most abundant secreted proteins of CVC strains as well, and demonstrate its functionality by complementary activity assays. More severe symptoms were observed in Nicotiana tabacum inoculated with strain Fb7 compared to 9a5c. Our results support that systemic symptom development can be accelerated by strains that invest less in biofilm formation and more in plant colonization. This has potential application in modulating the bacterial-plant interaction and reducing disease severity.
Collapse
Affiliation(s)
- Jessica Brito de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Hebréia Oliveira Almeida-Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Adriano Zaini
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Mônica Neli Alves
- Department of Technology, School of Agricultural and Veterinary Studies, São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal SP 14884-900, Brazil;
- Citriculture Defense Fund (Fundecitrus), Av. Dr. Adhemar Pereira de Barros 201, Araraquara SP 14807-040, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Marques Pierry
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Rafael Nascimento
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| |
Collapse
|
43
|
Adhikary R, Kundu S, Maiti PK, Mitra PK, Mandal S, Mandal V. Effect of different stimuli on twitching behavior of endophytic bacteria isolated from Loranthus sp. Jacq. Antonie van Leeuwenhoek 2020; 113:1489-1505. [PMID: 32789713 DOI: 10.1007/s10482-020-01458-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 08/03/2020] [Indexed: 11/29/2022]
Abstract
Bacteria need to adopt to different behavioral tuning depending on the dynamic eco-physiological conditions they are exposed to. One of these adaptive strategies is the use of motility. Here we report the twitching motility response of four endophytic isolates of Bacillus sp. when exposed to different eco-physiological stimuli like different nutrient sources, and mechanical and chemical antagonists on solid surfaces. These endophytic bacteria were isolated from different parts of a hemiparasite Loranthus sp. Jacq. (Loranthaceae) growing on economically important mango trees. The results show that the twitching motility of these bacteria was more when exposed to organic acids, metals salts (among nutrients) and mechanical shearing (stress) than the other factors. Their motility is not affected by surface lubrication or EPS production, but instead is influenced by shear-sensitive structures and affinity to metal ions. Further molecular studies are needed to elucidate the basis of this twitching behaviour on solid surfaces.
Collapse
Affiliation(s)
| | - Smriti Kundu
- University of Gour Banga, Malda, West Bengal, India
| | | | | | | | | |
Collapse
|
44
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
45
|
Del Coco L, Migoni D, Girelli CR, Angilè F, Scortichini M, Fanizzi FP. Soil and Leaf Ionome Heterogeneity in Xylella fastidiosa Subsp. Pauca-Infected, Non-Infected and Treated Olive Groves in Apulia, Italy. PLANTS (BASEL, SWITZERLAND) 2020; 9:E760. [PMID: 32560583 PMCID: PMC7356509 DOI: 10.3390/plants9060760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Xylella fastidiosa subsp. pauca is responsible for the "olive quick decline syndrome" (OQDS) in Salento (Apulia). The main epidemiological aspects of the syndrome are related to the pathogen spread and survival in the area, and to the biology of the insect vector. The assessment of the macro and microelements content (i.e., ionome) in soil and leaves could provide basic and useful information. Indeed, knowledge of host ionomic composition and the possibility of its modification could represent a potential tool for the management of diseases caused by X. fastidiosa. Therefore, soil and leaf ionomes of naturally infected, not infected, and zinc-copper-citric acid biocomplex treated trees of different areas of Apulia and the bordering Basilicata regions were compared. We observed that soil and leaf ionomic composition of olive farms growing in the pathogen-free areas north of the Salento Barletta-Andria-Trani BAT (Apulia) and Potenza PZ (Basilicata, Apulia bordering region) provinces is significantly different from that shown by the infected olive groves of the Salento areas (LE, BR, TA provinces). In particular, a higher content of zinc and copper both in soil and leaves was found in the studied northern areas in comparison to the southern areas. This finding could partly explain the absence of OQDS in those areas. In the infected Salento areas, the leaf ionomic profile resulted as being markedly different for the biocomplex treated compared to the untreated trees. A higher zinc content in leaves characterized treated with respect to untreated trees. On the other hand, among the not-infected trees, Xylella-resistant Leccino showed higher manganese content when compared with the higher pathogen sensitive Ogliarola salentina and Cellina di Nardò. According to these results, soil and olive leaf ionome could provide basic information for the epidemiologic study and possible control of X. f. subsp. pauca in Apulia.
Collapse
Affiliation(s)
- Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Federica Angilè
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics-Research Centre for Olive, Fruit Trees and Citrus Crops, Via di Fioranello, 52, I-00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, I-73100 Lecce, Italy; (L.D.C.); (D.M.); (C.R.G.); (F.A.)
- University of Salento Local Unit of Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Via Celso Ulpiani, 27-70126 Bari, Italy
| |
Collapse
|
46
|
Zhu ML, Wang YH, Dai Y, Wu XQ, Ye JR. Effects of Different Culture Conditions on the Biofilm Formation of Bacillus pumilus HR10. Curr Microbiol 2020; 77:1405-1411. [PMID: 32185467 DOI: 10.1007/s00284-020-01944-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Many studies have focused on the significant role of biofilm formation by Bacillus in the biocontrol process. Bacillus pumilus HR10 is a plant growth-promoting rhizobacterium with multiple biocontrol functions, including promoting growth, controlling pathogens, and assisting in the formation of mycorrhizae. Currently, there is no relevant report on the biofilm formation of B. pumilus HR10 and its influencing factors. B. pumilus HR10 was found to easily form a stable biofilm structure on the surface of media, with awesome swarming ability. The optimum temperature for biofilm formation was 37 °C. B. pumilus HR10 formed most obviously at pH 7.0 and was not extremely sensitive to acidic or alkaline conditions. Most of the polysaccharide components of plant root exudates promoted the biofilm formation by B. pumilus HR10, with glucose having the greatest promoting effect. Low concentrations of Fe2+, Mg2+, Ca2+, K+, and Na+ enhanced biofilm formation. In summary, biofilm formation can improve the tolerance of B. pumilus HR10 to salt and certain heavy metal ion stresses and contribute to its application in different plants and soils with high salinity or heavy metals in the field.
Collapse
Affiliation(s)
- Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
47
|
Ge Q, Cobine PA, De La Fuente L. Copper Supplementation in Watering Solution Reaches the Xylem But Does Not Protect Tobacco Plants Against Xylella fastidiosa Infection. PLANT DISEASE 2020; 104:724-730. [PMID: 31961767 DOI: 10.1094/pdis-08-19-1748-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.
Collapse
Affiliation(s)
- Qing Ge
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
48
|
Anguita-Maeso M, Olivares-García C, Haro C, Imperial J, Navas-Cortés JA, Landa BB. Culture-Dependent and Culture-Independent Characterization of the Olive Xylem Microbiota: Effect of Sap Extraction Methods. FRONTIERS IN PLANT SCIENCE 2020; 10:1708. [PMID: 32038682 PMCID: PMC6988092 DOI: 10.3389/fpls.2019.01708] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/04/2019] [Indexed: 05/03/2023]
Abstract
Microbial endophytes are well known to protect host plants against pathogens, thus representing a promising strategy for the control of xylem-colonizing pathogens. To date, the vast majority of microbial communities inhabiting the olive xylem are unknown; therefore, this work pursues the characterization of the xylem-limited microbiome and determines whether the culture isolation medium, olive genotype, and the plant material used to analyze it can have an effect on the bacterial populations retrieved. Macerated xylem tissue and xylem sap extracted with the Scholander chamber from olive branches obtained from two cultivated and a wild olive genotypes were analyzed using culture-dependent and -independent approaches. In the culture-dependent approach using four solid culture media, a total of 261 bacterial isolates were identified after performing Sanger sequencing of 16S rRNA. Culturable bacteria clustered into 34 genera, with some effect of culture media for bacterial isolation. The cultivated bacteria belonged to four phyla and the most abundant genera included Frigoribacterium (18.8%), Methylobacterium (16.4%), and Sphingomonas (14.6%). On the other hand, in the culture-independent approach conducted using Illumina MiSeq 16S rRNA amplicon sequencing [next-generation sequencing (NGS)] of the xylem extracts, we identified a total of 48 operational taxonomic units (OTUs) belonging to five phyla, being Sphingomonas (30.1%), Hymenobacter (24.1%) and Methylobacterium (22.4%) the most representative genera (>76% of reads). In addition, the results indicated significant differences in the bacterial communities detected in the xylem sap depending on the genotype of the olive tree studied and, to a minor extent, on the type of sap extraction method used. Among the total genera identified using NGS, 14 (41.2%) were recovered in the culture collection, whereas 20 (58.8%) in the culture collection were not captured by the NGS approach. Some of the xylem-inhabiting bacteria isolated are known biocontrol agents of plant pathogens, whereas for others little information is known and are first reported for olive. Consequently, the potential role of these bacteria in conferring olive tree protection against xylem pathogens should be explored in future research.
Collapse
Affiliation(s)
- Manuel Anguita-Maeso
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | | | - Carmen Haro
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Juan Imperial
- Institute of Agricultural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Juan A. Navas-Cortés
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| | - Blanca B. Landa
- Institute for Sustainable Agriculture, Spanish National Research Council (CSIC), Córdoba, Spain
| |
Collapse
|
49
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
50
|
D’Attoma G, Morelli M, Saldarelli P, Saponari M, Giampetruzzi A, Boscia D, Savino VN, De La Fuente L, Cobine PA. Ionomic Differences between Susceptible and Resistant Olive Cultivars Infected by Xylella fastidiosa in the Outbreak Area of Salento, Italy. Pathogens 2019; 8:pathogens8040272. [PMID: 31795218 PMCID: PMC6963573 DOI: 10.3390/pathogens8040272] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Olive quick decline syndrome (OQDS) is a devastating disease of olive trees in the Salento region, Italy. This disease is caused by the bacterium Xylella fastidiosa, which is widespread in the outbreak area; however, the “Leccino” variety of olives has proven to be resistant with fewer symptoms and lower bacterial populations than the “Ogliarola salentina” variety. We completed an empirical study to determine the mineral and trace element contents (viz; ionome) of leaves from infected trees comparing the two varieties, to develop hypotheses related to the resistance of Leccino trees to X. fastidiosa infection. All samples from both cultivars tested were infected by X. fastidiosa, even if leaves were asymptomatic at the time of collection, due to the high disease pressure in the outbreak area and the long incubation period of this disease. Leaves were binned for the analysis by variety, field location, and infected symptomatic and infected asymptomatic status by visual inspection. The ionome of leaf samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) and compared with each other. These analyses showed that Leccino variety consistently contained higher manganese (Mn) levels compared with Ogliarola salentina, and these levels were higher in both infected asymptomatic and infected symptomatic leaves. Infected asymptomatic and infected symptomatic leaves within a host genotype also showed differences in the ionome, particularly a higher concentration of calcium (Ca) and Mn levels in the Leccino cultivar, and sodium (Na) in both varieties. We hypothesize that the ionome differences in the two varieties contribute to protection against disease caused by X. fastidiosa infection.
Collapse
Affiliation(s)
- Giusy D’Attoma
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (G.D.); (A.G.); (V.N.S.)
- Italian National Research Council, Institute for Sustainable Plant Protection, 70126 Bari, Italy; (M.M.); (P.S.); (M.S.); (D.B.)
| | - Massimiliano Morelli
- Italian National Research Council, Institute for Sustainable Plant Protection, 70126 Bari, Italy; (M.M.); (P.S.); (M.S.); (D.B.)
| | - Pasquale Saldarelli
- Italian National Research Council, Institute for Sustainable Plant Protection, 70126 Bari, Italy; (M.M.); (P.S.); (M.S.); (D.B.)
| | - Maria Saponari
- Italian National Research Council, Institute for Sustainable Plant Protection, 70126 Bari, Italy; (M.M.); (P.S.); (M.S.); (D.B.)
| | - Annalisa Giampetruzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (G.D.); (A.G.); (V.N.S.)
| | - Donato Boscia
- Italian National Research Council, Institute for Sustainable Plant Protection, 70126 Bari, Italy; (M.M.); (P.S.); (M.S.); (D.B.)
| | - Vito Nicola Savino
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (G.D.); (A.G.); (V.N.S.)
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|