1
|
Shah AB, Cho H, Shim SH. Exploring the bioactive landscape: peptides and non-peptides from the human microbiota. NPJ Biofilms Microbiomes 2025; 11:76. [PMID: 40341751 PMCID: PMC12062242 DOI: 10.1038/s41522-025-00713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
The human microbiota, consisting of trillions of bacteria from six main phyla, produces peptide and non-peptide secondary metabolites which have antibacterial properties vital to medicine and biotechnology. These metabolites influence biological processes linked to diseases, yet much remains unknown. This review explores their structures and functions, aiming to spur novel metabolite discovery and advance drug development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyeonjae Cho
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Sun M, Li Q, Zhang F, Yao D, Huang W, Lv Q, Jiang H, Kong D, Ren Y, Chen S, Jiang Y, Liu P. The Genomic Characteristics of Potential Probiotics: Two Streptococcus salivarius Isolates from a Healthy Individual in China. Microorganisms 2025; 13:694. [PMID: 40142586 PMCID: PMC11945364 DOI: 10.3390/microorganisms13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The isolation and characterization of novel probiotics from dairy products, fermented foods, and the gut have gained significant attention. In particular, Streptococcus salivarius shows promise for use in oral probiotic preparations. In this study, we isolated two strains of S. salivarius-S.82.15 and S.82.20-from the oral cavity of a healthy individual. These strains exhibited distinct antimicrobial profiles. We thoroughly assessed the morphology and growth patterns of both strains and confirmed auto-aggregation and hemolytic activity. Through comprehensive genomic analysis, we found notable strain differences within the same bacterial species isolated from the same individual. Notably, the presence or absence of plasmids varied between the two strains. The genome of S.82.15 spans 2,175,688 bps and contains 1994 coding DNA sequences (CDSs), while S.82.20 has a genome size of 2,414,610 bps, a GC content of 40.62%, and 2276 annotated CDSs. Both strains demonstrated antibacterial activity against Group A Streptococcus (GAS), Micrococcus. luteus, and Porphyromonas gingivalis. To investigate the antibacterial properties further, we identified a gene cluster of salivaricin 9 on the plasmid of S.82.20 and a blp gene family on the chromosomes of both S.82.15 and S.82.20. Moreover, the gene expression of the blp family was upregulated when the isolated strains were co-cultured with GAS.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Feiran Zhang
- Division of Fifth, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ding Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Peng Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| |
Collapse
|
3
|
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025; 13:555. [PMID: 40142448 PMCID: PMC11944278 DOI: 10.3390/microorganisms13030555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
This review highlights several basic problems associated with bacterial drug resistance, including the decreasing efficacy of commercially available antimicrobials as well as the related problem of microbiome irregularity and dysbiosis. The article explains that this present situation is addressable through LAB species, such as Streptococcus salivarius and Ligilactobacillus salivarius, which are well established synthesizers of both broad- and narrow-spectrum antimicrobials. The sheer number of antimicrobials produced by LAB species and the breadth of their biological effects, both in terms of their bacteriostatic/bactericidal abilities and their immunomodulation, make them prime candidates for new probiotics and antibiotics. Given the ease with which several of the molecules can be biochemically engineered and the fact that many of these compounds target evolutionarily constrained target sites, it seems apparent that these compounds and their producing organisms ought to be looked at as the next generation of robust dual action symbiotic drugs.
Collapse
Affiliation(s)
| | - Leif Smith
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
- Antimicrobial Division, Sano Chemicals Inc., Bryan, TX 77808, USA
| |
Collapse
|
4
|
Lawrence GW, Garcia-Gutierrez E, O’Mahony AK, Walsh CJ, O'Connor PM, Begley M, Guinane CM, Cotter PD. A gut-derived Streptococcus salivarius produces the novel nisin variant designated nisin G and inhibits Fusobacterium nucleatum in a model of the human distal colon microbiome. mBio 2025; 16:e0157324. [PMID: 39692472 PMCID: PMC11796361 DOI: 10.1128/mbio.01573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Fusobacterium nucleatum is a human pathogen associated with intestinal conditions including colorectal cancer. Screening for gut-derived strains that exhibit anti-F. nucleatum activity in vitro revealed Streptococcus salivarius DPC6487 as a strain of interest. Whole-genome sequencing of S. salivarius DPC6487 identified a nisin operon with a novel structural variant designated nisin G. The structural nisin G peptide differs from the prototypical nisin A with respect to seven amino acids (Ile4Tyr, Ala15Val, Gly18Ala, Asn20His, Met21Leu, His27Asn, and His31Ile), including differences that have not previously been associated with a natural nisin variant. The nisin G gene cluster consists of nsgGEFABTCPRK with transposases encoded between the nisin G structural gene (nsgA) and nsgF, notably lacking an equivalent to the nisI immunity determinant. S. salivarius DPC6487 exhibited a narrower spectrum of activity in vitro compared to the nisin A-producing Lactococcus lactis NZ9700. Nisin G-producing S. salivarius DPC6487 demonstrated the ability to control F. nucleatum DSM15643 in an ex vivo model colonic environment while exerting minimal impact on the surrounding microbiota. The production of this bacteriocin by a gut-derived S. salivarius, its narrow-spectrum activity, and its anti-F. nucleatum activity in a model colonic environment indicates that this strain merits further attention with a view to harnessing its probiotic potential.IMPORTANCEFusobacterium nucleatum is a human pathogen associated with intestinal conditions, including colorectal cancer, making it a potentially important therapeutic target. Bacteriocin-producing probiotic bacteria demonstrate the potential to target disease-associated taxa in situ in the gut. A gut-derived strain Streptococcus salivarius DPC6487 was found to demonstrate anti-F. nucleatum activity, which was attributable to a gene encoding a novel nisin variant designated nisin G. Nisin G-producing S. salivarius DPC6487 demonstrated the ability to control an infection of F. nucleatum in a simulated model of the human distal colon while exerting minimal impact on the surrounding microbiota. Here, we describe this nisin variant produced by S. salivarius, a species that is frequently a focus for probiotic development. The production of nisin G by a gut-derived S. salivarius, its narrow-spectrum activity against F. nucleatum, and its anti-F. nucleatum activity in a model colonic environment warrants further research to determine its probiotic-related applications.
Collapse
Affiliation(s)
- Garreth W. Lawrence
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - A. Kate O’Mahony
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | | | - Paula M. O'Connor
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Máire Begley
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Caitriona M. Guinane
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
5
|
Shah AB, Shim SH. Human microbiota peptides: important roles in human health. Nat Prod Rep 2025; 42:151-194. [PMID: 39545326 DOI: 10.1039/d4np00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Covering: 1974 to 2024Human microbiota consist of a diverse array of microorganisms, such as bacteria, Eukarya, archaea, and viruses, which populate various parts of the human body and live in a cooperatively beneficial relationship with the host. They play a crucial role in supporting the functional balance of the microbiome. The coevolutionary progression has led to the development of specialized metabolites that have the potential to substitute traditional antibiotics in combating global health challenges. Although there has been a lot of research on the human microbiota, there is a considerable lack of understanding regarding the wide range of peptides that these microbial populations produce. Particularly noteworthy are the antibiotics that are uniquely produced by the human microbiome, especially by bacteria, to protect against invasive infections. This review seeks to fill this knowledge gap by providing a thorough understanding of various peptides, along with their in-depth biological importance in terms of human disorders. Advancements in genomics and the understanding of molecular mechanisms that control the interactions between microbiota and hosts have made it easier to find peptides that come from the human microbiome. We hope that this review will serve as a basis for developing new therapeutic approaches and personalized healthcare strategies. Additionally, it emphasizes the significance of these microbiota in the field of natural product discovery and development.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
8
|
Guryanova SV. Immunomodulation, Bioavailability and Safety of Bacteriocins. Life (Basel) 2023; 13:1521. [PMID: 37511896 PMCID: PMC10381439 DOI: 10.3390/life13071521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The rise of antibiotic-resistant bacteria and the emergence of new pathogens have created a need for new strategies to fight against infectious diseases. One promising approach is the use of antimicrobial peptides produced by a certain species of bacteria, known as bacteriocins, which are active against other strains of the same or related species. Bacteriocins can help in the treatment and prevention of infectious diseases. Moreover, bacteriocins can be obtained in prokaryotic organisms, and contribute s to their widespread use. While the use of bacteriocins is currently limited to the food industry (for example, nisin is used as a preservative, E234), a large number of studies on their microbicidal properties suggest that their use in medicine may increase in the foreseeable future. However, for the successful use of bacteriocins in medicine, it is necessary to understand their effect on the immune system, especially in cases where immunity is weakened due to infectious processes, oncological, allergic, or autoimmune diseases. Studies on the immuno-modulatory activity of bacteriocins in animal models and human cells have revealed their ability to induce both pro-inflammatory and anti-inflammatory factors involved in the implementation of innate immunity. The influence of bacteriocins on acquired immunity is revealed by an increase in the number of T-lymphocytes with a simultaneous decrease in B-lymphocyte levels, which makes them attractive substances for reducing inflammation. The widespread use of bacteriocins in the food industry, their low toxicity, and their broad and narrow specificity are reasons for researchers to pay attention to their immunomodulatory properties and explore their medical applications. Inflammation regulation by bacteriocins can be used in the treatment of various pathologies. The aim of the review was to analyze scientific publications on the immunomodulatory activity, bioavailability, and safety of bacteriocins in order to use the data obtained to organize preclinical and clinical studies.
Collapse
Affiliation(s)
- Svetlana V Guryanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Medical Institute, Peoples' Friendship University of Russia (RUDN University) of the Ministry of Science and Higher Education of the Russian Federation, 117198 Moscow, Russia
| |
Collapse
|
9
|
Field D, Fernandez de Ullivarri M, Ross RP, Hill C. After a century of nisin research - where are we now? FEMS Microbiol Rev 2023; 47:fuad023. [PMID: 37300874 PMCID: PMC10257480 DOI: 10.1093/femsre/fuad023] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
It is almost a century since nisin was discovered in fermented milk cultures, coincidentally in the same year that penicillin was first described. Over the last 100 years this small, highly modified pentacyclic peptide has not only found success in the food industry as a preservative but has also served as the paradigm for our understanding of the genetic organization, expression, and regulation of genes involved in lantibiotic biosynthesis-one of the few cases of extensive post-translation modification in prokaryotes. Recent developments in understanding the complex biosynthesis of nisin have shed light on the cellular location of the modification and transport machinery and the co-ordinated series of spatio-temporal events required to produce active nisin and provide resistance and immunity. The continued unearthing of new natural variants from within human and animal gastrointestinal tracts has sparked interest in the potential application of nisin to influence the microbiome, given the growing recognition of the role the gastrointestinal microbiota plays in health and disease. Moreover, interdisciplinary approaches have taken advantage of biotechnological advancements to bioengineer nisin to produce novel variants and expand nisin functionality for applications in the biomedical field. This review will discuss the latest progress in these aspects of nisin research.
Collapse
Affiliation(s)
- Des Field
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork,Western Road, Cork T12 YN60, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 YT20, Ireland
| |
Collapse
|
10
|
Sevillano E, Peña N, Lafuente I, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3. Int J Mol Sci 2023; 24:ijms24076813. [PMID: 37047785 PMCID: PMC10095417 DOI: 10.3390/ijms24076813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.
Collapse
Affiliation(s)
- Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
11
|
Abstract
Oral commensal streptococci are primary colonizers of the oral cavity. These streptococci produce many adhesins, metabolites, and antimicrobials that modulate microbial succession and diversity within the oral cavity. Often, oral commensal streptococci antagonize cariogenic and periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis, respectively. Mechanisms of antagonism are varied and range from the generation of hydrogen peroxide, competitive metabolite scavenging, the generation of reactive nitrogen intermediates, and bacteriocin production. Furthermore, several oral commensal streptococci have been shown to alter the host immune response at steady state and in response to oral pathogens. Collectively, these features highlight the remarkable ability of oral commensal streptococci to regulate the structure and function of the oral microbiome. In this review, we discuss mechanisms used by oral commensal streptococci to interact with diverse oral pathogens, both physically and through the production of antimicrobials. Finally, we conclude by exploring the critical roles of oral commensal streptococci in modulating the host immune response and maintaining health and homeostasis.
Collapse
Affiliation(s)
- Joshua J. Baty
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara N. Stoner
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica A. Scoffield
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Todorov SD, Popov I, Weeks R, Chikindas ML. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods 2022; 11:foods11193145. [PMID: 36230222 PMCID: PMC9563261 DOI: 10.3390/foods11193145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
This review’s objective was to critically revisit various research approaches for studies on the application of beneficial organisms and bacteriocins as effective biopreservatives in the food industry. There are a substantial number of research papers reporting newly isolated bacterial strains from fermented food products and their application as potential probiotics, including partial characterization of bacteriocins produced by these microorganisms. Most of these studies follow scientific community-accepted standard procedures and propose various applications of the studied strains and bacteriocins as potential biopreservatives for the food industry. A few investigations go somewhat further, performing model studies, exploring the application of expressed bacteriocins in a designed food product, or trying to evaluate the effectiveness of the studied potential probiotics and bacteriocins against foodborne pathogens. Some authors propose applications of bacteriocin producers as starter cultures and are exploring in situ bacteriocin production to aid in the effective control of foodborne pathogens. However, few studies have evaluated the possible adverse effects of bacteriocins, such as toxicity. This comes from well-documented reports on bacteriocins being mostly non-immunogenic and having low cytotoxicity because most of these proteinaceous molecules are small peptides. However, some studies have reported on bacteriocins with noticeable cytotoxicity, which may become even more pronounced in genetically engineered or modified bacteriocins. Moreover, their cytotoxicity can be very specific and is dependent on the concentration of the bacteriocin and the nature of the targeted cell. This will be discussed in detail in the present review.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Correspondence: ; Tel.: +359-88-9583119
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Soltani S, Zirah S, Rebuffat S, Couture F, Boutin Y, Biron E, Subirade M, Fliss I. Gastrointestinal Stability and Cytotoxicity of Bacteriocins From Gram-Positive and Gram-Negative Bacteria: A Comparative in vitro Study. Front Microbiol 2022; 12:780355. [PMID: 35145490 PMCID: PMC8824275 DOI: 10.3389/fmicb.2021.780355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteriocins are receiving increased attention as potent candidates in food preservation and medicine. Although the inhibitory activity of bacteriocins has been studied widely, little is known about their gastrointestinal stability and toxicity toward normal human cell lines. The aim of this study was to evaluate the gastrointestinal stability and activity of microcin J25, pediocin PA-1, bactofencin A and nisin using in vitro models. In addition cytotoxicity and hemolytic activity of these bacteriocins were investigated on human epithelial colorectal adenocarcinoma cells (Caco-2) and rat erythrocytes, respectively. Pediocin PA-1, bactofencin A, and nisin were observed to lose their stability while passing through the gastrointestinal tract, while microcin J25 is only partially degraded. Besides, selected bacteriocins were not toxic to Caco-2 cells, and integrity of cell membrane was observed to remain unaffected in presence of these bacteriocins at concentrations up to 400 μg/mL. In hemolysis study, pediocin PA-1, bactofencin A, and nisin were observed to lyse rat erythrocytes at concentrations higher than 50 μg/mL, while microcin J25 showed no effect on these cells. According to data indicating gastrointestinal degradation and the absence of toxicity of pediocin PA-1, bactofencin A, and microcin J25 they could potentially be used in food or clinical applications.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, QC, Canada
| | - Séverine Zirah
- Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS-MNHN, Paris, France
| | - Sylvie Rebuffat
- Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms, UMR 7245 CNRS-MNHN, Paris, France
| | | | - Yvan Boutin
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, QC, Canada
- TransBIOTech, Lévis, QC, Canada
| | - Eric Biron
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada
| | - Muriel Subirade
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada
| | - Ismail Fliss
- Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC, Canada
- *Correspondence: Ismail Fliss,
| |
Collapse
|
14
|
Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Arch Microbiol 2021; 204:61. [PMID: 34940898 PMCID: PMC8702511 DOI: 10.1007/s00203-021-02700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022]
Abstract
Animal microbiota is becoming an object of interest as a source of beneficial bacteria for commercial use. Moreover, the escalating problem of bacterial resistance to antibiotics is threatening animals and humans; therefore, in the last decade intensive search for alternative antimicrobials has been observed. In this study, lactic acid bacteria (LAB) were isolated from suckling and weaned pigs feces (376) and characterized to determine their functional properties and usability as pigs additives. Selection of the most promising LAB was made after each stage of research. Isolates were tested for their antimicrobial activity (376) and susceptibility to antibiotics (71). Selected LAB isolates (41) were tested for the production of organic acids, enzymatic activity, cell surface hydrophobicity and survival in gastrointestinal tract. Isolates selected for feed additive (5) were identified by MALDI-TOF mass spectrometry and partial sequence analysis of 16S rRNA gene, represented by Lentilactobacillus, Lacticaseibacillus (both previously classified as Lactobacillus) and Pediococcus genus. Feed additive prototype demonstrated high viability after lyophilization and during storage at 4 °C and − 20 °C for 30 days. Finally, feed additive was tested for survival in simulated alimentary tract of pigs, showing viability at the sufficient level to colonize the host. Studies are focused on obtaining beneficial strains of LAB with probiotic properties for pigs feed additive.
Collapse
|
15
|
Characterization of Aminoglycoside Modifying Enzymes Producing E. coli and Klebsiella pneumoniae Clinical Isolates. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance gene profile characterization and dissemination offer useful detail on the possible challenge in treating bacteria. The development of aminoglycoside modifying enzymes (AMEs) is considered as the primary mechanism of resistance to aminoglycosides, in addition to the 16S rRNA methylases. This study aimed at isolation and characterization of aminoglycosides resistant clinical isolates of enterobacteriaceae family from different clinical samples. Over a period of 24 months, thirty samples were collected and 49 clinical isolates of E. coli [n=25], Klebsiella [n=13], Enterobacter species (n=7) and Proteus species (n=4) were isolated from Egyptian clinical laboratories. The identities of the cultures were confirmed following standard microbiological procedures. Resistance of the isolates to aminoglycosides was determined by the disc diffusion method and isolates with highest resistance (n=9) were selected and investigated for 16S rRNA methylase and AMES encoding genes by polymerase chain reaction (PCR) and sequencing. In general, aminoglycoside resistance was found in 95% of the isolates; the isolates displayed the highest rate of resistance to netilmicin (75%) and kanamycin (55%), while resistance to gentamycin (18%) and tobramycin (16%) was low. A total of 9 isolates have the highest aminoglycoside resistant rate, showed the highest appearance for aac(6′)-Ib as well as ant (3″)-Ia resistant genes, with aac (3)-II (44%) and ant (4′)-IIb (34%) following closely. The high prevalence of AMEs observed among resistant isolates in this study suggests the urgent need for more efficient treatment designs to mitigate the selection burden as well as improved care of patients who have been infected with these drug-resistant organisms.
Collapse
|
16
|
Biogeography of Bacterial Communities and Specialized Metabolism in Human Aerodigestive Tract Microbiomes. Microbiol Spectr 2021; 9:e0166921. [PMID: 34704787 PMCID: PMC8549736 DOI: 10.1128/spectrum.01669-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aerodigestive tract (ADT) is the primary portal through which pathogens and other invading microbes enter the body. As the direct interface with the environment, we hypothesize that the ADT microbiota possess biosynthetic gene clusters (BGCs) for antibiotics and other specialized metabolites to compete with both endogenous and exogenous microbes. From 1,214 bacterial genomes, representing 136 genera and 387 species that colonize the ADT, we identified 3,895 BGCs. To determine the distribution of BGCs and bacteria in different ADT sites, we aligned 1,424 metagenomes, from nine different ADT sites, onto the predicted BGCs. We show that alpha diversity varies across the ADT and that each site is associated with distinct bacterial communities and BGCs. We identify specific BGC families enriched in the buccal mucosa, external naris, gingiva, and tongue dorsum despite these sites harboring closely related bacteria. We reveal BGC enrichment patterns indicative of the ecology at each site. For instance, aryl polyene and resorcinol BGCs are enriched in the gingiva and tongue, which are colonized by many anaerobes. In addition, we find that streptococci colonizing the tongue and cheek possess different ribosomally synthesized and posttranslationally modified peptide BGCs. Finally, we highlight bacterial genera with BGCs but are underexplored for specialized metabolism and demonstrate the bioactivity of Actinomyces against other bacteria, including human pathogens. Together, our results demonstrate that specialized metabolism in the ADT is extensive and that by exploring these microbiomes further, we will better understand the ecology and biogeography of this system and identify new bioactive natural products. IMPORTANCE Bacteria produce specialized metabolites to compete with other microbes. Though the biological activities of many specialized metabolites have been determined, our understanding of their ecology is limited, particularly within the human microbiome. As the aerodigestive tract (ADT) faces the external environment, bacteria colonizing this tract must compete both among themselves and with invading microbes, including human pathogens. We analyzed the genomes of ADT bacteria to identify biosynthetic gene clusters (BGCs) for specialized metabolites. We found that the majority of ADT BGCs are uncharacterized and the metabolites they encode are unknown. We mapped the distribution of BGCs across the ADT and determined that each site is associated with its own distinct bacterial community and BGCs. By further characterizing these BGCs, we will inform our understanding of ecology and biogeography across the ADT, and we may uncover new specialized metabolites, including antibiotics.
Collapse
|
17
|
Purification and characterization of bacteriocins-like inhibitory substances from food isolated Enterococcus faecalis OS13 with activity against nosocomial enterococci. Sci Rep 2021; 11:3795. [PMID: 33589735 PMCID: PMC7884432 DOI: 10.1038/s41598-021-83357-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
Nosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13β) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13β were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13β was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13β represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.
Collapse
|
18
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
19
|
García-Curiel L, Del Rocío López-Cuellar M, Rodríguez-Hernández AI, Chavarría-Hernández N. Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World J Microbiol Biotechnol 2021; 37:15. [PMID: 33394178 DOI: 10.1007/s11274-020-02973-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms have developed quorum sensing (QS) systems to detect small signaling molecules that help to control access to additional nutrients and space in highly competitive polymicrobial niches. Many bacterial processes are QS-regulated; two examples are the highly related traits of the natural genetic competence state and the production of antimicrobial peptides such as bacteriocins. The Streptococcus genus is widely studied for its competence and for its ability to produce bacteriocins, as these antimicrobial peptides have significant potential in the treatment of infections caused by multiple-resistant pathogens, a severe public health issue. The transduction of a two-component system controls competence in streptococci: (1) ComD/E, which controls the competence in the Mitis and Anginosus groups, and (2) ComR/S, which performs the same function in the Bovis, Mutans, Salivarius, and Pyogenic groups. The cell-to-cell communication required for bacteriocin production in the Streptococcus groups is controlled mainly by a paralog of the ComD/E system. The relationships between pheromone signals and induction pathways are related to the bacteriocin production systems. In this review, we discuss the recent advances in the understanding of signaling and the induction of bacteriocin biosynthesis by QS regulation in streptococci. This information could aid in the design of better methods for the development and production of these antimicrobial peptides. It could also contribute to the analysis and emerging applications of bacteriocins in terms of their safety, quality, and human health benefits.
Collapse
Affiliation(s)
- Laura García-Curiel
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Ma Del Rocío López-Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México.
| | - Adriana Inés Rodríguez-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| | - Norberto Chavarría-Hernández
- Cuerpo Académico de Biotecnología Agroalimentaria, Instituto de Ciencias Agropecuarias-Universidad Autónoma del Estado de Hidalgo, Tulancingo de Bravo, México
| |
Collapse
|
20
|
Hussein WE, Abdelhamid AG, Rocha-Mendoza D, García-Cano I, Yousef AE. Assessment of Safety and Probiotic Traits of Enterococcus durans OSY-EGY, Isolated From Egyptian Artisanal Cheese, Using Comparative Genomics and Phenotypic Analyses. Front Microbiol 2020; 11:608314. [PMID: 33362752 PMCID: PMC7759505 DOI: 10.3389/fmicb.2020.608314] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
An Enterococcus durans strain, designated OSY-EGY, was previously isolated from artisanal cheese. In this work, comparative genomic and phenotypic analyses were utilized to assess the safety characteristics and probiotic traits of the bacterium. The comparative genomic analysis revealed that the strain is distantly related to potentially pathogenic Enterococcus spp. The genome was devoid of genes encoding acquired antibiotic resistance or marker virulence factors associated with Enterococcus spp. Phenotypically, the bacterium is susceptible to vancomycin, ampicillin, tetracycline, chloramphenicol, and aminoglycosides and does not have any hemolytic or gelatinase activity, or cytotoxic effect on Caco-2 cells. Altogether, these findings confirm the lack of hazardous traits in E. durans OSY-EGY. Mining E. durans OSY-EGY genome, for probiotic-related sequences, revealed genes associated with acid and bile salts tolerance, adhesion, competitiveness, antioxidant activitiy, antimicrobial activity, essential amino acids production, and vitamins biosynthesis. Phenotypically, E. durans OSY-EGY was tolerant to acidic pH (3.0), and presence of 0.3% bile salts. The bacterium showed adhesion capability to Caco-2 cells, cholesterol-lowering effect, DPPH scavenging activity, and antimicrobial activity against several Gram-positive pathogenic bacteria. Based on the current work, we propose that E. durans OSY-EGY is a potentially safe strain with desirable probiotic and antimicrobial traits. Thus, the investigated strain could be a promising candidate for several industrial applications.
Collapse
Affiliation(s)
- Walaa E. Hussein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology and Immunology, National Research Center, Giza, Egypt
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Diana Rocha-Mendoza
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Ng ZJ, Zarin MA, Lee CK, Tan JS. Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 2020; 10:38937-38964. [PMID: 35518417 PMCID: PMC9057404 DOI: 10.1039/d0ra06161a] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases caused by bacteria that can be transmitted via food, livestock and humans are always a concern to the public, as majority of them may cause severe illnesses and death. Antibacterial agents have been investigated for the treatment of bacterial infections. Antibiotics are the most successful antibacterial agents that have been used widely for decades to ease human pain caused by bacterial infections. Nevertheless, the emergence of antibiotic-resistant bacteria has raised awareness amongst public about the downside of using antibiotics. The threat of antibiotic resistance to global health, food security and development has been emphasized by the World Health Organization (WHO), and research studies have been focused on alternative antimicrobial agents. Bacteriocin, a natural antimicrobial peptide, has been chosen to replace antibiotics for its application in food preservation and infectious disease treatment for livestock and humans, as it is less toxic.
Collapse
Affiliation(s)
- Zhang Jin Ng
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Mazni Abu Zarin
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Chee Keong Lee
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia 11800 Gelugor Pulau Pinang Malaysia +604 6536375 +604 6536376
| |
Collapse
|
22
|
Barbour A, Wescombe P, Smith L. Evolution of Lantibiotic Salivaricins: New Weapons to Fight Infectious Diseases. Trends Microbiol 2020; 28:578-593. [PMID: 32544444 DOI: 10.1016/j.tim.2020.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/20/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Lantibiotic salivaricins are polycyclic peptides containing lanthionine and/or β-methyllanthionine residues produced by certain strains of Streptococcus salivarius, which almost exclusively reside in the human oral cavity. The importance of these molecules stems from their antimicrobial activity towards relevant oral pathogens which has so far been applied through the development of salivaricin-producing probiotic strains. However, salivaricins may also prove to be of great value in the development of new and novel antibacterial therapies in this era of emerging antibiotic resistance. In this review, we describe the biosynthesis, antimicrobial activity, structure, and mode of action of the lantibiotic salivaricins characterized to date. Moreover, we also provide an expert opinion and suggestions for future development of this important field of microbiology.
Collapse
Affiliation(s)
| | - Philip Wescombe
- Yili Innovation Center Oceania, Lincoln University, Christchurch, New Zealand
| | - Leif Smith
- Department of Biology, College of Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
23
|
Ahmad A, Majaz S, Nouroz F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology (Reading) 2020; 166:4-20. [DOI: 10.1099/mic.0.000823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria offer resistance to a broad range of antibiotics by activating their export channels of ATP-binding cassette transporters. These transporters perform a central role in vital processes of self-immunity, antibiotic transport and resistance. The majority of ATP-binding cassette transporters are capable of detecting the presence of antibiotics in an external vicinity and are tightly regulated by two-component systems. The presence of an extracellular loop and an adjacent location of both the transporter and two-component system offers serious assistance to induce a quick and specific response against antibiotics. Both systems have demonstrated their ability of sensing such agents, however, the exact mechanism is not yet fully established. This review highlighted the three key functions of antibiotic resistance, transport and self-immunity of ATP-binding cassette transporters and an adjacent two-component regulatory system.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
24
|
Heng NCK, Stanton JAL. Next-generation DNA sequencing of oral microbes at the Sir John Walsh Research Institute: technologies, tools and achievements. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1687530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nicholas C. K. Heng
- Sir John Walsh Research Institute, Faculty of Dentistry, The University of Otago, Dunedin, New Zealand
| | - Jo-Ann L. Stanton
- Department of Anatomy, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
25
|
Derovs A, Laivacuma S, Krumina A. Targeting Microbiota: What Do We Know about It at Present? ACTA ACUST UNITED AC 2019; 55:medicina55080459. [PMID: 31405111 PMCID: PMC6723830 DOI: 10.3390/medicina55080459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
The human microbiota is a variety of different microorganisms. The composition of microbiota varies from host to host, and it changes during the lifetime. It is known that microbiome may be changed because of a diet, bacteriophages and different processes for example, such as inflammation. Like all other areas of medicine, there is a continuous growth in the area of microbiology. Different microbes can reside in all sites of a human body, even in locations that were previously considered as sterile; for example, liver, pancreas, brain and adipose tissue. Presently one of the etiological factors for liver disease is considered to be pro-inflammatory changes in a host’s organism. There are lot of supporting data about intestinal dysbiosis and increased intestinal permeability and its effect on development of liver disease pointing to the gut–liver axis. The gut–liver axis affects pathogenesis of many liver diseases, such as chronic hepatitis B, chronic hepatitis C, alcoholic liver disease, non-alcoholic liver disease, non-alcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma. Gut microbiota has been implicated in the regulation of brain health, emphasizing the gut–brain axis. Also, experiments with mice showed that microorganisms have significant effects on the blood–brain barrier integrity. Microbiota can modulate a variety of mechanisms through the gut–liver axis and gut–brain axis. Normal intestinal flora impacts the health of a host in many positive ways, but there is now significant evidence that intestinal microbiota, especially altered, have the ability to impact the pathologies of many diseases through different inflammatory mechanisms. At this point, many of the pathophysiological reactions in case of microbial disbyosis are still unclear.
Collapse
Affiliation(s)
- Aleksejs Derovs
- Riga Stradins University, Department of Internal Medicine, LV-1007 Riga, Latvia.
- Riga East Clinical University Hospital, LV-1038 Riga, Latvia.
- Riga Stradins University, Department of Infectology and Dermatology, LV-1007 Riga, Latvia.
| | - Sniedze Laivacuma
- Riga East Clinical University Hospital, LV-1038 Riga, Latvia
- Riga Stradins University, Department of Infectology and Dermatology, LV-1007 Riga, Latvia
| | - Angelika Krumina
- Riga East Clinical University Hospital, LV-1038 Riga, Latvia
- Riga Stradins University, Department of Infectology and Dermatology, LV-1007 Riga, Latvia
| |
Collapse
|
26
|
Bypassing lantibiotic resistance by an effective nisin derivative. Bioorg Med Chem 2019; 27:3454-3462. [PMID: 31253534 DOI: 10.1016/j.bmc.2019.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
The need for new antibiotic compounds is rising and antimicrobial peptides are excellent candidates to fulfill this object. The bacteriocin subgroup lantibiotics, for example, are active in the nanomolar range and target the membranes of mainly Gram-positive bacteria. They bind to lipid II, inhibit cell growth and in some cases form pores within the bacterial membrane, inducing rapid cell death. Pharmaceutical usage of lantibiotics is however hampered by the presence of gene clusters in human pathogenic strains which, when expressed, confer resistance. The human pathogen Streptococcus agalactiae COH1, expresses several lantibiotic resistance proteins resulting in resistance against for example nisin. This study presents a highly potent, pore forming nisin variant as an alternative lantibiotic which bypasses the SaNSR protein. It is shown that this nisin derivate nisinC28P keeps its nanomolar antibacterial activity against L. lactis NZ9000 cells but is not recognized by the nisin resistance protein SaNSR. NisinC28P is cleaved by SaNSR in vitro with a highly decreased efficiency, as shown by an cleavage assay. Furthermore, we show that nisinC28P is still able to form pores in the membranes of L. lactis and is three times more efficient against SaNSR-expressing L. lactis cells than wildtype nisin.
Collapse
|
27
|
Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol 2019; 27:690-702. [PMID: 30987817 DOI: 10.1016/j.tim.2019.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
With the specter of resurgence of pathogens due to the propagation of antibiotic-resistance genes, innovative antimicrobial strategies are needed. In this review, we summarize the beneficial aspects of bacteriocins, a set of miscellaneous peptide-based bacterium killers, compared with classical antibiotics, and emphasize their use in cocktails to curb the emergence of new resistance. We highlight that their prey spectrum, their molecular malleability, and their multiple modes of production might lead to specific and personalized treatments to prevent systemic disorders. Complementarily, we discuss how we might exploit prevailing bacterial commensals, such as Streptococcus salivarius, and deliberately mobilize their bacteriocin arsenal 'on site' to cure multiresistant infections or finely reshape the endogenous microbiota for prophylaxis purposes.
Collapse
Affiliation(s)
- Pascal Hols
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Laura Ledesma-García
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Philippe Gabant
- Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium
| | - Johann Mignolet
- Biochemistry and Genetics of Microorganisms (BGM), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, 1348 Louvain-la-Neuve, Belgium; Syngulon, rue du Bois Saint-Jean 15/1, 4102, Seraing, Belgium.
| |
Collapse
|
28
|
El-Helw NO, El-Gendy AO, El-Gebaly E, Hassan HM, Rateb ME, El-Nesr KA. Characterization of natural bioactive compounds produced by isolated bacteria from compost of aromatic plants. J Appl Microbiol 2018; 126:443-451. [PMID: 30142693 DOI: 10.1111/jam.14085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
Abstract
AIMS This study aimed to highlight the importance of compost from aromatic plants as a stunning source for several bio active compounds generated from their inhabited thermophilic bacteria. Some of the isolated compounds could have a potential role in the treatment of microbial infections. METHODS AND RESULTS A total of forty different thermophilic bacteria were isolated from compost samples during their thermophilic stage. These isolates were tested for their antimicrobial capabilities against different Gram-positive and -negative bacteria using agar diffusion and double layer agar methods. The potential isolates were further identified based on morphological, biochemical and 16S rRNA gene sequencing methods. They were subjected to submerged state fermentation and the total crude metabolites were recovered using ethyl acetate (EtOAc) extraction. All bioactive metabolites were identified using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). It was observed that 2 out of 40 isolates were remarkably active against Gram-positive bacteria. These isolates were genetically identified as Bacillus species and their different active metabolites were characterized in the EtOAc extracts using LC-HRMS. CONCLUSION Liquid chromatography coupled with high-resolution mass spectrometry analysis of EtOAc extracts revealed the presence of active metabolites that are responsible for antimicrobial activities. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first time to identify bioactive antimicrobial metabolites from retrieved compost micro-organisms in Egypt. So, compost could be a beneficial area for research as a reliable and continuous natural source for different uncountable communities of bacteria.
Collapse
Affiliation(s)
- N O El-Helw
- Biotechnology and Life Science Department, Faculty of Post Graduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - A O El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - E El-Gebaly
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - H M Hassan
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - M E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, Scotland, UK
| | - K A El-Nesr
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
29
|
Choudhary J, Dubey RC, Sengar G, Dheeman S. Evaluation of Probiotic Potential and Safety Assessment of Lactobacillus pentosus MMP4 Isolated From Mare’s Lactation. Probiotics Antimicrob Proteins 2018; 11:403-412. [DOI: 10.1007/s12602-018-9431-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Lactobacillus casei and Lactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions. Probiotics Antimicrob Proteins 2018. [DOI: 10.1007/s12602-018-9406-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Glatz M, Jo JH, Kennedy EA, Polley EC, Segre JA, Simpson EL, Kong HH. Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS One 2018; 13:e0192443. [PMID: 29489859 PMCID: PMC5830298 DOI: 10.1371/journal.pone.0192443] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023] Open
Abstract
Background Emollients are a mainstay of treatment in atopic dermatitis (AD), a disease distinguished by skin bacterial dysbiosis. However, changes in skin microbiota when emollients are used as a potential AD preventative measure in infants remain incompletely characterized. Results We compared skin barrier parameters, AD development, and bacterial 16S ribosomal RNA gene sequences of cheek, dorsal and volar forearm samples from 6-month-old infants with a family history of atopy randomized to receive emollients (n = 11) or no emollients (controls, n = 12). The emollient group had a lower skin pH than the control group. The number of bacterial taxa in the emollient group was higher than in the control group at all sites. The Streptococcus salivarius proportion was higher in the emollient versus control groups at all sites. S. salivarius proportion appeared higher in infants without AD compared to infants with AD. A decrease in S. salivarius abundance was further identified in a separate larger population of older children demonstrating an inverse correlation between AD severity at sampling sites and S. salivarius proportions. Conclusions The decreased skin pH and the increased proportion of S. salivarius after long-term emollient use in infants at risk for developing AD may contribute to the preventative effects of emollients in high-risk infants.
Collapse
Affiliation(s)
- Martin Glatz
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Jay-Hyun Jo
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Elizabeth A. Kennedy
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Eric C. Polley
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Rockville, Maryland, United States of America
| | - Julia A. Segre
- Translational and Functional Genomics Branch, NHGRI, Bethesda, Maryland, United States of America
| | - Eric L. Simpson
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail: (ELS); (HHK)
| | - Heidi H. Kong
- Dermatology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
- * E-mail: (ELS); (HHK)
| |
Collapse
|
32
|
Diversity of Integrative and Conjugative Elements of Streptococcus salivarius and Their Intra- and Interspecies Transfer. Appl Environ Microbiol 2017; 83:AEM.00337-17. [PMID: 28432093 DOI: 10.1128/aem.00337-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 01/12/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread chromosomal mobile genetic elements which can transfer autonomously by conjugation in bacteria. Thirteen ICEs with a conjugation module closely related to that of ICESt3 of Streptococcus thermophilus were characterized in Streptococcus salivarius by whole-genome sequencing. Sequence comparison highlighted ICE evolution by shuffling of 3 different integration/excision modules (for integration in the 3' end of the fda, rpsI, or rpmG gene) with the conjugation module of the ICESt3 subfamily. Sequence analyses also pointed out a recombination occurring at oriT (likely mediated by the relaxase) as a mechanism of ICE evolution. Despite a similar organization in two operons including three conserved genes, the regulation modules show a high diversity (about 50% amino acid sequence divergence for the encoded regulators and presence of unrelated additional genes) with a probable impact on the regulation of ICE activity. Concerning the accessory genes, ICEs of the ICESt3 subfamily appear particularly rich in restriction-modification systems and orphan methyltransferase genes. Other cargo genes that could confer a selective advantage to the cell hosting the ICE were identified, in particular, genes for bacteriocin synthesis and cadmium resistance. The functionality of 2 ICEs of S. salivarius was investigated. Autonomous conjugative transfer to other S. salivarius strains, to S. thermophilus, and to Enterococcus faecalis was observed. The analysis of the ICE-fda border sequence in these transconjugants allowed the localization of the DNA cutting site of the ICE integrase.IMPORTANCE The ICESt3 subfamily of ICEs appears to be widespread in streptococci and targets diverse chromosomal integration sites. These ICEs carry diverse cargo genes that can confer a selective advantage to the host strain. The maintenance of these mobile genetic elements likely relies in part on self-encoded restriction-modification systems. In this study, intra- and interspecies transfer was demonstrated for 2 ICEs of S. salivarius Closely related ICEs were also detected in silico in other Streptococcus species (S. pneumoniae and S. parasanguinis), thus indicating that diffusion of ICESt3-related elements probably plays a significant role in horizontal gene transfer (HGT) occurring in the oral cavity but also in the digestive tract, where S. salivarius is present.
Collapse
|
33
|
Mousa WK, Athar B, Merwin NJ, Magarvey NA. Antibiotics and specialized metabolites from the human microbiota. Nat Prod Rep 2017; 34:1302-1331. [DOI: 10.1039/c7np00021a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human microbiota associated with each body site produce specialized molecules to kill human pathogens. Advanced bioinformatics tools will help to discover unique microbiome chemistry.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Bilal Athar
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nishanth J. Merwin
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| | - Nathan A. Magarvey
- Departments of Biochemistry and Biomedical Sciences & Chemistry and Chemical Biology
- M. G. DeGroote Institute for Infectious Disease Research
- McMaster University
- Hamilton
- Canada L8S 4K1
| |
Collapse
|
34
|
Hegarty JW, Guinane CM, Ross RP, Hill C, Cotter PD. Bacteriocin production: a relatively unharnessed probiotic trait? F1000Res 2016; 5:2587. [PMID: 27853525 PMCID: PMC5089130 DOI: 10.12688/f1000research.9615.1] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2016] [Indexed: 01/09/2023] Open
Abstract
Probiotics are “live microorganisms which, when consumed in adequate amounts, confer a health benefit to the host”. A number of attributes are highly sought after among these microorganisms, including immunomodulation, epithelial barrier maintenance, competitive exclusion, production of short-chain fatty acids, and bile salt metabolism. Bacteriocin production is also generally regarded as a probiotic trait, but it can be argued that, in contrast to other traits, it is often considered a feature that is desirable, rather than a key probiotic trait. As such, the true potential of these antimicrobials has yet to be realised.
Collapse
Affiliation(s)
- James W Hegarty
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Microbiology, University College Cork, Cork, Ireland
| | | | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Colin Hill
- Department of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? Front Microbiol 2016; 7:461. [PMID: 27092121 PMCID: PMC4824776 DOI: 10.3389/fmicb.2016.00461] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 02/01/2023] Open
Abstract
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more effectively targeted by bacteriocins in food settings.
Collapse
Affiliation(s)
- Kevin Egan
- School of Microbiology, University College Cork Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork Cork, Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - R Paul Ross
- APC Microbiome InstituteUniversity College Cork, Ireland; College of Science, Engineering and Food Science, University College CorkCork, Ireland
| | - Colin Hill
- School of Microbiology, University College CorkCork, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, MooreparkFermoy, Ireland; APC Microbiome InstituteUniversity College Cork, Ireland
| |
Collapse
|
36
|
|
37
|
Qiao J, Kwok L, Zhang J, Gao P, Zheng Y, Guo Z, Hou Q, Huo D, Huang W, Zhang H. Reduction of Lactobacillus in the milks of cows with subclinical mastitis. Benef Microbes 2015; 6:485-90. [PMID: 25711409 DOI: 10.3920/bm2014.0077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clinical and subclinical bovine mastitis are the most frequent diseases encountered on dairy farms worldwide, which cause significant economic loss and veterinary cost. The mastitic disease status is associated with increases in both milk bacterial pathogens and somatic cell count (SCC). Although it is well established that the mastitic pathogens generally correlate with the milk SCC, to our knowledge, the correlation between the probiotic genus, Lactobacillus, and the mastitic causative bacteria and SCC have not been determined previously. Thus, in this study, milk samples from 12 mild and 28 severe subclinical mastitic dairy cows were collected from the same farm. The overall milk bacterial load was quantified with the total plate count method. The Lactobacillus genus and 4 common clinical and subclinical mastitic pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, and Trueperella pyogenes) in the sampled milk were enumerated by quantitative PCR. Mild and severe subclinical mastitic samples were distinctly separated on the principal component analysis score plot generated based on the quantities of these 5 target bacteria, suggesting that clear differences existed in the microbiological composition between the two sample groups. Based on comparison with the pairwise Mann-Whitney test, the mild subclinical mastitic dairy cows had a significantly higher amounts of lactobacilli (P=0.0175), but lower E. coli (P=0.0002), S. aureus (P<0.0001), S. agalactiae (P=0.0001) and T. pyogenes (P=0.0044) quantities, while an opposite trend occurred in the severe subclinical mastitic group. The negative correlation between Lactobacillus and the pathogenic bacteria, as well as the SCC, was confirmed with Spearman correlation analysis. Data generated from the current study may hint to a close relationship between Lactobacillus and the health of bovine udder.
Collapse
Affiliation(s)
- J Qiao
- 1 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R.C., Inner Mongolia Agricultural University, Inner Mongolia, Hohhot 010018, China P.R
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nisin H Is a New Nisin Variant Produced by the Gut-Derived Strain Streptococcus hyointestinalis DPC6484. Appl Environ Microbiol 2015; 81:3953-60. [PMID: 25841003 DOI: 10.1128/aem.00212-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/26/2015] [Indexed: 11/20/2022] Open
Abstract
Accumulating evidence suggests that bacteriocin production represents a probiotic trait for intestinal strains to promote dominance, fight infection, and even signal the immune system. In this respect, in a previous study, we isolated from the porcine intestine a strain of Streptococcus hyointestinalis DPC6484 that displays antimicrobial activity against a wide range of Gram-positive bacteria and produces a bacteriocin with a mass of 3,453 Da. Interestingly, the strain was also found to be immune to a nisin-producing strain. Genome sequencing revealed the genetic determinants responsible for a novel version of nisin, designated nisin H, consisting of the nshABTCPRKGEF genes, with transposases encoded between nshP and nshR and between nshK and nshG. A similar gene cluster is also found in S. hyointestinalis LMG14581. Notably, the cluster lacks an equivalent of the nisin immunity gene, nisI. Nisin H is proposed to have the same structure as the prototypical nisin A but differs at 5 amino acid positions-Ile1Phe (i.e., at position 1, nisin A has Ile while nisin H has Phe), Leu6Met, Gly18Dhb (threonine dehydrated to dehydrobutyrine), Met21Tyr, and His31Lys--and appears to represent an intermediate between the lactococcal nisin A and the streptococcal nisin U variant of nisin. Purified nisin H inhibits a wide range of Gram-positive bacteria, including staphylococci, streptococci, Listeria spp., bacilli, and enterococci. It represents the first example of a natural nisin variant produced by an intestinal isolate of streptococcal origin.
Collapse
|
39
|
|
40
|
Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, Mazmanian SK. Specialized metabolites from the microbiome in health and disease. Cell Metab 2014; 20:719-730. [PMID: 25440054 PMCID: PMC4337795 DOI: 10.1016/j.cmet.2014.10.016] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microbiota, and the genes that comprise its microbiome, play key roles in human health. Host-microbe interactions affect immunity, metabolism, development, and behavior, and dysbiosis of gut bacteria contributes to disease. Despite advances in correlating changes in the microbiota with various conditions, specific mechanisms of host-microbiota signaling remain largely elusive. We discuss the synthesis of microbial metabolites, their absorption, and potential physiological effects on the host. We propose that the effects of specialized metabolites may explain present knowledge gaps in linking the gut microbiota to biological host mechanisms during initial colonization, and in health and disease.
Collapse
Affiliation(s)
- Gil Sharon
- Division of Biology and Biological Engineering, California institute of Technology, Pasadena, CA 91125, USA
| | - Neha Garg
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Justine Debelius
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Boulder, CO 80309, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA; Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
41
|
Delorme C, Abraham AL, Renault P, Guédon E. Genomics of Streptococcus salivarius, a major human commensal. INFECTION GENETICS AND EVOLUTION 2014; 33:381-92. [PMID: 25311532 DOI: 10.1016/j.meegid.2014.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites (all levels of the digestive tract, skin, breast milk, and body fluids) and included clinical strains, no genetic or genomic niche-specific features could be identified to discriminate specific group.
Collapse
Affiliation(s)
- Christine Delorme
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Anne-Laure Abraham
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Pierre Renault
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France
| | - Eric Guédon
- INRA, UMR 1319 Micalis, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR MICALIS, Jouy-en-Josas, France.
| |
Collapse
|
42
|
Barbour A, Philip K. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects. PLoS One 2014; 9:e100541. [PMID: 24941127 PMCID: PMC4062538 DOI: 10.1371/journal.pone.0100541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Salivaricins are bacteriocins produced by Streptococcus salivarius, some strains of which can have significant probiotic effects. S. salivarius strains were isolated from Malaysian subjects showing variable antimicrobial activity, metabolic profile, antibiotic susceptibility and lantibiotic production. METHODOLOGY/PRINCIPAL FINDINGS In this study we report new S. salivarius strains isolated from Malaysian subjects with potential as probiotics. Safety assessment of these strains included their antibiotic susceptibility and metabolic profiles. Genome sequencing using Illumina's MiSeq system was performed for both strains NU10 and YU10 and demonstrating the absence of any known streptococcal virulence determinants indicating that these strains are safe for subsequent use as probiotics. Strain NU10 was found to harbour genes encoding salivaricins A and 9 while strain YU10 was shown to harbour genes encoding salivaricins A3, G32, streptin and slnA1 lantibiotic-like protein. Strain GT2 was shown to harbour genes encoding a large non-lantibiotic bacteriocin (salivaricin-MPS). A new medium for maximum biomass production buffered with 2-(N-morpholino)ethanesulfonic acid (MES) was developed and showed better biomass accumulation compared with other commercial media. Furthermore, we extracted and purified salivaricin 9 (by strain NU10) and salivaricin G32 (by strain YU10) from S. salivarius cells grown aerobically in this medium. In addition to bacteriocin production, S. salivarius strains produced levan-sucrase which was detected by a specific ESI-LC-MS/MS method which indicates additional health benefits from the developed strains. CONCLUSION The current study established the bacteriocin, levan-sucrase production and basic safety features of S. salivarius strains isolated from healthy Malaysian subjects demonstrating their potential for use as probiotics. A new bacteriocin-production medium was developed with potential scale up application for pharmaceuticals and probiotics from S. salivarius generating different lantibiotics. This is relevant for the clinical management of oral cavity and upper respiratory tract in the human population.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Institute of Biological Sciences, Microbiology Division, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Characterization of some bacteriocins produced by lactic acid bacteria isolated from fermented foods. World J Microbiol Biotechnol 2014; 30:2459-69. [PMID: 24849010 DOI: 10.1007/s11274-014-1671-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/14/2014] [Indexed: 01/05/2023]
Abstract
Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.
Collapse
|
44
|
Blin K, Kazempour D, Wohlleben W, Weber T. Improved lanthipeptide detection and prediction for antiSMASH. PLoS One 2014; 9:e89420. [PMID: 24586765 PMCID: PMC3930743 DOI: 10.1371/journal.pone.0089420] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Lanthipeptides are a class of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products from the bacterial secondary metabolism. Their name is derived from the characteristic lanthionine or methyl-lanthionine residues contained in the processed peptide. Lanthipeptides that possess an antibacterial activity are called lantibiotics. Whereas multiple tools exist to identify lanthipeptide gene clusters from genomic data, no programs are available to predict the post-translational modifications of lanthipeptides, such as the proteolytic cleavage of the leader peptide part or tailoring modifications based on the analysis of the gene cluster sequence. antiSMASH is a software pipeline for the identification of secondary metabolite biosynthetic clusters from genomic input and the prediction of products produced by the identified clusters. Here we present a novel antiSMASH module using a rule-based approach to combine signature motifs for biosynthetic enzymes and lanthipeptide-specific cleavage site motifs to identify lanthipeptide clusters in genomic data, assign the specific lanthipeptide class, predict prepeptide cleavage, tailoring reactions, and the processed molecular weight of the mature peptide products.
Collapse
Affiliation(s)
- Kai Blin
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University of Tübingen, Tübingen, Germany
- German Centre for Infection Research, Tübingen, Germany
| | - Daniyal Kazempour
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University of Tübingen, Tübingen, Germany
- German Centre for Infection Research, Tübingen, Germany
| | - Tilmann Weber
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-University of Tübingen, Tübingen, Germany
- German Centre for Infection Research, Tübingen, Germany
- * E-mail:
| |
Collapse
|
45
|
Dischinger J, Basi Chipalu S, Bierbaum G. Lantibiotics: Promising candidates for future applications in health care. Int J Med Microbiol 2014; 304:51-62. [DOI: 10.1016/j.ijmm.2013.09.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
46
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
47
|
Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl Environ Microbiol 2013; 80:928-34. [PMID: 24271166 DOI: 10.1128/aem.03133-13] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptococcus salivarius is one of the first colonizers of the human oral cavity and gut after birth and therefore may contribute to the establishment of immune homeostasis and regulation of host inflammatory responses. The anti-inflammatory potential of S. salivarius was first evaluated in vitro on human intestinal epithelial cells and human peripheral blood mononuclear cells. We show that live S. salivarius strains inhibited in vitro the activation of the NF-κB pathway on intestinal epithelial cells. We also demonstrate that the live S. salivarius JIM8772 strain significantly inhibited inflammation in severe and moderate colitis mouse models. These in vitro and in vivo anti-inflammatory properties were not found with heat-killed S. salivarius, suggesting a protective response exclusively with metabolically active bacteria.
Collapse
|
48
|
Hammami R, Fernandez B, Lacroix C, Fliss I. Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 2013; 70:2947-67. [PMID: 23109101 PMCID: PMC11113238 DOI: 10.1007/s00018-012-1202-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/05/2012] [Accepted: 10/18/2012] [Indexed: 02/01/2023]
Abstract
Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.
Collapse
Affiliation(s)
- Riadh Hammami
- STELA Dairy Research Centre, Nutraceuticals and Functional Foods Institute, Université Laval, Quebec, QC, Canada.
| | | | | | | |
Collapse
|
49
|
John M, Dunne EM, Licciardi PV, Satzke C, Wijburg O, Robins-Browne RM, O'Leary S. Otitis media among high-risk populations: can probiotics inhibit Streptococcus pneumoniae colonisation and the risk of disease? Eur J Clin Microbiol Infect Dis 2013; 32:1101-10. [PMID: 23512465 DOI: 10.1007/s10096-013-1858-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 01/23/2023]
Abstract
Otitis media is the second most common infection in children and the leading cause for seeking medical advice. Indigenous populations such as the Inuits, indigenous Australians and American Indians have a very high prevalence of otitis media and are considered to be high-risk populations. Streptococcus pneumoniae, one of the three main bacterial causes of otitis media, colonises the nasopharynx prior to disease development. In high-risk populations, early acquisition of high bacterial loads increases the prevalence of otitis media. In these settings, current treatment strategies are insufficient. Vaccination is effective against invasive pneumococcal infection but has a limited impact on otitis media. Decreasing the bacterial loads of otitis media pathogens and/or colonising the nasopharynx with beneficial bacteria may reduce the prevalence of otitis media. Probiotics are live microorganisms that offer health benefits by modulating the microbial community and enhancing host immunity. The available data suggest that probiotics may be beneficial in otitis media. This review discusses the potential use of probiotics to reduce pathogen colonisation and decrease the prevalence of otitis media, providing justification for further investigation.
Collapse
Affiliation(s)
- M John
- Department of Otolaryngology, The University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Protective mechanisms of respiratory tract Streptococci against Streptococcus pyogenes biofilm formation and epithelial cell infection. Appl Environ Microbiol 2012; 79:1265-76. [PMID: 23241973 DOI: 10.1128/aem.03350-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci [GAS]) encounter many streptococcal species of the physiological microbial biome when entering the upper respiratory tract of humans, leading to the question how GAS interact with these bacteria in order to establish themselves at this anatomic site and initiate infection. Here we show that S. oralis and S. salivarius in direct contact assays inhibit growth of GAS in a strain-specific manner and that S. salivarius, most likely via bacteriocin secretion, also exerts this effect in transwell experiments. Utilizing scanning electron microscopy documentation, we identified the tested strains as potent biofilm producers except for GAS M49. In mixed-species biofilms, S. salivarius dominated the GAS strains, while S. oralis acted as initial colonizer, building the bottom layer in mixed biofilms and thereby allowing even GAS M49 to form substantial biofilms on top. With the exception of S. oralis, artificial saliva reduced single-species biofilms and allowed GAS to dominate in mixed biofilms, although the overall two-layer structure was unchanged. When covered by S. oralis and S. salivarius biofilms, epithelial cells were protected from GAS adherence, internalization, and cytotoxic effects. Apparently, these species can have probiotic effects. The use of Affymetrix array technology to assess HEp-2 cell transcription levels revealed modest changes after exposure to S. oralis and S. salivarius biofilms which could explain some of the protective effects against GAS attack. In summary, our study revealed a protection effect of respiratory tract bacteria against an important airway pathogen and allowed a first in vitro insight into local environmental processes after GAS enter the respiratory tract.
Collapse
|