1
|
Tang S, Li Y, Huang C, Yan S, Li Y, Chen Z, Wu Z. Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Front Microbiol 2022; 13:897923. [PMID: 35783386 PMCID: PMC9248866 DOI: 10.3389/fmicb.2022.897923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/11/2022] [Indexed: 11/21/2022] Open
Abstract
Captive animals and wild animals may exhibit different characteristics due to the heterogeneity of their living environments. The gut microbiota play an important role in the digestion and absorption, energy metabolism, immune regulation, and physiological health of the host. However, information about the gut microbiota of captive and wild Gekko gecko is currently limited. To determine the difference in gut microbiota community composition, diversity, and structure between captive and wild geckos, we used the Illumina miseq platform to conduct high-throughput sequencing and bioinformatics analysis of the v3–v4 hypervariable region of 16S rRNA in 54 gecko samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia, Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher alpha diversity and potential pathogenic bacteria than wild populations. Moreover, significant differences in beta diversity of gut microbiota were observed between two populations. Functional prediction analysis showed that the relative abundance of functional pathways of wild geckos was more higher in metabolism, genetic information processing and organismal system function than those in captive geckos. Total length significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained 10.45% of the total variation for gut microbial community variance between two groups. These results may be related to differences in diet and living environment between two populations, suggesting that the management of captive populations should mimic wild environments to the greatest extent possible to reduce the impact on their gut microbiota.
Collapse
Affiliation(s)
- Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Chengming Huang
- Key Laboratory of Animal Ecology and Conservation, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shufa Yan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Yongtai Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zening Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- Zening Chen,
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
- *Correspondence: Zhengjun Wu,
| |
Collapse
|
2
|
Yasar SA, Mills TJT, Uluturk ZI, Ruszczyk JMS, LeBard RJ, Neilan BA. Quantitative detection of human- and canine-associated Bacteroides genetic markers from an urban coastal lagoon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1732-1744. [PMID: 34662309 DOI: 10.2166/wst.2021.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of water catchments by nonpoint source faecal pollution is a major issue affecting the microbial quality of receiving waters and is associated with the occurrence of a range of enteric illnesses in humans. The potential sources of faecal pollution in surface waters are diverse, including urban sewage leaks, surface runoff and wildlife contamination originating from a range of hosts. The major contributing hosts require identification to allow targeted management of this public health concern. In this study, two high-performing Microbial Source Tracking (MST) assays, HF183/Bac242 and BacCan-UCDmodif, were used for their ability to detect host-specific Bacteroides 16Sr RNA markers for faecal pollution in a 12-month study on an urban coastal lagoon in Sydney, Australia. The lagoon was found to contain year-round high numbers of human and canine faecal markers, as well as faecal indicator bacteria counts, suggesting considerable human and animal faecal pollution. The high sensitivity and specificity of the HF183/Bac242 and BacCan-UCDmodif assays, together with the manageable levels of PCR inhibition and high level DNA extraction efficiency obtained from lagoon water samples make these markers candidates for inclusion in an MST 'toolbox' for investigating host origins of faecal pollution in urban surface waters.
Collapse
Affiliation(s)
- Serhat A Yasar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Toby J T Mills
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| | - Zehra I Uluturk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Rebecca J LeBard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| |
Collapse
|
3
|
Boukerb AM, Noël C, Quenot E, Cadiou B, Chevé J, Quintric L, Cormier A, Dantan L, Gourmelon M. Comparative Analysis of Fecal Microbiomes From Wild Waterbirds to Poultry, Cattle, Pigs, and Wastewater Treatment Plants for a Microbial Source Tracking Approach. Front Microbiol 2021; 12:697553. [PMID: 34335529 PMCID: PMC8317174 DOI: 10.3389/fmicb.2021.697553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Fecal pollution in coastal areas is of a high concern since it affects bathing and shellfish harvesting activities. Wild waterbirds are non-negligible in the overall signal of the detectable pollution. Yet, studies on wild waterbirds’ gut microbiota focus on migratory trajectories and feeding impact on their shape, rare studies address their comparison to other sources and develop quantitative PCR (qPCR)-based Microbial Source Tracking (MST) markers to detect such pollution. Thus, by using 16S rRNA amplicon high-throughput sequencing, the aims of this study were (i) to explore and compare fecal bacterial communities from wild waterbirds (i.e., six families and 15 species, n = 275 samples) to that of poultry, cattle, pigs, and influent/effluent of wastewater treatment plants (n = 150 samples) and (ii) to develop new MST markers for waterbirds. Significant differences were observed between wild waterbirds and the four other groups. We identified 7,349 Amplicon Sequence Variants (ASVs) from the hypervariable V3–V4 region. Firmicutes and Proteobacteria and, in a lesser extent, Actinobacteria and Bacteroidetes were ubiquitous while Fusobacteria and Epsilonbacteraeota were mainly present in wild waterbirds. The clustering of samples in non-metric multidimensional scaling (NMDS) ordination indicated a by-group clustering shape, with a high diversity within wild waterbirds. In addition, the structure of the bacterial communities was distinct according to bird and/or animal species and families (Adonis R2 = 0.13, p = 10–4, Adonis R2 = 0.11, p = 10–4, respectively). The Analysis of Composition of Microbiomes (ANCOM) showed that the wild waterbird group differed from the others by the significant presence of sequences from Fusobacteriaceae (W = 566) and Enterococcaceae (W = 565) families, corresponding to the Cetobacterium (W = 1427) and Catellicoccus (W = 1427) genera, respectively. Altogether, our results suggest that some waterbird members present distinct fecal microbiomes allowing the design of qPCR MST markers. For instance, a swan- and an oystercatcher-associated markers (named Swan_2 and Oyscab, respectively) have been developed. Moreover, bacterial genera harboring potential human pathogens associated to bird droppings were detected in our dataset, including enteric pathogens, i.e., Arcobacter, Clostridium, Helicobacter, and Campylobacter, and environmental pathogens, i.e., Burkholderia and Pseudomonas. Future studies involving other wildlife hosts may improve gut microbiome studies and MST marker development, helping mitigation of yet unknown fecal pollution sources.
Collapse
Affiliation(s)
- Amine M Boukerb
- IFREMER, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| | - Cyril Noël
- IFREMER - PDG-IRSI-SEBIMER, Plouzané, France
| | - Emmanuelle Quenot
- IFREMER, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| | | | - Julien Chevé
- IFREMER, ODE-UL-LERBN, Laboratoire Environnement Ressource Bretagne Nord, Dinard, France
| | | | | | - Luc Dantan
- IFREMER, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| | - Michèle Gourmelon
- IFREMER, RBE-SGMM-LSEM, Laboratoire Santé Environnement Microbiologie, Plouzané, France
| |
Collapse
|
4
|
Fan L, Zhang X, Zeng R, Wang S, Jin C, He Y, Shuai J. Verification of Bacteroidales 16S rRNA markers as a complementary tool for detecting swine fecal pollution in the Yangtze Delta. J Environ Sci (China) 2020; 90:59-66. [PMID: 32081341 DOI: 10.1016/j.jes.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
To correctly assess and properly manage the public health risks associated with exposure to contaminated water, it is necessary to identify the source of fecal pollution in a watershed. In this study, we evaluated the efficacy of our two previously developed real time-quantitative PCR (qPCR) assays for the detection of swine-associated Bacteroidales genetic markers (gene 1-38, gene 3-53) in the Yangtze Delta watershed of southeastern China. The results indicated that the gene 1-38 and 3-53 markers exhibited high accuracy (92.5%, 91.7% conditional probability, respectively) in detecting Bacteroidales spp. in water samples. According to binary logistic regression (BLR), these two swine-associated markers were well correlated (P < 0.05) with fecal indicators (Escherichia coli and Enterococci spp.) and zoonotic pathogens (E. coli O157: H7, Salmonella spp. and Campylobacter spp.) in water samples. In contrast, concentrations of conventional fecal indicator bacteria (FIB) were not correlated with zoonotic pathogens, suggesting that they are noneffective at detecting fecal pollution events. Collectively, the results obtained in this study demonstrated that a swine-targeted qPCR assay based on two Bacteroidales genes markers (gene 1-38, gene 3-53) could be a useful tool in determining the swine-associated impacts of fecal contamination in a watershed.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Chenchen Jin
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China.
| |
Collapse
|
5
|
Unno T, Staley C, Brown CM, Han D, Sadowsky MJ, Hur HG. Fecal pollution: new trends and challenges in microbial source tracking using next-generation sequencing. Environ Microbiol 2018; 20:3132-3140. [PMID: 29797757 DOI: 10.1111/1462-2920.14281] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 11/29/2022]
Abstract
In this minireview, we expand upon traditional microbial source tracking (MST) methods by discussing two recently developed, next-generation-sequencing (NGS)-based MST approaches to identify sources of fecal pollution in recreational waters. One method defines operational taxonomic units (OTUs) that are specific to a fecal source, e.g., humans and animals or shared among multiple fecal sources to determine the magnitude and likely source association of fecal pollution. The other method uses SourceTracker, a program using a Bayesian algorithm, to determine which OTUs have contributed to an environmental community based on the composition of microbial communities in multiple fecal sources. Contemporary NGS-based MST tools offer a promising avenue to rapidly characterize fecal source contributions for water monitoring and remediation efforts at a broader and more efficient scale than previous molecular MST methods. However, both NGS methods require optimized sequence processing methodologies (e.g. quality filtering and clustering algorithms) and are influenced by primer selection for amplicon sequencing. Therefore, care must be taken when extrapolating data or combining datasets. Furthermore, traditional limitations of library-dependent MST methods, including differential decay of source material in environmental waters and spatiotemporal variation in source communities, remain to be fully understood. Nevertheless, increasing use of these methods, as well as expanding fecal taxon libraries representative of source communities, will help improve the accuracy of these methods and provide promising tools for future MST investigations.
Collapse
Affiliation(s)
- Tatsuya Unno
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.,Subtropical/tropical Organism Gene Bank, Jeju National University, Jeju, 63243, Republic of Korea
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Clairessa M Brown
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Dukki Han
- Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA.,Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Spergser J, Loncaric I, Tichy A, Fritz J, Scope A. The cultivable autochthonous microbiota of the critically endangered Northern bald ibis (Geronticus eremita). PLoS One 2018; 13:e0195255. [PMID: 29617453 PMCID: PMC5884550 DOI: 10.1371/journal.pone.0195255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
The critically endangered Northern bald ibis (Geronticus eremita) is a migratory bird that became extinct in Europe centuries ago. Since 2014, the Northern bald ibis is subject to an intensive rehabilitation and conservation regime aiming to reintroduce the bird in its original distribution range in Central Europe and concurrently to maintain bird health and increase population size. Hitherto, virtually nothing is known about the microbial communities associated with the ibis species; an information pivotal for the veterinary management of these birds. Hence, the present study was conducted to provide a baseline description of the cultivable microbiota residing in the Northern bald ibis. Samples derived from the choana, trachea, crop and cloaca were examined employing a culturomic approach in order to identify microbes at each sampling site and to compare their frequency among age classes, seasonal appearances and rearing types. In total, 94 microbial species including 14 potentially new bacterial taxa were cultivated from the Northern bald ibis with 36, 58 and 59 bacterial species isolated from the choana, crop and cloaca, respectively. The microbiota of the Northern bald ibis was dominated by members of the phylum Firmicutes, followed by Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria, altogether phylotypes commonly observed within avian gut environments. Differences in relative abundances of various microbial taxa were evident among sample types indicating mucosa-specific colonisation properties and tissue tropism. Besides, results of the present study indicate that the composition of microbiota was also affected by age, season (environment) and rearing type. While the prevalence of traditional pathogenic microbial species was extremely low, several opportunists including Clostridium perfringens toxotype A were frequently present in samples indicating that the Northern bald ibis may represent an important animal reservoir for these pathogens. In summary, the presented study provides a first inventory of the cultivable microbiota residing in the critically endangered Northern bald ibis and represents a first step in a wider investigation of the ibis microbiome with the ultimate goal to contribute to the management and survival of this critically endangered bird.
Collapse
Affiliation(s)
- Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| | - Igor Loncaric
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Bioinformatics and Biostatistics Platform, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Alexandra Scope
- Clinical Unit of Internal Medicine Small Animals, Department/Clinic for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Hamarová Ľ, Repel M, Javorský P, Pristaš P. Evaluation of enteromicroflora of common crane (Grus grus) as a potential reservoir of bacterial antimicrobial resistance. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Ohad S, Ben-Dor S, Prilusky J, Kravitz V, Dassa B, Chalifa-Caspi V, Kashi Y, Rorman E. The Development of a Novel qPCR Assay-Set for Identifying Fecal Contamination Originating from Domestic Fowls and Waterfowl in Israel. Front Microbiol 2016; 7:145. [PMID: 26925034 PMCID: PMC4756122 DOI: 10.3389/fmicb.2016.00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
The emerging microbial source tracking (MST) methodologies aim to identify fecal contamination originating from domestic and wild animals, and from humans. Avian MST is especially challenging, primarily because the Aves class includes both domesticated and wild species with highly diverse habitats and dietary characteristics. The quest for specific fecal bacterial MST markers can be difficult with respect to attaining sufficient assay sensitivity and specificity. The present study utilizes high throughput sequencing (HTS) to screen bacterial 16S rRNA genes from fecal samples collected from both domestic and wild avian species. Operational taxonomic unit (OTU) analysis was then performed, from which sequences were retained for downstream quantitative polymerase chain reaction (qPCR) marker development. Identification of unique avian host DNA sequences, absent in non-avian hosts, was then carried out using a dedicated database of bacterial 16S rRNA gene taken from the Ribosomal Database Project. Six qPCR assays were developed targeting the 16S rRNA gene of Lactobacillus, Gallibacterium, Firmicutes, Fusobacteriaceae, and other bacteria. Two assays (Av4143 and Av163) identified most of the avian fecal samples and demonstrated sensitivity values of 91 and 70%, respectively. The Av43 assay only identified droppings from battery hens and poultry, whereas each of the other three assays (Av24, Av13, and Av216) identified waterfowl species with lower sensitivities values. The development of an MST assay-panel, which includes both domestic and wild avian species, expands the currently known MST analysis capabilities for decoding fecal contamination.
Collapse
Affiliation(s)
- Shoshanit Ohad
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Biological Services, Weizmann Institute of Science Rehovot, Israel
| | - Jaime Prilusky
- Bioinformatics Unit, Department of Biological Services, Weizmann Institute of Science Rehovot, Israel
| | - Valeria Kravitz
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| | - Bareket Dassa
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology Haifa, Israel
| | - Efrat Rorman
- National Public Health Laboratory Tel Aviv, Ministry of Health Tel Aviv, Israel
| |
Collapse
|
9
|
Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol 2015; 6:673. [PMID: 26191057 PMCID: PMC4490257 DOI: 10.3389/fmicb.2015.00673] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/19/2015] [Indexed: 01/16/2023] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill crucial roles in providing the host with nutrition and protection from pathogens. Across the field of avian microbiology knowledge is extremely uneven, with several species accounting for an overwhelming majority of all microbiological investigations. These include agriculturally important birds, such as chickens and turkeys, as well as birds of evolutionary or conservation interest. In our previous study we attempted the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available data sets. We have now extended our analysis to explore the microbiology of several key species in detail, to consider the avian microbiota within the context of what is known about other vertebrates, and to identify key areas of interest in avian microbiology for future study.
Collapse
Affiliation(s)
| | - Michael W. Taylor
- Centre for Microbial Innovation, School of Biological Sciences, University of AucklandAuckland, New Zealand
| |
Collapse
|
10
|
Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol 2014; 5:223. [PMID: 24904538 PMCID: PMC4032936 DOI: 10.3389/fmicb.2014.00223] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022] Open
Abstract
Birds represent a diverse and evolutionarily successful lineage, occupying a wide range of niches throughout the world. Like all vertebrates, avians harbor diverse communities of microorganisms within their guts, which collectively fulfill important roles in providing the host with nutrition and protection from pathogens. Although many studies have investigated the role of particular microbes in the guts of avian species, there has been no attempt to unify the results of previous, sequence-based studies to examine the factors that shape the avian gut microbiota as a whole. In this study, we present the first meta-analysis of the avian gut microbiota, using 16S rRNA gene sequences obtained from a range of publicly available clone-library and amplicon pyrosequencing data. We investigate community membership and structure, as well as probe the roles of some of the key biological factors that influence the gut microbiota of other vertebrates, such as host phylogeny, location within the gut, diet, and association with humans. Our results indicate that, across avian studies, the microbiota demonstrates a similar phylum-level composition to that of mammals. Host bird species is the most important factor in determining community composition, although sampling site, diet, and captivity status also contribute. These analyses provide a first integrated look at the composition of the avian microbiota, and serve as a foundation for future studies in this area.
Collapse
Affiliation(s)
- David W Waite
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| | - Michael W Taylor
- Centre for Microbial Innovation, School of Biological Sciences, Faculty of Science, The University of Auckland Auckland, New Zealand
| |
Collapse
|
11
|
Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay. Appl Environ Microbiol 2014; 80:1838-47. [PMID: 24413599 DOI: 10.1128/aem.03793-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species.
Collapse
|
12
|
Ryu H, Elk M, Khan IUH, Harwood VJ, Molina M, Edge TA, Domingo JS. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. WATER RESEARCH 2014; 48:613-621. [PMID: 24169514 DOI: 10.1016/j.watres.2013.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Hodon Ryu
- National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Cao Y, Van De Werfhorst LC, Scott EA, Raith MR, Holden PA, Griffith JF. Bacteroidales terminal restriction fragment length polymorphism (TRFLP) for fecal source differentiation in comparison to and in combination with universal bacteria TRFLP. WATER RESEARCH 2013; 47:6944-6955. [PMID: 23880219 DOI: 10.1016/j.watres.2013.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/04/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Terminal restriction fragment length polymorphism (TRFLP) is an attractive community analysis method for microbial source tracking (MST) because it is accessible, relatively inexpensive, and can discern multiple fecal sources simultaneously. A new Bacteroidales TRFLP (Bac-TRFLP) method was developed and its source identification performance was evaluated by itself, in comparison to, and in combination with an existing universal bacterial TRFLP method in two laboratories. Sixty-four blind samples from 12 fecal sources (sewage, septage, human, dog, horse, cow, deer, pig, chicken, goose, pigeon, and gull) were used for evaluation. Bac- and Univ-TRFLP exhibited similarly high overall correct identification (>88% and >89%, respectively), excellent specificity regardless of fecal sources, variable sensitivity depending on the source, and stable performance across two laboratories. Compared to Univ-TRFLP, Bac-TRFLP had better sensitivity and specificity with horse, cow, and pig fecal sources but was not suited for certain avian sources such as goose, gull, and pigeon. Combining the general and more targeted TRFLP methods (Univ&Bac-TRFLP) achieved higher overall correct identification (>92%), higher sensitivity and specificity metrics, and higher reproducibility between laboratories. Our results suggest that the Bac-TRFLP and Univ&Bac-TRFLP methods are promising additions to the MST toolbox and warrant further evaluation and utilization in field MST applications.
Collapse
MESH Headings
- Animals
- Bacteroidetes/classification
- Bacteroidetes/genetics
- Bacteroidetes/isolation & purification
- Bacteroidetes/metabolism
- Birds/microbiology
- DNA, Bacterial/classification
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Environmental Monitoring/methods
- Feces/microbiology
- Humans
- Mammals/microbiology
- Polymerase Chain Reaction/methods
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/classification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sensitivity and Specificity
- Wastewater/microbiology
Collapse
Affiliation(s)
- Yiping Cao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA 92626, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sidhu JPS, Ahmed W, Gernjak W, Aryal R, McCarthy D, Palmer A, Kolotelo P, Toze S. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:488-96. [PMID: 23831795 DOI: 10.1016/j.scitotenv.2013.06.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 05/20/2023]
Abstract
The concurrence of human sewage contamination in urban stormwater runoff (n=23) from six urban catchments across Australia was assessed by using both microbial source tracking (MST) and chemical source tracking (CST) markers. Out of 23 stormwater samples human adenovirus (HAv), human polyomavirus (HPv) and the sewage-associated markers; Methanobrevibacter smithii nifH and Bacteroides HF183 were detected in 91%, 56%, 43% and 96% of samples, respectively. Similarly, CST markers paracetamol (87%), salicylic acid (78%) acesulfame (96%) and caffeine (91%) were frequently detected. Twenty one samples (91%) were positive for six to eight sewage related MST and CST markers and remaining two samples were positive for five and four markers, respectively. A very good consensus (>91%) observed between the concurrence of the HF183, HAv, acesulfame and caffeine suggests good predictability of the presence of HAv in samples positive for one of the three markers. High prevalence of HAv (91%) also suggests that other enteric viruses may also be present in the stormwater samples which may pose significant health risks. This study underscores the benefits of employing a set of MST and CST markers which could include monitoring for HF183, adenovirus, caffeine and paracetamol to accurately detect human sewage contamination along with credible information on the presence of human enteric viruses, which could be used for more reliable public health risk assessments. Based on the results obtained in this study, it is recommended that some degree of treatment of captured stormwater would be required if it were to be used for non-potable purposes.
Collapse
Affiliation(s)
- J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, DC, Qld 4558, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 2013; 38:1-40. [PMID: 23815638 DOI: 10.1111/1574-6976.12031] [Citation(s) in RCA: 421] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 05/08/2013] [Accepted: 06/25/2013] [Indexed: 01/22/2023] Open
Abstract
Microbial source tracking (MST) describes a suite of methods and an investigative strategy for determination of fecal pollution sources in environmental waters that rely on the association of certain fecal microorganisms with a particular host. MST is used to assess recreational water quality and associated human health risk, and total maximum daily load allocations. Many methods rely on signature molecules (markers) such as DNA sequences of host-associated microorganisms. Human sewage pollution is among the greatest concerns for human health due to (1) the known risk of exposure to human waste and (2) the public and regulatory will to reduce sewage pollution; however, methods to identify animal sources are receiving increasing attention as our understanding of zoonotic disease potential improves. Here, we review the performance of MST methods in initial reports and field studies, with particular emphasis on quantitative PCR (qPCR). Relationships among human-associated MST markers, fecal indicator bacteria, pathogens, and human health outcomes are presented along with recommendations for future research. An integrated understanding of the advantages and drawbacks of the many MST methods targeting human sources advanced over the past several decades will benefit managers, regulators, researchers, and other users of this rapidly growing area of environmental microbiology.
Collapse
Affiliation(s)
- Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
16
|
Weidhaas J, Lipscomb E. A new method for tracking poultry litter in the Potomac Basin headwaters of West Virginia. J Appl Microbiol 2013; 115:445-54. [PMID: 23611303 DOI: 10.1111/jam.12231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Affiliation(s)
- J. Weidhaas
- Civil and Environmental Engineering; West Virginia University; Morgantown WV USA
| | - E. Lipscomb
- Civil and Environmental Engineering; West Virginia University; Morgantown WV USA
| |
Collapse
|
17
|
Molecular detection of Campylobacter spp. and fecal indicator bacteria during the northern migration of sandhill cranes (Grus canadensis) at the central Platte River. Appl Environ Microbiol 2013; 79:3762-9. [PMID: 23584775 DOI: 10.1128/aem.03990-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 10(8) cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 10(5) CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (~3.3 × 10(5) CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 10(3) CE/g), E. coli (2.2 × 10(3) CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds.
Collapse
|
18
|
Evaluation of bovine feces-associated microbial source tracking markers and their correlations with fecal indicators and zoonotic pathogens in a Brisbane, Australia, reservoir. Appl Environ Microbiol 2013; 79:2682-91. [PMID: 23417003 DOI: 10.1128/aem.03234-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study was aimed at evaluating the host specificity and host sensitivity of two bovine feces-associated bacterial (BacCow-UCD and cowM3) and one viral [bovine adenovirus (B-AVs)] microbial source tracking (MST) markers by screening 130 fecal and wastewater samples from 10 target and nontarget host groups in southeast Queensland, Australia. In addition, 36 water samples were collected from a reservoir and tested for the occurrence of all three bovine feces-associated markers along with fecal indicator bacteria (FIB), Campylobacter spp., Escherichia coli O157, and Salmonella spp. The overall host specificity values of the BacCow-UCD, cowM3, and B-AVs markers to differentiate between bovine and other nontarget host groups were 0.66, 0.88, and 1.00, respectively (maximum value of 1.00). The overall host sensitivity values of these markers, however, in composite bovine wastewater and individual bovine fecal DNA samples were 0.93, 0.90, and 0.60, respectively (maximum value of 1.00). Among the 36 water samples tested, 56%, 22%, and 6% samples were PCR positive for the BacCow-UCD, cowM3, and B-AVs markers, respectively. Among the 36 samples tested, 50% and 14% samples were PCR positive for the Campylobacter 16S rRNA and E. coli O157 rfbE genes, respectively. Based on the results, we recommend that multiple bovine feces-associated markers be used if possible for bovine fecal pollution tracking. Nonetheless, the presence of the multiple bovine feces-associated markers along with the presence of potential zoonotic pathogens indicates bovine fecal pollution in the reservoir water samples. Further research is required to understand the decay rates of these markers in relation to FIB and zoonotic pathogens.
Collapse
|
19
|
Draft Genome Sequence of Catellicoccus marimammalium, a Novel Species Commonly Found in Gull Feces. GENOME ANNOUNCEMENTS 2013; 1:genomeA00019-12. [PMID: 23405330 PMCID: PMC3569323 DOI: 10.1128/genomea.00019-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 11/21/2012] [Indexed: 12/13/2022]
Abstract
Catellicoccus marimammalium is a relatively uncharacterized Gram-positive facultative anaerobe with potential utility as an indicator of waterfowl fecal contamination. Here, we report an annotated draft genome sequence that suggests that this organism may be a symbiotic gut microbe.
Collapse
|
20
|
Kobayashi A, Sano D, Hatori J, Ishii S, Okabe S. Chicken- and duck-associated Bacteroides–Prevotella genetic markers for detecting fecal contamination in environmental water. Appl Microbiol Biotechnol 2012; 97:7427-37. [DOI: 10.1007/s00253-012-4469-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
|
21
|
Microbial quality of tropical inland waters and effects of rainfall events. Appl Environ Microbiol 2012; 78:5160-9. [PMID: 22610428 DOI: 10.1128/aem.07773-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel markers of fecal pollution in tropical waters are needed since conventional methods recommended for other geographical regions may not apply. To address this, the prevalence of thermotolerant coliforms, enterococci, coliphages, and enterophages was determined by culture methods across a watershed. Additionally, human-, chicken-, and cattle-specific PCR assays were used to identify potential fecal pollution sources in this watershed. An enterococcus quantitative PCR (qPCR) assay was tested and correlated with culture methods at three sites since water quality guidelines could incorporate this technique as a rapid detection method. Various rainfall events reported before sample collection at three sites were considered in the data analyses. Thermotolerant coliforms, enterococci, coliphages, and enterophages were detected across the watershed. Human-specific Bacteroides bacteria, unlike the cattle- and chicken-specific bacteria, were detected mostly at sites with the corresponding fecal impact. Enterococci were detected by qPCR as well, but positive correlations with the culture method were noted at two sites, suggesting that either technique could be used. However, no positive correlations were noted for an inland lake tested, suggesting that qPCR may not be suitable for all water bodies. Concentrations of thermotolerant coliforms and bacteriophages were consistently lower after rainfall events, pointing to a possible dilution effect. Rainfall positively correlated with enterococci detected by culturing and qPCR, but this was not the case for the inland lake. The toolbox of methods and correlations presented here could be potentially applied to assess the microbial quality of various water types.
Collapse
|