1
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
2
|
Arnold JW, Spacht D, Koudelka GB. Determinants that govern the recognition and uptake of
Escherichia coli
O157 : H7 by
Acanthamoeba castellanii. Cell Microbiol 2016; 18:1459-70. [DOI: 10.1111/cmi.12591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Jason W. Arnold
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| | - Drew Spacht
- Department of Biology Mercyhurst University Erie PA 16546 USA
- Department of Entomology The Ohio State University 318 W. 12th Ave. 300 Aronoff Laboratory Columbus OH 43210 USA
| | - Gerald B. Koudelka
- Department of Biological Sciences University at Buffalo Buffalo NY 14260 USA
| |
Collapse
|
3
|
Sahota JS, Smith CM, Radhakrishnan P, Winstanley C, Goderdzishvili M, Chanishvili N, Kadioglu A, O'Callaghan C, Clokie MRJ. Bacteriophage Delivery by Nebulization and Efficacy Against Phenotypically Diverse Pseudomonas aeruginosa from Cystic Fibrosis Patients. J Aerosol Med Pulm Drug Deliv 2015; 28:353-60. [PMID: 25714328 DOI: 10.1089/jamp.2014.1172] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The rise in antibiotic-resistant Pseudomonas aeruginosa and the considerable difficulty in eradicating it from patients has re-motivated the study of bacteriophages as a therapeutic option. For this to be effective, host range and viability following nebulization need to be assessed. Host-range has not previously been assessed for the Liverpool Epidemic Strain (LES) isolates that are the most common cystic fibrosis-related clone of P. aeruginosa in the UK. Nebulization studies have not previously been linked to clinically relevant phages. METHODS 84 phenotypically variable isolates of the LES were tested for susceptibility to seven bacteriophages known to have activity against P. aeruginosa. Five of the phages were from the Eliava Institute (IBMV) and 2 were isolated in this study. The viability of the two bacteriophages with the largest host ranges was characterized further to determine their ability to be nebulized and delivered to the lower airways. Phages were nebulized into a cascade impactor and the phage concentration was measured. RESULTS The bacteriophages tested killed between 66%-98% of the 84 Liverpool Epidemic Strain isolates. Two isolates were multi phage resistant, but were sensitive to most first line anti-Pseudomonal antibiotics. The amount of viable bacteriophages contained in particles that are likely to reach the lower airways (<4.7 μm) was 1% for the Omron and 12% AeroEclipse nebulizer. CONCLUSIONS Individual P. aeruginosa bacteriophages can lyse up to 98% of 84 phenotypically diverse LES strains. High titers of phages can be effectively nebulized.
Collapse
Affiliation(s)
- Jaspreet Singh Sahota
- 1 Department of Infection, Immunity and Inflammation, University of Leicester , Leicester, United Kingdom
| | - Claire Mary Smith
- 1 Department of Infection, Immunity and Inflammation, University of Leicester , Leicester, United Kingdom .,2 Respiratory, Critical Care, and Anaesthesia, University College London , Institute of Child Health, London, Great Ormond Street Hospital, London, United Kingdom
| | - Priya Radhakrishnan
- 2 Respiratory, Critical Care, and Anaesthesia, University College London , Institute of Child Health, London, Great Ormond Street Hospital, London, United Kingdom
| | - Craig Winstanley
- 3 Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool , Liverpool, United Kingdom
| | | | - Nina Chanishvili
- 4 Eliava Institute of Bacteriophages , Microbiology, and Virology, Tbilisi, Georgia
| | - Aras Kadioglu
- 3 Department of Clinical Infection Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool , Liverpool, United Kingdom
| | - Chris O'Callaghan
- 1 Department of Infection, Immunity and Inflammation, University of Leicester , Leicester, United Kingdom .,2 Respiratory, Critical Care, and Anaesthesia, University College London , Institute of Child Health, London, Great Ormond Street Hospital, London, United Kingdom
| | - Martha Rebecca Jane Clokie
- 1 Department of Infection, Immunity and Inflammation, University of Leicester , Leicester, United Kingdom
| |
Collapse
|
4
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
5
|
Chiura HX, Uchiyama N, Kogure K. Broad-Host Range Gene Transporter Particles Produced by Aliivibrio fischeri. Microbes Environ 2012; 24:322-9. [PMID: 21566392 DOI: 10.1264/jsme2.me09153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aliivibrio fischeri NCIMB1281(T) (basonym, Vibrio fischeri) spontaneously started broad-host range vector particle (AfVP) production by budding from the logarithmic phase, and stabilised at around 7.0×10(10)-7.4×10(11) particles mL(-1) without any accompanying change in the host population. AfVPs had a spherical shape and varied in diameter from 18.1 to 159.2 nm [median±SD, 58.4±11.9 nm, n=528], with 95.1% between 30.2 and 84.6 nm in diameter exhibiting a normal distribution. Their buoyant density and DNA content ranged from 1.3607 to 1.3980 g cm(-3), and 17.3 to 95.3 kbp, respectively. Regardless of UV treatment, AfVPs enhanced the efficiency of plating 116-136% at a multiplicity of infection of ca. 140 in Escherichia coli AB1157. Generalised transduction was observed with a frequency of between 10(-4) and 10(-6) cells per AfVP without UV treatment. Upon infection, the particle membrane remained outside the recipient cell, and a string-like structure coated with a fibrous proteinaceous-like material was present. The growth of the E. coli transductant (AfV-E-trans) reached a maximum of ca. 415% that of the parental E. coli recipient. AfV-E-trans acquired the ability to produce budding particles.
Collapse
Affiliation(s)
- Hiroshi Xavier Chiura
- Marine Microbiology Laboratory, Department of Marine Ecosystems Dynamics, Ocean Research Institute, University of Tokyo
| | | | | |
Collapse
|
6
|
Jang SC, Jeong HH, Lee CS. Analysis of Pseudomonas aeruginosa Motility in Microchannels. KOREAN CHEMICAL ENGINEERING RESEARCH 2012. [DOI: 10.9713/kcer.2012.50.4.743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Muniesa M, Imamovic L, Jofre J. Bacteriophages and genetic mobilization in sewage and faecally polluted environments. Microb Biotechnol 2011; 4:725-34. [PMID: 21535427 PMCID: PMC3815409 DOI: 10.1111/j.1751-7915.2011.00264.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bacteriophages are one of the most abundant entities on the planet and are present in high concentrations within humans and animals, mostly in the gut. Phages that infect intestinal bacteria are released by defecation and remain free in extra‐intestinal environments, where they usually persist for longer than their bacterial hosts. Recent studies indicate that a large amount of the genetic information in bacterial genomes and in natural environments is of phage origin. In addition, metagenomic analysis reveals that a substantial number of bacterial genes are present in viral DNA in different environments. These facts support the belief that phages can play a significant role in horizontal gene transfer between bacteria. Bacteriophages are known to transfer genes by generalized and specialized transduction and indeed there are some examples of phages found in the environment carrying and transducing genes of bacterial origin. A successful transduction in the environment requires certain conditions, e.g. phage and bacterial numbers need to exceed certain threshold concentrations, the bacteria need to exist in an infection‐competent physiological state, and lastly, the physical conditions in the environment (pH, temperature, etc. of the supporting matrix) have to be suitable for phage infection. All three factors are reviewed here, and the available information suggests: (i) that the number of intestinal bacteria and phages in faecally contaminated environments guarantees bacteria–phage encounters, (ii) that transduction to intestinal bacteria in the environment is probable, and (iii) that transduction is more frequent than previously thought. Therefore, we suggest that phage‐mediated horizontal transfer between intestinal bacteria, or between intestinal and autochthonous bacteria in extra‐intestinal environments, might take place and that its relevance for the emergence of new bacterial strains and potential pathogens should not be ignored.
Collapse
Affiliation(s)
- Maite Muniesa
- Department of Microbiology, University of Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | | | | |
Collapse
|
8
|
Chiura HX, Kogure K, Hagemann S, Ellinger A, Velimirov B. Evidence for particle-induced horizontal gene transfer and serial transduction between bacteria. FEMS Microbiol Ecol 2011; 76:576-91. [PMID: 21361998 DOI: 10.1111/j.1574-6941.2011.01077.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Incubation of the amino acid-deficient strain Escherichia coli AB1157 with particles harvested from an oligotrophic environment revealed evidence of horizontal gene transfer (HGT) with restoration of all deficiencies in revertant cells with frequencies up to 1.94 × 10(-5). None of the markers were preferentially transferred, indicating that the DNA transfer is performed by generalized transduction. The highest gene transfer frequencies were obtained for single markers, with values up to 1.04 × 10(-2). All revertants were able to produce particles of comparable size, appearing at the beginning of the stationary phase. Examination of the revertants using electron microscopy showed bud-like structures with electron-dense bodies. The particles that display the structural features of membrane vesicles were again infectious to E. coli AB1157, producing new infectious particles able to transduce genetic information, a phenomenon termed serial transduction. Thus, the <0.2-μm particle fraction from seawater contains a particle size fraction with high potential for gene transfer. Biased sinusoidal field gel electrophoresis indicated a DNA content for the particles of 370 kbp, which was higher than that of known membrane vesicles. These findings provide evidence of a new method of HGT, in which mobilizable DNA is trafficked from donor to recipient cells via particles.
Collapse
Affiliation(s)
- Hiroshi Xavier Chiura
- Marine Microbiology Laboratory, Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | | | | | | | | |
Collapse
|
9
|
Khomenkov VG, Shevelev AB, Zhukov VG, Zagustina NA, Bezborodov AM, Popov VO. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683808020014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Matheson VG, Forney LJ, Suwa Y, Nakatsu CH, Sexstone AJ, Holben WE. Evidence for Acquisition in Nature of a Chromosomal 2,4-Dichlorophenoxyacetic Acid/(alpha)-Ketoglutarate Dioxygenase Gene by Different Burkholderia spp. Appl Environ Microbiol 2010; 62:2457-63. [PMID: 16535356 PMCID: PMC1388894 DOI: 10.1128/aem.62.7.2457-2463.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction, characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA gene was identified in a recombinant plasmid which complemented a tfdA transposon mutant of TFD6 created by chromosomal insertion of Tn5. The plasmid also expressed TfdA activity in Escherichia coli DH5(alpha), as evidenced by enzyme assays with cell extracts. Sequence analysis of the tfdA gene and flanking regions from strain TFD6 showed 99.5% similarity to a tfdA gene cloned from the chromosome of a different Burkholderia species (strain RASC) isolated from a widely separated geographical area. This chromosomal gene has 77.2% sequence identity to tfdA from plasmid pJP4 (Y. Suwa, W. E. Holben, and L. J. Forney, abstr. Q-403, in Abstracts of the 94th General Meeting of the American Society for Microbiology 1994.). The tfdA homologs cloned from strains TFD6 and RASC are the first chromosomally encoded 2,4-D catabolic genes to be reported. The occurrence of highly similar tfdA genes in different bacterial species suggests that this chromosomal gene can be horizontally transferred.
Collapse
|
11
|
Weinbauer M, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, Peduzzi P, Mari X. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. AQUATIC MICROBIAL ECOLOGY : INTERNATIONAL JOURNAL 2009; 57:321-341. [PMID: 27478304 PMCID: PMC4962909 DOI: 10.3354/ame01363] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Viral abundance and processes in the water column and sediments are well studied for some systems; however, we know relatively little about virus-host interactions on particles and how particles influence these interactions. Here we review virus-prokaryote interactions on inorganic and organic particles in the water column. Profiting from recent methodological progress, we show that confocal laser scanning microscopy in combination with lectin and nucleic acid staining is one of the most powerful methods to visualize the distribution of viruses and their hosts on particles such as organic aggregates. Viral abundance on suspended matter ranges from 105 to 1011 ml-1. The main factors controlling viral abundance are the quality, size and age of aggregates and the exposure time of viruses to aggregates. Other factors such as water residence time likely act indirectly. Overall, aggregates appear to play a role of viral scavengers or reservoirs rather than viral factories. Adsorption of viruses to organic aggregates or inorganic particles can stimulate growth of the free-living prokaryotic community, e.g. by reducing viral lysis. Such mechanisms can affect microbial diversity, food web structure and biogeochemical cycles. Viral lysis of bacterio- and phytoplankton influences the formation and fate of aggregates and can, for example, result in a higher stability of algal flocs. Thus, viruses also influence carbon export; however, it is still not clear whether they short-circuit or prime the biological pump. Throughout this review, emphasis has been placed on defining general problems and knowledge gaps in virus-particle interactions and on providing avenues for further research, particularly those linked to global change.
Collapse
Affiliation(s)
- M.G. Weinbauer
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
- Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer, France
| | - Y. Bettarel
- Institut de Recherche pour le Développement, UMR 5119 ECOLAG, Université Montpellier II, 34095 Montpellier Cedex 5, France
| | - R. Cattaneo
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - B. Luef
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C. Maier
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - C. Motegi
- Microbial Ecology & Biogeochemistry Group and Université Pierre et Marie Curie-Paris6, Laboratoire d’Océanographie de Villefranche, 06234 Villefranche-sur-Mer Cedex, France
| | - P. Peduzzi
- Departement of Freshwater Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - X. Mari
- IRD, UMR 5119 ECOLAG, Noumea Center, BP A5, NC-98848 Noumea, New Caledonia
| |
Collapse
|
12
|
Brooks JP, Adeli A, Read JJ, McLaughlin MR. Rainfall simulation in greenhouse microcosms to assess bacterial-associated runoff from land-applied poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:218-229. [PMID: 19141812 DOI: 10.2134/jeq2008.0029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Runoff water following a rain event is one possible source of environmental contamination after a manure application. This greenhouse study used a rainfall simulator to determine bacterial-associated runoff from troughs of common bermudagrass [Cynodon dactylon (L.) Pers.] that were treated with P-based, N-based, and N plus lime rates of poultry (Gallus gallus) litter, recommended inorganic fertilizer, and control. Total heterotrophic plate count (HPC) bacteria, total and thermotolerant coliforms, enterococci, staphylococci, Clostridium perfringens, Salmonella, and Campylobacter, as well as antibiotic resistance profiles for the staphylococci and enterococci isolates were all monitored in runoff waters. Analysis following five rainfall events indicated that staphylococci, enterococci, and clostridia levels were related to manure application rate. Runoff release of staphylococci, enterococci, and C. perfringens were approximately 3 to 6 log10 greater in litter vs. control treatment. In addition, traditional indicators such as thermotolerant and total coliforms performed poorly as fecal indicators. Some isolated enterococci demonstrated increased antibiotic resistance to polymixin b and/or select aminoglyocosides, while many staphylococci were susceptible to most antimicrobials tested. Results indicated poultry litter application can lead to microbial runoff following simulated rain events. Future studies should focus on the use of staphylococci, enterococci, and C. perfringens as indicators.
Collapse
Affiliation(s)
- John P Brooks
- USDA-ARS, Waste Management and Forage Research Unit, P.O. Box 5367, Mississippi State, MS 39762, USA.
| | | | | | | |
Collapse
|
13
|
Brabban AD, Hite E, Callaway TR. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis 2006; 2:287-303. [PMID: 16366852 DOI: 10.1089/fpd.2005.2.287] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Temperate bacteriophages have always been central to the evolution of bacteria, although their importance has been consistently underestimated compared to transformation and conjugation. In the last 20 years, as more gene and genome sequences have become available and researchers have more accurately determined bacteriophage populations in the environment, we are gaining a clearer picture of their role in the past and potential role in the future. The transductive and lysogenic capacities of this class of bacteriophages have contributed to the evolution and shaping of emerging foodborne pathogenic bacteria through the dissemination of virulence and antibiotic resistance genes. For example, the genome sequences of Shigella dysenteriae, Escherichia coli O157:H7, and the Stxencoding bacteriophages demonstrate the critical role bacteriophage-mediated gene transfer events played in the evolution of these high-profile human pathogens. In this review, we describe the basic genetic exchange mechanisms mediated by temperate bacteriophages and how these mechanisms have been central to the dissemination of virulence genes, such as toxins and antibiotics from one species to another (the shiga-like toxins, and multiple antibiotic resistance dissemination in Salmonella are used as specific examples). Data demonstrating the role of bacteriophages in the spread of antimicrobial resistance in bacteria, including interspecies transduction, are also presented. That temperate bacteriophages play a role in the on-going evolution of emerging pathogenic bacteria is obvious, but it is also clearly an on-going process with a breadth that must be appreciated as well as studied further if we are to be able to foresee what new challenges will arise to imperil food safety.
Collapse
Affiliation(s)
- A D Brabban
- Scientific Inquiry Planning Unit, The Evergreen State College, Olympia, Washington 98502, USA.
| | | | | |
Collapse
|
14
|
Ashelford KE, Fry JC, Day MJ, Hill KE, Learner MA, Marchesi JR, Perkins CD, Weightman AJ. Using microcosms to study gene transfer in aquatic habitats. FEMS Microbiol Ecol 2006. [DOI: 10.1111/j.1574-6941.1997.tb00393.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Selvaratnam S, Kunberger JD. Increased frequency of drug-resistant bacteria and fecal coliforms in an Indiana Creek adjacent to farmland amended with treated sludge. Can J Microbiol 2004; 50:653-6. [PMID: 15467791 DOI: 10.1139/w04-065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies indicate the presence of human pathogens and drug-resistant bacteria in treated sewage sludge. Since one of the main methods of treated sewage disposal is by application to agricultural land, the presence of these organisms is of concern to human health. The goal of this study was to determine whether the frequency of drug-resistant and indicator bacteria in Sugar Creek, which is used for recreational purposes, was influenced by proximity to a farmland routinely amended with treated sludge (site E). Surface water from 3 sites along Sugar Creek (site E, 1 upstream site (site C) and 1 downstream site (site K)) were tested for the presence of ampicillin-resistant (AmpR) bacteria, fecal and total coliforms over a period of 40 d. Site E consistently had higher frequencies of AmpRbacteria and fecal coliforms compared with the other 2 sites. All of the tested AmpRisolates were resistant to at least 1 other antibiotic. However, no isolate was resistant to more than 4 classes of antimicrobials. These results suggest that surface runoff from the farmland is strongly correlated with higher incidence of AmpRand fecal coliforms at site E.Key words: drug-resistant bacteria, indicator bacteria, treated sludge, surface runoff.
Collapse
|
16
|
Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev 2004; 28:127-81. [PMID: 15109783 DOI: 10.1016/j.femsre.2003.08.001] [Citation(s) in RCA: 946] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 07/22/2003] [Accepted: 08/05/2003] [Indexed: 11/24/2022] Open
Abstract
The finding that total viral abundance is higher than total prokaryotic abundance and that a significant fraction of the prokaryotic community is infected with phages in aquatic systems has stimulated research on the ecology of prokaryotic viruses and their role in ecosystems. This review treats the ecology of prokaryotic viruses ('phages') in marine, freshwater and soil systems from a 'virus point of view'. The abundance of viruses varies strongly in different environments and is related to bacterial abundance or activity suggesting that the majority of the viruses found in the environment are typically phages. Data on phage diversity are sparse but indicate that phages are extremely diverse in natural systems. Lytic phages are predators of prokaryotes, whereas lysogenic and chronic infections represent a parasitic interaction. Some forms of lysogeny might be described best as mutualism. The little existing ecological data on phage populations indicate a large variety of environmental niches and survival strategies. The host cell is the main resource for phages and the resource quality, i.e., the metabolic state of the host cell, is a critical factor in all steps of the phage life cycle. Virus-induced mortality of prokaryotes varies strongly on a temporal and spatial scale and shows that phages can be important predators of bacterioplankton. This mortality and the release of cell lysis products into the environment can strongly influence microbial food web processes and biogeochemical cycles. Phages can also affect host diversity, e.g., by 'killing the winner' and keeping in check competitively dominant species or populations. Moreover, they mediate gene transfer between prokaryotes, but this remains largely unknown in the environment. Genomics or proteomics are providing us now with powerful tools in phage ecology, but final testing will have to be performed in the environment.
Collapse
Affiliation(s)
- Markus G Weinbauer
- Department of Biological Oceanography, Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| |
Collapse
|
17
|
Affiliation(s)
- Hiroshi Xavier Chiura
- Department of Biology, Division of Natural Sciences, International Christian University
| |
Collapse
|
18
|
Chiura HX, Yamamoto H, Koketsu D, Naito H, Kato K. Virus-Like Particle derived from a Bacterium belonging to the Oldest Lineage of the Domain Bacteria. Microbes Environ 2002. [DOI: 10.1264/jsme2.2002.48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiroshi Xavier Chiura
- Department of Biology, Division of Natural Sciences, International Christian University
| | - Hiroyuki Yamamoto
- Department of Microbiology, St. Marianna University School of Medicine
| | - Daisuke Koketsu
- Department of Biology, Division of Natural Sciences, International Christian University
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Hiroki Naito
- Department of Biology, Division of Natural Sciences, International Christian University
- Research and Development Department, GC Corporation
| | - Kenji Kato
- Department of Biology and Geosciences, School of Science, Shizuoka University
| |
Collapse
|
19
|
|
20
|
Abstract
The discovery that viruses may be the most abundant organisms in natural waters, surpassing the number of bacteria by an order of magnitude, has inspired a resurgence of interest in viruses in the aquatic environment. Surprisingly little was known of the interaction of viruses and their hosts in nature. In the decade since the reports of extraordinarily large virus populations were published, enumeration of viruses in aquatic environments has demonstrated that the virioplankton are dynamic components of the plankton, changing dramatically in number with geographical location and season. The evidence to date suggests that virioplankton communities are composed principally of bacteriophages and, to a lesser extent, eukaryotic algal viruses. The influence of viral infection and lysis on bacterial and phytoplankton host communities was measurable after new methods were developed and prior knowledge of bacteriophage biology was incorporated into concepts of parasite and host community interactions. The new methods have yielded data showing that viral infection can have a significant impact on bacteria and unicellular algae populations and supporting the hypothesis that viruses play a significant role in microbial food webs. Besides predation limiting bacteria and phytoplankton populations, the specific nature of virus-host interaction raises the intriguing possibility that viral infection influences the structure and diversity of aquatic microbial communities. Novel applications of molecular genetic techniques have provided good evidence that viral infection can significantly influence the composition and diversity of aquatic microbial communities.
Collapse
Affiliation(s)
- K E Wommack
- Center of Marine Biotechnology, Baltimore, Maryland 21202, USA
| | | |
Collapse
|
21
|
Abstract
Nucleotide sequence analysis, and more recently whole genome analysis, shows that bacterial evolution has often proceeded by horizontal gene flow between different species and genera. In bacteria, gene transfer takes place by transformation, transduction, or conjugation and this review examines the roles of these gene transfer processes, between different bacteria, in a wide variety of ecological niches in the natural environment. This knowledge is necessary for our understanding of plasmid evolution and ecology, as well as for risk assessment. The rise and spread of multiple antibiotic resistance plasmids in medically important bacteria are consequences of intergeneric gene transfer coupled to the selective pressures posed by the increasing use and misuse of antibiotics in medicine and animal feedstuffs. Similarly, the evolution of degradative plasmids is a response to the increasing presence of xenobiotic pollutants in soil and water. Finally, our understanding of the role of horizontal gene transfer in the environment is essential for the evaluation of the possible consequences of the deliberate environmental release of natural or recombinant bacteria for agricultural and bioremediation purposes.
Collapse
Affiliation(s)
- J Davison
- Institut National de la Recherche Agronomique, Route de Saint Cyr, Versailles, F-78026, France.
| |
Collapse
|
22
|
Ripp S, Miller RV. Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 8):2225-2232. [PMID: 9720044 DOI: 10.1099/00221287-144-8-2225] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudolysogeny is an environmental condition in which the starved bacterial cell coexists in an unstable relationship with infecting viral genomes. As nutrients are supplied to the bacterium, the pseudolysogens resolve into either true lysogeny or active production of virions. The direct result of pseudolysogenic relationships is an extension of the effective phage half-lives in natural environments. In this paper a continuous culture model of interactions between bacterial host organisms and bacteriophages leading to pseudolysogeny is presented. The pseudolysogenic state was found to depend on the concentration of nutrients available to the host. As cells became more starved, the frequency of pseudolysogens increased. The dependence on overall nutrient concentration was more dramatic than the variation in the generation time (chemostat turnover time) of the host. Thus, it appears that pseudolysogeny is a legitimate strategy for environmental bacteriophages to adapt to survive periods of starvation of their host organisms. Consideration of pseudolysogeny as a survival strategy is important to the development of any comprehensive model of host-bacteriophage relationships in natural environments.
Collapse
Affiliation(s)
- Steven Ripp
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK 74078USA
| | - Robert V Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State UniversityStillwater, OK 74078USA
| |
Collapse
|
23
|
Jiang SC, Paul JH. Gene transfer by transduction in the marine environment. Appl Environ Microbiol 1998; 64:2780-7. [PMID: 9687430 PMCID: PMC106772 DOI: 10.1128/aem.64.8.2780-2787.1998] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1998] [Accepted: 05/11/1998] [Indexed: 11/20/2022] Open
Abstract
To determine the potential for bacteriophage-mediated gene transfer in the marine environment, we established transduction systems by using marine phage host isolates. Plasmid pQSR50, which contains transposon Tn5 and encodes kanamycin and streptomycin resistance, was used in plasmid transduction assays. Both marine bacterial isolates and concentrated natural bacterial communities were used as recipients in transduction studies. Transductants were detected by a gene probe complementary to the neomycin phosphotransferase (nptII) gene in Tn5. The transduction frequencies ranged from 1.33 x 10(-7) to 5.13 x 10(-9) transductants/PFU in studies performed with the bacterial isolates. With the mixed bacterial communities, putative transductants were detected in two of the six experiments performed. These putative transductants were confirmed and separated from indigenous antibiotic-resistant bacteria by colony hybridization probed with the nptII probe and by PCR amplification performed with two sets of primers specific for pQSR50. The frequencies of plasmid transduction in the mixed bacterial communities ranged from 1.58 x 10(-8) to 3.7 x 10(-8) transductants/PFU. Estimates of the transduction rate obtained by using a numerical model suggested that up to 1.3 x 10(14) transduction events per year could occur in the Tampa Bay Estuary. The results of this study suggest that transduction could be an important mechanism for horizontal gene transfer in the marine environment.
Collapse
Affiliation(s)
- S C Jiang
- Marine Science Department, University of South Florida, St. Petersburg, Florida 33701, USA
| | | |
Collapse
|
24
|
Muniesa M, Jofre J. Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl Environ Microbiol 1998; 64:2443-8. [PMID: 9647813 PMCID: PMC106409 DOI: 10.1128/aem.64.7.2443-2448.1998] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1997] [Accepted: 04/28/1998] [Indexed: 02/08/2023] Open
Abstract
Shiga toxin-converting bacteriophages are involved in the pathogenicity of some enteric bacteria, such as Escherichia coli O157:H7, but data on the occurrence and distribution of such phages as free particles in nature were not available. An experimental approach has been developed to detect the presence of the Shiga toxin 2 (Stx 2)-encoding bacteriophages in sewage. The Stx 2 gene was amplified by PCR from phages concentrated from 10-ml samples of sewage. Moreover, the phages carrying the Stx 2 gene were detected in supernatants from bacteriophage enrichment cultures by using an Stx 2-negative E. coli O157:H7 strain infected with phages purified from volumes of sewage as small as 0.02 ml. Additionally, the A subunit of Stx 2 was detected in the supernatants of the bacteriophage enrichment cultures, which also showed cytotoxic activity for Vero cells. By enrichment of phages concentrated from different volumes of sewage and applying the most-probable-number technique, it was estimated that the number of phages infectious for E. coli O157:H7 and carrying the Stx 2 gene was in the range of 1 to 10 per ml of sewage from two different origins. These values were approximately 1% of all phages infecting E. coli O157:H7.
Collapse
Affiliation(s)
- M Muniesa
- Department of Microbiology, University of Barcelona, Spain
| | | |
Collapse
|
25
|
Schrader HS, Schrader JO, Walker JJ, Wolf TA, Nickerson KW, Kokjohn TA. Bacteriophage infection and multiplication occur in Pseudomonas aeruginosa starved for 5 years. Can J Microbiol 1997; 43:1157-63. [PMID: 9476352 DOI: 10.1139/m97-164] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacteriophages specific for Pseudomonas aeruginosa and Escherichia coli were examined for their ability to multiply in stationary phase hosts. Four out of five bacteriophages tested, including E. coli bacteriophage T7M, were able to multiply in stationary phase hosts. The bacteriophage ACQ had a mean burst size of approximately 1000 in exponential phase P. aeruginosa hosts and 102 in starved hosts, with corresponding latent periods that increased from 65 to 210 min. The bacteriophage UT1 had a mean burst size of approximately 211 in exponential phase P. aeruginosa hosts and 11 in starved hosts, with latent periods that increased from a mean of 90 min in exponential phase hosts to 165 min in starved hosts. Bacteriophage multiplication occurred whether or not the hosts had entered stationary phase, either because the cultures had been incubated for 24 h or were starved. Significantly, bacteriophage multiplication occurred in P. aeruginosa, which had been starved for periods of 24 h, several weeks, or 5 years. Only one P. aeruginosa virus, BLB, was found to be incapable of multiplication in stationary phase hosts. These results reveal that starvation does not offer bacterial hosts refuge from bacteriophage infection and suggest that bacteriophages will be responsible for significant bacterial mortality in most natural ecosystems.
Collapse
Affiliation(s)
- H S Schrader
- School of Biological Sciences, University of Nebraska-Lincoln 68588-0666, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yin X, Stotzky G. Gene transfer among bacteria in natural environments. ADVANCES IN APPLIED MICROBIOLOGY 1997; 45:153-212. [PMID: 9342828 DOI: 10.1016/s0065-2164(08)70263-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- X Yin
- SRA Technologies, Inc., Rockville, Maryland 20850, USA
| | | |
Collapse
|
27
|
Römling U, Schmidt KD, Tümmler B. Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 1997; 271:386-404. [PMID: 9268667 DOI: 10.1006/jmbi.1997.1186] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to determine primary genetic events which occur during the diversification of a Pseudomonas aeruginosa clone in natural habitats, comparative genome analysis of 21 isolates of a predominant clone, called clone C, derived mainly from patients with cystic fibrosis (CF) and the aquatic environment, was carried out. Physical chromosome maps were constructed for the restriction enzymes SpeI, PacI, SwaI and I-CeuI by one and two-dimensional pulsed-field gel electrophoresis and by comparison with the existing strain C map. The positioning of 26 genes generated the genetic maps. Chromosome size varied between 6345 and 6606 kilobase-pairs (kb). A plasmid of 95 kb was detected in the strains of non-CF origin and, in addition, was found to be integrated into the chromosome of all strains but one CF isolate. Four subgroups of clone C strains were discriminated by the acquisition and loss of large blocks of DNA that could cover more than 10% of the chromosome size. The exchange of DNA blocks which ranged in size from 1 kb to 214 kb occurred preferentially around the terminus of replication region which is poor in biosynthetic genes. Genetic material which was additionally introduced into strain C in comparison with strain PAO seems to be a target of mutational processes in clone C strains. Within and among subgroups CF isolates frequently exhibited large inversions affecting the whole chromosomal structure. We concluded that the exchange of DNA blocks by mechanisms of horizontal transfer and large chromosomal inversions are major factors leading to the divergence of a clone in the species P. aeruginosa.
Collapse
Affiliation(s)
- U Römling
- Klinische Forschergruppe Institut für Biophysikalische Chemie und Pädiatrische Pneumologie, Medizinische Hochschule Hannover, OE 4350, Hannover, D-30623, Germany
| | | | | |
Collapse
|
28
|
Ripp S, Miller RV. The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology (Reading) 1997; 143:2065-2070. [DOI: 10.1099/00221287-143-6-2065] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages occur in high numbers in environmental ecosystems and are thus significant mediators of microbial survival and activities. However, interactions between microbial populations and phages in situ have been largely ignored. Current understanding of the process relies on studies performed with well-fed, laboratory-grown host bacteria. The purpose of the experiments reported here was to determine bacteriophage-host interactions under environmentally relevant conditions of nutrient limitation. These studies have revealed the importance of a phenomenon called pseudolysogeny in the maintenance of viral genetic material for extended periods of time in natural ecosystems. Pseudolysogeny is a form of phage-host cell interaction in which the nucleic acid of the phage resides within its starved host in an unstable, inactive state. It is hypothesized that pseudolysogeny occurs due to the cell's highly starved condition. In such cells, there is insufficient energy available for the phage to initiate genetic expression leading to either a true temperate response or to the lytic response. However, upon nutrient addition, the pseudolysogenic state is resolved, resulting in either the establishment of true lysogeny or the initiation of the lytic production of progeny virions. The pseudolysogenic state may explain the long-term survival of viruses in unfavourable environments in which the infective half-life of their virions is relatively short.
Collapse
Affiliation(s)
- Steven Ripp
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert V. Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
29
|
Doolittle MM, Cooney JJ, Caldwell DE. Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1996; 16:331-41. [PMID: 8987490 DOI: 10.1007/bf01570111] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phages T4 and E79 were fluorescently-labeled with rhodamine isothiocyanate (RITC), fluoroscein isothiocyanate (FITC), and by the addition of 4'6-diamidino-2-phenylindole (DAPI) to phage-infected host cells of Escherichia coli and Pseudomonas aeruginosa. Comparisons of electron micrographs with scanning confocal laser microscope (SCLM) images indicated that single RITC-labeled phage particles could be visualized. Biofilms of each bacterium were infected by labeled phage. SCLM and epifluorescence microscopy were used to observe adsorption of phage to single-layer surface-attached bacteria and thicker biofilms. The spread of the recombinant T4 phage, YZA1 (containing an rII-LacZ fusion), within a lac E. coli biofilm could be detected in the presence of chromogenic and fluorogenic homologs of galactose. Infected cells exhibited blue pigmentation and fluorescence from the cleavage products produced by the phage-encoded beta-galactosidase activity. Fluorescent antibodies were used to detect non-labeled progeny phage. Phage T4 infected both surface-attached and surface-associated E. coli while phage E79 adsorbed to P. aeruginosa cells on the surface of the biofilm, but access to cells deep in biofilms was somewhat restricted. Temperature and nutrient concentration did not affect susceptibility to phage infection, but lower temperature and low nutrients extended the time-to-lysis and slowed the spread of infection within the biofilm.
Collapse
Affiliation(s)
- M M Doolittle
- Environmental Sciences Program, University of Massachusetts, Boston 02125-3393, USA
| | | | | |
Collapse
|
30
|
Sobecky PA, Schell MA, Moran MA, Hodson RE. Impact of a genetically engineered bacterium with enhanced alkaline phosphatase activity on marine phytoplankton communities. Appl Environ Microbiol 1996; 62:6-12. [PMID: 16535222 PMCID: PMC1388740 DOI: 10.1128/aem.62.1.6-12.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An indigenous marine Achromobacter sp. was isolated from coastal Georgia seawater and modified in the laboratory by introduction of a plasmid with a phoA hybrid gene that directed constitutive overproduction of alkaline phosphatase. The effects of this "indigenous" genetically engineered microorganism (GEM) on phosphorus cycling were determined in seawater microcosms following the addition of a model dissolved organic phosphorus compound, glycerol 3-phosphate, at a concentration of 1 or 10 (mu)M. Within 48 h, a 2- to 10-fold increase in the concentration of inorganic phosphate occurred in microcosms containing the GEM (added at an initial density equivalent to 8% of the total bacterial population) relative to controls containing only natural microbial populations, natural populations with the unmodified Achromobacter sp., or natural populations with the Achromobacter sp. containing the plasmid but not the phoA gene. Secondary effects of the GEM on the phytoplankton community were observed after several days, evident as sustained increases in phytoplankton biomass (up to 14-fold) over that in controls. Even in the absence of added glycerol 3-phosphate, a numerically stable GEM population (averaging 3 to 5% of culturable bacteria) was established within 2 to 3 weeks of introduction into seawater. Moreover, alkaline phosphatase activity in microcosms with the GEM was substantially higher than that in controls for up to 25 days, and microcosms containing the GEM maintained the potential for net phosphate accumulation above control levels for longer than 1 month.
Collapse
|
31
|
Replicon J, Frankfater A, Miller RV. A Continuous Culture Model To Examine Factors That Affect Transduction among Pseudomonas aeruginosa Strains in Freshwater Environments. Appl Environ Microbiol 1995; 61:3359-66. [PMID: 16535123 PMCID: PMC1388577 DOI: 10.1128/aem.61.9.3359-3366.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transduction among Pseudomonas aeruginosa strains was observed in continuous cultures operated under environmentally relevant generation times, cell densities, and phage-to-bacterium ratios, suggesting its importance as a natural mechanism of gene transfer. Transduction was quantified by the transfer of the Tra(sup-) Mob(sup-) plasmid Rms149 from a plasmid-bearing strain to an F116 lysogen that served as both the recipient and source of transducing phages. In control experiments in which transduction was prevented, there was a reduction in the phenotype of the mock transductant over time. However, in experiments in which transduction was permitted, the proportion of transductants in the population increased over time. These data suggest that transduction can maintain a phenotype for an extended period of time in a population from which it would otherwise be lost. Changes in the numbers of transductants were analyzed by a two-part mathematical model, which consisted of terms for the selection of the transductant's phenotype and for the formation of new transductants. Transduction rates ranged from 10(sup-9) to 10(sup-6) per total viable cell count per ml per generation and increased with both the recipient concentration and the phage-to-bacterium ratio. These observations indicate an increased opportunity for transduction to occur when the interacting components are in greater abundance.
Collapse
|
32
|
Ripp S, Miller RV. Effects of Suspended Particulates on the Frequency of Transduction among Pseudomonas aeruginosa in a Freshwater Environment. Appl Environ Microbiol 1995; 61:1214-9. [PMID: 16534986 PMCID: PMC1388404 DOI: 10.1128/aem.61.4.1214-1219.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transduction has been shown to play a significant role in the transfer of plasmid and chromosomal DNA in aquatic ecosystems. Such ecosystems contain a multitude of environmental factors, any one of which may influence the transduction process. It was the purpose of this study to show how one of these factors, particulate matter, affects the frequency of transduction. In situ transduction rates were measured in lake water microcosms containing either high or low concentrations of particulate matter. The microcosms were incubated in a freshwater lake in central Oklahoma. Transduction frequencies were found to be enhanced as much as 100-fold in the presence of particulates. Our results suggest that aggregations of bacteriophages and bacterial cells are stimulated by the presence of these suspended particulates. This aggregation increases the probability of progeny phages and transducing particles finding and infecting new host cells. Consequently, both phage production and transduction frequencies increase in the presence of particulate matter.
Collapse
|
33
|
Doolittle MM, Cooney JJ, Caldwell DE. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can J Microbiol 1995; 41:12-8. [PMID: 7728652 DOI: 10.1139/m95-002] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli 3000 XIII formed biofilms on the surface of polyvinylchloride coupons in a modified Robbins device. Bacteriophage T4D+ infected cells in the biofilm and replicated. It is commonly held that bacteriophage cannot infect surface-attached bacteria (biofilms) because such bacteria are protected by an exopolymeric matrix that binds macromolecules and prevents their diffusion into the biofilm. To our knowledge this is the first observation that a bacteriophage can infect and multiply within cells growing as a biofilm.
Collapse
Affiliation(s)
- M M Doolittle
- Environmental Sciences Program, University of Massachusetts, Boston 02125-3393
| | | | | |
Collapse
|
34
|
Abstract
Genetic construction of recombinant strains with expanded degradative abilities may be useful for bioremedation of recalcitrant compounds, such as polychlorinated biphenyls (PCBs). Some degradative genes have been found either on conjugative plasmids or on transposons, which would facilitate their genetic transfer. The catabolic pathway for the total degradation of PCBs is encoded by two different sets of genes that are not normally found in the same organism. The bphABCD genes normally reside on the chromosome and encode for the four enzymes involved in the production of benzoate and chlorobenzoates from the respective catabolism of biphenyl and chlorobiphenyls. The genes encoding for chlorobenzoate catabolism have been found on both plasmids and the chromosome, often in association with transposable elements. Ring fission of chlorobiphenyls and chlorobenzoates involves the meta-fission pathway (3-phenylcatechol 2,3-dioxygenase) and the ortho-fission pathway (chlorocatechol 1,2-dioxygenase), respectively. As the catecholic intermediates of both pathways are frequently inhibitory to each other, incompatibilities result. Presently, all hybrid strains constructed by in vivo matings metabolize simple chlorobiphenyls through complementary pathways by comprising the bph, benzoate, and chlorocatechol genes of parental strains. No strains have yet been verified which are able to utilize PCBs having at least one chlorine on each ring as growth substrates. The possible incompatibilities of hybrid pathways are evaluated with respect to product toxicity, and the efficiency of both in vivo and in vitro genetic methods for the construction of recombinant strains able to degrade PCBs is discussed.
Collapse
Affiliation(s)
- V Brenner
- Department of Soil and Environmental Sciences, University of California, Riverside 92521-0424
| | | | | |
Collapse
|
35
|
Goodman AE, Marshall KC, Hermansson M. Gene transfer among bacteria under conditions of nutrient depletion in simulated and natural aquatic environments. FEMS Microbiol Ecol 1994. [DOI: 10.1111/j.1574-6941.1994.tb00229.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Kellenberger E. Genetic ecology: a new interdisciplinary science, fundamental for evolution, biodiversity and biosafety evaluations. EXPERIENTIA 1994; 50:429-37. [PMID: 8194578 DOI: 10.1007/bf01920741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genetic ecology is the extension of our modern knowledge in molecular genetics to studies of viability, gene expression and gene movements in natural environments like soils, aquifers and digestive tracts. In such milieux, the horizontal transfer of plasmid-borne genes between phylogenetically distant species has already been found to be much more frequent than had been expected from laboratory experience. For the study of exchanges involving chromosomally-located genes, more has to be learned about the behaviour of transposons in such environments. The results expected from studies in genetic ecology are relevant for considerations of evolution, biodiversity and biosafety. The role of this new field of research in restoring popular confidence in science and in its biotechnological applications is stressed.
Collapse
Affiliation(s)
- E Kellenberger
- Institut de Génétique et de Biologie microbienne, Université de Lausanne, Switzerland
| |
Collapse
|
37
|
Ripp S, Ogunseitan OA, Miller RV. Transduction of a freshwater microbial community by a new Pseudomonas aeruginosa generalized transducing phage, UT1. Mol Ecol 1994; 3:121-6. [PMID: 8019688 DOI: 10.1111/j.1365-294x.1994.tb00112.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A pseudolysogenic, generalized transducing bacteriophage, UT1, isolated from a natural freshwater habitat, is capable of mediating the transfer of both chromosomal and plasmid DNA between strains of Pseudomonas aeruginosa. Several chromosomal alleles from three different P. aeruginosa strains were found to transduce at frequencies from 10(-8) to 10(-10) transductants per PFU at multiplicities of infection (MOI) between 0.1 and 1. Transduction frequencies of certain alleles increased up to 1000-fold as MOIs were decreased to 0.01. UT1 is also capable of transducing plasmid DNA to indigenous populations of microorganisms in natural lake-water environments. Data obtained in this study suggest that environmentally endemic bacteriophages such as UT1 are formidable transducers of naturally occurring microbial communities. It should be possible to develop model systems to test transduction in freshwater environments using components derived exclusively from these environments.
Collapse
Affiliation(s)
- S Ripp
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater 74078
| | | | | |
Collapse
|
38
|
Kidambi SP, Ripp S, Miller RV. Evidence for phage-mediated gene transfer among Pseudomonas aeruginosa strains on the phylloplane. Appl Environ Microbiol 1994; 60:496-500. [PMID: 8135513 PMCID: PMC201339 DOI: 10.1128/aem.60.2.496-500.1994] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As the use of genetically engineered microorganisms for agricultural tasks becomes more frequent, the ability of bacteria to exchange genetic material in the agricultural setting must be assessed. Transduction (bacterial virus-mediated horizontal gene transfer) is a potentially important mechanism of gene transfer in natural environments. This study investigated the potential of plant leaves to act as surfaces on which transduction can take place among microorganisms. Pseudomonas aeruginosa and its generalized transducing bacteriophage F116 were used as a model system. The application of P. aeruginosa lysogens of F116 to plant leaves resulted in genetic exchange among donor and recipient organisms resident on the same plant. Transduction was also observed when these bacterial strains were inoculated onto adjacent plants and contact was made possible through high-density planting.
Collapse
Affiliation(s)
- S P Kidambi
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater 74078
| | | | | |
Collapse
|
39
|
Ecology and Epidemiology of Pseudomonas aeruginosa. PSEUDOMONAS AERUGINOSA AS AN OPPORTUNISTIC PATHOGEN 1993. [DOI: 10.1007/978-1-4615-3036-7_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
van der Meer JR, de Vos WM, Harayama S, Zehnder AJ. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev 1992; 56:677-94. [PMID: 1480115 PMCID: PMC372894 DOI: 10.1128/mr.56.4.677-694.1992] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed.
Collapse
Affiliation(s)
- J R van der Meer
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
41
|
|
42
|
Sayre P, Miller RV. Bacterial mobile genetic elements: importance in assessing the environmental fate of genetically engineered sequences. Plasmid 1991; 26:151-71. [PMID: 1661425 DOI: 10.1016/0147-619x(91)90040-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- P Sayre
- Office of Toxic Substances, U.S. Environmental Protection Agency, Washington, D.C. 20460
| | | |
Collapse
|
43
|
Frischer ME, Thurmond JM, Paul JH. Natural plasmid transformation in a high-frequency-of-transformation marine Vibrio strain. Appl Environ Microbiol 1990; 56:3439-44. [PMID: 2268155 PMCID: PMC184975 DOI: 10.1128/aem.56.11.3439-3444.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.
Collapse
Affiliation(s)
- M E Frischer
- Department of Marine Science, University of South Florida, St. Petersburg 33701-5016
| | | | | |
Collapse
|