1
|
Mendoza-Suárez M, Akyol TY, Nadzieja M, Andersen SU. Increased diversity of beneficial rhizobia enhances faba bean growth. Nat Commun 2024; 15:10673. [PMID: 39668214 PMCID: PMC11638261 DOI: 10.1038/s41467-024-54940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Legume-rhizobium symbiosis provides a sustainable nitrogen source for agriculture. Nitrogen fixation efficiency depends on both legume and rhizobium genotypes, but the implications of their interactions for plant performance in environments with many competing rhizobium strains remain unclear. Here, we let 399 Rhizobium leguminosarum complex sv. viciae strains compete for nodulation of 212 faba bean genotypes. We find that the strains can be categorised by their nodule occupancy profiles into groups that show distinct competitive interactions and plant growth-promoting effects. Further, we show that the diversity of strains occupying root nodules affects plant growth and is under plant genetic control. These insights provide a basis for re-designing rhizobium inoculation and plant breeding strategies to enhance symbiotic nitrogen fixation in agriculture.
Collapse
Affiliation(s)
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Basbuga S, Basbuga S, Can C, Yayla F. Phenotypic and genotypic diversity of root nodule bacteria from wild Lathyrus and Vicia species in Gaziantep, Turkey. Folia Microbiol (Praha) 2024; 69:1145-1157. [PMID: 38526677 DOI: 10.1007/s12223-024-01156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
This study identified the phenotypic and genotypic characteristics of the bacteria that nodulate wild Lathyrus and Vicia species natural distribution in the Gaziantep province of Turkey. Principle component analysis of phenotypic features revealed that rhizobial isolates were highly resistant to stress factors such as high salt, pH and temperature. They were found to be highly sensitive to the concentrations (mg/mL) of the antibiotics neomycin 10, kanamycin, and tetracycline 5, as well as the heavy metals Ni 10, and Cu 10, and 5. As a result of REP-PCR analysis, it was determined that the rhizobial isolates were quite diverse, and 5 main groups and many subgroups being found. All of the isolates nodulating wild Vicia species were found to be related to Rhizobium sp., and these isolates were found to be in Clades II, III, IV, and V of the phylogenetic tree based on 16S rRNA. The isolates that nodulated wild Lathyrus species were in Clades I, II, IV, V, VI, VII, and VIII, and they were closely related to Rhizobium leguminasorum, Rhizobium sp., Phyllobacterium sp., Serratia sp., and Pseudomonas sp. According to the genetic analyses, the isolates could not be classified at the species level, the similarity ratio was low, they formed a distinct group that was supported by strong bootstrap values in the phylogenetic tree, and the differences discovered in the network analysis revealed the diversity among the isolates and gave important findings that these isolates may be new species.
Collapse
Affiliation(s)
- Sevil Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey.
| | - Selcuk Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Canan Can
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Fatih Yayla
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Hnini M, Aurag J. Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana. ENVIRONMENTAL MICROBIOME 2024; 19:73. [PMID: 39334409 PMCID: PMC11438029 DOI: 10.1186/s40793-024-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree. RESULTS A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants. CONCLUSIONS The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
4
|
de Paiva Rolla-Santos AA, Terra LA, Ribeiro RA, Nogueira MA, Hungria M. Developing a genomic-based strategy to confirm microbial identity in bio-inputs containing multiple strains: an easy, fast, and low-cost multiplex PCR applied to inoculants carrying soybean Bradyrhizobium. Braz J Microbiol 2024; 55:2869-2877. [PMID: 38995612 PMCID: PMC11405733 DOI: 10.1007/s42770-024-01441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Brazil stands out in research, industrial development, and farmers' use of microbial inoculants, with an emphasis on getting benefits from the biological nitrogen fixation process with the soybean crop. Nowadays, about 140 million doses of inoculants are commercialized annually for the soybean in the country, and strain identification is achieved by rep-PCR, an effective but time-consuming method. Aiming to develop an easy, low-cost, and low-time-consuming method, we used a complete genome-based approach based on the unequivocal identification of unique genes present in the genomes of each of the four Bradyrhizobium strains used in commercial inoculants: Bradyrhizobium elkanii strains SEMIA 587 and SEMIA 5019, Bradyrhizobium japonicum SEMIA 5079, and Bradyrhizobium diazoefficiens SEMIA 5080. The unique pairs of primers able to amplify genomic regions of different sizes allowed the identification of the four strains in a simple multiplex polymerase chain reaction (PCR). Validation was confirmed by using single colonies, multiple cultures, and commercial inoculants. The number of labor hours of a technician was 3.08 times higher, and the final cost was 3.25 times higher in the rep-PCR than in the multiplex PCR. Most importantly, the results for multiplex PCR were obtained on the same day, in contrast with 15 days in the traditional methodology. The genomic approach developed can be easily applied to a variety of microbial inoculants worldwide, in addition to studies of ecology and evaluation of the competitiveness of the strains.
Collapse
Affiliation(s)
| | - Leonardo Araujo Terra
- CNPq, Ed. Telemundi II, SAUS, Quadra 01 Lotes 1 E 6, CEP, Brasília, Federal District, Brazil
| | - Renan Augusto Ribeiro
- CNPq, Ed. Telemundi II, SAUS, Quadra 01 Lotes 1 E 6, CEP, Brasília, Federal District, Brazil
| | - Marco Antonio Nogueira
- CNPq, Ed. Telemundi II, SAUS, Quadra 01 Lotes 1 E 6, CEP, Brasília, Federal District, Brazil
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 4006, 86.085-981, Londrina, Paraná, Brazil
| | - Mariangela Hungria
- CNPq, Ed. Telemundi II, SAUS, Quadra 01 Lotes 1 E 6, CEP, Brasília, Federal District, Brazil.
- Embrapa Soja, Soil Biotechnology Laboratory, C.P. 4006, 86.085-981, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
Yang X, Garuglieri E, Van Goethem MW, Marasco R, Fusi M, Daffonchio D. Mangrovimonas cancribranchiae sp. nov., a novel bacterial species associated with the gills of the fiddler crab Cranuca inversa (Brachyura, Ocypodidae) from Red Sea mangroves. Int J Syst Evol Microbiol 2024; 74:006415. [PMID: 38865172 PMCID: PMC11261673 DOI: 10.1099/ijsem.0.006415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Two bacteria, UG2_1T and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab Cranuca inversa collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20-37 °C (optimum, 28-35 °C), at pH 5.0-9.0 (optimum, pH 6.0-7.0), and with 1-11 % (w/v) NaCl (optimum, 2-4 %). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1T and UG2_2 belong to the genus Mangrovimonas, showing the highest similarity to Mangrovimonas spongiae HN-E26T (99.4 %). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1T and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus Mangrovimonas. The genome sizes were 3.08 and 3.07 Mbp for UG2_1T and UG2_2, respectively, with a G+C content of 33.8 mol% for both strains. Values of average nucleotide identity and digital DNA-DNA hybridization between the strains and closely related species were 91.0 and 43.5 %, respectively. Chemotaxonomic analysis indicated that both strains had iso-C15 : 0 and iso-C15 : 1 G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus Mangrovimonas, with the proposed name Mangrovimonas cancribranchiae sp. nov., and the type strain UG2_1T (=KCTC 102158T=DSM 117025T).
Collapse
Affiliation(s)
- Xinyuan Yang
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elisa Garuglieri
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marc W. Van Goethem
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Zumaila F, Jeevalatha A, Biju CN. Genetic diversity, mating type and pathogenicity of two Phytophthora species infecting black pepper in India. 3 Biotech 2024; 14:1. [PMID: 38050620 PMCID: PMC10693541 DOI: 10.1007/s13205-023-03843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Phytophthora capsici and P. tropicalis are the two species of Phytophthora associated with foot rot disease of black pepper in India. High genetic diversity amongst the Phytophthora species contributes to its wide host range and variability in the virulence pattern. In the present study, genetic diversity of Phytophthora species infecting black pepper was analysed using RAMS (Random Amplified Microsatellites) and REP (Repetitive Extragenic Palindromic)-PCR fingerprinting. Forty-eight isolates, 24 each of P. capsici and P. tropicalis collected from major black pepper growing states, such as Karnataka, Kerala, Tamil Nadu and Goa, were used in the study. The analyses revealed a total of 160 loci of which 150 (93.75%) were polymorphic. UPGMA cluster and PCoA analysis based on combined RAMS and REP-PCR data clearly grouped the P. capsici and P. tropicalis isolates into two clusters which were further divided into four sub-clusters viz., I & II (P. capsici) and III & IV (P. tropicalis). The study clearly indicated that all the isolates were genetically unique and the entire population was heterogeneous. REP-PCR primers showed more polymorphic loci than RAMS primers. Further, sixteen isolates were selected for morphological and infectivity analyses under in vitro conditions. The isolates exhibited varied colony morphology, sporangial shapes and belonged to A1 mating type. Under in vitro conditions, all the sixteen black pepper Phytophthora isolates could infect nutmeg, tomato, chilli, pumpkin, and cucumber and few of the isolates could infect cardamom. None of the isolates could infect coconut, areca nut and vanilla. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03843-1.
Collapse
Affiliation(s)
- Fathimath Zumaila
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode, 673012 Kerala India
- Department of Botany, University of Calicut, Malappuram, 673635 Kerala India
| | - A. Jeevalatha
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode, 673012 Kerala India
| | - C. N. Biju
- Division of Crop Protection, ICAR-Indian Institute of Spices Research, Kozhikode, 673012 Kerala India
| |
Collapse
|
7
|
Koike H, Miyamoto K, Teramoto M. Alcanivorax bacteria as important polypropylene degraders in mesopelagic environments. Appl Environ Microbiol 2023; 89:e0136523. [PMID: 37982621 PMCID: PMC10734414 DOI: 10.1128/aem.01365-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE PP biodegradation has not been clearly shown (it has been uncertain whether the PP structure is actually biodegraded or not). This is the first report on the obvious biodegradation of PP. At the same time, this study shows that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Moreover, PP biodegradation has been investigated by using solid PP as the sole carbon source. However, this study shows that PP would not be used as a sole carbon and energy source. Our data thus provide very important and key knowledge for PP bioremediation.
Collapse
Affiliation(s)
- Hiroki Koike
- Department of Marine Resource Science, Kochi University, Nankoku, Kochi, Japan
| | - Kenji Miyamoto
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Maki Teramoto
- Department of Marine Resource Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
8
|
Sarkar A, Fwanyanga FM, Horn LN, Welzel S, Diederichs M, Kerk LJ, Zimmermann M, Reinhold-Hurek B. Towards inoculant development for Bambara groundnut ( Vigna subterranean (L.) Verdc) pulse crop production in Namibia. FRONTIERS IN PLANT SCIENCE 2023; 14:1270356. [PMID: 37965028 PMCID: PMC10641001 DOI: 10.3389/fpls.2023.1270356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
Introduction The globally expanding population, together with climate change, poses a risk to the availability of food for humankind. Bambara groundnut (BGN) (Vigna subterranea (L.) Verdc) is a neglected, relatively drought-tolerant native legume of Sub-Saharan Africa that has the potential to become a successful food crop because of its nutritional quality and climate-smart features. Nitrogen fixation from root nodule symbiosis with climate-adapted rhizobial symbionts can contribute nitrogen and organic material in nutrient-poor soil and improve yields. However, high soil temperature and drought often reduce the abundance of native rhizobia in such soil. Therefore, the formulation of climate-smart biofertilizers has the potential to improve the farming of BGN at a low cost in a sustainable manner. Method The effect of seven Bradyrhizobium spp. strains native to Namibia, including B. vignae and B. subterraneum, were tested on three Namibian BGN varieties (red, brown, cream) in greenhouse pot experiments in Namibia, using soil from the target region of Kavango. Each variety was treated with a mixed inoculant consisting of seven preselected strains ("MK") as well as with one promising single inoculant strain. Results The results revealed that in all three varieties, the two inoculants (mixed or single) outperformed the non-inoculated cultivars in terms of shoot dry weight by up to 70%; the mixed inoculant treatment performed significantly better (p < 0.05) in all cases compared to the single inoculant used. To test whether the inoculant strains were established in root nodules, they were identified by sequence analysis. In many cases, the indigenous strains of Kavango soil outcompeted the inoculant strains of the mix for nodule occupancy, depending on the BGN variety. As a further preselection, each of the individual strains of the mix was used to inoculate the three varieties under sterile conditions in a phytotron. The agronomic trait and root nodulation response of the host plant inoculations strongly differed with the BGN variety. Even competitiveness in nodule occupancy without involving any indigenous strains from soil differed and depended strictly on the variety. Discussion Severe differences in symbiont-plant interactions appear to occur in BGN depending on the plant variety, demanding for coupling of breeding efforts with selecting efficient inoculant strains.
Collapse
Affiliation(s)
- Abhijit Sarkar
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Felicitas M. Fwanyanga
- Zero Emissions Research Initiative, Multi-disciplinary Research Services, University of Namibia, Windhoek, Namibia
| | - Lydia N. Horn
- Zero Emissions Research Initiative, Multi-disciplinary Research Services, University of Namibia, Windhoek, Namibia
| | - Sina Welzel
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Marco Diederichs
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Luca Jonas Kerk
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Meret Zimmermann
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- CBIB Center for Biomolecular Interactions Bremen, Department of Microbe-Plant Interactions, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
9
|
Bennis M, Kaddouri K, Badaoui B, Bouhnik O, Chaddad Z, Perez-Tapia V, Lamin H, Alami S, Lamrabet M, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Plant growth promoting activities of Pseudomonas sp. and Enterobacter sp. isolated from the rhizosphere of Vachellia gummifera in Morocco. FEMS Microbiol Ecol 2023; 99:fiad114. [PMID: 37742210 DOI: 10.1093/femsec/fiad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
The Moroccan endemic Vachellia gummifera grows wild under extreme desert conditions. This plant could be used as an alternative fodder for goats, and camels, in order to protect the Argan forests against overgrazing in Central and Southwestern Moroccan semiarid areas. With the aim to improve the V. gummifera population's density in semiarid areas, we proposed its inoculation with performing plant growth-promoting bacteria. Hence, 500 bacteria were isolated from the plant rhizosphere. From these, 291 isolates were retained for plant growth-promoting (PGP) activities assessment. A total of 44 isolates showed the best phosphates solubilization potential, as well as siderophore and auxin production. The combination of REP-PCR (repetitive extragenic palindromic-polymerase chain reaction) fingerprinting, PGP activities, and phenotypic properties, allowed the selection of three strains for the inoculation experiments. The three selected strains' 16S rRNA sequencing showed that they are members of the Enterobacter and Pseudomonas genera. The inoculation with three strains had diverse effects on V. gummifera growth parameters. All single and combined inoculations improved the plant shoot weight by more than 200%, and the root length by up to 139%, while some combinations further improved protein and chlorophyll content, thereby improving the plant's forage value. The three selected strains constitute an effective inoculum for use in the arid and semiarid zones of southern Morocco.
Collapse
Affiliation(s)
- Meryeme Bennis
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Koutar Kaddouri
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Bouabid Badaoui
- Laboratoire de Zoologie et de Biologie Générale, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Omar Bouhnik
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Zohra Chaddad
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Vicente Perez-Tapia
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Hanane Lamin
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Soufiane Alami
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Mouad Lamrabet
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Hanaa Abdelmoumen
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbíoticos Estacíon Experimental del Zaidín, CSIC, Apartado Postal 419, 18008 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Equipe de Microbiologie et Biologie Moléculaire, Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, B.P. 1014 RP, Rabat 10080, Morocco
| |
Collapse
|
10
|
Gunununu RP, Mohammed M, Jaiswal SK, Dakora FD. Phylogeny and symbiotic effectiveness of indigenous rhizobial microsymbionts of common bean (Phaseolus vulgaris L.) in Malkerns, Eswatini. Sci Rep 2023; 13:17029. [PMID: 37813863 PMCID: PMC10562383 DOI: 10.1038/s41598-023-43634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
In most legumes, the rhizobial symbionts exhibit diversity across different environments. Although common bean (Phaseolus vulgaris L.) is one of the important legumes in southern Africa, there is no available information on the genetic diversity and N2-fixing effectiveness of its symbionts in Malkerns, Eswatini. In this study, we assessed the phylogenetic positions of rhizobial microsymbionts of common bean from Malkerns in Eswatini. The isolates obtained showed differences in morpho-physiology and N2-fixing efficiency. A dendrogram constructed from the ERIC-PCR banding patterns, grouped a total of 88 tested isolates into 80 ERIC-PCR types if considered at a 70% similarity cut-off point. Multilocus sequence analysis using 16S rRNA, rpoB, dnaK, gyrB, and glnII and symbiotic (nifH and nodC) gene sequences closely aligned the test isolates to the type strains of Rhizobium muluonense, R. paranaense, R. pusense, R. phaseoli and R. etli. Subjecting the isolates in this study to further description can potentially reveal novel species. Most of the isolates tested were efficient in fixing nitrogen and elicited greater stomatal conductance and photosynthetic rates in the common bean. Relative effectiveness (RE) varied from 18 to 433%, with 75 (85%) out of the 88 tested isolates being more effective than the nitrate fed control plants.
Collapse
Affiliation(s)
- Rotondwa P Gunununu
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Mustapha Mohammed
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Crop Science, University for Development Studies, P.O. Box TL1882, Tamale, Ghana
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
11
|
Li G, Jia L, Wan L, Xia L, Gao A, Yang R, Sun R, Wang M, Du J, Lian X, Zhang R, Fang L, Liao X, Liu Y, Liu B, Sun J. Acquisition of a novel conjugative multidrug-resistant hypervirulent plasmid leads to hypervirulence in clinical carbapenem-resistant Klebsiella pneumoniae strains. MLIFE 2023; 2:317-327. [PMID: 38817808 PMCID: PMC10989919 DOI: 10.1002/mlf2.12086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 06/01/2024]
Abstract
The co-occurrence of plasmid-mediated multidrug resistance and hypervirulence in epidemic carbapenem-resistant Klebsiella pneumoniae has emerged as a global public health issue. In this study, an ST23 carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) strain VH1-2 was identified from cucumber in China and harbored a novel hybrid plasmid pVH1-2-VIR. The plasmid pVH1-2-VIR carrying both virulence and multidrug-resistance (MDR) genes was likely generated through the recombination of a virulence plasmid and an IncFIIK conjugative MDR plasmid in clinical ST23 18622 isolated from a sputum sample. The plasmid pVH1-2-VIR exhibited the capacity for transfer to the clinical ST11 carbapenem-resistant K. pneumoniae (CRKP) strain via conjugation assay. Acquisition of pVH1-2-VIR plasmid directly converted a CRKP into CR-HvKP strain characterized by hypermucoviscosity, heightened virulence for Galleria mellonella larvae, and increased colonization ability in the mouse intestine. The emergence of such a hybrid plasmid may expedite the spread of CR-HvKP strains, posing a significant risk to human health.
Collapse
Affiliation(s)
- Gong Li
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Ling Jia
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Lei Wan
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Lijuan Xia
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Ang Gao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Runshi Yang
- Department of Pathogen Biology and MicrobiologyZhejiang University School of MedicineHangzhouChina
| | - Ruanyang Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Minge Wang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Juan Du
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Rongmin Zhang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Liangxing Fang
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| | - Bao‐Tao Liu
- College of Veterinary MedicineQingdao Agricultural UniversityQingdaoChina
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and PreventionSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety EvaluationSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
12
|
Hnini M, El Attar I, Taha K, Aurag J. Genetic diversity, symbiotic efficiency, stress tolerance, and plant growth promotion traits of rhizobia nodulating Vachellia tortilis subsp. raddiana growing in dryland soils in southern Morocco. Syst Appl Microbiol 2023; 46:126434. [PMID: 37210974 DOI: 10.1016/j.syapm.2023.126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the present study, we analyzed the genetic diversity, phylogenetic relationships, stress tolerance, phytobeneficial traits, and symbiotic characteristics of rhizobial strains isolated from root nodules of Vachellia tortilis subsp. raddiana grown in soils collected in the extreme Southwest of the Anti-Atlas Mountains in Morocco. Subsequent to Rep-PCR fingerprinting, 16S rDNA gene sequencing of 15 representative strains showed that all of them belong to the genus Ensifer. Phylogenetic analysis and concatenation of the housekeeping genes gyrB, rpoB, recA, and dnaK revealed that the entire collection (except strain LMR678) shared 99.08 % to 99.92% similarity with Ensifer sp. USDA 257 and 96.92% to 98.79% with Sinorhizobium BJ1. Phylogenetic analysis of nodC and nodA sequences showed that all strains but one (LMR678) formed a phylogenetic group with the type strain "E. aridi" LMR001T (similarity over 98%). Moreover, it was relevant that most strains belong to the symbiovar vachelliae. In vitro tests revealed that five strains produced IAA, four solubilized inorganic phosphate, and one produced siderophores. All strains showed tolerance to NaCl concentrations ranging from 2 to 12% and grew at up to 10% of PEG6000. A greenhouse plant inoculation test conducted during five months demonstrated that most rhizobial strains were infective and efficient. Strains LMR688, LMR692, and LMR687 exhibited high relative symbiotic efficiency values (respectively 231.6 %, 171.96 %, and 140.84 %). These strains could be considered as the most suitable candidates for inoculation of V. t. subsp. raddiana, to be used as a pioneer plant for restoring arid soils threatened with desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Imane El Attar
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco.
| |
Collapse
|
13
|
Hnini M, Taha K, Aurag J. Molecular identification and characterization of phytobeneficial osmotolerant endophytic bacteria inhabiting root nodules of the Saharan tree Vachellia tortilis subsp. raddiana. Arch Microbiol 2022; 205:45. [PMID: 36576567 DOI: 10.1007/s00203-022-03358-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Nodular endophytes of drought-tolerant legumes are understudied. For this reason, we have isolated and studied non-symbiotic endophytic bacteria from nodules of Vachellia tortilis subsp. raddiana, a leguminous tree adapted to the harsh arid climate of Southern Morocco. Rep-PCR analysis followed by 16S rDNA sequencing revealed two main genera, Pseudomonas and Bacillus. Isolates responded variably to salt and water stresses, and mostly produced exopolysaccharides. Differences concerned also plant growth-promoting activities: phosphate, potassium, and zinc solubilization; biological nitrogen fixation; auxin, siderophore, ammonia, and HCN production; and ACC deaminase activity. Some strains exhibited antagonistic activities against phytopathogenic fungi (Fusarium oxysporum and Botrytis cinerea) and showed at least two enzymatic activities (cellulase, protease, chitinase). Four selected strains inoculated to vachellia plants under controlled conditions have shown significant positive impacts on plant growth parameters. These strains are promising bio-inoculants for vachellia plants to be used in reforestation programs in arid areas increasingly threatened by desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| |
Collapse
|
14
|
Identification of the symbiovar maamori in Mesorhizobium isolated from nodules of Ononis repens in the Maamora forest (Morocco). Symbiosis 2022. [DOI: 10.1007/s13199-022-00890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Castellano-Hinojosa A, Mora C, Strauss SL. Native Rhizobia Improve Plant Growth, Fix N 2, and Reduce Greenhouse Emissions of Sunnhemp More than Commercial Rhizobia Inoculants in Florida Citrus Orchards. PLANTS (BASEL, SWITZERLAND) 2022; 11:3011. [PMID: 36432740 PMCID: PMC9695096 DOI: 10.3390/plants11223011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Sunnhemp (Crotalaria juncea L.) is an important legume cover crop used in tree cropping systems, where there is increased interest by growers to identify rhizobia to maximize soil nitrogen (N) inputs. We aimed to isolate and identify native rhizobia and compare their capabilities with non-native rhizobia from commercial inoculants to fix atmospheric dinitrogen (N2), produce and reduce nitrous oxide (N2O), and improve plant growth. Phylogenetic analyses of sequences of the 16S rRNA and recA, atpD, and glnII genes showed native rhizobial strains belonged to Rhizobium tropici and the non-native strain to Bradyrhizobium japonicum. Plant nodulation tests, sequencing of nodC and nifH genes, and the acetylene-dependent ethylene production assay confirmed the capacity of all strains to nodulate sunnhemp and fix N2. Inoculation with native rhizobial strains resulted in significant increases in root and shoot weight and total C and N contents in the shoots, and showed greater N2-fixation rates and lower emissions of N2O compared to the non-native rhizobium. Our results suggest that native rhizobia improve plant growth, fix N2, and reduce greenhouse emissions of sunnhemp more than commercial rhizobia inoculants in Florida citrus orchards.
Collapse
|
16
|
A'inurrofiqin M, Rahayu ES, Suroto DA, Utami T, Mayangsari Y. Safety assessment of the indigenous probiotic strain Lactiplantibacillus plantarum subsp. plantarum Kita-3 using Sprague-Dawley rats as a model. AIMS Microbiol 2022; 8:403-421. [PMID: 36694579 PMCID: PMC9834073 DOI: 10.3934/microbiol.2022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 01/26/2023] Open
Abstract
Lactiplantibacillus plantarum subsp. plantarum Kita-3 is a candidate probiotic from Halloumi cheese produced by Mazaraat Artisan Cheese, Yogyakarta, Indonesia. This study evaluated the safety of consuming a high dose of L. plantarum subsp. plantarum Kita-3 in Sprague-Dawley rats for 28 days. Eighteen male rats were randomly divided into three groups, such as the control group, the skim milk group, and the probiotic group. Feed intake and body weight were monitored, and blood samples, organs (kidneys, spleen, and liver), and the colon were dissected. Organ weight, hematological parameters, serum glutamic oxaloacetic transaminase (SGOT), and serum glutamic pyruvic transaminase (SGPT) concentrations, as well as intestinal morphology of the rats, were measured. Microbial analyses were carried out on the digesta, feces, blood, organs, and colon. The results showed that consumption of L. plantarum did not negatively affect general health, organ weight, hematological parameters, SGOT and SGPT activities, or intestinal morphology. The number of L. plantarum in the feces of rats increased significantly, indicating survival of the bacterium in the gastrointestinal tract. The bacteria in the blood, organs, and colon of all groups were identified using repetitive-polymerase chain reaction with the BOXA1R primers and further by 16S rRNA gene sequencing analysis, which revealed that they were not identical to L. plantarum subsp. plantarum Kita-3. Thus, this strain did not translocate to the blood or organs of rats. Therefore, L. plantarum subsp. plantarum Kita-3 is likely to be safe for human consumption.
Collapse
Affiliation(s)
- Moh. A'inurrofiqin
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Endang Sutriswati Rahayu
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia,University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia,* Correspondence: ; Tel: +628122690013
| | - Dian Anggraini Suroto
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia,University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tyas Utami
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia,University Center of Excellence for Research and Application on Integrated Probiotic Industry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yunika Mayangsari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
Endophytic Bosea spartocytisi sp. nov. Coexists with rhizobia in root nodules of Spartocytisus supranubius growing in soils of Teide National Park (Canary Islands). Syst Appl Microbiol 2022; 45:126374. [DOI: 10.1016/j.syapm.2022.126374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
18
|
Bouhnik O, Alami S, Lamin H, Lamrabet M, Bennis M, Ouajdi M, Bellaka M, Antri SE, Abbas Y, Abdelmoumen H, Bedmar EJ, Idrissi MME. The Fodder Legume Chamaecytisus albidus Establishes Functional Symbiosis with Different Bradyrhizobial Symbiovars in Morocco. MICROBIAL ECOLOGY 2022; 84:794-807. [PMID: 34625829 DOI: 10.1007/s00248-021-01888-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 T (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3T, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 T and Bradyrhizobium. retamae Ro19T, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco.
| | - Soufiane Alami
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Mhammed Bellaka
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Salwa El Antri
- Centre de Recherche Forestière, Département Des Eaux Et Forêts, Avenue Omar Ibn El KhattabAgdal, BP 763, 10050, Rabat, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos Estación Experimental del Zaidín, CSIC Apartado Postal 419, Granada, 18008, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale Et Microbienne, Biodiversité Et Environnement, Faculté Des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Agdal, BP 1014 RP, Rabat, Morocco
| |
Collapse
|
19
|
Genetic diversity of rhizobia isolated from nodules of Trigonella foenum-graecum L. (fenugreek) cultivated in Northwestern Morocco. Arch Microbiol 2022; 204:574. [PMID: 36006460 DOI: 10.1007/s00203-022-03189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
The present work aimed to characterize rhizobia nodulating Trigonella foenum-graecum L. (fenugreek) cultivated in six different geographical locations in Northwestern Morocco. Forty-seven rhizobial isolates from nodules of Trigonella foenum-graecum were grouped into thirteen clusters using the Rep-PCR technique. The phylogenetic analysis based on 16S rRNA gene sequences of 13 groups showed that all representative strains were closely related to members of the genus Ensifer (syn. Sinorhizobium) of the Alphaproteobacteria. All the representative strains shared 100% similarity with Ensifer medicae WSM419T. NodC and nifH gene analysis revealed a close phylogenetic relationship of the representative strains with those of the strains belonging to the symbiovar meliloti. Furthermore, nodulation ability of our rhizobial strains was efficient in their host plant (Trigonella foenum-graecum L.).
Collapse
|
20
|
Curtobacterium, A Foliar Pathogen Isolated from Maize in Central Argentina. Curr Microbiol 2022; 79:261. [PMID: 35852662 DOI: 10.1007/s00284-022-02953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Plant pathogens, such as fungi, bacteria, and viruses, can cause serious damage to crops and significantly reduce yield and quality. Bacterial diseases of agronomic crops, however, have been little studied. The present study aims to isolate and identify bacteria recovered from symptomatic maize (Zea mays) leaves collected from field samples in the province of Cordoba, Argentina. Bacterial strains were identified using whole-cell matrix-assisted laser-desorption-ionization-time-off light mass spectrometry and 16S rDNA sequencing. Members of the genera Exiguobacterium and Curtobacterium were dominant in the studied vegetal material. Two strains (RC18-1/2 and RC18-3/1) were selected for further studies. The pathogenicity test showed that plants inoculated with Curtobacterium sp. RC18-1/2 exhibited the same symptoms as those previously detected in the field. To our knowledge, this study provides the first evidence about the isolation of a Curtobacterium pathogenic strain in maize. Effective crop disease management will require the use of integrated strategies, such as resistant cultivars and/or biocontrol agents.
Collapse
|
21
|
Hossain MM, Masud MM, Hossain MI, Haque MM, Uddin MS, Alam MZ, Islam MR. Rep-PCR Analyses Reveal Genetic Variation of Ralstonia solanacearum Causing Wilt of Solanaceaous Vegetables in Bangladesh. Curr Microbiol 2022; 79:234. [PMID: 35767115 DOI: 10.1007/s00284-022-02932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Ralstonia solanacearum, a soil-borne and seed-borne plant pathogenic bacterium, causes bacterial wilt to several important crop plants causing substantial economic losses. To provide population information on this pathogen for developing effective control strategies, Rep-PCR was used to analyze the genetic variation of 18 representative isolates of R. solanacearum collected in Bangladesh. Phenotypic analyses revealed that all eighteen isolates belong to biotype 3 with wide diversity in aggressiveness on eggplant, tomato, and chili. Rep-PCR studies utilizing the REP, ERIC, and BOXIR primers showed a wide variation at the genetic level among the R. solanacearum isolates used in this study. Dendrogram constructed using REP, ERIC, and BOXIR primers based on banding patterns implied that R. solanacearum isolates were genetically diversified and distributed in four clusters at 83%, 80%, and 63% similarity index, respectively. The genetic relationship assayed by rep-PCR highlighted a wide range of genetic variation but no relation among geographical origin, aggressiveness, and phylogenetic groups of R. solanacearum isolates. These results conceded that other molecular markers related to virulence gene(s) might reveal the complex relationship among geographical origin, aggressiveness, and phylogenetic groups.
Collapse
Affiliation(s)
- Md Mosharraf Hossain
- Agricultural Research Station (ARS), Bangladesh Agricultural Research Institute (BARI), Satkhira, 9403, Bangladesh
| | - Md Mostafa Masud
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Muhammad Iqbal Hossain
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahbubul Haque
- Plant Pathology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, 2202, Bangladesh
| | - Mohammad Sharif Uddin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Zahangir Alam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Rashidul Islam
- Plant Bacteriology and Biotechnology Laboratory, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
22
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
23
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
24
|
Phylogenetic and symbiotic diversity of Lupinus albus and L. angustifolius microsymbionts in the maamora forest, morocco. Syst Appl Microbiol 2022; 45:126338. [DOI: 10.1016/j.syapm.2022.126338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
|
25
|
Ghayyem S, Faridbod F. Detection of pathogenic bacteria in milk and whey samples using a fluorescence resonance energy transfer aptasensor based on cerium oxide nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:813-819. [PMID: 35138313 DOI: 10.1039/d1ay02023d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we present a facile and sensitive fluorescence resonance energy transfer (FRET) aptasensor for the detection of pathogenic bacteria, where antibiotic-functionalized cerium oxide nanoparticles were served as an energy donor and aptamer-modified gold nanoparticles (aptamer-AuNPs) were employed as an energy acceptor. To illustrate the feasibility of this strategy, Escherichia coli (E. coli) was examined. The strategy for the detection of E. coli bacteria as a target molecule is described using the FRET pair of azithromycin-functionalized CeO2 nanoparticles (Azm-CeO2NPs) and aptamer-AuNPs. The spectral overlap between these two nanoparticles and Azm and the aptamer binding on the surface of E. coli specifically provides the condition, which leads to the occurrence of the FRET phenomenon. In this way, a good linear correlation between the fluorescence intensity of Azm-CeO2NPs and E. coli concentration was obtained in the range of 10-1.5 × 105 cfu mL-1. The detection limit of the proposed method at a signal to noise ratio of 3 (3σ) was estimated to be 1.04 cfu mL-1. Further, the proposed method was applied to detect E. coli in real samples within 30 min, which indicates the applicability of the proposed method. This method could be used for other pathogenic bacterium recognition or synchronous detection by employing molecules that are particular to the desired bacteria.
Collapse
Affiliation(s)
- Sena Ghayyem
- Center of Excellence in Electrochemistry, Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, Department of Analytical Chemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D. Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of Mangrovibacillus cuniculi gen. nov., sp. nov., a Novel Member of the Bacillaceae Family. Front Microbiol 2022; 13:777986. [PMID: 35250919 PMCID: PMC8894767 DOI: 10.3389/fmicb.2022.777986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/28/2022] [Indexed: 12/28/2022] Open
Abstract
Mangrove forests are dynamic and productive ecosystems rich in microbial diversity; it has been estimated that microbial cells in the mangrove sediments constitute up to 91% of the total living biomass of these ecosystems. Despite in this ecosystem many of the ecological functions and services are supported and/or carried out by microorganisms (e.g., nutrient cycling and eukaryotic-host adaptation), their diversity and function are overlooked and poorly explored, especially for the oligotrophic mangrove of the Red Sea coast. Here, we investigated the cultivable fraction of bacteria associated with the sediments of Saudi Arabian Red Sea mangrove forest by applying the diffusion-chamber-based approach in combination with oligotrophic medium and long incubation time to allow the growth of bacteria in their natural environment. Cultivation resulted in the isolation of numerous representatives of Isoptericola (n = 51) and Marinobacter (n = 38), along with several less abundant and poorly study taxa (n = 25) distributed across ten genera. Within the latest group, we isolated R1DC41T, a novel member of the Bacillaceae family in the Firmicutes phylum. It showed 16S rRNA gene similarity of 94.59–97.36% with closest relatives of Rossellomorea (which was formerly in the Bacillus genus), Domibacillus, Bacillus, and Jeotgalibacillus genera. Based on the multilocus sequence analysis (MLSA), R1DC41T strain formed a separated branch from the listed genera, representing a novel species of a new genus for which the name Mangrovibacillus cuniculi gen. nov., sp. nov. is proposed. Genomic, morphological, and physiological characterizations revealed that R1DC41T is an aerobic, Gram-stain-variable, rod-shaped, non-motile, endospore-forming bacterium. A reduced genome and the presence of numerous transporters used to import the components necessary for its growth and resistance to the stresses imposed by the oligotrophic and salty mangrove sediments make R1DC41T extremely adapted to its environment of origin and to the competitive conditions present within.
Collapse
|
27
|
Dlamini ST, Jaiswal SK, Mohammed M, Dakora FD. Studies of Phylogeny, Symbiotic Functioning and Ecological Traits of Indigenous Microsymbionts Nodulating Bambara Groundnut (Vigna subterranea L. Verdc) in Eswatini. MICROBIAL ECOLOGY 2021; 82:688-703. [PMID: 33606087 DOI: 10.1007/s00248-021-01684-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Rhizobial microsymbionts of grain legumes are ubiquitous in soils and exhibit a wide range of diversity with respect to colony morphology, genetic variability, biochemical characteristics, and phylogenetic relationships. This study assessed the phylogenetic positions of rhizobial microsymbionts of Bambara groundnut from Eswatini exhibiting variations in morpho-physiology, adaptive characteristics, and N2-fixing efficiency. The isolates' ERIC-PCR profiles revealed the presence of high genetic variation among them. These test isolates also exhibited differences in pH tolerance and IAA production. Multilocus sequence analysis based on the 16S rRNA, atpD, glnII, gyrB, and recA gene sequences of representative test isolates closely aligned them to the type strains of Bradyrhizobium arachidis, B. manausense, B. guangdongense, B. elkanii, and B. pachyrhizi. However, some isolates showed a high divergence from the known reference type strains, indicating that they may represent species yet to be properly characterized and described. Functional characterization in the glasshouse revealed that most of the isolates from the contrasting Agro-ecologies of Eswatini were efficient in N2 fixation, and therefore elicited greater stomatal conductance and photosynthetic rates in the homologous Bambara groundnut. Of the 75 isolates tested, 51% were more effective than the commercial Bradyrhizobium sp. strain CB756, with relative symbiotic effectiveness ranging from 138 to 308%. The findings of this study indicated that the analysis of housekeeping genes and functional traits of Bambara-nodulating microsymbionts can provide a clear view for understanding and predicting rhizobial community structure across environmental gradients.
Collapse
Affiliation(s)
- Sibusiso T Dlamini
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Mustapha Mohammed
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
28
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
29
|
Husni AAA, Ismail SI, Jaafar NM, Zulperi D. Current Classification of the Bacillus pumilus Group Species, the Rubber-Pathogenic Bacteria Causing Trunk Bulges Disease in Malaysia as Assessed by MLSA and Multi rep-PCR Approaches. THE PLANT PATHOLOGY JOURNAL 2021; 37:243-257. [PMID: 34111914 PMCID: PMC8200583 DOI: 10.5423/ppj.oa.02.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Bacillus pumilus is the causal agent of trunk bulges disease affecting rubber and rubberwood quality and yield production. In this study, B. pumilus and other closely related species were included in B. pumilus group, as they shared over 99.5% similarity from 16S rRNA analysis. Multilocus sequence analysis (MLSA) of five housekeeping genes and repetitive elements-based polymerase chain reaction (rep-PCR) using REP, ERIC, and BOX primers conducted to analyze the diversity and systematic relationships of 20 isolates of B. pumilus group from four rubber tree plantations in Peninsular Malaysia (Serdang, Tanah Merah, Baling, and Rawang). Multi rep-PCR results revealed the genetic profiling among the B. pumilus group isolates, while MLSA results showed 98-100% similarity across the 20 isolates of B. pumilus group species. These 20 isolates, formerly established as B. pumilus, were found not to be grouped with B. pumilus. However, being distributed within distinctive groups of the B. pumilus group comprising of two clusters, A and B. Cluster A contained of 17 isolates close to B. altitudinis, whereas Cluster B consisted of three isolates attributed to B. safensis. This is the first MLSA and rep-PCR study on B. pumilus group, which provides an in-depth understanding of the diversity of these rubber-pathogenic isolates in Malaysia.
Collapse
Affiliation(s)
- Ainur Ainiah Azman Husni
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Izera Ismail
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Noraini Md. Jaafar
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Dzarifah Zulperi
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Laboratory of Sustainable Resources Management, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Lamin H, Alami S, Lamrabet M, Bouhnik O, Bennis M, Abdelmoumen H, Bedmar EJ, Missbah-El Idrissi M. Bradyrhizobium sp. sv. retamae nodulates Retama monosperma grown in a lead and zinc mine tailings in Eastern Morocco. Braz J Microbiol 2021; 52:639-649. [PMID: 33447935 PMCID: PMC8105474 DOI: 10.1007/s42770-021-00420-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to characterize and identify some bacteria isolated from the root nodules of Retama monosperma grown in Sidi Boubker lead and zinc mine tailings. Very few root nodules were obtained on the root nodules of R. monosperma grown in these soils. The three bacteria isolated from the root nodules were tolerant in vitro to different concentrations of heavy metals, including lead and zinc. The rep-PCR experiments showed that the three isolates have different molecular fingerprints and were considered as three different strains. The analysis of their 16S rRNA gene sequences proved their affiliation to the genus Bradyrhizobium. The analysis and phylogeny of the housekeeping genes atpD, glnII, gyrB, recA, and rpoB confirmed that the closest species was B. valentinum with similarity percentages of 95.61 to 95.82%. The three isolates recovered from the root nodules were slow-growing rhizobia capable to renodulate their original host plant in the presence of Pb-acetate. They were able to nodulate R. sphaerocarpa and Lupinus luteus also but not Glycine max or Phaseolus vulgaris. The phylogeny of the nodA and nodC nodulation genes as well as the nifH gene of the three strains showed that they belong to the symbiovar retamae of the genus Bradyrhizobium. The three strains isolated could be considered for use as inoculum for Retama plants before use in phytoremediation experiments.
Collapse
Affiliation(s)
- Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080, Granada, Spain
| | - Mustapha Missbah-El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
31
|
Sefrji FO, Marasco R, Michoud G, Seferji KA, Merlino G, Daffonchio D. Kaustia mangrovi gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed Parvibaculaceae family within the order Rhizobiales. Int J Syst Evol Microbiol 2021; 71:004806. [PMID: 33999795 PMCID: PMC8289202 DOI: 10.1099/ijsem.0.004806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
We isolated a novel strain, R1DC25T, described as Kaustia mangrovi gen. nov. sp. nov. from the sediments of a mangrove forest on the coast of the Red Sea in Saudi Arabia. This isolate is a moderately halophilic, aerobic/facultatively anaerobic Gram-stain-negative bacterium showing optimum growth at between 30 and 40 °C, at a pH of 8.5 and with 3-5 % NaCl. The genome of R1DC25T comprises a circular chromosome that is 4 630 536 bp in length, with a DNA G+C content of 67.3 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis of 120 concatenated single-copy genes revealed that R1DC25T represents a distinct lineage within the family Parvibaculaceae in the order Rhizobiales within the class Alphaproteobacteria. R1DC25T showing 95.8, 95.3 and 94.5 % 16S rRNA gene sequence identity with Rhodoligotrophos appendicifer, Rhodoligotrophos jinshengii and Rhodoligotrophos defluvii, respectively. The predominant quinone was Q-10, and the polar lipids were phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, as well as several distinct aminolipids and lipids. The predominant cellular fatty acids were C19 : 0 cyclo ω8c, a combination of C18 : 1ω7c and/or C18 : 1ω6c and C16 : 0. On the basis of the differences in the phenotypic, physiological and biochemical characteristics from its known relatives and the results of our phylogenetic analyses, R1DC25T (=KCTC 72348T;=JCM 33619T;=NCCB 100699T) is proposed to represent a novel species in a novel genus, and we propose the name Kaustia mangrovi gen. nov., sp. nov. (Kaustia, subjective name derived from the abbreviation KAUST for King Abdullah University of Science and Technology; mangrovi, of a mangrove).
Collapse
Affiliation(s)
- Fatmah O. Sefrji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Giuseppe Merlino
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
32
|
Lucero CT, Lorda GS, Anzuay MS, Ludueña LM, Taurian T. Peanut Endophytic Phosphate Solubilizing Bacteria Increase Growth and P Content of Soybean and Maize Plants. Curr Microbiol 2021; 78:1961-1972. [PMID: 33839883 DOI: 10.1007/s00284-021-02469-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Phosphorus (P) is a limiting factor of plant development due to its low availability in the soil. The use of endophytic phosphate solubilizing bacteria as a more sustainable alternative to the use of chemical phosphorus fertilizers is proposed in this study. The objectives were to analyze the effect of simple inoculations of native peanut endophytic phosphate solubilizing bacteria on plant growth promotion and P content of soybean and maize and to evaluate their survival and endophytic colonization capacity on these plants. In addition, bacterial plant cell wall degrading enzymes activities in presence or absence of root exudates was determined. Soybean, maize and peanut plants were grown on a microcosm scale and inoculated with Enterobacter sp. J49 or Serratia sp. S119. It was observed that phosphate solubilizing strains promoted the growth of maize and soybean plants and contributed significantly P to their tissues. A significant increase in the phosphate solubilizing capacity of the plant rhizosphere after the end of the assay was observed. The strains showed to survive in plant's growth substrate and in the case of Enterobacter sp. J49, it showed also to colonize endophytically maize and soybean. Root exudates of the three plants showed to produce changes in pectinase and cellulase activities of the strains. The bacterial strains analyzed in this study constitutes potential sources for the formulation of biofertilizers for their application for several crops in agricultural soils with low P content.
Collapse
Affiliation(s)
- Cinthia Tamara Lucero
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Ruta Nacional 35 km 330, CP 6300, Santa Rosa, Provincia de La Pampa, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
| | - Graciela Susana Lorda
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Ruta Nacional 35 km 330, CP 6300, Santa Rosa, Provincia de La Pampa, Argentina
| | - María Soledad Anzuay
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina
| | - Liliana Mercedes Ludueña
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina
| | - Tania Taurian
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Buenos Aires, Argentina.
- Instituto de Investigaciones Agrobiotecnológicas (INIAB), Río Cuarto, Argentina.
| |
Collapse
|
33
|
Alami S, Lamin H, Bennis M, Bouhnik O, Lamrabet M, El Hachimi ML, Abdelmoumen H, Bedmar EJ, Missbah El Idrissi M. Characterization of Retama sphaerocarpa microsymbionts in Zaida lead mine tailings in the Moroccan middle Atlas. Syst Appl Microbiol 2021; 44:126207. [PMID: 34015589 DOI: 10.1016/j.syapm.2021.126207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
In the Moroccan Middle Atlas, the tailings rich in lead and other metal residues, in the abandoned Zaida mining district, represent a real threat to environment and the neighboring villages' inhabitants' health. In this semi-arid to arid area, phytostabilisation would be the best choice to limit the transfer of heavy metals to populations and groundwater. The aim of this work was to characterize the bacteria that nodulate Retama sphaerocarpa, spontaneous nitrogen fixing shrubby legume, native to the Zaida mining area, with great potential to develop for phytostabilisation. Forty-three bacteria isolated from root nodules of the plant were characterized. Based on REP-PCR and ARDRA, four strains were selected for further molecular analyzes. The 16S rRNA gene sequences analysis revealed that the isolated strains are members of the genus Bradyrhizobium, and the phylogenetic analysis of the housekeeping genes glnII, atpD, gyrB, rpoB, recA and dnaK individual sequences and their concatenation showed that the strains are close to B. algeriense RST89T and B. valentinum LmjM3T with similarity percentages of 89.07% to 95.66% which suggest that the newly isolated strains from this mining site may belong to a potential novel species. The phylogeny of the nodA and nodC genes showed that the strains belong to the symbiovar retamae of the genus Bradyrhizobium. These strains nodulate also R. monosperma, R. dasycarpa and Lupinus luteus.
Collapse
Affiliation(s)
- Soufiane Alami
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | | | - Hanaa Abdelmoumen
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies végétales et microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, Agdal, Rabat, Morocco.
| |
Collapse
|
34
|
Bouhnik O, Lamin H, Alami S, Bennis M, Ouajdi M, Bellaka M, El Antry S, Abbas Y, Abdelmoumen H, Bedmar EJ, El Idrissi MM. The endemic Chamaecytisus albidus is nodulated by symbiovar genistearum of Bradyrhizobium in the Moroccan Maamora Forest. Syst Appl Microbiol 2021; 44:126197. [PMID: 33838436 DOI: 10.1016/j.syapm.2021.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Out of 54 isolates from root nodules of the Moroccan-endemic Chamaecytisus albidus plants growing in soils from the Maamora cork oak forest, 44 isolates formed nodules when used to infect their original host plant. A phenotypic analysis showed the metabolic diversity of the strains that used different carbohydrates and amino acids as sole carbon and nitrogen sources. The isolates grew on media with pH values ranging from 6 to 8. However, they did not tolerate high temperatures or drought and they did not grow on media with salt concentrations higher than 85 mM. REP-PCR fingerprinting grouped the strains into 12 clusters, of which representative strains were selected for ARDRA and rrs analyses. The rrs gene sequence analysis indicated that all 12 strains were members of the genus Bradyrhizobium and their phylogeny showed that they were grouped into two different clusters. Two strains from each group were selected for multilocus sequence analysis (MLSA) using atpD, recA, gyrB and glnII housekeeping genes. The inferred phylogenetic trees confirmed that the strains clustered into two divergent clusters. Strains CM55 and CM57 were affiliated to the B. canariense/B. lupini group, whereas strains CM61 and CM64 were regrouped within the B. cytisi/B. rifense lineage. The analysis of the nodC symbiotic gene affiliated the strains to the symbiovar genistearum. The strains were also able to nodulate Retama monosperma, Lupinus luteus and Cytisus monspessulanus, but not Phaseolus vulgaris or Glycine max. Inoculation tests with C. albidus showed that some strains could be exploited as efficient inocula that could be used to improve plant growth in the Maamora forest.
Collapse
Affiliation(s)
- Omar Bouhnik
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Hanane Lamin
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Meryeme Bennis
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Mohammed Ouajdi
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - M'hamed Bellaka
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - Salwa El Antry
- Centre de Recherche Forestière, Département des Eaux et Forêts, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal 10050, Morocco
| | - Younes Abbas
- Faculté Polydiciplinaire, Université Sultan Moulay Slimane, Beni Mellal, Morocco
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco
| | - Eulogio J Bedmar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, CSIC Estación Experimental del Zaidín, Apartado Postal 419, 18080 Granada, Spain
| | - Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 4, Avenue Ibn Battouta, Rabat, Morocco.
| |
Collapse
|
35
|
Siddique AB, Moniruzzaman M, Ali S, Dewan MN, Islam MR, Islam MS, Amin MB, Mondal D, Parvez AK, Mahmud ZH. Characterization of Pathogenic Vibrio parahaemolyticus Isolated From Fish Aquaculture of the Southwest Coastal Area of Bangladesh. Front Microbiol 2021; 12:635539. [PMID: 33763050 PMCID: PMC7982743 DOI: 10.3389/fmicb.2021.635539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 12/28/2022] Open
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen responsible for significant economic losses in aquaculture and a threat to human health. Here, we explored the incidence, virulence potential, and diversity of V. parahaemolyticus isolates from aquaculture farms in Bangladesh. We examined a total of 216 water, sediment, Oreochromis niloticus (tilapia), Labeo rohita (rui), and Penaeus monodon (shrimp) samples from the aquaculture system where 60.2% (130/216) samples were positive for V. parahaemolyticus. Furthermore, we identified 323 V. parahaemolyticus strains from contaminated samples, 17 of which were found positive for trh, a virulence gene. Four isolates out of the 17 obtained were able to accumulate fluid in the rabbit ileal loop assay. The correlation between the contamination of V. parahaemolyticus and environmental factors was determined by Pearson correlation. The temperature and salinity were significantly correlated (positive) with the incidence of V. parahaemolyticus. Most of the pathogenic isolates (94.1%) were found resistant to ampicillin and amoxicillin. O8: KUT was the predominant serotype of the potentially pathogenic isolates. ERIC-PCR reveals genetic variation and relatedness among the pathogenic isolates. Therefore, this region-specific study establishes the incidence of potential infection with V. parahaemolyticus from the consumption of tilapia, rui, and shrimp raised in farms in Satkhira, Bangladesh, and the basis for developing strategies to reduce the risk for diseases and economic burden.
Collapse
Affiliation(s)
- Abu Baker Siddique
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.,Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - M Moniruzzaman
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Sobur Ali
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Nayem Dewan
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammad Rafiqul Islam
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Mohammed Badrul Amin
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Dinesh Mondal
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
36
|
Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants. Int Microbiol 2021; 24:207-218. [PMID: 33423098 DOI: 10.1007/s10123-020-00158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Chickpeas, lentils, and peas are the oldest grain legume species that spread to other regions after their first domestication in Fertile Crescent, and they could reveal the rhizobial evolution in relation to the microsymbionts of wild species in this region. This study investigated the phenotypic and genotypic diversity of the nodule-forming rhizobial bacteria recovered from Pisum sativum subsp., Cicer pinnatifidum, and Lens culinaris subsp. orientalis exhibiting natural distribution in the Gaziantep province of Turkey. PCA analyses of rhizobial isolates, which were tested to be highly resistant to stress conditions, showed that especially pH and salt concentrations had an important effect on these bacteria. Phylogenetic analysis based on 16S rRNA determined that these wild species were nodulated by at least 7 groups including Rhizobium and non-Rhizobium. The largest group comprised of Rhizobium leguminosarum and Rhizobium sp. while R. pusense, which was previously determined as non-symbiotic species, was found to nodulate C. pinnatifidum and L. culinaris subsp. orientalis. In recent studies, Klebsiella sp., which is stated to be able to nodulate different species, strong evidences have been obtained in present study exhibiting that Klebsiella sp. can nodulate C. pinnatifidum and Pseudomonas sp. was able to nodulate C. pinnatifidum and P. sativum subsp. Additionally, L. culinaris subsp. orientalis unlike other plant species, was nodulated by Burkholderia sp. and Serratia sp. associated isolates. Some isolates could not be characterized at the species level since the 16S rRNA sequence similarity rate was low and the fact that they were in a separate group supported with high bootstrap values in the phylogenetic tree may indicate that these isolates could be new species. The REP-PCR fingerprinting provided results supporting the existence of new species nodulating wild ancestors.
Collapse
|
37
|
Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production. PLANTS 2020; 9:plants9111596. [PMID: 33213067 PMCID: PMC7698556 DOI: 10.3390/plants9111596] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023]
Abstract
Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
Collapse
Affiliation(s)
| | - Vandana Yadav
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Deepti Tyagi
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Dolly Wattal Dhar
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Annapurna Kannepalli
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Shiv Kumar
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco
| |
Collapse
|
38
|
Missbah El Idrissi M, Lamin H, Bouhnik O, Lamrabet M, Alami S, Jabrone Y, Bennis M, Bedmar EJ, Abdelmoumen H. Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli. Syst Appl Microbiol 2020; 43:126084. [PMID: 32423773 DOI: 10.1016/j.syapm.2020.126084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC). The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%. Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA. The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.
Collapse
Affiliation(s)
- Mustapha Missbah El Idrissi
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Hanane Lamin
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Omar Bouhnik
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mouad Lamrabet
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Soufiane Alami
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Youssef Jabrone
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco; Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Meryeme Bennis
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-419, 18080 Granada, Spain
| | - Hanaa Abdelmoumen
- Centre de Biotechnologies Végétales et Microbiennes, Biodiversité et Environnement, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| |
Collapse
|
39
|
Riba M, Kiss-Szikszai A, Gonda S, Parizsa P, Deák B, Török P, Valkó O, Felföldi T, Vasas G. Chemotyping of terrestrial Nostoc-like isolates from alkali grassland areas by non-targeted peptide analysis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Kalita M, Małek W, Coutinho TA. Putative novel Bradyrhizobium and Phyllobacterium species isolated from root nodules of Chamaecytisus ruthenicus. Syst Appl Microbiol 2020; 43:126056. [PMID: 31987702 DOI: 10.1016/j.syapm.2020.126056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
In this study, the diversity and the phylogenetic relationships of bacteria isolated from root nodules of Chamaecytisus ruthenicus growing in Poland were investigated using ERIC-PCR fingerprinting and by multilocus sequence analysis (MLSA). Two major clusters comprising 13 and 3 isolates were detected which 16S rRNA gene sequencing identified as Bradyrhizobium and Phyllobacterium. The results of phylogenetic analysis of individual and concatenated atpD, gyrB and recA gene sequences showed that the studied strains may represent novel species in the genera Bradyrhizobium and Phyllobacterium. In the phylogenetic tree based on the atpD-gyrB-recA concatemers, Bradyrhizobium isolates were split into two groups closely related to Bradyrhizobium algeriense STM89T and Bradyrhizobium valentinum LmjM3T. The genus Phyllobacterium isolates formed a separate cluster close to Phyllobacterium ifriqiyense LMG27887T in the atpD-gyrB-recA phylogram. Analysis of symbiotic gene sequences (nodC, nodZ, nifD, and nifH) showed that the Bradyrhizobium isolates were most closely related to Bradyrhizobium algeriense STM89T, Bradyrhizobium valentinum LmjM3T and Bradyrhizobium retamae Ro19T belonging to symbiovar retamae. This is the first report on the occurrence of members of symbiovar retamae from outside the Mediterranean region. No symbiosis related genes were amplified from Phyllobacterium strains, which were also unable to induce nodules on C. ruthenicus roots. Based on these findings Phyllobacterium isolates can be regarded as endophytic bacteria inhabitating root nodules of C. ruthenicus.
Collapse
Affiliation(s)
- Michał Kalita
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, Lublin, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, Lublin, Poland
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
41
|
Root nodules of Genista germanica harbor Bradyrhizobium and Rhizobium bacteria exchanging nodC and nodZ genes. Syst Appl Microbiol 2020; 43:126026. [DOI: 10.1016/j.syapm.2019.126026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022]
|
42
|
Popović T, Jelušić A, Dimkić I, Stanković S, Poštić D, Aleksić G, Veljović Jovanović S. Molecular Characterization of Pseudomonas syringae pv. coriandricola and Biochemical Changes Attributable to the Pathological Response on Its Hosts Carrot, Parsley, and Parsnip. PLANT DISEASE 2019; 103:3072-3082. [PMID: 31596690 DOI: 10.1094/pdis-03-19-0674-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial leaf spot caused by the plant pathogenic bacterium Pseudomonas syringae pv. coriandricola (Psc) was observed on carrot, parsnip, and parsley grown on a vegetable farm in the Vojvodina Province of Serbia. Nonfluorescent bacterial colonies were isolated from diseased leaves and characterized using different molecular techniques. Repetitive element PCR fingerprinting with five oligonucleotide primers (BOX, ERIC, GTG5, REP, and SERE) and the randomly amplified polymorphic DNA-PCR with the M13 primer revealed identical fingerprint patterns for all tested strains. Multilocus sequence analysis of four housekeeping genes (gapA, gltA, gyrB, and rpoD) showed a high degree (99.8 to 100%) of homology with sequences of Psc strains deposited in the Plant-Associated Microbes Database and NCBI database. The tested strains caused bacterial leaf spot symptoms on all three host plants. Host-strain specificity was not found in cross-pathogenicity tests, but the plant response (peroxidase induction and chlorophyll bleaching) was more pronounced in carrot and parsley than in parsnip.
Collapse
Affiliation(s)
- Tatjana Popović
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Aleksandra Jelušić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Dobrivoj Poštić
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | - Goran Aleksić
- Institute for Plant Protection and Environment, Belgrade, Serbia
| | | |
Collapse
|
43
|
Rokni N, Akbar Sadati SA, Safaie N, Ebrahimi MA, Samimifar M. Assessment of genetic relatedness among commercial and wild strains of Agaricus bisporus using repetitive extragenic palindromic sequences and polymerase chain reaction. MYCOSCIENCE 2019. [DOI: 10.1016/j.myc.2019.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Bouhnik O, ElFaik S, Alami S, Talbi C, Lamin H, Abdelmoumen H, Tortosa Muñoz G, J. Bedmar E, Missbah El Idrissi M. Ensifer fredii symbiovar vachelliae nodulates endemic Vachellia gummifera in semiarid Moroccan areas. Syst Appl Microbiol 2019; 42:125999. [DOI: 10.1016/j.syapm.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
|
45
|
Oleńska E, Małek W. Genomic polymorphism of Trifolium repens root nodule symbionts from heavy metal-abundant 100-year-old waste heap in southern Poland. Arch Microbiol 2019; 201:1405-1414. [PMID: 31346652 PMCID: PMC6817745 DOI: 10.1007/s00203-019-01708-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
Abstract
In total, 77 rhizobial strains isolated from the root nodules of T. repens, inhabiting heavy metal-contaminated waste heap (36 isolates) and control grassland (41 ones) in southern Poland, were analyzed for genome polymorphism and strength of the heavy metals’ (mainly Zn, Pb, Cd) selective pressure on bacterial genome polymorphism using two PCR-based techniques, ERIC- (enterobacterial repetitive intergenic consensus) and REP-PCR (repetitive extragenic palindromic) sequences. Both methods of different discriminatory power index (D) (ERIC-PCR D = 0.9737; REP-PCR D = 0.9826) allowed to distinguish 47 and 44 rhizobial strains, respectively. Combined analysis of ERIC-PCR and REP-PCR DNA amplicons differentiated all tested isolates. Both ERIC- and REP-PCR DNA fingerprinting techniques showed significant decline of the genome polymorphism (h) in rhizobial population from metalliferous waste heap (h = 0.89 ± 0.03; h = 0.90 ± 0.02, respectively) compared to rhizobia from control non-metalliferous area (h = 0.99 ± 0.01; h = 0.98 ± 0.02, respectively) as well as substantial differences in the genomic polymorphism between both these populations (FST = 0.162, p = 0.008; FST = 0.170, p = 0.000, respectively).
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Genetics and Evolution, Institute of Biology, Faculty of Biology and Chemistry, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
46
|
Matti A, Utami T, Hidayat C, S. Rahayu E. Isolation, Screening, and Identification of Proteolytic Lactic Acid Bacteria from Indigenous Chao Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1639872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Agussalim Matti
- Department of Fisheries products processing technology, Pangkep State Polytechnic of Agricultural, Pangkajene dan Kepulauan, Indonesia
| | - Tyas Utami
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Chusnul Hidayat
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| | - Endang S. Rahayu
- Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
47
|
Lamin H, Alami S, Bouhnik O, ElFaik S, Abdelmoumen H, Bedmar EJ, Missbah-El Idrissi M. Nodulation of Retama monosperma by Ensifer aridi in an Abandonned Lead Mine Soils in Eastern Morocco. Front Microbiol 2019; 10:1456. [PMID: 31396163 PMCID: PMC6663986 DOI: 10.3389/fmicb.2019.01456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
Millions tons of lead and zinc wastes from the abandoned Touissit mine are stored in the open air as dikes in the vicinity of the villages in Eastern Morocco and pose a real danger to both the environment and local populations. To prevent the movement of minerals to the nearby villages and limit the damages to the environment and health, we proposed the nitrogen-fixing leguminous shrub Retama monosperma, as a model plant to use for phytostabilization experimentations. This plant species is known by its ability to grow in hard climatic conditions and in heavy metals contaminated soils. The isolation of bacterial strains nodulating R. monosperma in the abandoned mine soils will permit the selection of rhizobia to inoculate young plant seedlings before their use for the phytostabilization of the mine tailings. In this work, 44 bacteria were isolated from the root nodules of R. Monosperma grown in the Touissit abandoned mine. Twenty-four isolates were considered as true rhizobia as they possess a copy of the nodC symbiotic gene and were able to renodulate their original host. The phenotypic characterization showed that all the strains are tolerant in vitro to different concentrations of heavy metals. The analysis of the 16S rRNA sequences of two selected representative strains showed they were related to different strains of Ensifer aridi isolated from different legumes in three continents deserts. The glnII, recA, and gyrB housekeeping genes analysis confirmed the affiliation of the strains to E. aridi. Moreover, the phylogenic analysis of nodA, nodC, and nifH symbiotic genes showed that the strains are more related to E. aridi JNVUTP6 species isolated from Tephrosia purpurea root nodules in the Thar Desert in India. To our knowledge, this is the first report about the isolation of E. aridi from R. monosperma root nodules.
Collapse
Affiliation(s)
- Hanane Lamin
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Soufiane Alami
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Omar Bouhnik
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Salma ElFaik
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Hanaa Abdelmoumen
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Mustapha Missbah-El Idrissi
- Center for Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
48
|
Irisarri P, Cardozo G, Tartaglia C, Reyno R, Gutiérrez P, Lattanzi FA, Rebuffo M, Monza J. Selection of Competitive and Efficient Rhizobia Strains for White Clover. Front Microbiol 2019; 10:768. [PMID: 31065250 PMCID: PMC6489563 DOI: 10.3389/fmicb.2019.00768] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
The practice of inoculating forage legumes with rhizobia strains is widespread. It is assumed that the inoculated strain determines the performance of the symbiosis and nitrogen fixation rates. However, native-naturalized strains can be competitive, and actual nodule occupancy is often scarcely investigated. In consequence, failures in establishment, and low productivity attributed to poor performance of the inoculant may merely reflect the absence of the inoculated strain in the nodules. This study lays out a strategy followed for selecting a Rhizobium leguminosarum sv. trifolii strain for white clover (Trifolium repens) with competitive nodule occupancy. First, the competitiveness of native-naturalized rhizobia strains selected for their efficiency to fix N2 in clover and tagged with gusA was evaluated in controlled conditions with different soils. Second, three of these experimental strains with superior nodule occupancy plus the currently recommended commercial inoculant, an introduced strain, were tested in the field in 2 years and at two sites. Plant establishment, herbage productivity, fixation of atmospheric N2 (15N natural abundance), and nodule occupancy (ERIC-PCR genomic fingerprinting) were measured. In both years and sites, nodule occupancy of the native-naturalized experimental strains was either higher or similar to that of the commercial inoculant in both primary and secondary roots. The difference was even greater in stolon roots nodules, where nodule occupancy of the native-naturalized experimental strains was at least five times greater. The amount of N fixed per unit plant mass was consistently higher with native-naturalized experimental strains, although the proportion of N derived from atmospheric fixation was similar for all strains. Plant establishment and herbage production, as well as clover contribution in oversown native grasslands, were either similar or higher in white clover inoculated with the native-naturalized experimental strains. These results support the use of our implemented strategy for developing a competitive inoculant from native-naturalized strains.
Collapse
Affiliation(s)
- Pilar Irisarri
- Laboratorio de Microbiología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Gerónimo Cardozo
- Instituto Nacional de Investigación Agropecuaria, INIA Treinta y Tres, Treinta y Tres, Uruguay
| | - Carolina Tartaglia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Rafael Reyno
- Instituto Nacional de Investigación Agropecuaria, INIA Tacuarembó, Tacuarembó, Uruguay
| | - Pamela Gutiérrez
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Fernando A. Lattanzi
- Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela, Colonia, Uruguay
| | - Mónica Rebuffo
- Instituto Nacional de Investigación Agropecuaria, INIA La Estanzuela, Colonia, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
49
|
Tovi N, Frenk S, Hadar Y, Minz D. Host Specificity and Spatial Distribution Preference of Three Pseudomonas Isolates. Front Microbiol 2019; 9:3263. [PMID: 30687261 PMCID: PMC6335278 DOI: 10.3389/fmicb.2018.03263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Plant hosts recruit and maintain a distinct root-associated microbiota based on host and bacterium traits. However, past studies disregarded microbial strain-host specificity and spatial micro-heterogeneity of the root compartment. Using genetic manipulation, confocal laser scanning microscopy, real-time quantitative PCR, and genome sequencing we characterized the colonization patterns of three Pseudomonas spp. isolates native to wheat roots, on the micro-scale. Namely, isolates P. fluorescens NT0133, P. stutzeri NT124, and P. stutzeri NT128. All three isolates preferentially colonized wheat over cucumber roots that served as control for host specificity. Furthermore, not only had the isolates strong host specificity but each isolate had a distinct spatial distribution on the root, all within a few millimeters. Isolate P. stutzeri-NT0124 preferentially colonized root tips, whereas P. fluorescens-NT0133 showed a preference for zones distant from the tip. In contrast, isolate P. stutzeri-NT0128 had no preference for a specific niche on the root. While all isolates maintained genetic potential for motility and biofilm formation their phenotype varied significantly and corresponded to their niche preference. These results demonstrate the importance of spatial colonization patterns, governed by both niche and bacterial characteristics which will have great importance in future attempts to manipulate the plant microbiome by constructing synthetic microbial consortia.
Collapse
Affiliation(s)
- Nesli Tovi
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization–Volcani Center, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sammy Frenk
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dror Minz
- Department of Soil, Water, and Environmental Sciences, Agricultural Research Organization–Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
50
|
Kumar H, Dubey R, Maheshwari D. Rhizobial genetic diversity in root nodules of Trigonella foenum-graecum cultivated in sub-himalayan region of Uttarakhand. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|