1
|
Xiong ZR, Gabriel E, Gutierrez A, East C, Kniel KE, Danyluk MD, Jay-Russell M, Sharma M. Biological soil amendments can support survival of pathogenic and non-pathogenic Escherichia coli in soils and sporadic transfer to Romaine lettuce. Int J Food Microbiol 2025; 434:111147. [PMID: 40056530 DOI: 10.1016/j.ijfoodmicro.2025.111147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/18/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Biological soil amendments (BSAs) are essential agricultural inputs that provide critical nutrients in organic leafy green production. Heat-treated poultry pellets (HTPP) and seabird guano (SBG), which have been treated to reduce microbial pathogen loads, are gaining popularity among growers. Using these BSAs in the process of side-dressing, providing nutrients to crops while growing, may provide opportunities for externally introduced bacterial pathogens to survive in soil. In this study, Romaine lettuce was grown in soils in a controlled environmental growth chamber. Soils were side-dressed twice with different combinations of treated BSAs: HTPP, SBG, and corn steep liquor (CSL). Soils were co-inoculated with non-pathogenic E. coli and two E. coli O157:H7 strains at the second of two side-dressing events. Survival of E. coli in soils over 28 days was evaluated. On day 28 post inoculation, two heads of Romaine lettuce from each planter were harvested, and the presence of E. coli on leaves was determined. Four nonlinear statistical models were fit to predict survival of E. coli in soils. In all soils regardless of BSA treatment, E. coli TVS 353 declined by 4.08-4.51 log CFU/g soil over 28 days, and E. coli O157:H7 declined by 2.77-4.3 log CFU/g soil over 28 days. E. coli TVS 353 and O157:H7 were recovered from 13.3 % (6/45) and 11.1 % (5/45) of plants, respectively. Transfer of E. coli from soils to Romaine lettuce was low, sporadic, and could not be measured quantitatively. Side-dressing with treated BSAs used in organic lettuce production supported but did not enhance survival of E. coli in side-dressed soils under controlled environmental conditions.
Collapse
Affiliation(s)
- Zirui Ray Xiong
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America; Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America
| | - Ellen Gabriel
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Alan Gutierrez
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Cheryl East
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States of America
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States of America
| | - Manan Sharma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, United States of America.
| |
Collapse
|
2
|
Kwon H, Lim DJ, Choi C. Prevention of foodborne viruses and pathogens in fresh produce and root vegetables. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:219-285. [PMID: 40023562 DOI: 10.1016/bs.afnr.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Every year, 1 in 10 people suffers from food poisoning, and in recent years, the highest number of foodborne outbreaks has been attributed to roots/underground vegetables and fresh produce. Major pathogens include as Escherichia coli, Salmonella enterica, Listeria monocytogenes, Human Norovirus, Hepatitis A virus and Cyclospora. The primary sources of contamination for agriculture products stem from uncontrolled exposure to soil, water, and animal waste. Contamination can occur in various ways during food cultivation, harvesting, processing, and distribution. Mechanical washing and disinfection are primarily employed as practices to control biological contaminants such as bacteria, viruses, and parasites. Current practices may encounter challenges such as microbial resistance to disinfectants or antibiotics, and the cleaning effectiveness could be compromised due to the internalization of bacteria and viruses into some plants. High-pressure processing, pulse electric fields, and cold plasma are environmentally friendly technologies, albeit with associated costs. Low-temperature sterilization technologies capable of controlling biological contaminants, such as bacteria and viruses, play a crucial role in preventing food safety issues. Compared to conventional cleaning methods, these technologies are effective in controlling microorganisms that are strongly attached to the food surface or internalized due to damage. Periodic surveillance is essential to ensure the overall microbiological safety of fresh produce and root vegetables.
Collapse
Affiliation(s)
- Hyojin Kwon
- Department of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Dong Jae Lim
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Nada HG, El-Tahan AS, El-Didamony G, Askora A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: one health menace. BMC Microbiol 2023; 23:127. [PMID: 37173663 PMCID: PMC10176883 DOI: 10.1186/s12866-023-02873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen, that is transmitted from a variety of animals, especially cattle to humans via contaminated food, water, feaces or contact with infected environment or animals. The ability of STEC strains to cause gastrointestinal complications in human is due to the production of Shiga toxins (sxt). However, the transmission of multidrug-resistance STEC strains are linked with a severity of disease outcomes and horizontal spread of resistance genes in other pathogens. The result of this has emerged as a significant threat to public health, animal health, food safety, and the environment. Therefore, the purpose of this study is to investigate the antibiogram profile of enteric E. coli O157 isolated from food products and cattle faeces samples in Zagazig City, Al-Sharkia, Egypt, and to reveal the presence of Shiga toxin genes stx1 and stx2 as virulence factors in multidrug-resistant isolates. In addition to this, the partial 16S rRNA sequencing was used for the identification and genetic recoding of the obtained STEC isolates. RESULTS There was a total of sixty-five samples collected from different geographical regions at Zagazig City, Al-Sharkia-Egypt, which were divided into: 15 chicken meat (C), 10 luncheon (L), 10 hamburgers (H), and 30 cattle faeces (CF). From the sixty-five samples, only 10 samples (one from H, and 9 from CF) were identified as suspicious E. coli O157 with colourless colonies on sorbitol MacConkey agar media with Cefixime- Telurite supplement at the last step of most probable number (MPN) technique. Eight isolates (all from CF) were identified as multidrug-resistant (MDR) as they showed resistance to three antibiotics with multiple antibiotic resistance (MAR) index ≥ 0.23, which were assessed by standard Kirby-Bauer disc diffusion method. These eight isolates demonstrated complete resistance (100%) against amoxicillin/clavulanic acid, and high frequencies of resistance (90%, 70%, 60%,60%, and 40%) against cefoxitin, polymixin, erythromycin, ceftazidime, and piperacillin, respectively. Those eight MDR E. coli O157 underwent serological assay to confirm their serotype. Only two isolates (CF8, and CF13), both from CF, were showed strong agglutination with antisera O157 and H7, as well as resistance against 8 out of 13 of the used antibiotics with the highest MAR index (0.62). The presence of virulence genes Shiga toxins (stx1 and stx2) was assessed by PCR technique. CF8 was confirmed for carrying stx2, while CF13 was carrying both genes stx1, and stx2. Both isolates were identified by partial molecular 16S rRNA sequencing and have an accession number (Acc. No.) of LC666912, and LC666913 on gene bank. Phylogenetic analysis showed that CF8, and CF13 were highly homologous (98%) to E. coli H7 strain, and (100%) to E. coli DH7, respectively. CONCLUSION The results of this study provides evidence for the occurrence of E. coli O157:H7 that carries Shiga toxins stx1 and/or stx2, with a high frequency of resistance to antibiotics commonly used in human and veterinary medicine, in Zagazig City, Al-Sharkia, Egypt. This has a high extent of public health risk posed by animal reservoirs and food products with respect to easy transmission causing outbreaks and transfer resistance genes to other pathogens in animal, human, and plants. Therefore, environmental, animal husbandry, and food product surveillance, as well as, clinical infection control, must be strengthened to avoid the extra spread of MDR pathogens, especially MDR STEC strains.
Collapse
Affiliation(s)
- Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Amera Saeed El-Tahan
- Microbiology and Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gamal El-Didamony
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Askora
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Aditya A, Tabashsum Z, Alvarado Martinez Z, Wei Tung C, Suh G, Nguyen P, Biswas D. Diarrheagenic Escherichia coli and Their Antibiotic Resistance Patterns in Dairy Farms and Their Microbial Ecosystems. J Food Prot 2023; 86:100051. [PMID: 36916558 DOI: 10.1016/j.jfp.2023.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Ruminants are the largest reservoir for all types of Escherichia coli, including the pathogenic ones, which can potentially be transmitted to humans via the food chain and environment. A longitudinal study was performed to estimate the prevalence and antibiotic-resistant pattern of pathogenic E. coli (pE.coli) strains in dairy farm environments. A total of 846 environmental samples (water, lagoon slurry, bedding, feed, feces, soil, and compost) were collected in summer over two years from five dairy farms in Maryland, USA. An additional 40 soil samples were collected in winter and summer seasons for evaluating microbiome composition. Collected environmental samples were screened for the presence of pE.coli, which was isolated using a selective culture medium, for later confirmation and virotyping using PCR with specific primers. The overall prevalence of pE.coli in dairy farms was 8.93% (71/846), with the most common virotype identified in isolates being ETEC, followed by STEC. The highest pE.coli prevalence were recorded in lagoon slurry (21.57%) while the lowest was in compost heap (2.99%). Among isolates, 95.87% of the virotypes were resistant to 9 classes of antibiotics whereas only 4.12% were sensitive. The highest proportion (68.04%) of resistance was found for quinolones (e.g., ciprofloxacin). The resulting metagenomic analysis at the phylum and genus levels of the grazing land soil suggests that climatic conditions actively influence the abundance of bacteria. Proteobacteria, which contains many Gram-negative foodborne pathogens (including pE.coli), was the most predominant phylum, accounting for 26.70% and 24.93% of soil bacteria in summer and winter, respectively. In addition to relative abundance, there was no significant difference in species diversity between seasons when calculated via Simpson (D) and Shannon (H) index. This study suggests that antibiotic-resistant E. coli virotypes are present in the dairy farm environment, and proper steps are warranted to control its transmission irrespective of seasonality.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | - Chuan Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Grace Suh
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Phuong Nguyen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Biological Sciences Program, University of Maryland, College Park, MD 20742, USA; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
6
|
Topalcengiz Z, Danyluk MD. Assessment of Contamination Risk from Fecal Matter Presence on Fruit and Mulch in the tomato fields based on generic Escherichia coli population. Food Microbiol 2022; 103:103956. [DOI: 10.1016/j.fm.2021.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
|
7
|
Onyeka LO, Adesiyun AA, Keddy KH, Manqele A, Madoroba E, Thompson PN. Prevalence and patterns of fecal shedding of Shiga toxin–producing
Escherichia coli
by cattle at a commercial feedlot in South Africa. J Food Saf 2021. [DOI: 10.1111/jfs.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Libby Obumneke Onyeka
- Department of Production Animal Studies, Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
- Department of Veterinary Public Health and Preventive Medicine College of Veterinary Medicine, Michael Okpara University of Agriculture Umudike Nigeria
| | - Abiodun A. Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
- Department of Basic Veterinary Sciences School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies St. Augustine Trinidad and Tobago
| | - Karen H. Keddy
- School of Public Health, Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
- Agricultural Research Council—Onderstepoort Veterinary Research Onderstepoort South Africa
| | - Evelyn Madoroba
- Agricultural Research Council—Onderstepoort Veterinary Research Onderstepoort South Africa
- Department of Biochemistry & Microbiology University of Zululand KwaDlangezwa South Africa
| | - Peter Neil Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| |
Collapse
|
8
|
Black Z, Balta I, Black L, Naughton PJ, Dooley JSG, Corcionivoschi N. The Fate of Foodborne Pathogens in Manure Treated Soil. Front Microbiol 2021; 12:781357. [PMID: 34956145 PMCID: PMC8702830 DOI: 10.3389/fmicb.2021.781357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this review was to provide an update on the complex relationship between manure application, altered pathogen levels and antibiotic resistance. This is necessary to protect health and improve the sustainability of this major farming practice in agricultural systems based on high levels of manure production. It is important to consider soil health in relation to environment and land management practices in the context of the soil microflora and the introduction of pathogens on the health of the soil microbiome. Viable pathogens in manure spread on agricultural land may be distributed by leaching, surface run-off, water source contamination and contaminated crop removal. Thus it is important to understand how multiple pathogens can persist in manures and on soil at farm-scale and how crops produced under these conditions could be a potential transfer route for zoonotic pathogens. The management of pathogen load within livestock manure is a potential mechanism for the reduction and prevention of outbreaks infection with Escherichia coli, Listeria Salmonella, and Campylobacter. The ability of Campylobacter, E. coli, Listeria and Salmonella to combat environmental stress coupled with their survival on food crops and vegetables post-harvest emphasizes the need for further study of these pathogens along with the emerging pathogen Providencia given its link to disease in the immunocompromised and its’ high levels of antibiotic resistance. The management of pathogen load within livestock manure has been widely recognized as a potential mechanism for the reduction and prevention of outbreaks infection but any studies undertaken should be considered as region specific due to the variable nature of the factors influencing pathogen content and survival in manures and soil. Mediocre soils that require nutrients could be one template for research on manure inputs and their influence on soil health and on pathogen survival on grassland and in food crops.
Collapse
Affiliation(s)
- Zoe Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Lisa Black
- Grassland and Plant Sciences Branch, AFBI Crossnacreevy, Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Patrick J Naughton
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - James S G Dooley
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
9
|
Więckol-Ryk A, Thomas M, Białecka B. Improving the Properties of Degraded Soils from Industrial Areas by Using Livestock Waste with Calcium Peroxide as a Green Oxidizer. MATERIALS 2021; 14:ma14113132. [PMID: 34200343 PMCID: PMC8201105 DOI: 10.3390/ma14113132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022]
Abstract
Over the past years, the treatment and use of livestock waste has posed a significant problem in environmental engineering. This paper outlines a new approach to application of calcium peroxide (CaO2) as a green oxidizer and microbiocidal agent in the treatment of poultry manure. It also presents the application of pretreated waste in improvement of degraded soils in industrial areas. The CCD (Central Composite Design) and RSM (Response Surface Methodology) were employed for optimizing the process parameters (CaO2 concentration 1.6–8.4 wt %, temperature 5.2–38.8 °C and contact time 7–209 h). The analysis of variance (ANOVA) was used to analyze the experimental results, which indicated good fit of the approximated to the experimental data (R2 = 0.8901, R2adj = 0.8168). The amendment of CaO2 in optimal conditions (8 wt % of CaO2, temperature 22 °C and contact time 108 h) caused a decrease in bacteria Escherichia coli (E. coli) in poultry manure from 8.7 log10 CFU/g to the acceptable level of 3 log10 CFU/g. The application of pretreated livestock waste on degraded soils and the studies on germination and growth of grass seed mixture (Lollum perenne—Naki, Lollum perenne—Grilla, Poa pratensis—Oxford, Festuca rubbra—Relevant, Festuca rubbra—Adio and Festuca trachypylla—Fornito) showed that a dose of 0.08 g of CaO2 per 1 gram of poultry manure induced higher yield of grass plants. The calculated indicators for growth of roots (GFR) and shoots (GFS) in soils treated with poultry manure were 10–20% lower compared to soils with amended CaO2. The evidence from this study suggests that CaO2 could be used as an environmentally friendly oxidizer and microbiocidal agent for livestock waste.
Collapse
Affiliation(s)
- Angelika Więckol-Ryk
- Department of Risk Assessment and Industrial Safety, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
- Correspondence: (A.W.-R.); (M.T.)
| | - Maciej Thomas
- Chemiqua Water & Wastewater Company, Skawińska 25/1, 31-066 Kraków, Poland
- Correspondence: (A.W.-R.); (M.T.)
| | - Barbara Białecka
- Department of Environmental Monitoring, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland;
| |
Collapse
|
10
|
Barth SA, Bauerfeind R, Berens C, Menge C. Shiga Toxin-Producing E. coli in Animals: Detection, Characterization, and Virulence Assessment. Methods Mol Biol 2021; 2291:19-86. [PMID: 33704748 DOI: 10.1007/978-1-0716-1339-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cattle and other ruminants are primary reservoirs for Shiga toxin-producing Escherichia coli (STEC) strains which have a highly variable, but unpredictable, pathogenic potential for humans. Domestic swine can carry and shed STEC, but only STEC strains producing the Shiga toxin (Stx) 2e variant and causing edema disease in piglets are considered pathogens of veterinary medical interest. In this chapter, we present general diagnostic workflows for sampling livestock animals to assess STEC prevalence, magnitude, and duration of host colonization. This is followed by detailed method protocols for STEC detection and typing at genetic and phenotypic levels to assess the relative virulence exerted by the strains.
Collapse
Affiliation(s)
- Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Rolf Bauerfeind
- Institute for Hygiene and Infectious Diseases of Animals, Justus Liebig University Gießen, Gießen, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany.
| |
Collapse
|
11
|
Engelen F, Thiry D, Devleesschauwer B, Mainil J, De Zutter L, Cox E. Occurrence of 'gang of five' Shiga toxin-producing Escherichia coli serogroups on Belgian dairy cattle farms by overshoe sampling. Lett Appl Microbiol 2020; 72:415-419. [PMID: 33277712 DOI: 10.1111/lam.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens responsible for global outbreaks. This study was conducted to investigate the occurrence of 'gang of five' STEC serogroups (O26, O103, O111, O145, O157) on Belgian dairy cattle farms by overshoe (OVS) sampling, and to evaluate the presence of virulence genes in the obtained isolates. A total of 88 OVS, collected from the pen beddings of 19 Belgian dairy cattle farms, were selectively enriched in mTSBn, followed by immunomagnetic separation and plating onto CT-SMAC for O157 STEC isolation, as well as in Brila broth, followed by a selective acid treatment and plating onto CHROMagarTM STEC and chromIDTM EHEC for non-O157 STEC isolation. Overall, 11 of 19 farms (58%) tested positive for presence of 'gang of five' STEC. O26 STEC was most frequently isolated from OVS (11/88; 12·5%), followed by O157 (10/88; 11·5%), O145 (3/88; 3·5%) and O103 (3/88; 3·5%). Additionally, 35% of the OVS collected from pens housing young cattle 1-24 months of age tested positive for 'gang of five' STEC, indicating that this age category is more likely to harbour STEC compared to new-born and adult cattle. Importantly, half of the obtained 'gang of five' STEC isolates (48%) possessed the eae and stx2 gene, suggesting a high pathogenic potential to humans.
Collapse
Affiliation(s)
- F Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - B Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.,Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| |
Collapse
|
12
|
Topalcengiz Z, Jeamsripong S, Spanninger PM, Persad AK, Wang F, Buchanan RL, LeJEUNE J, Kniel KE, Jay-Russell MT, Danyluk MD. Survival of Shiga Toxin-Producing Escherichia coli in Various Wild Animal Feces That May Contaminate Produce. J Food Prot 2020; 83:1420-1429. [PMID: 32299095 DOI: 10.4315/jfp-20-046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Domestic and wild animal intrusions are identified as a food safety risk during fresh produce production. The purpose of this study was to evaluate the survival of Shiga toxin-producing Escherichia coli (STEC) in cattle, feral pig, waterfowl, deer, and raccoon feces from sources in California, Delaware, Florida, and Ohio. Fecal samples were inoculated with a cocktail of rifampin-resistant STEC serotypes (O103, O104, O111, O145, and O157) (104 to 106 CFU/g of feces). Inoculated feces were held at ambient temperature. Populations of surviving cells were monitored throughout 1 year (364 days), with viable populations being enumerated by spread plating and enrichment when the bacteria were no longer detected by plating. Representative colonies were collected at various time intervals based on availability from different locations to determine the persistence of surviving STEC serotypes. Over the 364-day storage period, similar survival trends were observed for each type of animal feces from all states except for cattle and deer feces from Ohio. STEC populations remained the highest in cattle and deer feces from all states between days 28 and 364, except for those from Ohio. Feral pig, waterfowl, and raccoon feces had populations of STEC of <1.0 log CFU/g starting from day 112 in feces from all states. E. coli O103 and O104 were the predominant serotypes throughout the entire storage period in feces from all animals and from all states. The survival of both O157 and non-O157 STEC strains in domesticated and wild animal feces indicates a potential risk of contamination from animal intrusion. HIGHLIGHTS
Collapse
Affiliation(s)
- Zeynal Topalcengiz
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University, Muş 49250, Turkey (ORCID: https://orcid.org/0000-0002-2113-7319 [Z.T.]).,Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Saharuetai Jeamsripong
- Western Institute for Food Safety and Security, University of California Davis, Davis, California 95618, USA.,ORCID: https://orcid.org/0000-0001-7332-1647 [S.J.].,Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patrick M Spanninger
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Anil K Persad
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago (ORCID: https://orcid.org/0000-0002-1306-325X [A.K.P.]).,Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Fei Wang
- Department of Nutrition and Food Science and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| | - Robert L Buchanan
- Department of Nutrition and Food Science and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA.,(ORCID: https://orcid.org/0000-0002-7604-4048 [R.L.B.])
| | - Jeff LeJEUNE
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michele T Jay-Russell
- Western Institute for Food Safety and Security, University of California Davis, Davis, California 95618, USA.,ORCID: https://orcid.org/0000-0001-9849-8086 [M.T.J.R.]
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA.,(ORCID: https://orcid.org/0000-0001-5780-7911 [M.D.D.])
| |
Collapse
|
13
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
14
|
Topalcengiz Z, Spanninger PM, Jeamsripong S, Persad AK, Buchanan RL, Saha J, LeJEUNE J, Jay-Russell MT, Kniel KE, Danyluk MD. Survival of Salmonella in Various Wild Animal Feces That May Contaminate Produce. J Food Prot 2020; 83:651-660. [PMID: 32221570 DOI: 10.4315/0362-028x.jfp-19-302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022]
Abstract
ABSTRACT Heightened concerns about wildlife on produce farms and possible introduction of pathogens to the food supply have resulted in required actions following intrusion events. The purpose of this study was to evaluate the survival of Salmonella in feces from cattle and various wild animals (feral pigs, waterfowl, deer, and raccoons) in California, Delaware, Florida, and Ohio. Feces were inoculated with rifampin-resistant Salmonella enterica cocktails that included six serotypes: Typhimurium, Montevideo, Anatum, Javiana, Braenderup, and Newport (104 to 106 CFU/g). Fecal samples were stored at ambient temperature. Populations were enumerated for up to 1 year (364 days) by spread plating onto tryptic soy agar supplemented with rifampin. When no colonies were detected, samples were enriched. Colonies were banked on various sampling days based on availability of serotyping in each state. During the 364-day storage period, Salmonella populations decreased to ≤2.0 log CFU/g by day 84 in pig, waterfowl, and raccoon feces from all states. Salmonella populations in cattle and deer feces were 3.3 to 6.1 log CFU/g on day 336 or 364; however, in Ohio Salmonella was not detected after 120 days. Salmonella serotypes Anatum, Braenderup, and Javiana were the predominant serotypes throughout the storage period in all animal feces and states. Determination of appropriate risk mitigation strategies following animal intrusions can improve our understanding of pathogen survival in animal feces. HIGHLIGHTS
Collapse
Affiliation(s)
- Zeynal Topalcengiz
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University, Muş 49250, Turkey (ORCID: https://orcid.org/0000-0002-2113-7319 [Z.T.]).,Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Patrick M Spanninger
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Saharuetai Jeamsripong
- Western Center for Food Safety, University of California, Davis, California 95618, USA.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil K Persad
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago.,Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Robert L Buchanan
- Department of Nutrition and Food Science and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| | - Joyjit Saha
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Jeff LeJEUNE
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Michele T Jay-Russell
- Western Center for Food Safety, University of California, Davis, California 95618, USA.,(ORCID: https://orcid.org/0000-0001-9849-8086 [M.T.J.R.])
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
15
|
Livestock Manure as Potential Reservoir of CTX-M Type Extended-spectrum β-lactamase Producing Escherichia coli and Klebsiella pneumoniae Associated with Carbapenemase Production. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020; 25:molecules25020275. [PMID: 31936589 PMCID: PMC7024283 DOI: 10.3390/molecules25020275] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 11/23/2022] Open
Abstract
Anaerobic digestion (AD) is a commonly used method of processing waste. Regardless of the type of the used digestate (fertilizer, feedstock in case of solid-state fermentation, raw-material in case of thermal treatment) effective pathogen risk elimination, even in the case of high pathogen concentration is essential. An investigation of the survival time and inactivation rate of the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum eggs during thermophilic anaerobic digestion performed on laboratory scale and confirmation of hygienization in full-scale operation were performed in this study. Except for sanitization efficiency, the AD process performance and stability were also verified based on determination of pH value, dry matter content, acidity, alkalinity, and content of fatty acids. The elimination of pathogen was met within 6.06 h, 5.5 h, and about 10 h for the Salmonella Senftenberg W775, Enterococcus spp., and Ascaris suum, respectively in the laboratory trials. The obtained results were confirmed in full-scale tests, using 1500 m3 Kompogas® reactors, operating in MBT Plant located in Poland. Sanitization of the digestate was achieved. Furthermore, the process was stable. The pH value, suspended solids, and ammonium content remained stable at 8.5, 35%, and 3.8 g/kg, respectively. The acetic acid content was noted between almost 0.8 and over 1.1 g/kg, while the concentration of propionic acid was noted at maximum level of about 100 mg/kg. The AD conditions could positively affect the pathogen elimination. Based on these results it can be found that anaerobic digestion under thermophilic conditions results in high sanitation efficiency.
Collapse
|
17
|
The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int J Microbiol 2019; 2019:2894328. [PMID: 31885595 PMCID: PMC6899298 DOI: 10.1155/2019/2894328] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
Many raw vegetables, such as tomato, chili, onion, lettuce, arugula, spinach, and cilantro, are incorporated into fresh dishes including ready-to-eat salads and sauces. The consumption of these foods confers a high nutritional value to the human diet. However, the number of foodborne outbreaks associated with fresh produce has been increasing, with Escherichia coli being the most common pathogen associated with them. In humans, pathogenic E. coli strains cause diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, and other indications. Vegetables can be contaminated with E. coli at any point from pre- to postharvest. This bacterium is able to survive in many environmental conditions due to a variety of mechanisms, such as adhesion to surfaces and internalization in fresh products, thereby limiting the usefulness of conventional processing and chemical sanitizing methods used by the food industry. The aim of this review is to provide a general description of the behavior and importance of pathogenic E. coli in ready-to-eat vegetable dishes. This information can contribute to the development of effective control measures for enhancing food safety.
Collapse
|
18
|
Comparison of processing parameters in small and very small beef processing plants and their impact on Escherichia coli prevalence. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Vanitha HD, Sethulekshmi C, Latha C. An epidemiological investigation on occurrence of enterohemorrhagic Escherichia coli in raw milk. Vet World 2018; 11:1164-1170. [PMID: 30250379 PMCID: PMC6141287 DOI: 10.14202/vetworld.2018.1164-1170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/12/2018] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of the present investigation was to study the epidemiology of enterohemorrhagic Escherichia coli (EHEC) in raw milk and molecular characterization of isolates using multiplex polymerase chain reaction (PCR). MATERIALS AND METHODS A total of 125 raw milk samples were subjected to isolation, identification, and confirmation of virulence-associated genes by multiplex PCR (mPCR). The samples were collected from a milk cooperative society of Thrissur district, Kerala. For further epidemiological investigation, samples such as dung (126), hair coat of cow (60), udder swab (60), udder wash (60), milking utensil wash (36), Milker's hand wash (36), water (36), soil (36), and feed (36) were collected from the households from which the raw milk tested positive for EHEC. RESULTS The occurrence of EHEC in individual raw milk samples was found to be 8.8%. The major source of contamination to raw milk was found to be dung (19.84%) followed by udder swab (16.67%), hair coat of cow (15%), Milker's hand and milking utensils and water (11.11% each), and udder wash and soil (8.33% each). For identification of virulence genes, all the isolates were subjected to mPCR, of 75 isolates 73.33% of isolates harbored stx 2 gene while 53.33, 36, and 36% of isolates were encoded by stx 1, eae A, and hly A genes, respectively. On epidemiological survey, the multiple risk factors accountable for occurrence of EHEC in raw milk were found to be the quality of water used, improper and inadequate udder preparation, unhygienic hands of Milker's, use of insufficiently cleaned milking utensils, and using common utensil for washings of udder and milking purposes. CONCLUSION The result of the present study signifies that raw milk was contaminated with EHEC and possesses a high public health threat. As dairy cattle and its environment serve as a potential niche for EHEC, hygienic milking practices should be adopted to curb the occurrence of EHEC in raw milk.
Collapse
Affiliation(s)
- H. D. Vanitha
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur - 680 651, Kerala, India
| | - C. Sethulekshmi
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur - 680 651, Kerala, India
| | - C. Latha
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur - 680 651, Kerala, India
| |
Collapse
|
20
|
Alegbeleye OO, Singleton I, Sant'Ana AS. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol 2018; 73:177-208. [PMID: 29526204 PMCID: PMC7127387 DOI: 10.1016/j.fm.2018.01.003] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/31/2017] [Accepted: 01/02/2018] [Indexed: 12/17/2022]
Abstract
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences.
Collapse
Affiliation(s)
| | - Ian Singleton
- School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, Edinburgh, UK
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Zhou C, Zou H, Li M, Sun C, Ren D, Li Y. Fiber optic surface plasmon resonance sensor for detection of E. coli O157:H7 based on antimicrobial peptides and AgNPs-rGO. Biosens Bioelectron 2018; 117:347-353. [PMID: 29935488 DOI: 10.1016/j.bios.2018.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/17/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022]
Abstract
A fiber optic surface plasmon resonance (FOSPR) sensor was developed for detection of Escherichia coli O157:H7 (E. coli O157:H7) in water and juice, based on antimicrobial peptides (AMP), Magainin I, as recognition elements and silver nanoparticles-reduced graphene oxide (AgNPs-rGO) nanocomposites assisted signal amplification. The uniform AgNPs-rGO was fixed on the surface of optical fiber and covered with gold film. Not only was the SPR response greatly enhanced, but also the AgNPs was prevented from being oxidized. The FOSPR showed a sensitivity of about 1.5 times higher than that fabricated only with gold film. In the assay, Magainin I, immobilized on the surface of gold film, could specifically capture E. coli O157:H7, resulting in the wavelength shift of the SPR absorption peak. Under the optimized conditions, the SPR resonance wavelength exhibited a good linear relationship with natural logarithm of the target bacteria concentration in the range of 1.0 × 103 to 5.0 × 107 cfu/mL with the detection limit of 5.0 × 102 cfu/mL (S/N = 3). The FOSPR sensor showed good specificity for E. coli O157:H7 detection compared to other bacteria similar to the target bacterial species. Furthermore, the FOSPR sensor was successfully applied to the detection of E. coli O157:H7 in water, fruit and vegetable juice with the satisfactory recoveries of 88-110%. This assay for E. coli O157:H7 detection possesses high sensitivity, good selectivity, reproducibility and stability. In addition, the AMP based SPR biosensing methodology could be extended to detect a wide variety of foodborne pathogens. Therefore, the versatile method might become a potential alternative tool in food analysis and early clinical diagnosis.
Collapse
Affiliation(s)
- Chen Zhou
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Haimin Zou
- West China School of Public Health, Sichuan University, Chengdu, China; Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Ming Li
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Chengjun Sun
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Dongxia Ren
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Yongxin Li
- West China School of Public Health, Sichuan University, Chengdu, China; College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Beskin KV, Holcomb CD, Cammack JA, Crippen TL, Knap AH, Sweet ST, Tomberlin JK. Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 74:213-220. [PMID: 29397276 DOI: 10.1016/j.wasman.2018.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/22/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
UNLABELLED Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. CAPSULE Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure.
Collapse
Affiliation(s)
- Kelly V Beskin
- Department of Entomology, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA.
| | - Chelsea D Holcomb
- Department of Entomology, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
| | - Tawni L Crippen
- USDA, Agricultural Research Service, SPARC, 2881 F&B Road, College Station, TX 77845, USA
| | - Anthony H Knap
- Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA
| | - Stephen T Sweet
- Geochemical and Environmental Research Group, Texas A&M University, 833 Graham Road, College Station, TX 77845, USA
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 370 Olsen Boulevard, College Station, TX 77843, USA
| |
Collapse
|
23
|
Chen Z, Kim J, Jiang X. Survival of
Escherichia coli
O157:H7 and
Salmonella enterica
in animal waste‐based composts as influenced by compost type, storage condition and inoculum level. J Appl Microbiol 2018; 124:1311-1323. [DOI: 10.1111/jam.13719] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Z. Chen
- Department of Food, Nutrition, and Packaging Sciences Clemson University Clemson SC USA
| | - J. Kim
- Department of Food, Nutrition, and Packaging Sciences Clemson University Clemson SC USA
| | - X. Jiang
- Department of Food, Nutrition, and Packaging Sciences Clemson University Clemson SC USA
| |
Collapse
|
24
|
Beauvais W, Gart EV, Bean M, Blanco A, Wilsey J, McWhinney K, Bryan L, Krath M, Yang CY, Manriquez Alvarez D, Paudyal S, Bryan K, Stewart S, Cook PW, Lahodny G, Baumgarten K, Gautam R, Nightingale K, Lawhon SD, Pinedo P, Ivanek R. The prevalence of Escherichia coli O157:H7 fecal shedding in feedlot pens is affected by the water-to-cattle ratio: A randomized controlled trial. PLoS One 2018; 13:e0192149. [PMID: 29414986 PMCID: PMC5802916 DOI: 10.1371/journal.pone.0192149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 11/28/2022] Open
Abstract
Escherichia coli O157:H7 fecal shedding in feedlot cattle is common and is a public health concern due to the risk of foodborne transmission that can result in severe, or even fatal, disease in people. Despite a large body of research, few practical and cost-effective farm-level interventions have been identified. In this study, a randomized controlled trial was conducted to assess the effect of reducing the level of water in automatically refilling water-troughs on fecal shedding of E. coli O157:H7 in feedlot cattle. Pens in a feedlot in the Texas Panhandle were randomly allocated as control (total number: 17) or intervention (total number: 18) pens. Fecal samples (2,759 in total) were collected both at baseline and three weeks after the intervention, and tested for the presence of E. coli O157:H7 using immunomagnetic bead separation and selective culture. There was a strong statistical association between sampling date and the likelihood of a fecal sample testing positive for E. coli O157:H7. Pen was also a strong predictor of fecal prevalence. Despite accounting for this high level of clustering, a statistically significant association between reduced water levels in the trough and increased prevalence of E. coli O157:H7 in the feces was observed (Odds Ratio = 1.6; 95% Confidence Interval: 1.2–2.0; Likelihood Ratio Test: p = 0.02). This is the first time that such an association has been reported, and suggests that increasing water-trough levels may be effective in reducing shedding of E. coli O157:H7 in cattle feces, although further work would be needed to test this hypothesis. Controlling E. coli O157:H7 fecal shedding at the pre-harvest level may lead to a reduced burden of human foodborne illness attributed to this pathogen in beef.
Collapse
Affiliation(s)
- Wendy Beauvais
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Elena V. Gart
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Melissa Bean
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Anthony Blanco
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jennifer Wilsey
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kallie McWhinney
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Laura Bryan
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mary Krath
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Ching-Yuan Yang
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Diego Manriquez Alvarez
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sushil Paudyal
- West Texas A&M University, Canyon, Texas, United States of America
| | - Kelsey Bryan
- Texas A&M Agrilife Research, Amarillo, Texas, United States of America
| | - Samantha Stewart
- Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Peter W. Cook
- Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Glenn Lahodny
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Karina Baumgarten
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Raju Gautam
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kendra Nightingale
- Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Sara D. Lawhon
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Pablo Pinedo
- Texas A&M Agrilife Research, Amarillo, Texas, United States of America
| | - Renata Ivanek
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
25
|
Biswas S, Niu M, Pandey P, Appuhamy JADRN, Leytem AB, Kebreab E, Dungan RS. Effect of Dairy Manure Storage Conditions on the Survival of E. coli O157:H7 and Listeria. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:185-189. [PMID: 29415095 DOI: 10.2134/jeq2017.06.0224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dairy manure is regularly applied to crop fields as a solid or liquid to improve the soil nutrient status. However, pathogens may survive during manure storage and enter the environment during application. In this study, three storage practices were evaluated to understand the survival patterns of O157:H7 and spp. in dairy manure using a culture-based approach. To replicate common farm manure storage techniques, solid manure was stacked as piles with periodic turning or as static piles without turning, whereas liquid manure (feces, urine, and water) was stored as a slurry in small tanks to simulate lagoon conditions. The and levels in the manure samples were determined for 29 wk. Results showed that there was an initial reduction in bacteria levels in the first month; however, both and managed to survive in the solid manure piles for the full study period. In slurry samples, was not detected after 14 wk, but survived until the end of the experiment at relatively lower levels than in the solid manure piles. Ambient weather and pile size were identified as the main reasons for bacteria survival during the course of the experiment. The outcome of this study is important in terms of understanding pathogen survival in manure piles and slurries prior to their application to crop fields.
Collapse
|
26
|
Abstract
The purpose of this review is to delineate means of decontaminating soil. This information might be used to mitigate soil-associated risks of foodborne pathogens. The majority of the research in the published literature involves inactivation of plant pathogens in soil, i.e., those pathogens harmful to fruit and vegetable production and ornamental plants. Very little has been published regarding the inactivation of foodborne human pathogens in crop soil. Nevertheless, because decontamination techniques for plant pathogens might also be useful methods for eliminating foodborne pathogens, this review also includes inactivation of plant pathogens, with appropriate discussion and comparisons, in the hopes that these methods may one day be validated against foodborne pathogens. Some of the major soil decontamination methods that have been investigated and are covered include chemical decontamination (chemigation), solarization, steaming, biofumigation, bacterial competitive exclusion, torch flaming, microwave treatment, and amendment with biochar. Other innovative means of inactivating foodborne pathogens in soils may be discovered and explored in the future, provided that these techniques are economically feasible in terms of chemicals, equipment, and labor. Food microbiology and food safety researchers should reach out to soil scientists and plant pathologists to create links where they do not currently exist and strengthen relationships where they do exist to take advantage of multidisciplinary skills. In time, agricultural output and the demand for fresh produce will increase. With advances in the sensitivity of pathogen testing and epidemiological tracebacks, the need to mitigate preharvest bacterial contamination of fresh produce will become paramount. Hence, soil decontamination technologies may become more economically feasible and practical in light of increasing the microbial safety of fresh produce.
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Food Safety and Intervention Technologies Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038-8551, USA
| |
Collapse
|
27
|
Çekiç SK, De J, Jubair M, Schneider KR. Persistence of Indigenous Escherichia coli in Raw Bovine Manure-Amended Soil. J Food Prot 2017; 80:1562-1573. [PMID: 28809507 DOI: 10.4315/0362-028x.jfp-17-033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Food Safety Modernization Act attempts to reduce produce-related foodborne illness by using preventive rather than reactive measures. The goal of this research was to determine the persistence of manure-borne generic Escherichia coli under laboratory and field conditions. The population density of naturally occurring E. coli was ∼7.2 and 5.4 log CFU/10 g in pre- and postscreened manures, respectively. Postscreened (i.e. after the liquid manure has passed through a screen) manure was applied at light, medium, and heavy rates to fields in Live Oak and Citra, FL, during the fall and summer. Laboratory microcosms of the manure-amended soils (comparable to the field's heavy application rate of manure) from both locations were maintained at 20 and 30°C. Persistence of E. coli, moisture content, and pH were monitored until E. coli became unrecoverable. The longest E. coli persistence seen in field trails was during the summer and fall trials from Citra (heavy application) that terminated on day 112 and day 280, respectively. The rate of E. coli decay ranged from 0.02 to 0.04 log CFU per day across all manure application rates, seasons, and locations. In the microcosm studies, the E. coli became extinct on day 210 in the 30°C, whereas they became unrecoverable on day 420 in the 20°C microcosms. The relatively prolonged persistence of E. coli in the microcosms suggests that survival under laboratory conditions does not mimic real-world survival rates and may not be adequate for predicting E. coli persistence in the field. The persistence data also suggest that the risk from E. coli associated with new contamination events, such as wild life intrusion, runoff, or other vectors, may be greater than the risk associated with the long-term survival of manure-borne E. coli, although more work is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Samantha K Çekiç
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Jaysankar De
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Mohammad Jubair
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Keith R Schneider
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
28
|
Frequency and risk-factors analysis of Escherichia coli O157:H7 in Bali-cattle. Acta Trop 2017; 172:223-228. [PMID: 28506793 DOI: 10.1016/j.actatropica.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Cattle are known as the main reservoir of zoonotic agents verocytotoxin-producing Escherichia coli. These bacteria are usually isolated from calves with diarrhea and/or mucus and blood. Tolerance of these agents to the environmental conditions will strengthen of their transmission among livestock. A total of 238 cattle fecal samples from four sub-districts in Badung, Bali were used in this study. Epidemiological data observed include cattle age, sex, cattle rearing system, the source of drinking water, weather, altitude, and type of cage floor, the cleanliness of cage floor, the slope of cage floor, and the level of cattle cleanliness. The study was initiated by culturing of samples onto eosin methylene blue agar, then Gram stained, and tested for indole, methyl-red, voges proskauer, and citrate, Potential E.coli isolates were then cultured onto sorbitol MacConkey agar, and further tested using O157 latex agglutination test and H7 antisera. Molecular identification was performed by analysis of the 16S rRNA gene, and epidemiological data was analyzed using STATA 12.0 software. The results showed, the prevalence of E. coli O157:H7 in cattle at Badung regency was 6.30% (15/238) covering four sub districts i.e. Petang, Abiansemal, Mengwi, and Kuta which their prevalence was 8.62%(5/58), 10%(6/60), 3.33%(2/60), and 3.33(2/60)%, respectively. The analysis of 16S rRNA gene confirmed of isolates as an E. coli O157:H7 strain with 99% similarities. Furthermore, the risk factors analysis showed that the slope of the cage floor has a highly significant effect (P<0.05) to the distribution of infection. Consequently, implementing this factor must be concerned in order to decrease of infection.
Collapse
|
29
|
Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities. Microbiol Spectr 2017; 4. [PMID: 27726803 DOI: 10.1128/microbiolspec.pfs-0006-2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preharvest strategies to reduce zoonotic pathogens in food animals are important components of the farm-to-table food safety continuum. The problem is complex; there are multiple pathogens of concern, multiple animal species under different production and management systems, and a variety of sources of pathogens, including other livestock and domestic animals, wild animals and birds, insects, water, and feed. Preharvest food safety research has identified a number of intervention strategies, including probiotics, direct-fed microbials, competitive exclusion cultures, vaccines, and bacteriophages, in addition to factors that can impact pathogens on-farm, such as seasonality, production systems, diet, and dietary additives. Moreover, this work has revealed both challenges and opportunities for reducing pathogens in food animals. Animals that shed high levels of pathogens and predominant pathogen strains that exhibit long-term persistence appear to play significant roles in maintaining the prevalence of pathogens in animals and their production environment. Continued investigation and advancements in sequencing and other technologies are expected to reveal the mechanisms that result in super-shedding and persistence, in addition to increasing the prospects for selection of pathogen-resistant food animals and understanding of the microbial ecology of the gastrointestinal tract with regard to zoonotic pathogen colonization. It is likely that this continued research will reveal other challenges, which may further indicate potential targets or critical control points for pathogen reduction in livestock. Additional benefits of the preharvest reduction of pathogens in food animals are the reduction of produce, water, and environmental contamination, and thereby lower risk for human illnesses linked to these sources.
Collapse
|
30
|
Pattis I, Moriarty E, Billington C, Gilpin B, Hodson R, Ward N. Concentrations of Campylobacter spp., Escherichia coli, Enterococci, and Yersinia spp. in the Feces of Farmed Red Deer in New Zealand. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:819-827. [PMID: 28783788 DOI: 10.2134/jeq2017.01.0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intensive deer farming can cause environmental issues, mainly by its impact on soils and water quality. In particular, there is a risk to the microbial quality of water, as high quantities of suspended sediment and fecal bacteria can enter into water systems. The feces of farmed red deer (, = 206) from Canterbury and Southland, New Zealand, were analyzed with regard to the presence of spp., , enterococci, and spp.. Enterococci and were isolated from all samples, with mean concentrations of 4.5 × 10 (95% CI 3.5 × 10, 5.6 10) and 1.3 × 10 (95% CI 1.1 × 10, 1.5 × 10) per gram of dry feces, respectively. spp. were isolated from 27 fecal samples, giving an overall prevalence of 13.1%. isolation rates were variable within and between regions (Canterbury 7.95% [95% CI 2-14%], Southland 16.95% [95% CI 10-24%]). Five out of 42 composite samples were positive for , and one sample for The overall prevalence ranges on a per-animal basis were therefore 2.43 to 11.17% and 0.49 to 2.91%, respectively. This study is the first to quantify the concentration of spp. present in healthy deer farmed in New Zealand. Deer feces are a potential source of human campylobacteriosis, with all genotypes isolated also previously observed among human cases. The fecal outputs from deer should be regarded as potentially pathogenic to humans and therefore be appropriately managed.
Collapse
|
31
|
Kim NH, Cho TJ, Rhee MS. Current Interventions for Controlling Pathogenic Escherichia coli. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:1-47. [PMID: 28732552 DOI: 10.1016/bs.aambs.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review examined scientific reports and articles published from 2007 to 2016 regarding the major environmental sources of pathogenic Escherichia coli and the routes by which they enter the human gastrointestinal tract. The literature describes novel techniques used to combat pathogenic E. coli transmitted to humans from livestock and agricultural products, food-contact surfaces in processing environments, and food products themselves. Although prevention before contamination is always the best "intervention," many studies aim to identify novel chemical, physical, and biological techniques that inactivate or eliminate pathogenic E. coli cells from breeding livestock, growing crops, and manufactured food products. Such intervention strategies target each stage of the food chain from the perspective of "Farm to Table food safety" and aim to manage major reservoirs of pathogenic E. coli throughout the entire process. Issues related to, and recent trends in, food production must address not only the safety of the food itself but also the safety of those who consume it. Thus, research aims to discover new "natural" antimicrobial agents and to develop "multiple hurdle technology" or other novel technologies that preserve food quality. In addition, this review examines the practical application of recent technologies from the perspective of product quality and safety. It provides comprehensive insight into intervention measures used to ensure food safety, specifically those aimed at pathogenic E. coli.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Naveen KH, Nayduch D. Dose-dependent fate of GFP-expressing Escherichia coli in the alimentary canal of adult house flies. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:218-228. [PMID: 26843509 PMCID: PMC4856564 DOI: 10.1111/mve.12162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
The adult house fly Musca domestica (L.) (Diptera: Muscidae) can disseminate bacteria from microbe-rich substrates to areas in which humans and domesticated animals reside. Because bacterial abundance fluctuates widely across substrates, flies encounter and ingest varying amounts of bacteria. This study investigated the dose-dependent survival of bacteria in house flies. Flies were fed four different 'doses' of green fluorescent protein (GFP)-expressing Escherichia coli (GFP E. coli) (very low, low, medium, high) and survival was determined at 1, 4, 10 and 22 h post-ingestion by culture and epifluorescent microscopy. Over 22 h, the decline in GFP E. coli was significant in all treatments (P < 0.04) except the very low dose treatment (P = 0.235). Change in survival (ΔS) did not differ between flies fed low and very low doses of bacteria across all time-points, although ΔS in both treatments differed from that in flies fed high and medium doses of bacteria at several time-points. At 4, 10 and 22 h, GFP E. coli ΔS significantly differed between medium and high dose-fed flies. A threshold dose, above which bacteria are detected and destroyed by house flies, may exist and is likely to be immune-mediated. Understanding dose-dependent bacterial survival in flies can help in predicting bacteria transmission potential.
Collapse
Affiliation(s)
- Kumar H.V. Naveen
- Department of Biology, Georgia Southern University, Statesboro, GA, U.S.A
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, USDA-ARS, Manhattan, KS, U.S.A
| |
Collapse
|
33
|
Kim K, Whelan G, Molina M, Purucker ST, Pachepsky Y, Guber A, Cyterski MJ, Franklin DH, Blaustein RA. Rainfall-induced release of microbes from manure: model development, parameter estimation, and uncertainty evaluation on small plots. JOURNAL OF WATER AND HEALTH 2016; 14:443-59. [PMID: 27280610 DOI: 10.2166/wh.2016.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A series of simulated rainfall-runoff experiments with applications of different manure types (cattle solid pats, poultry dry litter, swine slurry) was conducted across four seasons on a field containing 36 plots (0.75 × 2 m each), resulting in 144 rainfall-runoff events. Simulating time-varying release of Escherichia coli, enterococci, and fecal coliforms from manures applied at typical agronomic rates evaluated the efficacy of the Bradford-Schijven model modified by adding terms for release efficiency and transportation loss. Two complementary, parallel approaches were used to calibrate the model and estimate microbial release parameters. The first was a four-step sequential procedure using the inverse model PEST, which provides appropriate initial parameter values. The second utilized a PEST/bootstrap procedure to estimate average parameters across plots, manure age, and microbe, and to provide parameter distributions. The experiment determined that manure age, microbe, and season had no clear relationship to the release curve. Cattle solid pats released microbes at a different, slower rate than did poultry dry litter or swine slurry, which had very similar release patterns. These findings were consistent with other published results for both bench- and field-scale, suggesting the modified Bradford-Schijven model can be applied to microbial release from manure.
Collapse
Affiliation(s)
- Keewook Kim
- Oak Ridge Institute for Science and Education, US Department of Energy, Oak Ridge, TN 37830, USA and Idaho Falls Center for Higher Education, University of Idaho, Idaho Falls, ID 83402, USA E-mail: ; National Exposure Research Laboratory, Ecosystem Research Division, US Environmental Protection Agency, Athens, GA 30605, USA
| | - Gene Whelan
- National Exposure Research Laboratory, Ecosystem Research Division, US Environmental Protection Agency, Athens, GA 30605, USA
| | - Marirosa Molina
- National Exposure Research Laboratory, Ecosystem Research Division, US Environmental Protection Agency, Athens, GA 30605, USA
| | - S Thomas Purucker
- National Exposure Research Laboratory, Ecosystem Research Division, US Environmental Protection Agency, Athens, GA 30605, USA
| | - Yakov Pachepsky
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Andrey Guber
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lancing, MI 48824, USA
| | - Michael J Cyterski
- National Exposure Research Laboratory, Ecosystem Research Division, US Environmental Protection Agency, Athens, GA 30605, USA
| | - Dorcas H Franklin
- Agricultural Research Service, US Department of Agriculture, Watkinsville, GA 30677, USA and Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ryan A Blaustein
- Department of Environmental Science and Technology, University of Maryland at College Park, College Park, MD 20742, USA
| |
Collapse
|
34
|
Biswas S, Pandey PK, Farver TB. Assessing the impacts of temperature and storage on Escherichia coli, Salmonella, and L. monocytogenes decay in dairy manure. Bioprocess Biosyst Eng 2016; 39:901-13. [PMID: 26922419 DOI: 10.1007/s00449-016-1569-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Elevated levels of animal waste-borne pathogen in ambient water is a serious human health issue. Mitigating influx of pathogens from animal waste such as dairy manure to soil and water requires improving our existing knowledge of pathogen reductions in dairy manure treatment methods. This study was conducted to enhance the understanding of human pathogen decay in liquid dairy manure in anaerobic (AN) and limited aerobic (LA) storage conditions. The decay of three pathogens (Escherichia coli, Salmonella spp., and Listeria monocytogenes) was assessed in bench-scale batch reactors fed with liquid slurry. A series of temperatures (30, 35, 42, and 50 °C) conditions were tested to determine the impacts of temperature on Escherichia coli, Salmonella, and L. monocytogenes decay in AN and LA conditions. Results showed prolonged survival of E. coli compared to Salmonella and L. monocytogenes in both LA and AN environments. Variations in survival among pathogens with temperature and environmental conditions (i.e., LA and AN) indicated the necessity of developing improved dairy manure waste treatment methods for controlling animal waste-borne pathogens. The results of this study will help in improving the current understanding of human pathogen decay in dairy manure for making informed decisions of animal manure treatment by stakeholders.
Collapse
Affiliation(s)
- Sagor Biswas
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California-Davis, Davis, 95616, California, USA
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California-Davis, Davis, 95616, California, USA. .,University of California Division of Agriculture and Natural Resources, UC Cooperative Extension, Davis, 95616, California, USA.
| | - Thomas B Farver
- Department of Population Health and Reproduction, School of Veterinary Medicine Extension, University of California-Davis, Davis, 95616, California, USA
| |
Collapse
|
35
|
Ribeiro L, Barbosa M, de Rezende Pinto F, Guariz C, Maluta R, Rossi J, Rossi G, Lemos M, do Amaral L. Shiga toxigenic and enteropathogenic Escherichia coli
in water and fish from pay-to-fish ponds. Lett Appl Microbiol 2016; 62:216-20. [DOI: 10.1111/lam.12536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/20/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Affiliation(s)
- L.F. Ribeiro
- Faculdade de Ciências Agrárias e Veterinárias (FCAV); UNESP - Universidade Estadual Paulista; Jaboticabal São Paulo Brazil
| | - M.M.C. Barbosa
- Instituto Federal de Educação; Ciência e Tecnologia do Ceará (IFCE) - Avenida José de Freitas Queiroz; Quixadá Ceará Brazil
| | - F. de Rezende Pinto
- Faculdade de Veterinária; Universidade Federal de Pelotas (UFPEL) - Campus Universitário Capão do Leão; Pelotas Rio Grande do Sul Brazil
| | - C.S.L. Guariz
- Campus Experimental de Dracena; UNESP; Dracena São Paulo Brazil
| | - R.P. Maluta
- Departamento de Genética, Evolução e Bioagentes; Instituto de Biologia; Universidade de Campinas (UNICAMP); Campinas São Paulo Brazil
| | - J.R. Rossi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV); UNESP - Universidade Estadual Paulista; Jaboticabal São Paulo Brazil
| | - G.A.M. Rossi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV); UNESP - Universidade Estadual Paulista; Jaboticabal São Paulo Brazil
| | - M.V.F. Lemos
- Faculdade de Ciências Agrárias e Veterinárias (FCAV); UNESP - Universidade Estadual Paulista; Jaboticabal São Paulo Brazil
| | - L.A. do Amaral
- Faculdade de Ciências Agrárias e Veterinárias (FCAV); UNESP - Universidade Estadual Paulista; Jaboticabal São Paulo Brazil
| |
Collapse
|
36
|
Reed-Jones NL, Marine SC, Everts KL, Micallef SA. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil. Appl Environ Microbiol 2016; 82:1767-1777. [PMID: 26729724 PMCID: PMC4784030 DOI: 10.1128/aem.03712-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies.
Collapse
Affiliation(s)
- Neiunna L Reed-Jones
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
| | - Sasha Cahn Marine
- Department of Plant Science and Landscape Architecture, University of Maryland, Lower Eastern Shore Research and Education Center, Salisbury, Maryland, USA
| | - Kathryne L Everts
- Department of Plant Science and Landscape Architecture, University of Maryland, Lower Eastern Shore Research and Education Center, Salisbury, Maryland, USA
- University of Delaware, Carvel Research and Education Center, Georgetown, Delaware, USA
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
37
|
Chen Z, Wang H, Ionita C, Luo F, Jiang X. Effects of Chicken Litter Storage Time and Ammonia Content on Thermal Resistance of Desiccation-Adapted Salmonella spp. Appl Environ Microbiol 2015; 81:6883-9. [PMID: 26209673 PMCID: PMC4561697 DOI: 10.1128/aem.01876-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 11/20/2022] Open
Abstract
Broiler chicken litter was kept as a stacked heap on a poultry farm, and samples were collected up to 9 months of storage. Chicken litter inoculated with desiccation-adapted Salmonella cells was heat-treated at 75, 80, 85, and 150°C. Salmonella populations decreased in all these samples during heat treatment, and the inactivation rates became lower in chicken litter when storage time was extended from 0 to 6 months. There was no significant difference (P > 0.05) in thermal resistance of Salmonella in 6- and 9-month litter samples, indicating that a threshold for thermal resistance was reached after 6 months. Overall, the thermal resistance of Salmonella in chicken litter was affected by the storage time of the litter. The changes in some chemical, physical, and microbiological properties during storage could possibly contribute to this difference. Moisture and ammonia could be two of the most significant factors influencing the thermal resistance of Salmonella cells in chicken litter. Our results emphasize the importance of adjusting time and temperature conditions for heat processing chicken litter when it is removed from the chicken house at different time intervals.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Hongye Wang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Claudia Ionita
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
38
|
Fröschle B, Messelhäusser U, Höller C, Lebuhn M. Fate of Clostridium botulinum
and incidence of pathogenic clostridia in biogas processes. J Appl Microbiol 2015. [DOI: 10.1111/jam.12909] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. Fröschle
- Department for Quality Assurance and Analytics; Bavarian State Research Center for Agriculture (LfL); Freising Germany
| | - U. Messelhäusser
- Bavarian Health and Food Safety Authority (LGL); Oberschleißheim Germany
| | - C. Höller
- Bavarian Health and Food Safety Authority (LGL); Oberschleißheim Germany
| | - M. Lebuhn
- Department for Quality Assurance and Analytics; Bavarian State Research Center for Agriculture (LfL); Freising Germany
| |
Collapse
|
39
|
Tanaro JD, Piaggio MC, Galli L, Gasparovic AMC, Procura F, Molina DA, Vitón M, Zolezzi G, Rivas M. Prevalence of Escherichia coli O157:H7 in surface water near cattle feedlots. Foodborne Pathog Dis 2015; 11:960-5. [PMID: 25405655 DOI: 10.1089/fpd.2014.1770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Between April 2009 and July 2011, 311 surface water samples in 48 cattle feedlots distributed in an area of about 67,000 km(2) were analyzed to examine the environmental dissemination of Escherichia coli O157:H7. Samples were taken inside and outside the pens, exposed and not exposed to runoff from corrals, near the feedlots. Two types of samples were defined: (1) exposed surface waters (ESW; n=251), downstream from cattle pens; and (2) nonexposed surface waters (NESW; n=60), upstream from cattle pens. By multiplex PCR, 177 (70.5%) ESW samples were rfb(O157)-positive, and 62 (24.7%) E. coli O157, and 32 (12.7%) Shiga toxin-producing E. coli (STEC) O157:H7 strains were isolated. In the NESW samples, 36 (60.0%) were rfb(O157)- positive, and 9 (15.0%) E. coli O157, and 6 (10.0%) STEC O157:H7 strains were isolated. These results showed that the environmental surface waters exposed to liquid discharges from intensive livestock operations tended to be contaminated with more STEC O157:H7 than NESW. However, no significant difference was found. This fact emphasizes the relevance of other horizontal routes of transmission, as the persistence of E. coli in the environment resulting from extensive livestock farming. By XbaI-PFGE, some patterns identified are included in the Argentine Database of E. coli O157, corresponding to strains isolated from hemolytic uremic syndrome and diarrhea cases, food, and animals, such as AREXHX01.0022, second prevalent pattern in Argentina, representing 5.5% of the total database. In the study area, characterized by the abundance of waterways, pathogens contained in feedlot runoff could reach recreational waters and also contaminate produce through irrigation, increasing the potential dissemination of STEC O157:H7 and the risk of human infections. The control of runoff systems from intensive livestock is necessary, but other alternatives should be explored to solve the problem of the presence of E. coli O157 in the aquatic rural environment.
Collapse
Affiliation(s)
- José D Tanaro
- 1 Universidad Nacional de Entre Ríos , Facultad de Bromatología, Cátedra de Microbiología y Parasitología, Gualeguaychú, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Naganandhini S, Kennedy ZJ, Uyttendaele M, Balachandar D. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India. PLoS One 2015; 10:e0130038. [PMID: 26101887 PMCID: PMC4477969 DOI: 10.1371/journal.pone.0130038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 11/20/2022] Open
Abstract
The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.
Collapse
Affiliation(s)
- S Naganandhini
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Z John Kennedy
- Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - D Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
41
|
Palmer CE, Bratcher CL, Singh M, Wang L. Characterization and survival of environmental Escherichia coli O26 isolates in ground beef and environmental samples. J Food Sci 2015; 80:M782-7. [PMID: 25765176 DOI: 10.1111/1750-3841.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
In addition to Escherichia coli O157:H7, shiga toxin-producing E. coli (STEC) O26 was added to the zero-tolerance adulterant list together with other 5 non-O157 STEC serogroups in 2012. Four farm O26 isolates were used in this study; they were obtained from a on-farm survey study conducted in Alabama. The presence of 3 major pathogenic genes (stx1, stx2, and eaeA) was determined through multiplex polymerase chain reaction (PCR). Two major pathogenic gene profiles were observed: 3 of the farm isolates contain only the eaeA gene whereas 1 farm isolate has both the eaeA and the stx1 genes. No significant difference was seen among the 4 farm isolates in the antibiotic resistance tests. To test their survival in ground beef and environmental samples, 2 inoculums were prepared and inoculated at various concentrations into samples of ground beef, bovine feces, bedding materials, and trough water. One inoculum was made of 3 farm isolates containing only the eaeA gene and another inoculum contained the isolate with both the eaeA and stx1 genes. Inoculated beef samples were stored at 4 °C for 10 d and the inoculated environmental samples were stored at ambient temperature for 30 d. Results showed that virulence gene profiles do not have an impact on O26's ability to survive in ground beef and in environment (P > 0.05). The inoculation levels, sample types as well as the storage times are the major factors that impact O26 survival (P < 0.05).
Collapse
|
42
|
Gelting RJ, Baloch MA, Zarate-Bermudez M, Hajmeer MN, Yee JC, Brown T, Yee BJ. A systems analysis of irrigation water quality in an environmental assessment of an E. coli O157:H7 outbreak in the United States linked to iceberg lettuce. AGRICULTURAL WATER MANAGEMENT 2015; 150:11-118. [PMID: 35923433 PMCID: PMC9345567 DOI: 10.1016/j.agwat.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A foodborne Escherichia coli O157:H7 outbreak in December 2006 included 77 illnesses reported in Iowa and Minnesota. Epidemiologic investigations by health departments in those states and the U.S. Centers for Disease Control and Prevention (CDC) identified shredded iceberg lettuce (Lactuca sativa L.) as the vehicle of transmission. The U.S. Food and Drug Administration (FDA) and Minnesota and California public health agencies traced the lettuce to several growing regions in California based on information from a lettuce processor in Minnesota. Samples from an environmental investigation initiated by the California Food Emergency Response Team (CalFERT) revealed a genetic match between the outbreak strain and environmental samples from a single farm, leading to an in-depth systems-based analysis of the irrigation water system on that farm. This paper presents findings from that systems-based analysis, which assessed conditions on the farm potentially contributing to contamination of the lettuce. The farm had three sources of irrigation water: groundwater from onsite wells, surface water delivered by a water management agency and effluent from wastewater lagoons on nearby dairy farms. Wastewater effluent was blended with the other sources and used only to irrigate animal feed crops. However, water management on the farm, including control of wastewater blending, appeared to create potential for cross-contamination. Pressure gradients and lack of backflow measures in the irrigation system might have created conditions for cross-contamination of water used to irrigate lettuce. The irrigation network on the farm had evolved over time to meet various needs, without an overall analysis of how that evolution potentially created vulnerabilities to contamination of irrigation water. The type of systems analysis described here is one method for helping to ensure that such vulnerabilities are identified and addressed. A preventive, risk-based management approach, such as the Water Safety Plan process for drinking water, may also be useful in managing irrigation water quality.
Collapse
Affiliation(s)
- Richard J. Gelting
- Centers for Disease Control and Prevention, Center for Global Health, Health Systems Reconstruction Team, 4770 Buford Highway, MS F-57, Atlanta, GA 30341, USA
| | - Mansoor A. Baloch
- Centers for Disease Control and Prevention, National Center for Environmental Health, Environmental Health Services Branch, 4770 Buford Highway, MS F-58, Atlanta, GA 30341, USA
| | - Max Zarate-Bermudez
- Centers for Disease Control and Prevention, National Center for Environmental Health, Environmental Health Services Branch, 4770 Buford Highway, MS F-58, Atlanta, GA 30341, USA
| | - Maha N. Hajmeer
- California Department of Public Health, Food and Drug Branch, 1500 Capitol Ave, MS 7602, Sacramento, CA 95899-7435, USA
| | - J. Christopher Yee
- Food and Drug Administration, Pacific Region, 1301 Clay St., Suite 1180N, Oakland, CA, 94612, USA
| | - Teresa Brown
- Department of Earth and Planetary Sciences, 1412 Circle Drive, University of Tennessee, Knoxville, TN 37996, USA
| | - Benson J. Yee
- California Department of Public Health, Food and Drug Branch, 1500 Capitol Ave, MS 7602, Sacramento, CA 95899-7435, USA
| |
Collapse
|
43
|
Fröschle B, Heiermann M, Lebuhn M, Messelhäusser U, Plöchl M. Hygiene and Sanitation in Biogas Plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:63-99. [PMID: 26337844 DOI: 10.1007/978-3-319-21993-6_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing number of agricultural biogas plants and higher amounts of digestate spread on agricultural land arouse a considerable interest in the hygiene situation of digested products. This chapter reviews the current knowledge on sanitation during anaerobic digestion and the hygienic status of digestate concerning a multitude of pathogens potentially compromising the health of humans, animals and plants. Physical, chemical and biological parameters influencing the efficiency of sanitation in anaerobic digestion are considered. The degree of germ reduction depends particularly on the resistance of the pathogen of concern, the processing conditions, the feedstock composition and the diligence of the operation management. Most scientific studies facing sanitation in biogas plants have provided data ascertaining reduction of pathogens by the biogas process. Some pathogens, however, are able to persist virtually unaffected due to the ability to build resistant permanent forms. As compared to the feedstock, the sanitary status of the digestate is thus improved or in the worst case, the sanitary quality remains almost unchanged. According to this, the spreading of digestate on agricultural area in accordance to current rules and best practice recommendations is considered to impose no additional risk for the health of humans, animals and plants.
Collapse
Affiliation(s)
- Bianca Fröschle
- Department for Quality Assurance and Analytics, Bavarian State Research Center for Agriculture, Lange Point 6, 85354, Freising, Germany,
| | | | | | | | | |
Collapse
|
44
|
Crossland WL, Callaway TR, Tedeschi LO. Shiga Toxin-Producing E. coli and Ruminant Diets. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Parker ID, Lopez RR, Karthikeyan R, Silvy NJ, Davis DS, Cathey JC. A model for assessing mammal contribution of Escherichia coli to a Texas floodplain. WILDLIFE RESEARCH 2015. [DOI: 10.1071/wr15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Free-ranging mammals contribute to faecal pollution in United States water bodies. However, research into wildlife impact on water quality is dependent upon unreliable data (e.g. data uncertainty, unknown importance of parameters). Aims Our goal was to determine the potential impacts of common free-ranging mammal species and their management on Escherichia coli in the study floodplain. Our objectives for this research were to construct a model from study area- and literature-derived data, determine important species for E. coli deposition, and conduct sensitivity analyses on model parameters to focus future research efforts. Methods We constructed a model that incorporated parameters for four wildlife species known to contribute E. coli in central Texas: raccoons (Procyon lotor), white-tailed deer (Odocoileus virginianus), Virginia opossums (Didelphis virginiana), and wild pigs (Sus scrofa). These parameters were (1) population density estimates, (2) defaecation rates, (3) defaecation areas, (4) E. coli concentration in faecal material estimates, and (5) E. coli survival. We conducted sensitivity analyses on the model parameters to determine relative importance of each parameter and areas for additional study. Key results We found that adjustment of raccoon and Virginia opossum population densities had higher impacts on E. coli in the floodplain than similar changes in other species across all spatial and seasonal variations. We also found that the changes in E. coli survival, E. coli concentration in raccoon faecal material, and defaecation rates had the highest impacts on E. coli in the floodplain. Conclusions Our sensitivity analyses indicated that the largest impacts to projected E. coli loads were from changes in defaecation rates followed by E. coli concentration in faecal material and E. coli survival. Watershed planners, ranchers, and regulators must be cautioned that faecal deposition patterns are location specific and could significantly impact which species are considered the most important contributors. Implications Although all parameters require more research, we recommend that researchers determine defaecation rates for contributing species due to their relatively large impacts on E. coli in comparison to the other parameters. We also suggest additional research in free-ranging wildlife faecal morphology (form and structure) and area of deposition. Finally, species-specific E. coli survival studies for free-ranging wildlife should be conducted.
Collapse
|
46
|
Escherichia coli survival in, and release from, white-tailed deer feces. Appl Environ Microbiol 2014; 81:1168-76. [PMID: 25480751 DOI: 10.1128/aem.03295-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White-tailed deer are an important reservoir for pathogens that can contribute a large portion of microbial pollution in fragmented agricultural and forest landscapes. The scarcity of experimental data on survival of microorganisms in and release from deer feces makes prediction of their fate and transport less reliable and development of efficient strategies for environment protection more difficult. The goal of this study was to estimate parameters for modeling Escherichia coli survival in and release from deer (Odocoileus virginianus) feces. Our objectives were as follows: (i) to measure survival of E. coli in deer pellets at different temperatures, (ii) to measure kinetics of E. coli release from deer pellets at different rainfall intensities, and (iii) to estimate parameters of models describing survival and release of microorganisms from deer feces. Laboratory experiments were conducted to study E. coli survival in deer pellets at three temperatures and to estimate parameters of Chick's exponential model with temperature correction based on the Arrhenius equation. Kinetics of E. coli release from deer pellets were measured at two rainfall intensities and used to derive the parameters of Bradford-Schijven model of bacterial release. The results showed that parameters of the survival and release models obtained for E. coli in this study substantially differed from those obtained by using other source materials, e.g., feces of domestic animals and manures. This emphasizes the necessity of comprehensive studies of survival of naturally occurring populations of microorganisms in and release from wildlife animal feces in order to achieve better predictions of microbial fate and transport in fragmented agricultural and forest landscapes.
Collapse
|
47
|
Shaw AL, Svoboda A, Jie B, Nonnecke G, Mendonca A. Survival of Escherichia coli on strawberries grown under greenhouse conditions. Food Microbiol 2014; 46:200-203. [PMID: 25475285 DOI: 10.1016/j.fm.2014.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Strawberries are soft fruit that are not recommended to have a post-harvest wash due to quality concerns. Escherichia coli O157:H7 has been linked to outbreaks with strawberries but little is known about the survival of E. coli during the growth cycle of strawberries. The survival of E. coli on strawberry plants during growing under greenhouses conditions was evaluated. Soil, leaves, and strawberries (if present) were artificially contaminated with an E. coli surrogate either at the time of planting, first runner removal (4 wk), second runner removal (8 wk), or one week prior to harvest. At harvest E. coli was recovered from the leaves, soil, and strawberries regardless of the contamination time. Time of contamination influenced (P < 0.05) numbers of viable E. coli on the plant. The highest survival of E. coli (P < 0.0001) was detected in soil that was contaminated at planting (4.27 log10 CFU g soil(-1)), whereas, the survival of E. coli was maximal at later contamination times (8 wk and 1 wk prior to harvest) for the leaves (4.40 and 4.68 log10 CFU g leaves(-1)) and strawberries (3.37 and 3.53 log10 CFU strawberry(-1)). Cross contamination from leaves to fruit was observed during this study, with the presence of E. coli on strawberries which had not been present at the time of contamination. These results indicate that good agricultural best practices to avoid contamination are necessary to minimize the risk of contamination of these popular fruit with enteric pathogens. Practices should include soil testing prior to harvest and avoiding contamination of the leaves.
Collapse
Affiliation(s)
- Angela Laury Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA.
| | - Amanda Svoboda
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Beatrice Jie
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Gail Nonnecke
- Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | - Aubrey Mendonca
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
48
|
Polifroni R, Etcheverría AI, Arroyo GH, Padola NL. [Survival of VTEC O157 and non-O157 in water troughs and bovine feces]. Rev Argent Microbiol 2014; 46:126-32. [PMID: 25011597 DOI: 10.1016/s0325-7541(14)70061-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 03/13/2014] [Indexed: 11/17/2022] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) is the etiologic agent of hemolytic-uremic syndrome (HUS), which typically affects children ranging in age from six months to five years old. Transmission is produced by consumption of contaminated food, by direct contact with animals or the environment and from person to person. In previous studies we determined that the environment of a dairy farm is a non-animal reservoir; thus, we proposed to study the survival of 4 VTEC isolates (O20:H19; O91:H21; O157:H7 and O178:H19) in sterile water troughs and bovine feces by viable bacteria count and detection of virulence genes by PCR. It was demonstrated that the survival of different VTEC isolates (O157 and non-O157) varied in terms of their own characteristics as well as of the environmental conditions where they were found. The main differences between isolates were their survival time and the maximal counts reached. The competitive and adaptive characteristics of some isolates increase the infection risk for people that are visiting or working on a farm, as well as the risk for reinfection of the animals and food contamination.
Collapse
Affiliation(s)
- Rosana Polifroni
- CIVETAN - CONICET - CICPBA - FCV - UNICEN, Tandil, Buenos Aires, Argentina
| | | | - Guillermo H Arroyo
- CIVETAN - CONICET - CICPBA - FCV - UNICEN, Tandil, Buenos Aires, Argentina
| | - Nora L Padola
- CIVETAN - CONICET - CICPBA - FCV - UNICEN, Tandil, Buenos Aires, Argentina
| |
Collapse
|
49
|
Crossing Over. Food Saf (Tokyo) 2014. [DOI: 10.1128/9781555816186.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Pan X, Nakano H. Effects of Chlorine-Based Antimicrobial Treatments on the Microbiological Qualities of Selected Leafy Vegetables and Wash Water. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|