1
|
Esfahani SG, Alcalde RE, Valocchi AJ, Sanford RA, Werth CJ. Modeling the Migration and Growth of Shewanella Oneidensis MR-1 in a Diffusion-Dominated Microfluidic Gradient Chamber Under the Influence of an Antibiotic Concentration Gradient. Biotechnol Bioeng 2025. [PMID: 40241290 DOI: 10.1002/bit.28991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025]
Abstract
Motility and chemotaxis allow bacteria to migrate from areas that become depleted in energy yielding substrates to more favorable locations, possibly enhancing the biodegradation of pollutants in soil and groundwater. However, in some cases substrates are co-mingled with one or more toxic solutes that inhibit pollutant degradation and/or microbial growth, and the impacts on motility and chemotaxis represent a knowledge gap. In this study, a one-dimensional diffusion reaction model is developed and used to simulate dissimilatory biological reduction of nitrate to ammonia (DNRA) presented in a previously published microfluidic gradient chamber (MGC) experiment, where spatial abundances of Shewanella oneidensis MR-1 cells were recorded over 5 days in a diffusion limited porous media domain as it degraded nitrate and lactate introduced from opposite boundaries, and at one boundary co-mixed with the antibiotic ciprofloxacin. The model considers S. oneidensis chemotaxis toward nitrate and nitrite, random motility, and growth inhibition by ciprofloxacin. Parameters were adjusted within ranges commonly reported in the literature to obtain results that agreed with the data. Simulation results indicate that motility and not chemotaxis, in combination with inhibition of cell growth by ciprofloxacin, controls the distribution of cells in the toxic region (containing ciprofloxacin) of the MGC. This suggests that cell motility may facilitate nitrate removal in soil and groundwater by enabling microorganisms to migrate toward nitrate contaminated regions with elevated antibiotic concentrations.
Collapse
Affiliation(s)
- Somayeh G Esfahani
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Reinaldo E Alcalde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Albert J Valocchi
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Grimm H, Drabesch S, Nicol A, Straub D, Joshi P, Zarfl C, Planer-Friedrich B, Muehe EM, Kappler A. Arsenic immobilization and greenhouse gas emission depend on quantity and frequency of nitrogen fertilization in paddy soil. Heliyon 2024; 10:e35706. [PMID: 39247294 PMCID: PMC11379618 DOI: 10.1016/j.heliyon.2024.e35706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Nitrogen (N) fertilization in paddy soils decreases arsenic mobility and methane emissions. However, it is unknown how quantity and frequency of N fertilization affects the interlinked redox reactions of iron(II)-driven denitrification, iron mineral (trans-)formation with subsequent arsenic (im-)mobilization, methane and nitrous oxide emissions, and how this links to microbiome composition. Thus, we incubated paddy soil from Vercelli, Italy, over 129 days and applied nitrate fertilizer at different concentrations (control: 0, low: ∼35, medium: ∼100, high: ∼200 mg N kg-1 soil-1) once at the beginning and after 49 days. In the high N treatment, nitrate reduction was coupled to oxidation of dissolved and solid-phase iron(II), while naturally occurring arsenic was retained on iron minerals due to suppression of reductive iron(III) mineral dissolution. In the low N treatment, 40 μg L-1 of arsenic was mobilized into solution after nitrate depletion, with 69 % being immobilized after a second nitrate application. In the non-fertilized control, concentrations of dissolved arsenic were as high as 76 μg L-1, driven by mobilization of 36 % of the initial mineral-bound arsenic. Generally, N fertilization led to 1.5-fold higher total GHG emissions (sum of CO2, CH4 and N2O as CO2 equivalents), 158-fold higher N2O, and 7.5-fold lower CH4 emissions compared to non-fertilization. On day 37, Gallionellaceae, Comamonadaceae and Rhodospirillales were more abundant in the high N treatment compared to the non-fertilized control, indicating their potential role as key players in nitrate reduction coupled to iron(II) oxidation. The findings underscore the dual effect of N fertilization, immobilizing arsenic in the short-term (low/medium N) or long-term (high N), while simultaneously increasing N2O and lowering CH4 emissions. This highlights the significance of both the quantity and frequency of N fertilizer application in paddy soils.
Collapse
Affiliation(s)
- Hanna Grimm
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Soeren Drabesch
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
- Plant Biogeochemistry, Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Plant Biogeochemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Alan Nicol
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), University of Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Germany
| | - E Marie Muehe
- Plant Biogeochemistry, Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Plant Biogeochemistry, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| |
Collapse
|
3
|
Yang H, Ou-Yang K, He Y, Wang X, Wang L, Yang Q, Li D, Li L. Nitrite induces hepatic glucose and lipid metabolism disorders in zebrafish through mitochondrial dysfunction and ERs response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107015. [PMID: 38996482 DOI: 10.1016/j.aquatox.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Nitrite, a highly toxic environmental contaminant, induces various physiological toxicities in aquatic animals. Herein, we investigate the in vivo effects of nitrite exposure at concentrations of 0, 0.2, 2, and 20 mg/L on glucose and lipid metabolism in zebrafish. Our results showed that exposure to nitrite induced mitochondrial oxidative stress in zebrafish liver and ZFL cells, which were evidenced by increased levels of malondialdehyde (MDA) and reactive oxygen species (ROS) as well as decreased mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP). Changes in these oxidative stress markers were accompanied by alterations in the expression levels of genes involved in HIF-1α pathway (hif1α and phd), which subsequently led to the upregulation of glycolysis and gluconeogenesis-related genes (gk, pklr, pdk1, pepck, g6pca, ppp1r3cb, pgm1, gys1 and gys2), resulting in disrupted glucose metabolism. Moreover, nitrite exposure activated ERs (Endoplasmic Reticulum stress) responses through upregulating of genes (atf6, ern1 and xbp1s), leading to increased expression of lipolysis genes (pparα, cpt1aa and atgl) and decreased expression of lipid synthesis genes (srebf1, srebf2, fasn, acaca, scd, hmgcra and hmgcs1). These results were also in consistent with the observed changes in glycogen, lactate and decreased total triglyceride (TG) and total cholesterol (TC) in the liver of zebrafish. Our in vitro results showed that co-treatment with Mito-TEMPO and nitrite attenuated nitrite-induced oxidative stress and improved mitochondrial function, which were indicated by the restorations of ROS, MMP, ATP production, and glucose-related gene expression recovered. Co-treatment of TUDCA and nitrite prevented nitrite-induced ERs response and which was proved by the levels of TG and TC ameliorated as well as the expression levels of lipid metabolism-related genes. In conclusion, our study suggested that nitrite exposure disrupted hepatic glucose and lipid metabolism through mitochondrial dysfunction and ERs responses. These findings contribute to the understanding of the potential hepatotoxicity for aquatic animals in the presence of ambient nitrite.
Collapse
Affiliation(s)
- Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Tanvir RU, Li Y, Hu Z. Competitive partitioning of denitrification pathways during arrested methanogenesis: Implications in ammonium recovery, N 2O emission, and volatile fatty acid production. BIORESOURCE TECHNOLOGY 2024; 401:130717. [PMID: 38642664 DOI: 10.1016/j.biortech.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The complex interaction between nitrate (NO3-) reduction and fermentation is poorly understood when high levels of NO3- are introduced into anaerobic systems. This study investigated the competitive distribution between conventional denitrification (DEN) and dissimilatory nitrate reduction to ammonium (DNRA) during simultaneous denitrification and fermentation in arrested methanogenesis. Up to 62% of initial NO3- (200 mg-N/L) was retained as ammonium through DNRA at a chemical oxygen demand (COD)/N ratio of 25. Significant N2O emission occurred (1.7 - 8.0% of the initial NO3-) with limited carbon supply (≤1600 mg COD/L) and sludge concentration (≤3000 mg COD/L). VFA composition shifted predominantly towards acetic acid (>50%) in the presence of nitrate. A novel kinetic model was developed to predict DNRA vs. DEN partitioning and NO2- accumulation. Overall, NO3- input, organic loading, and carbon source characteristics independently and collectively controlled competitive DNRA vs. DEN partitioning.
Collapse
Affiliation(s)
- Rahamat Ullah Tanvir
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Yebo Li
- Quasar Energy Group, 8600 E Pleasant Valley Road, Independence, OH 44131, USA
| | - Zhiqiang Hu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Perović M, Obradović V, Zuber-Radenković V, Knoeller K, Mitrinović D, Čepić Z. The comprehensive evaluation of nitrate origin and transformation pathways in the oxic alluvial aquifer in Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33030-33046. [PMID: 38671265 DOI: 10.1007/s11356-024-33403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Accurate pollution source identification is essential for establishing adequate water management strategies, particularly in groundwater with slow flow and prolonged recharge process allowing long-term pollution retention. An integrated study based on hydrogeochemical, dual isotopic (δ15NNO3 and δ18ONO3), and microbiological approaches (DN, IRB, and SRB BART tests) along with the statistical data processing was conducted to determine nitrate origin and fate in oxic alluvial groundwater source Ključ in Serbia. The findings from a comprehensive investigation, encompassing 20 groundwater sampling locations during the period 2010-2019, delineated three distinct zones - the hinterland (anthropogenic impact area-untreated sewage inflow), the middle zone (area of mixed influence from fertilizer application, accompanied by a mitigated anthropogenic impact), and the zone of riparian denitrification. Significant linear relationship between anthropogenic impact parameters (Na, Cl, B, NO3-, NH4+, and electrical conductivity) along with the isotopic signatures (δ15N-NO3- ranking from + 10.01 to + 11.18‰ and δ18O-NO3- ranking from + 1.15 to + 6.24‰) and grouped sampling objects by cluster analysis indicated that hinterland is burdened by the nitrates originating from anthropogenic impact. The cross-section of groundwater flow data, concurrent increase of NH4+, and pH levels, along with the highest values of δ15N-NO3- (+ 12.90‰) and δ18O-NO3- (+ 9.70‰), indicated area of fertilizers (urea) impact. BART test results, pH increase, and low oxygen concentration, along with the groundwater flow data in riparian zone, indicated the unfolding of denitrification process. Presented research emphasizes the importance, necessities, and advantages of simultaneous and complementary use of hydrogeochemical, microbiological, and isotopic data.
Collapse
Affiliation(s)
- Marija Perović
- Jaroslav Černi Water Institute, Jaroslava Černog 80, Belgrade, Serbia.
| | - Vesna Obradović
- Jaroslav Černi Water Institute, Jaroslava Černog 80, Belgrade, Serbia
| | | | - Kay Knoeller
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany
- Institute for Applied Geosciences, Technical University of Darmstadt, Schnittspahnstr. 9, 64287, Darmstadt, Germany
| | - David Mitrinović
- Jaroslav Černi Water Institute, Jaroslava Černog 80, Belgrade, Serbia
| | - Zoran Čepić
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad, Serbia
| |
Collapse
|
6
|
Zhang X, Yao C, Zhang B, Tan W, Gong J, Wang GY, Zhao J, Lin X. Dynamics of Benthic Nitrate Reduction Pathways and Associated Microbial Communities Responding to the Development of Seasonal Deoxygenation in a Coastal Mariculture Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15014-15025. [PMID: 37756318 DOI: 10.1021/acs.est.3c03994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Intensive mariculture activities result in eutrophication and enhance coastal deoxygenation. Deoxygenation profoundly influences nitrate reduction processes and further the fate of nitrogen (N) in coastal systems. Herein, 15N isotope labeling, real-time PCR, and high-throughput sequencing techniques were jointly used to investigate the participation and seasonal dynamics of sediment nitrate reduction pathways and the succession of functional microbial communities during the development of seasonal deoxygenation in a coastal aquaculture zone. Denitrification dominated benthic nitrate reduction (46.26-80.91%). Both denitrification and dissimilatory nitrate reduction to ammonium were significantly enhanced by summer deoxygenation (dissolved oxygen levels fell to 2.94 ± 0.28 mg L-1), while anammox remained unchanged. The abundance of the nitrous oxide reductase gene nosZ increased during deoxygenation. The community of the nosZ gene was sensitive to deoxygenation, with Azospirillum and Ruegeria accounting for the majority. Pelobacter was overwhelming in the nrfA gene (encoding dissimilatory nitrite reductase) community, which was less affected by deoxygenation. The variations of benthic nitrate reduction processes were driven by bottom water oxygen combined with temperature, chlorophyll a, and microbial gene abundances and community compositions. Our results implicated that seasonal oxygen-deficient zones could be substantial N sinks of coastal ecosystems and important for N balance. Effective management measures need to be developed to avoid further exacerbation of coastal deoxygenation and maintain the sustainable development of mariculture.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Cheng Yao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bosong Zhang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Wenwen Tan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Gong
- Laboratory of Microbial Ecology and Matter Cycles, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Guang-Yu Wang
- Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xianbiao Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
7
|
Yuan H, Cai Y, Wang H, Liu E, Zeng Q. Impact of seasonal change on dissimilatory nitrate reduction to ammonium (DNRA) triggering the retention of nitrogen in lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118050. [PMID: 37141713 DOI: 10.1016/j.jenvman.2023.118050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) reduction processes including denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are critical for the eutrophication in the lake water. However, the understanding about the dominant pathways of N cycling keep limited due to the high complexity of N cycle processes in lacustrine environment. The N fractions in sediments collected from Shijiuhu Lake were measured using high-resolution (HR)-Peeper technique and chemical extraction method in varied seasons. The abundance and microbial community compositions of functional genes involved in various N-cycling processes were also obtained using high-throughput sequencing. The results showed that NH4+ concentrations in the pore water remarkably increased from the upper layer toward the deeper layer and from winter to spring. This trend suggested that higher temperature facilitated the accumulation of NH4+ in the water. Decreased NO3- concentrations were also detected at deeper sediment layers and higher temperature, indicating the intensification of N reduction on anaerobic conditions. The NH4+-N concentrations reduced in spring along with the slight change of NO3--N in solid sediment, indicating the desorption and release of mobile NH4+ from solid phase to the solution. Remarkably decreased absolute abundances of functional genes were found in spring with DNRA bacteria nrfA gene as dominant genus and Anaeromyxobacter as the most dominant bacterium (21.67 ± 1.03%). Higher absolute abundance (146.2-788.1 × 105 Copies/g) of nrfA gene relative to other genes was mainly responsible for the increase of bio-available NH4+ in the sediments. Generally, microbial DNRA pathway predominated the N reduction and retention processes in the lake sediment at higher temperature and water depth even experiencing the suppression of DNRA bacteria abundance. These results suggested the existence of ecological risk via N retention by the action of the DNRA bacteria in the sediment on the condition of higher temperature, further provided valuable information for N management of eutrophic lakes.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250359, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
8
|
Characterization of Achromobacter denitrificans QHR-5 for heterotrophic nitrification-aerobic denitrification with iron oxidation function isolated from BSIS:Nitrogen removal performance and enhanced SND capability of BSIS. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, Angove MJ, Ngo HH, Guo W, Puadel SR. Nitrous oxide emission in altered nitrogen cycle and implications for climate change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120272. [PMID: 36167167 DOI: 10.1016/j.envpol.2022.120272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Natural processes and human activities play a crucial role in changing the nitrogen cycle and increasing nitrous oxide (N2O) emissions, which are accelerating at an unprecedented rate. N2O has serious global warming potential (GWP), about 310 times higher than that of carbon dioxide. The food production, transportation, and energy required to sustain a world population of seven billion have required dramatic increases in the consumption of synthetic nitrogen (N) fertilizers and fossil fuels, leading to increased N2O in air and water. These changes have radically disturbed the nitrogen cycle and reactive nitrogen species, such as nitrous oxide (N2O), and have impacted the climatic system. Yet, systematic and comprehensive studies on various underlying processes and parameters in the altered nitrogen cycle, and their implications for the climatic system are still lacking. This paper reviews how the nitrogen cycle has been disturbed and altered by anthropogenic activities, with a central focus on potential pathways of N2O generation. The authors also estimate the N2O-N emission mainly due to anthropogenic activities will be around 8.316 Tg N2O-N yr-1 in 2050. In order to minimize and tackle the N2O emissions and its consequences on the global ecosystem and climate change, holistic mitigation strategies and diverse adaptations, policy reforms, and public awareness are suggested as vital considerations. This study concludes that rapidly increasing anthropogenic perturbations, the identification of new microbial communities, and their role in mediating biogeochemical processes now shape the modern nitrogen cycle.
Collapse
Affiliation(s)
- Babita Aryal
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Roshni Gurung
- Naaya Aayam Multidisciplinary Institute, NAMI, University of Northampton, Jorpati, Kathmandu, Nepal
| | - Aline F Camargo
- Federal University of Santa Catarina, Post-graduation Program in Biotechnology and Biosciences, Florianopólis, Brazil; Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Bandita Mainali
- School of Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC, 3550, Australia; School of Engineering, Macquarie University, Sydney, Australia
| | - Michael J Angove
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bendigo, VIC-3550, Australia
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW, 2007, Australia
| | - Shukra Raj Puadel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuwan University, Pulchowk, Lalitpur, 44700, Nepal; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
10
|
Su X, Zheng Z, Chen Y, Wan Y, Lyu H, Dong W. Effects of carbon load on nitrate reduction during riverbank filtration: Field monitoring and batch experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157198. [PMID: 35810902 DOI: 10.1016/j.scitotenv.2022.157198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Riverbank filtration (RBF) is a well-established technique worldwide, and is critical for the maintenance of groundwater quality and production of clean drinking water. Evaluation of the decay of exogenous nitrate (NO3-) in river water and the enrichment of ammonium (NH4+) in groundwater during RBF is important; these two processes are mainly influenced by denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) controlled by the groundwater carbon load. In this study, the effects of carbon load (organic carbon [OC]: NO3-) on the competing nitrate reduction (DNRA and DNF) were assessed during RBF using field monitoring and a laboratory batch experiment. Results show the groundwater OC: NO3- ratio did not directly affect the reaction rate of DNRA and DNF, however, it could control the competitive partitioning between the two. In the near-shore zone, the groundwater OC: NO3- ratio shows significant seasonal variations along the filtration path owing to the changing conditions of redox, OC-rich, and NO3--limited. A greater proportion of NO3- would be available for DNRA in the wet season with higher OC: NO3- ratio (> 10), resulting in a significantly NH4+-N enrichment rate (from 1.43 × 10-3 to 9.54 × 10-4 mmol L-1 d-1) in the near-shore zone where the zone of Mn (IV) oxide reduction. However, the activity of DNRA was suppressed with lower OC: NO3- ratio (< 10) in the dry season, resulting in a stable NH4+-N enrichment rate (from 3.12 × 10-4 to 1.30 × 10-4 mmol L-1 d-1). Benefiting from seasonal variation of OC-rich and NO3--limited conditions, DNRA bacteria outcompeted denitrifiers, which eventually led to seasonal differences in NO3- reduction in the near-shore zone. Overall, under the effect of DNRA induced by continuous high carbon load in RBF systems, nitrogen input is not permanently removed but rather retained in groundwater during RBF.
Collapse
Affiliation(s)
- Xiaosi Su
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Zhuyan Zheng
- College of Construction Engineering, Jilin University, Changchun 130021, China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China
| | - Yaoxuan Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China.
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Hang Lyu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, China; Institute of Water Resources and Environment, Jilin University, Changchun 130026, China; College of New Energy and Environment, Jilin University, Changchun 130026, China
| |
Collapse
|
11
|
Yuan H, Jia B, Zeng Q, Zhou Y, Wu J, Wang H, Fang H, Cai Y, Li Q. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment. CHEMOSPHERE 2022; 303:134664. [PMID: 35460675 DOI: 10.1016/j.chemosphere.2022.134664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/20/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorus (P) are crucial nutrients for eutrophication in the lacustrine ecosystem and attract the attention worldwide. However, the interaction between them need further clarification. This study aimed to assess the influence of dissimilatory nitrate reduction to ammonia (DNRA) on the cycle of P in lacustrine sediment. Different fractions of N and P in the pore water were measured using high-resolution in-situ measurement techniques, HR-Peeper and DGT, coupling with sequential extraction for solid sediment from a shallow freshwater lake. The results showed that elevated nitrate (NO3-) reduction via DNRA rather than denitrification was verified at deeper sediment layer, suggesting the generation of inorganic ammonia (NH4+) as electron donor under anaerobic episodes. High abundance of DNRA bacteria (nrfA gene) obtained using high-throughput sequencing analysis were detected at upper layer and responsible for the accumulation of NH4+ in the sediment coupling with chemolithoautotrophic metabolism. Additionally, significant desorption of ionic ferrous iron (Fe2+) and dissolved reactive phosphate (DRP) from solid phase and the enrichment in the solution was simultaneously detected. Higher concentration of solid Fe bound P (Fe-P) at deeper layer indicated the potential re-oxidation of Fe2+ as electron donor during DNRA process and sorption of DRP toward the Fe-containing minerals. However, obvious evidence of desorption proved by DGT indicated that higher NH4+ concentrations favored the reduction of Fe(III) oxy(hydr)oxides and the desorption of DRP into the pore water and diffusion toward the overlying water. Finally, noteworthy S2- release from solid sediment was speculated to stimulate the DNRA and facilitated the accumulation of NH4+ in the solution, which further induced the enrichment of DRP in water from the solid phase. Overall, DNRA potentially facilitates the accumulation of P in lake water, and the synchronous control of N and P is important for the eutrophication management and restoration of lake eutrophication.
Collapse
Affiliation(s)
- Hezhong Yuan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Bingchan Jia
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanwen Zhou
- Nanjing Research Institute of Ecological and Environmental Sciences, Nanjing, 210013, China
| | - Juan Wu
- Gaochun District Water Authority Bureau, Nanjing, 211300, China
| | - Haixiang Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yiwei Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control and Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qiang Li
- Department of Soil Science, University of Wisconsin-Madison, 53706, Madison, WI, USA
| |
Collapse
|
12
|
Liu R, Xia L, Liu M, Gao Z, Feng J, You H, Qu W, Xing T, Wang J, Zhao Y. Influence of the carbon source concentration on the nitrate removal rate in groundwater. ENVIRONMENTAL TECHNOLOGY 2022; 43:3355-3365. [PMID: 33886439 DOI: 10.1080/09593330.2021.1921053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
At present, groundwater nitrate pollution in China is serious. The use of microorganisms for biological denitrification has been widely applied, and it is a universal and efficient in situ groundwater remediation technique, but this approach is influenced by many factors. In this study, glucose was adopted as the carbon source, four different concentrations of 0, 2, 5 and 10 g/L were considered, and natural groundwater with a nitrate concentration of 300.8 mg/L was employed as the experimental solution. The effect of the carbon source concentration on the nitrate removal rate in groundwater was examined through heterotrophic anaerobic denitrification experiments. The results showed that the nitrate removal rate could be improved by the addition of an external carbon source in the process of biological denitrification, and an optimal concentration was observed. At a glucose concentration of 2 g/L, the denitrification effect was the best.
Collapse
Affiliation(s)
- Ruinan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Lu Xia
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Manxi Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Jianguo Feng
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Haichi You
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Wanlong Qu
- Qingdao Geo-Engineering Surveying Institute, Qingdao, People's Republic of China
- Key Laboratory of Urban Geology and Underground Space Resources, Shandong Provincial Bureau of Geology and Mineral Resources, Qingdao, People's Republic of China
| | - Tongju Xing
- Qingdao Geo-Engineering Surveying Institute, Qingdao, People's Republic of China
- Key Laboratory of Urban Geology and Underground Space Resources, Shandong Provincial Bureau of Geology and Mineral Resources, Qingdao, People's Republic of China
| | - Jing Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yanli Zhao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
13
|
Covatti G, Grischek T, Burghardt D. Tracing sources and transformations of ammonium during river bank filtration by means of column experiments. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 249:104050. [PMID: 35820327 DOI: 10.1016/j.jconhyd.2022.104050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Ammonium is an undesirable substance in the abstracted water of riverbank filtration (RBF) schemes, due mainly to the complications it causes during post-treatment (e. g. during chlorination). During RBF, ammonium can be formed in the riverbed by mineralization of organic nitrogen. Column experiments with riverbed sediments and river water from the Elbe were performed to evaluate the controls on ammonium concentrations during riverbed infiltration. Concentrations of ammonium went from <0.1 mgN/l in the feed water up to 1 mgN/l in the columns effluent. Higher temperatures and lower infiltration rates led to increased ammonium concentrations in the effluent. This shows higher susceptibility to ammonium increases of RBF settings in warmer climates and points to potential threats of climate change to water quality at RBF sites. In the later phases of the experiments, after the columns have been flushed their pore volumes several times, ammonium concentrations continually decreased. This behavior was attributed to the partial consumption of easily degradable organic material in the sediments, leading to lesser reducing conditions and lower mineralization rates. Based on operation with varied nitrate concentrations (0-11 mgN/l) and 15N isotopic measurements, dissimilatory nitrate reduction to ammonium (DNRA) was not shown to be relevant in the formation of ammonium. Anaerobic ammonium oxidation (anammox), however, was hypothesized to be an important sink of ammonium inside the columns, which indicates that rivers with high nitrate concentrations, such as the Elbe, may have a buffer of protection against ammonium formation during RBF.
Collapse
Affiliation(s)
- Gustavo Covatti
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany.
| | - Thomas Grischek
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Diana Burghardt
- TU Dresden, Institute for Groundwater Management, Mommsenstr. 13, 01069 Dresden, Germany
| |
Collapse
|
14
|
Chen X, Sheng Y, Wang G, Guo L, Zhang H, Zhang F, Yang T, Huang D, Han X, Zhou L. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water. WATER RESEARCH 2022; 215:118277. [PMID: 35305487 DOI: 10.1016/j.watres.2022.118277] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Intrusion of salinity and petroleum hydrocarbons (e.g., benzene, toluene, ethylbenzene, and xylenes, BTEX) into shallow groundwater by so-called 'produced water' (the water associated with oil and gas production) has recently drawn much attention. However, how this co-contamination affects the groundwater microbial community remains unknown. Herein, geochemical methods (e.g., ion ratios) and high-throughput sequencing (amplicon and shotgun metagenomic) were used to study the contaminant source, hydrogeochemical conditions, microbial community and function in salinity and BTEX co-contaminated shallow groundwater in an oil field, northwest China. The desulfurization coefficient (100rSO42-/rCl-), coefficient of sodium and chloride (rNa+/rCl-), and coefficient of magnesium and chloride (rMg2+/rCl-) revealed an intrusion of produced water into groundwater, resulting in elevated levels of salinity and BTEX. The consumption of terminal electron acceptors (e.g., NO3-, Fe3+, and SO42-) was likely coupled with BTEX degradation. Relative to the bacteria, decreased archaeal diversity and enriched community in produced water-contaminated groundwater suggested that archaea were more susceptible to elevated BTEX and salinity. Relative to the nitrate and sulfate reduction genes, the abundance of marker genes encoding fermentation (acetate and hydrogen production) and methanogenesis (aceticlastic and methylotrophic) was more proportional to BTEX concentration. The produced water intrusion significantly enriched the salt-tolerant anaerobic fermentative heterotroph Woesearchaeia in shallow groundwater, and its co-occurrence with BTEX-degrading bacteria and methanogen Methanomicrobia suggested mutualistic interactions among the archaeal and bacterial communities to couple BTEX degradation with fermentation and methanogenesis. This study offers a first insight into the microbial community and function in groundwater contaminated by produced water.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China; Department of Geology and Environmental Earth Science, Miami University, OH 45056, USA.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Liang Guo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Tao Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, No.29, Xueyuan Road, Haidian District, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Dandan Huang
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing, PR China
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
15
|
Upreti K, Rivera-Monroy VH, Maiti K, Giblin AE, Castañeda-Moya E. Dissimilatory nitrate reduction to ammonium (DNRA) is marginal relative to denitrification in emerging-eroding wetlands in a subtropical oligohaline and eutrophic coastal delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152942. [PMID: 35007602 DOI: 10.1016/j.scitotenv.2022.152942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Nitrate (NO3-) and ammonium (NH4+) are reactive nitrogen (Nr) forms that can exacerbate eutrophication in coastal regions. NO3- can be lost to the atmosphere as N2 gas driven by direct denitrification, coupled nitrification-denitrification and annamox or retained within the ecosystems through conversion of NO3- to NH4+ via dissimilatory nitrate reduction to ammonium (DNRA). Denitrification and DNRA are competitive pathways and hence it is critical to evaluate their functional biogeochemical role. However, there is limited information about the environmental factors driving DNRA in oligohaline habitats, especially within deltaic regions where steep salinity gradients define wetland spatiotemporal distribution. Here we use the Isotope Pairing Technique to evaluate the effect of temperature (10, 20, 30 °C) and in situ soil/sediment organic matter (OM%) on total denitrification (Dtotal = direct + coupled nitrification) and DNRA rates in oligohaline forested/marsh wetlands soils and benthic sediment habitats at two sites representing prograding (Wax Lake Delta, WLD) and eroding (Barataria- Lake Cataouatche, BLC) deltaic stages in the Mississippi River Delta Plain (MRDP). Both sites receive MR water with high NO3- (>40 μM) concentrations during the year via river diversions. Denitrification rates were significantly higher (range: 18.0 ± 0.4-113.0 ± 10.6 μmol m-2 h-1) than DNRA rates (range: 0.7 ± 0.2-9.2 ± 0.3 μmol m-2 h-1). Therefore, DNRA represented on average < 10% of the total NO3- reduction (DNRA + Dtotal). Unlike denitrification, DNRA showed no consistent response to temperature. These results indicate that DNRA in wetland soils and benthic sediment is not a major nitrogen transformation in oligohaline regions across the MRDP regardless of wide range of OM% content in these eroding and prograding delta lobes.
Collapse
Affiliation(s)
- Kiran Upreti
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Victor H Rivera-Monroy
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA.
| | - Kanchan Maiti
- Department of Oceanography and Coastal Sciences, College of the Coast and Enviroment, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Anne E Giblin
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | |
Collapse
|
16
|
Spring S, Rohde M, Bunk B, Spröer C, Will SE, Neumann-Schaal M. New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environ Microbiol 2022; 24:2543-2575. [PMID: 35415868 DOI: 10.1111/1462-2920.15999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 12/13/2022]
Abstract
Strain L21-Ace-BEST , isolated from a lithifying cyanobacterial mat, could be assigned to a novel species and genus within the Deferribacteres. It is an important model organism for the study of anaerobic acetate degradation under hypersaline conditions. The metabolism of strain L21-Ace-BEST was characterized by biochemical studies, comparative genome analyses, and the evaluation of gene expression patterns. The central metabolic pathway is the citric acid cycle, which is mainly controlled by the enzyme succinyl-CoA:acetate-CoA transferase. The potential use of a reversed oxidative citric acid cycle to fix CO2 has been revealed through genome analysis. However, no autotrophic growth was detected in this strain, whereas sulfide and H2 can be used mixotrophically. Preferred electron acceptors for the anaerobic oxidation of acetate are nitrate, fumarate and DMSO, while oxygen can be utilized only under microoxic conditions. Aerotolerant growth by fermentation was observed at higher oxygen concentrations. The redox cycling of sulfur/sulfide enables the generation of reducing power for the assimilation of acetate during growth and could prevent the over-reduction of cells in stationary phase. Extracellular electron transfer appears to be an essential component of the respiratory metabolism in this clade of Deferribacteres and may be involved in the reduction of nitrite to ammonium. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, HZI, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Research Group Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
17
|
Handler AM, Suchy AK, Grimm NB. Denitrification and DNRA in Urban Accidental Wetlands in Phoenix, Arizona. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2022; 127:1-15. [PMID: 35251875 PMCID: PMC8896236 DOI: 10.1029/2021jg006552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) both require low oxygen and high organic carbon conditions common in wetland ecosystems. Denitrification permanently removes nitrogen from the ecosystem as a gas while DNRA recycles nitrogen within the ecosystem via production of ammonium. The relative prevalence of denitrification versus DNRA has implications for the fate of nitrate in ecosystems. Unplanned and unmanaged urban accidental wetlands in the Salt River channel near downtown Phoenix, Arizona, USA receive high nitrate relative to non-urban wetlands and have a high capacity for denitrification, but unknown capacity for DNRA. We conducted in-situ push-pull tests with isotopically labelled nitrate to measure denitrification and DNRA rates in three of the dominant vegetative patch types in these urban accidental wetlands. DNRA accounted for between 2 and 40% of nitrate reduction (DNRA plus denitrification) with the highest rates measured in patches of Ludwigia peploides compared to Typha spp. and non-vegetated patches. The wetland patches were similar with respect to dissolved organic carbon concentration but may have differed in carbon lability or strength of reducing conditions due to a combination of litter decomposition and oxygen supply via diffusion and aerenchyma. The ratio of DNRA to denitrification was negatively correlated with nitrate concentration, indicating that DNRA may become a more important pathway for nitrate attenuation at low nitrate concentration. Although DNRA was generally lower than denitrification, this pathway was an important component of nitrate attenuation within certain patches in these unmanaged urban accidental wetlands.
Collapse
Affiliation(s)
- Amalia M Handler
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287
| | - Amanda K Suchy
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287
| |
Collapse
|
18
|
Huang X, Tie W, Xie D, Li Z. Low C/N Ratios Promote Dissimilatory Nitrite Reduction to Ammonium in Pseudomonas putida Y-9 under Aerobic Conditions. Microorganisms 2021; 9:microorganisms9071524. [PMID: 34361959 PMCID: PMC8305387 DOI: 10.3390/microorganisms9071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
The biogeochemical consequences of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) have a significant influence on nitrogen (N) cycling in the ecosystem. Many researchers have explored these two pathways in soil and sediment ecosystems under anaerobic conditions. However, limited information is available regarding the influence of external environmental conditions on these two pathways in a well-defined experimental system under aerobic conditions. In this study, the impacts of the external environmental factors (carbon source, C/N ratio, pH, and dissolved oxygen) on nitrite reduction through the denitrification and DNRA routes in Pseudomonas putida Y-9 were studied. Results found that sodium citrate and sodium acetate favored denitrification and DNRA, respectively. Furthermore, neutral pH and aerobic conditions both facilitated DNRA and denitrification. Especially, low C/N ratios motivated the DNRA while high C/N ratios stimulated the denitrification, which was opposite to the observed phenomena under anaerobic conditions.
Collapse
Affiliation(s)
- Xuejiao Huang
- College of Agronomy, Guangxi University, Nanning 530004, China;
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing 400716, China;
- Correspondence: (X.H.); (Z.L.); Tel.: +86-19978544987 (X.H.); +86-13883372713 (Z.L.)
| | - Wenzhou Tie
- College of Agronomy, Guangxi University, Nanning 530004, China;
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing 400716, China;
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, Southwest University, Chongqing 400716, China;
- Correspondence: (X.H.); (Z.L.); Tel.: +86-19978544987 (X.H.); +86-13883372713 (Z.L.)
| |
Collapse
|
19
|
Faleschini M, Torres AI. Nitrogen dynamic in vitro using sludge of a sewage stabilization pond from Patagonia (Argentina). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28692-28703. [PMID: 33544341 DOI: 10.1007/s11356-021-12707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
A relevant and current aspect of wastewater treatment systems is related to the processes of the nitrogen cycle that results in its elimination in gaseous forms. In the present study, we report the first measurements of nitrate-reducing rate (NRR) at lab-scale, using the flow-through reactor technique with sludge of a sewage stabilization pond system located in Patagonia (Argentina). Sludge was collected from Inlet and Outlet areas, in winter and summer. The sludge was characterized by having high moisture content (>94%) and organic matter concentration greater than 37%. The nitrate reduction experimental dates fitted significantly to the Michaelis-Menten model, allowing the estimation of the parameters that regulate the NR kinetics. The maximum potential nitrate reduction rate (Rmax) showed great variability, registering a maximum of 131.6 μmol-N·gdw-1·h-1 (Outlet-Summer) and a minimum of 4.1 μmol-N·gdw-1·h-1 (Inlet-Winter). The lowest half saturation constant (Km) was recorded in the Inlet sludge during the winter (6.1 mg N-NO3-·L-1), which indicates a greater affinity for nitrate of this bacterial consortium. An unusually high activity of NR was registered, being higher with sludge from the Outlet zone and with summer temperature. In full-scale ponds, the NR activity could explain a relevant part of the nitrogen removal that involves the escape of gaseous forms.
Collapse
Affiliation(s)
- Mauricio Faleschini
- Centro para el Estudio de Sistemas Marinos (CESIMAR, CCT CONICET-CENPAT), Boulevard Brown, 2915, Puerto Madryn, Chubut, Argentina.
| | - Américo Iadran Torres
- Centro para el Estudio de Sistemas Marinos (CESIMAR, CCT CONICET-CENPAT), Boulevard Brown, 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
20
|
Hou C, Chu ML, Botero-Acosta A, Guzman JA. Modeling field scale nitrogen non-point source pollution (NPS) fate and transport: Influences from land management practices and climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143502. [PMID: 33221001 DOI: 10.1016/j.scitotenv.2020.143502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The use of nitrogen (N) fertilizer marked the start of modern agriculture that boosted food production to help alleviate food shortages across the globe but at the cost of severe environmental issues and critical stress to the agroecosystem. This paper was aimed at determining the fate and transport of nitrite and ammonia under future climate projections by adapting the recommended land management practices that are supposed to reduce nitrate N in surface water to state government target. To accomplish these objectives, a fully-distributed physical-based hydrologic model, MIKE SHE, and a hydrodynamic river model, MIKE 11, were coupled with MIKE ECO-Lab to simulate the fate and transport of different forms of N in the agro-ecosystem in the Upper Sangamon River Basin (USRB). Twelve (12) combinations of land management and climate projections were simulated to evaluate the N fate and transport in the USRB from 2020 to 2050. Under the current land management, the nitrate concentration in surface water was expected to exceed the EPA limit of 10 ppm up to 2.5% of the days in the simulation period. Regulating the fertilizer application rates to approximately 50% of the current rate will ensure this limit will not be exceeded in the future. Implementing cover cropping alone can potentially decrease nitrate N concentrations by 33% in surface water under dry climate and in the saturated zone under future projections. By combining the cover cropping and regulated application rate management, the nitrate N concentration in the saturated zone was expected to decrease by 67% compared with historic baseline. The modeling framework developed and used in this study can help evaluate the effectiveness of different management schemes aimed at reducing future nutrient load in our surface water and groundwater.
Collapse
Affiliation(s)
- Congyu Hou
- University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | - Maria Librada Chu
- University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| | | | - Jorge A Guzman
- University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
21
|
Nardi P, Laanbroek HJ, Nicol GW, Renella G, Cardinale M, Pietramellara G, Weckwerth W, Trinchera A, Ghatak A, Nannipieri P. Biological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applications. FEMS Microbiol Rev 2021; 44:874-908. [PMID: 32785584 DOI: 10.1093/femsre/fuaa037] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrification is the microbial conversion of reduced forms of nitrogen (N) to nitrate (NO3-), and in fertilized soils it can lead to substantial N losses via NO3- leaching or nitrous oxide (N2O) production. To limit such problems, synthetic nitrification inhibitors have been applied but their performance differs between soils. In recent years, there has been an increasing interest in the occurrence of biological nitrification inhibition (BNI), a natural phenomenon according to which certain plants can inhibit nitrification through the release of active compounds in root exudates. Here, we synthesize the current state of research but also unravel knowledge gaps in the field. The nitrification process is discussed considering recent discoveries in genomics, biochemistry and ecology of nitrifiers. Secondly, we focus on the 'where' and 'how' of BNI. The N transformations and their interconnections as they occur in, and are affected by, the rhizosphere, are also discussed. The NH4+ and NO3- retention pathways alternative to BNI are reviewed as well. We also provide hypotheses on how plant compounds with putative BNI ability can reach their targets inside the cell and inhibit ammonia oxidation. Finally, we discuss a set of techniques that can be successfully applied to solve unresearched questions in BNI studies.
Collapse
Affiliation(s)
- Pierfrancesco Nardi
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Graeme W Nicol
- Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Ecully, 69134, France
| | - Giancarlo Renella
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, Centro Ecotekne - via Provinciale Lecce-Monteroni, I-73100, Lecce, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Alessandra Trinchera
- Consiglio per la ricerca e l'analisi dell'economia agraria - Research Centre for Agriculture and Environment (CREA-AA), Via della Navicella 2-4, Rome 00184, Italy
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - Paolo Nannipieri
- Department of Agriculture, Food, Environment and Forestry, University of Firenze, P.le delle Cascine 28, Firenze 50144, Italy
| |
Collapse
|
22
|
Covatti G, Grischek T. Sources and behavior of ammonium during riverbank filtration. WATER RESEARCH 2021; 191:116788. [PMID: 33422978 DOI: 10.1016/j.watres.2020.116788] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Ammonium is an undesirable substance in the abstracted water of riverbank filtration (RBF) schemes, due mainly to the complications it causes during post-treatment. Based on the investigation of case studies from 40 sites around the world, an overview of the sources and behavior of ammonium during RBF is given. Typical concentrations of ammonium in the bank filtrate (BF) are between 0.1 and 1.7 mg/l. The most common source of ammonium in BF is the mineralization of organic nitrogen occurring in the riverbed, while the most common sink of ammonium is nitrification in the riverbed. Ammonium surface water concentrations do not directly translate to abstracted concentrations. Transformations in the riverbed play a critical role in determining ammonium concentrations, whereby riverbeds with high amounts of organic material will have more electron donor competitors for oxygen, thus limiting ammonium attenuation via nitrification.
Collapse
Affiliation(s)
- Gustavo Covatti
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069Dresden, Germany.
| | - Thomas Grischek
- Dresden University of Applied Sciences, Friedrich-List-Platz 1, 01069Dresden, Germany
| |
Collapse
|
23
|
Maciver SK, McLaughlin PJ, Apps DK, Piñero JE, Lorenzo-Morales J. Opinion: Iron, Climate Change and the ‘Brain Eating Amoeba’ Naegleria fowleri. Protist 2021. [DOI: 10.1016/j.protis.2020.125791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Yin C, Li Y, Zhang T, Liu J, Yuan Y, Huang M. Effects of exposure to anionic surfactants (SDBS and SDS) on nitrogen removal of aerobic denitrifier. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:2129-2139. [PMID: 32585773 DOI: 10.1002/wer.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
In order to explain the effect of anionic surfactants on aerobic denitrification in the urban river, sodium dodecyl benzene sulfonate (SDBS) and sodium dodecyl sulfonate (SDS) were added in aerobic denitrifier and the efficiency of nitrogen removal, microbial mechanisms, and enzyme activity was investigated in this study. The results showed that the total nitrogen (TN) and the nitrate nitrogen ( NO 3 - - N ) removal efficiency decreased as an increase of SDBS concentration. In contrast, 59.70% of the TN and 75.12% of NO 3 - - N were removed as the SDBS was 0 mg/L (Control). When SDBS was 200 mg/L (SDBS-200), the removal efficiency of TN and NO 3 - - N was reduced to 4.92% and 4.00%, respectively. However, the denitrification efficiency was significantly accelerated when the concentration of SDS increased, except for 200 mg/L treatment (SDS-200). As the SDS increased from 0 to 100 mg/L (SDS-100), the removal efficiency of TN and NO 3 - - N raised from 59.70% to 70.8% and from 75.12% to 85.08%, respectively. The community structure of aerobic denitrifiers was significantly affected in the SDBS and SDS. While the Cupriavidus and Achromobacter were dominant genera in the group of Control (39.59%, and 42.45%) and SDS-100 (44.40% and 34.86%), the relative abundance of Cupriavidus increased to 84.06% and 59.45% in the group of SDBS-200 and SDS-200, respectively. Enzyme activity assays proved that the nitrite reductase (NiR) relative activity of aerobic denitrification was suppressed by both SDBS and SDS. The increase in the SDS concentrations (from 0 to 50 mg/L) resulted in sharp growth of the nitrate reductase (NR) relative activities (from 100% to 146.86%). These findings demonstrated that SDBS and SDS affected aerobic denitrification efficiency of the aerobic denitrifiers by changing its microbial community structure and enzyme activity. PRACTITIONER POINTS: SDS strengthened aerobic denitrification at low concentration, but the aerobic denitrifiers were inhibited in SDBS. The variation of community structure played a vital role in the aerobic denitrification system. The enzyme activity was seriously affected by SDBS and SDS. Microorganisms and enzyme activity were synergistically involved in the aerobic denitrification.
Collapse
Affiliation(s)
- Chao Yin
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ying Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Tingyue Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jiamin Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuxin Yuan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
25
|
Pandey CB, Kumar U, Kaviraj M, Minick KJ, Mishra AK, Singh JS. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139710. [PMID: 32544704 DOI: 10.1016/j.scitotenv.2020.139710] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews dissimilatory nitrate reduction to ammonium (DNRA) in soils - a newly appreciated pathway of nitrogen (N) cycling in the terrestrial ecosystems. The reduction of NO3- occurs in two steps; in the first step, NO3- is reduced to NO2-; and in the second, unlike denitrification, NO2- is reduced to NH4+ without intermediates. There are two sets of NO3-/NO2- reductase enzymes, i.e., Nap/Nrf and Nar/Nir; the former occurs on the periplasmic-membrane and energy conservation is respiratory via electron-transport-chain, whereas the latter is cytoplasmic and energy conservation is both respiratory and fermentative (Nir, substrate-phosphorylation). Since, Nir catalyzes both assimilatory- and dissimilatory-nitrate reduction, the nrfA gene, which transcribes the NrfA protein, is treated as a molecular-marker of DNRA; and a high nrfA/nosZ (N2O-reductase) ratio favours DNRA. Recently, several crystal structures of NrfA have been presumed to producee N2O as a byproduct of DNRA via the NO (nitric-oxide) pathway. Meta-analyses of about 200 publications have revealed that DNRA is regulated by oxidation state of soils and sediments, carbon (C)/N and NO2-/NO3- ratio, and concentrations of ferrous iron (Fe2+) and sulfide (S2-). Under low-redox conditions, a high C/NO3- ratio selects for DNRA while a low ratio selects for denitrification. When the proportion of both C and NO3- are equal, the NO2-/NO3- ratio modulates partitioning of NO3-, and a high NO2-/NO3- ratio favours DNRA. A high S2-/NO3- ratio also promotes DNRA in coastal-ecosystems and saline sediments. Soil pH, temperature, and fine soil particles are other factors known to influence DNRA. Since, DNRA reduces NO3- to NH4+, it is essential for protecting NO3- from leaching and gaseous (N2O) losses and enriches soils with readily available NH4+-N to primary producers and heterotrophic microorganisms. Therefore, DNRA may be treated as a tool to reduce ground-water NO3- pollution, enhance soil health and improve environmental quality.
Collapse
Affiliation(s)
- C B Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur 342003, Rajasthan, India.
| | - Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India.
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack 753006, Odisha, India
| | - K J Minick
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - A K Mishra
- International Rice Research Institute, New Delhi 110012, India
| | - J S Singh
- Ecosystem Analysis Lab, Centre of Advanced Study in Botany, Banaras Hindu University (BHU), Varanasi 221005, India
| |
Collapse
|
26
|
Biogenic Fe(II-III) Hydroxycarbonate Green Rust Enhances Nitrate Removal and Decreases Ammonium Selectivity during Heterotrophic Denitrification. MINERALS 2020. [DOI: 10.3390/min10090818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nitrification-denitrification is the most widely used nitrogen removal process in wastewater treatment. However, this process can lead to undesirable nitrite accumulation and subsequent ammonium production. Biogenic Fe(II-III) hydroxycarbonate green rust has recently emerged as a candidate to reduce nitrite without ammonium production under abiotic conditions. The present study investigated whether biogenic iron(II-III) hydroxycarbonate green rust could also reduce nitrite to gaseous nitrogen during bacterial nitrate reduction. Our results showed that biogenic iron(II-III) hydroxycarbonate green rust could efficiently decrease the selectivity of the reaction towards ammonium during heterotrophic nitrate reduction by native wastewater-denitrifying bacteria and by three different species of Shewanella: S. putrefaciens ATCC 12099, S. putrefaciens ATCC 8071 and S. oneidensis MR-1. Indeed, in the absence of biogenic hydroxycarbonate green rust, bacterial reduction of nitrate converted 11–42% of the initial nitrate into ammonium, but this value dropped to 1–28% in the presence of biogenic hydroxycarbonate green rust. Additionally, nitrite accumulation did not exceed the 2–13% in the presence of biogenic hydroxycarbonate green rust, versus 0–28% in its absence. Based on those results that enhance the extent of denitrification of about 60%, the study proposes a water treatment process that couples the bacterial nitrite production with the abiotic nitrite reduction by biogenic green rust.
Collapse
|
27
|
Carlson HK, Lui LM, Price MN, Kazakov AE, Carr AV, Kuehl JV, Owens TK, Nielsen T, Arkin AP, Deutschbauer AM. Selective carbon sources influence the end products of microbial nitrate respiration. THE ISME JOURNAL 2020; 14:2034-2045. [PMID: 32372050 PMCID: PMC7368043 DOI: 10.1038/s41396-020-0666-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
Respiratory and catabolic genes are differentially distributed across microbial genomes. Thus, specific carbon sources may favor different respiratory processes. We profiled the influence of 94 carbon sources on the end products of nitrate respiration in microbial enrichment cultures from diverse terrestrial environments. We found that some carbon sources consistently favor dissimilatory nitrate reduction to ammonium (DNRA/nitrate ammonification) while other carbon sources favor nitrite accumulation or denitrification. For an enrichment culture from aquatic sediment, we sequenced the genomes of the most abundant strains, matched these genomes to 16S rDNA exact sequence variants (ESVs), and used 16S rDNA amplicon sequencing to track the differential enrichment of functionally distinct ESVs on different carbon sources. We found that changes in the abundances of strains with different genetic potentials for nitrite accumulation, DNRA or denitrification were correlated with the nitrite or ammonium concentrations in the enrichment cultures recovered on different carbon sources. Specifically, we found that either L-sorbose or D-cellobiose enriched for a Klebsiella nitrite accumulator, other sugars enriched for an Escherichia nitrate ammonifier, and citrate or formate enriched for a Pseudomonas denitrifier and a Sulfurospirillum nitrate ammonifier. Our results add important nuance to the current paradigm that higher concentrations of carbon will always favor DNRA over denitrification or nitrite accumulation, and we propose that, in some cases, carbon composition can be as important as carbon concentration in determining nitrate respiratory end products. Furthermore, our approach can be extended to other environments and metabolisms to characterize how selective parameters influence microbial community composition, gene content, and function.
Collapse
Affiliation(s)
- Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex V Carr
- Institute for Systems Biology, University of Washington, Seattle, WA, 98109, USA
- Molecular Engineering Program, University of Washington, Seattle, WA, 98105, USA
| | - Jennifer V Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trenton K Owens
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
28
|
Zhang H, Li S, Ma B, Huang T, Qiu H, Zhao Z, Huang X, Liu K. Nitrate removal characteristics and 13C metabolic pathways of aerobic denitrifying bacterium Paracoccus denitrificans Z195. BIORESOURCE TECHNOLOGY 2020; 307:123230. [PMID: 32222687 DOI: 10.1016/j.biortech.2020.123230] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Strain Z195 was isolated and identified as Paracoccus denitrificans. Z195 exhibited efficient aerobic denitrification and carbon removal abilities, and removed 93.74% of total nitrogen (TN) and 97.81% of total organic carbon.71.88% of nitrogen was lost as gaseous products.13C-metabolic flux analysis revealed that 95% and 132% of the carbon fluxes entered the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle, respectively. Electrons produced by carbon metabolism markedly promoted the processes of nitrogen metabolism process and aerobic respiration. A response surface methodology model demonstrated that the optimal conditions for the maximum TN removal were a C/N ratio of 7.47, shaking speed of 108 rpm, temperature of 31 °C and initial pH of 8.02. Additionally, the average TN and chemical oxygen demand removal efficiencies of raw wastewater were 89% and 91%, respectively. The results give new insight for understanding metabolic flux analysis of aerobic denitrifying bacteria.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Sulin Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Qiu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenfang Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaiwen Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
29
|
Zhang X, Ward BB, Sigman DM. Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen Budgets and Dynamics. Chem Rev 2020; 120:5308-5351. [DOI: 10.1021/acs.chemrev.9b00613] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinning Zhang
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Bess B. Ward
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel M. Sigman
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
30
|
Wei H, Gao D, Liu Y, Lin X. Sediment nitrate reduction processes in response to environmental gradients along an urban river-estuary-sea continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137185. [PMID: 32092511 DOI: 10.1016/j.scitotenv.2020.137185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Sediment denitrification (DEN), anaerobic ammonium oxidation (Anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three important nitrate (NO3-) reduction pathways in aquatic ecosystems. These processes modify nitrogen (N) loadings from land to the ocean, with important implications on the management of coastal eutrophication. While NO3- reduction has been studied intensively for various types of habitats, studies on its distributions along river-estuary-sea continua remain scarce. In this study, we examined these three pathways along a N-laden urban river-estuary-sea continuum comprised of three types of habitats (urban river, estuary, and adjacent sea) in the densely populated Shanghai-East China Sea area. The potential DEN, Anammox, and DNRA rates decreased seaward both in summer and winter in response to decreasing sediment organic matter (OM, 20 to 7 to 7 mg C g-1), ferrous oxide (9 to 2.7 to 2.8 mg Fe g-1), and bottom water dissolved inorganic nitrogen (543 to 112 to 21 μM). Among these pathways, DEN remained a major component (~69.6%) across habitats, while Anammox (47.9%) rivaled DEN (48.3%) in the urban river in winter. N retention index (NIRI), the ratio between retained and removed NO3-, ranged from 0 to 0.5 and increased downstream. Together, these results suggest that the decreasing gradients of OM and inorganic matter shape the distribution of NO3- reduction along the continuum, reflecting the diminishing impact of the river and human inputs from the urban river to the ocean. Our results highlight the importance of taking a continuum perspective in N cycling studies and emphasize the role of urban rivers as N removal hotspots, which should be a focus of research and management.
Collapse
Affiliation(s)
- Hengchen Wei
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Dengzhou Gao
- School of Geographic Sciences, Key Laboratory of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Xianbiao Lin
- Laboratory of Microbial Ecology and Matter Cycles, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Geographic Sciences, Key Laboratory of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
31
|
Sebilo M, Aloisi G, Mayer B, Perrin E, Vaury V, Mothet A, Laverman AM. Controls on the Isotopic Composition of Nitrite (δ 15N and δ 18O) during Denitrification in Freshwater Sediments. Sci Rep 2019; 9:19206. [PMID: 31844081 PMCID: PMC6915737 DOI: 10.1038/s41598-019-54014-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
The microbial reduction of nitrate, via nitrite into gaseous di-nitrogen (denitrification) plays a major role in nitrogen removal from aquatic ecosystems. Natural abundance stable isotope measurements can reveal insights into the dynamics of production and consumption of nitrite during denitrification. In this study, batch experiments with environmental bacterial communities were used to investigate variations of concentrations and isotope compositions of both nitrite and nitrate under anoxic conditions. To this end, denitrification experiments were carried out with nitrite or nitrate as sole electron acceptors at two substrate levels respectively. For experiments with nitrate as substrate, where the intermediate compound nitrite is both substrate and product of denitrification, calculations of the extent of isotope fractionation were conducted using a non-steady state model capable of tracing chemical and isotope kinetics during denitrification. This study showed that nitrogen isotope fractionation was lower during the use of nitrite as substrate (ε = −4.2 and −4.5‰ for both treatments) as compared to experiments where nitrite was produced as an intermediate during nitrate reduction (ε = −10 and −15‰ for both treatments). This discrepancy might be due to isotopic fractionation within the membrane of denitrifiers. Moreover, our results confirmed previously observed rapid biotic oxygen isotope exchange between nitrite and water.
Collapse
Affiliation(s)
- Mathieu Sebilo
- Sorbonne Université, CNRS, IEES, F-75005, Paris, France. .,CNRS/UNIV PAU & PAYS ADOUR/E2S UPPA, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux (IPREM), UMR 5254, 64000, Pau, France.
| | - Giovanni Aloisi
- Université de Paris, Institut de physique du globe de Paris, CNRS, 1 Rue Jussieu, 75005, Paris, France
| | - Bernhard Mayer
- Applied Geochemistry Group, Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Emilie Perrin
- Sorbonne Université, CNRS, IEES, F-75005, Paris, France
| | | | | | - Anniet M Laverman
- Université de Rennes 1, CNRS, Ecobio, campus de Beaulieu, 263 avenue du Général Leclerc, 35042, Rennes Cédex, France
| |
Collapse
|
32
|
He C, Wei L, Lai F, Zhou C, Ni G, Hu J, Yin X. Immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal. RSC Adv 2019; 9:41351-41360. [PMID: 35540042 PMCID: PMC9076434 DOI: 10.1039/c9ra05525h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated. Three redox mediators (RMs), namely, 2-methyl-1,4-naphthoquinone (ME), anthraquinone (AQ) and 1-dichloroanthraquinone (1-AQ) were catalyzed to reduce nitrate to only nitrite by denitrification to integrate with the anammox process for nitrogen removal. First, our experimental results showed that there were 35.8, 42.2 and 53.0 mg-N L−1 nitrite accumulation values with the addition of ME, AQ and 1-AQ, respectively, at the dose of 75 µM by the denitrification process at C/N = 2, which were 25.6%, 48.2% and 86.1% higher than that of the control without the addition of any RMs. Nitrate reductase activities were higher than that of nitrite reductase affected by RMs, which was the main reason for nitrite accumulation and further maintenance of the anammox process. Second, owing to the stable nitrite production by the partial denitrifying biomass with the addition of 1-AQ, the nitrogen removal rate of the reactor that integrated the partial denitrification and anammox process reached 1788.36 g-N m−3 d−1 only using ammonia and nitrate as the influent nitrogen resource in the long-term operation. Third, the 16S rDNA sequencing results demonstrated that Yersinia frederiksenii and Thauera were the primary groups of the denitrifying biomass, which were considered the dominant partial denitrification species. In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated.![]()
Collapse
Affiliation(s)
- Chuan He
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Li'e Wei
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Faying Lai
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Chunhuo Zhou
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Guorong Ni
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China
| | - Jianmin Hu
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 PR China
| | - Xin Yin
- Nanchang Key Laboratory of Nutrition Management of Crops, Prevention and Controlling of Agricultural Non-point Source Pollution, College of Land Resource and Environment, Jiangxi Agricultural University Nanchang 330045 PR China .,Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 PR China
| |
Collapse
|
33
|
Margalef-Marti R, Carrey R, Viladés M, Jubany I, Vilanova E, Grau R, Soler A, Otero N. Use of nitrogen and oxygen isotopes of dissolved nitrate to trace field-scale induced denitrification efficiency throughout an in-situ groundwater remediation strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:709-718. [PMID: 31195279 DOI: 10.1016/j.scitotenv.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 06/09/2023]
Abstract
In the framework of the Life+ InSiTrate project, a pilot-plant was established to demonstrate the viability of inducing in-situ heterotrophic denitrification to remediate nitrate (NO3-)-polluted groundwater. Two injection wells supplied acetic acid by pulses to an alluvial aquifer for 22months. The monitoring was performed by regular sampling at three piezometers and two wells located downstream. In the present work, the pilot-plant monitoring samples were used to test the usefulness of the isotopic tools to evaluate the efficiency of the treatment. The laboratory microcosm experiments determined an isotopic fractionation (ε) for N-NO3- of -12.6‰ and for O-NO3- of -13.3‰. These ε15NNO3/N2 and ε18ONO3/N2 values were modelled by using a Rayleigh distillation equation to estimate the percentage of the induced denitrification at the pilot-plant while avoiding a possible interference from dilution due to non-polluted water inputs. In some of the field samples, the induced NO3- reduction was higher than 50% with respect to the background concentration. The field samples showed a reduced slope between δ18O-NO3- and δ15N-NO3- (0.7) compared to the laboratory experiments (1.1). This finding was attributed to the reoxidation of NO2- to NO3- during the treatment. The NO3- isotopic characterization also permitted the recognition of a mixture between the denitrified and partially or non-denitrified groundwater in one of the sampling points. Therefore, the isotopic tools demonstrated usefulness in assessing the implementation of the field-scale induced denitrification strategy.
Collapse
Affiliation(s)
- Rosanna Margalef-Marti
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Raúl Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Viladés
- Sustainability Department, Fundació CTM Centre Tecnològic, Spain
| | - Irene Jubany
- Sustainability Area, Eurecat, Centre Tecnològic de Catalunya, Spain
| | | | | | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Barcelona, Spain; Serra Húnter Fellow, Generalitat de Catalunya, Spain
| |
Collapse
|
34
|
Qin X, Li Y, Goldberg S, Wan Y, Fan M, Liao Y, Wang B, Gao Q, Li Y. Assessment of Indirect N 2O Emission Factors from Agricultural River Networks Based on Long-Term Study at High Temporal Resolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10781-10791. [PMID: 31438664 DOI: 10.1021/acs.est.9b03896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessment of indirect emission factors (EF5r) of nitrous oxide (N2O) from agricultural river networks remains challenging, and results are uncertain due to limited data availability. This study compared two methods of assessing EF5r using data from long-term observations at high temporal resolution in a typical agricultural catchment in subtropical central China. The concentration method (method 1) and the Intergovernmental Panel on Climate Change (IPCC) 2006 method (method 2) were employed to evaluate the emission factor. EF5r estimated using method 1 (i.e., EF5r1) was 0.00077 ± 0.00025 (0.00038-0.00097). EF5r calculated using method 2 (i.e., EF5r2) was lower than EF5r1, with a mean value of 0.00004 (0.000015-0.00012). Both EF5r1 and EF5r2 were significantly lower than the IPCC 2006 default value of 0.0025, suggesting that N2O emissions from China and world river networks may be grossly overestimated. A complex N2O production pathway and diffusion mechanism were responsible for the transfer of N2O from the sediment to river water and then to the atmosphere. These findings provide essential data for refining national greenhouse gas inventories and contribute evidence for downward revision of indirect emission factors adopted by the IPCC.
Collapse
Affiliation(s)
- Xiaobo Qin
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125 , China
| | - Stefanie Goldberg
- Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 6502021 , China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Meirong Fan
- Changsha Environmental Protection College , Changsha 410004 , China
| | - Yulin Liao
- Soils and Fertilizer Institute of Hunan Province , Changsha 410125 , China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yu'e Li
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| |
Collapse
|
35
|
Rahman MM, Roberts KL, Grace MR, Kessler AJ, Cook PLM. Role of organic carbon, nitrate and ferrous iron on the partitioning between denitrification and DNRA in constructed stormwater urban wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:608-617. [PMID: 30807951 DOI: 10.1016/j.scitotenv.2019.02.225] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) are two competing nitrate reduction pathways that remove or recycle nitrogen, respectively. However, factors controlling the partitioning between these two pathways are manifold and our understanding of these factors is critical for the management of N loads in constructed wetlands. An important factor that controls DNRA in an aquatic ecosystem is the electron donor, commonly organic carbon (OC) or alternatively ferrous iron and sulfide. In this study, we investigated the role of natural organic carbon (NOC) and acetate at different OC/NO3- ratios and ferrous iron on the partitioning between DNF and DNRA using the 15N-tracer method in slurries from four constructed stormwater urban wetlands in Melbourne, Australia. The carbon and nitrate experiments revealed that DNF dominated at all OC/NO3- ratios. The higher DNF and DNRA rates observed after the addition of NOC indicates that nitrate reduction was enhanced more by NOC than acetate. Moreover, addition of NOC in slurries stimulated DNRA more than DNF. Interestingly, slurries amended with Fe2+ showed that Fe2+ had significant control on the balance between DNF and DNRA. From two out of four wetlands, a significant increase in DNRA rates (p < .05) at the cost of DNF in the presence of available Fe2+ suggests DNRA is coupled to Fe2+ oxidation. Rates of DNRA increased 1.5-3.5 times in the Fe2+ treatment compared to the control. Overall, our study provides direct evidence that DNRA is linked to Fe2+ oxidation in some wetland sediments and highlights the role of Fe2+ in controlling the partitioning between removal (DNF) and recycling (DNRA) of bioavailable N in stormwater urban constructed wetlands. In our study we also measured anammox and found that it was always <0.05% of total nitrate reduction in these sediments.
Collapse
Affiliation(s)
- Md Moklesur Rahman
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Keryn L Roberts
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Michael R Grace
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Adam J Kessler
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| | - Perran L M Cook
- Water Studies Centre, School of Chemistry, Monash University, Clayton, Australia.
| |
Collapse
|
36
|
Narr CF, Singh H, Mayer P, Keeley A, Faulkner B, Beak D, Forshay KJ. Quantifying the effects of surface conveyance of treated wastewater effluent on groundwater, surface water, and nutrient dynamics in a large river floodplain. ECOLOGICAL ENGINEERING 2019; 129:123-133. [PMID: 32982067 PMCID: PMC7513880 DOI: 10.1016/j.ecoleng.2018.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Restoration and reconnection of floodplain systems provide multiple societal and ecosystem benefits, while providing municipalities the opportunity to attempt alternative approaches to maintain infrastructure protection and function. In some restored floodplains, treated wastewater effluent discharge is redirected over land instead of directly into rivers to allow natural flow and infiltration, to facilitate restoration designs such as levee setback, and to provide additional freshwater to floodplain ecosystems. However, indirect discharge of treated effluent over land may pose risks to surface and groundwater when pollutants like excess nutrients enter the floodplain and undergo transformation. We investigated the consequences for groundwater and surface water quality when effluent was redirected as open water channels over a floodplain surface. In this study, seasonal floodplain nutrient concentrations in groundwater and surface water were observed for more than 5 years as a floodplain and wastewater treatment plant underwent a major restoration project that included river-floodplain reconnection with levee setback and redirection of effluent discharge from a river channel to open flow across the restored floodplain. Nutrient loading to the surrounding floodplain groundwater and surface water was observed, but based on measures of hydrological connectivity, groundwater flow paths, and biogeochemistry, nutrients from the effluent moved within the floodplain with minimal effect to the surrounding floodplain water quality. We did not find evidence of substantial additional processing that could replace advanced nutrient treatment in this system, however we did observe evidence of diverse nutrient processes that may support enhanced retention if treatment channels were designed to enhance these processes. We suggest that indirect discharge of high quality treated effluent in a restored floodplain is a viable alternative to direct discharge into a river when groundwater flow directs that discharge to habitats where minimal nutrient sensitivity is expected.
Collapse
Affiliation(s)
- Charlotte F. Narr
- National Research Council, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| | - Harsh Singh
- Environmental Protection Agency, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| | - Paul Mayer
- Environmental Protection Agency, Western Ecology Division, Corvallis, OR, USA
| | - Ann Keeley
- Environmental Protection Agency, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| | - Bart Faulkner
- Environmental Protection Agency, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| | - Doug Beak
- Environmental Protection Agency, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| | - Kenneth J. Forshay
- Environmental Protection Agency, Robert S. Kerr Environmental Research Center, Ada, OK, USA
| |
Collapse
|
37
|
Zhu G, Wang S, Wang C, Zhou L, Zhao S, Li Y, Li F, Jetten MSM, Lu Y, Schwark L. Resuscitation of anammox bacteria after >10,000 years of dormancy. THE ISME JOURNAL 2019; 13:1098-1109. [PMID: 30504897 PMCID: PMC6461854 DOI: 10.1038/s41396-018-0316-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/03/2018] [Accepted: 11/17/2018] [Indexed: 11/09/2022]
Abstract
Water is essential for life on Earth, and an important medium for microbial energy and metabolism. Dormancy is a state of low metabolic activity upon unfavorable conditions. Many microorganisms can switch to a metabolically inactive state after water shortage, and recover once the environmental conditions become favorable again. Here, we resuscitated dormant anammox bacteria from dry terrestrial ecosystems after a resting period of >10 ka by addition of water without any other substrates. Isotopic-tracer analysis showed that water induced nitrate reduction yielding sufficient nitrite as substrate and energy for activating anammox bacteria. Subsequently, dissimilatory nitrate reduction to ammonium (DNRA) provided the substrate ammonium for anammox bacteria. The ammonium and nitrite formed were used to produce dinitrogen gas. High throughput sequencing and network analysis identified Brocadia as the dominant anammox species and a Jettenia species seemed to connect the other community members. Under global climate change, increasing precipitation and soil moisture may revive dormant anammox bacteria in arid soils and thereby impact global nitrogen and carbon cycles.
Collapse
Affiliation(s)
- Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liguang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyan Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixiao Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Sciences and Technology, Guangzhou, 510650, China
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Yonglong Lu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, D-24098, Kiel, Germany.
- WA-OIGC, Department of Chemistry, Curtin University, Perth, Australia.
| |
Collapse
|
38
|
Broman E, Li L, Fridlund J, Svensson F, Legrand C, Dopson M. Spring and Late Summer Phytoplankton Biomass Impact on the Coastal Sediment Microbial Community Structure. MICROBIAL ECOLOGY 2019; 77:288-303. [PMID: 30019110 PMCID: PMC6394492 DOI: 10.1007/s00248-018-1229-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Two annual Baltic Sea phytoplankton blooms occur in spring and summer. The bloom intensity is determined by nutrient concentrations in the water, while the period depends on weather conditions. During the course of the bloom, dead cells sink to the sediment where their degradation consumes oxygen to create hypoxic zones (< 2 mg/L dissolved oxygen). These zones prevent the establishment of benthic communities and may result in fish mortality. The aim of the study was to determine how the spring and autumn sediment chemistry and microbial community composition changed due to degradation of diatom or cyanobacterial biomass, respectively. Results from incubation of sediment cores showed some typical anaerobic microbial processes after biomass addition such as a decrease in NO2- + NO3- in the sediment surface (0-1 cm) and iron in the underlying layer (1-2 cm). In addition, an increase in NO2- + NO3- was observed in the overlying benthic water in all amended and control incubations. The combination of NO2- + NO3- diffusion plus nitrification could not account for this increase. Based on 16S rRNA gene sequences, the addition of cyanobacterial biomass during autumn caused a large increase in ferrous iron-oxidizing archaea while diatom biomass amendment during spring caused minor changes in the microbial community. Considering that OTUs sharing lineages with acidophilic microorganisms had a high relative abundance during autumn, it was suggested that specific niches developed in sediment microenvironments. These findings highlight the importance of nitrogen cycling and early microbial community changes in the sediment due to sinking phytoplankton before potential hypoxia occurs.
Collapse
Affiliation(s)
- Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden.
| | - Lingni Li
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Jimmy Fridlund
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Fredrik Svensson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39182, Kalmar, Sweden
| |
Collapse
|
39
|
Sato Y, Ishihara M, Fukuda K, Nakamura S, Murakami K, Fujita M, Yokoe H. Behavior of Nitrate-Nitrogen and Nitrite-Nitrogen in Drinking Water. Biocontrol Sci 2018; 23:139-143. [PMID: 30249964 DOI: 10.4265/bio.23.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nitrate-nitrogen (NO3-N) and nitrite-nitrogen (NO2-N) are constituents of the nitrogen cycle. NO3-N is toxic to humans, primarily due to its reduction to NO2-N. In Japan, NO3-N and NO2-N levels in tap water must not exceed 10 mg/L and only NO2-N alone not 0.04 mg/L, respectively. In this study, we verified the effect of microorganisms and ultraviolet (UV) to increase of NO2-N in water. First, all tested drinking-waters including tap water and commercial mineral water in PET bottles had < 2 mg/L NO3-N and undetectable levels (< 0.01 mg/L) of NO2-N. However, we found that NO2-N was generated in tap water left to stand at room temperature for several days, leading to increases in CF and TC counts and reduction of NO3-N. We also demonstrated that direct UV and sunlight irradiation of NO3-N-containing drinking water generated NO2-N in 1-2 h, with NO2-N reaching > 0.04 mg/mL by 4-6 h. On the other hand, NO3-N and NO2-N were undetectable in commercially purified water.
Collapse
Affiliation(s)
- Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College
| |
Collapse
|
40
|
Sabba F, Terada A, Wells G, Smets BF, Nerenberg R. Nitrous oxide emissions from biofilm processes for wastewater treatment. Appl Microbiol Biotechnol 2018; 102:9815-9829. [DOI: 10.1007/s00253-018-9332-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
|
41
|
Edwards TM, Hamlin HJ. Reproductive endocrinology of environmental nitrate. Gen Comp Endocrinol 2018; 265:31-40. [PMID: 29577898 DOI: 10.1016/j.ygcen.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Nitrate is a widespread contaminant of aquatic ecosystems and drinking water. It is also broadly active in organismal physiology, and as such, has the potential to both enhance and disrupt normal physiological function. In animals, nitrate is a proposed endocrine disrupter that is converted in vivo to nitrite and nitric oxide. Nitric oxide, in particular, is a potent cell signaling molecule that participates in diverse biological pathways and events. Here, we review in vivo nitrate cycling and downstream mechanistic physiology, with an emphasis on reproductive outcomes. However, in many cases, the research produces contradictory results, in part because there is good evidence that nitrate follows a non-monotonic dose-response curve. This conundrum highlights an array of opportunities for scientists from different fields to collaborate for a full understanding of nitrate physiology. Opposing conclusions are especially likely when in vivo/in vitro, long term/short term, high dose/low dose, or hypoxia/normoxia studies are compared. We conclude that in vivo studies are most appropriate for testing an organism's integrated endocrine response to nitrate. Based on the limited available studies, there is a generalized trend that shorter term studies (less than 1 month) or studies involving low doses (≤5 mg/L NO3-N) cause steroid hormone levels to decline. Studies that last more than a month and/or involve higher, but still environmentally relevant, exposures (>50-100 mg/L NO3-N) cause steroid hormone levels to increase. Very high nitrate doses (>500 mg/L NO3-N) are cytotoxic in many species. Hypoxia and acidity are likely to intensify the effects of nitrate. For study design, degree of study animal reproductive maturity or activity is important, with immature/reproductively quiescent animals responding to nitrate differently, compared with reproductively active animals. A detailed table of studies is presented.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN, USA.
| | | |
Collapse
|
42
|
Akbarzadeh Z, Laverman AM, Rezanezhad F, Raimonet M, Viollier E, Shafei B, Van Cappellen P. Benthic nitrite exchanges in the Seine River (France): An early diagenetic modeling analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:580-593. [PMID: 29454199 DOI: 10.1016/j.scitotenv.2018.01.319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Nitrite is a toxic intermediate compound in the nitrogen (N) cycle. Elevated concentrations of nitrite have been observed in the Seine River, raising questions about its sources and fate. Here, we assess the role of bottom sediments as potential sources or sinks of nitrite along the river continuum. Sediment cores were collected from two depocenters, one located upstream, the other downstream, from the largest wastewater treatment plant (WWTP) servicing the conurbation of Paris. Pore water profiles of oxygen, nitrate, nitrite and ammonium were measured. Ammonium, nitrate and nitrite fluxes across the sediment-water interface (SWI) were determined in separate core incubation experiments. The data were interpreted with a one-dimensional, multi-component reactive transport model, which accounts for the production and consumption of nitrite through nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA). In all core incubation experiments, nitrate uptake by the sediments was observed, indicative of high rates of denitrification. In contrast, for both sampling locations, the sediments in cores collected in August 2012 acted as sinks for nitrite, but those collected in October 2013 released nitrite to the overlying water. The model results suggest that the first step of nitrification generated most pore water nitrite at the two locations. While nitrification was also the main pathway consuming nitrite in the sediments upstream of the WWTP, anammox dominated nitrite removal at the downstream site. Sensitivity analyses indicated that the magnitude and direction of the benthic nitrite fluxes most strongly depend on bottom water oxygenation and the deposition flux of labile organic matter.
Collapse
Affiliation(s)
- Zahra Akbarzadeh
- Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Canada.
| | | | - Fereidoun Rezanezhad
- Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Canada
| | - Mélanie Raimonet
- UMR 7619 METIS, Université Pierre et Marie Curie, Paris 6, Sorbonne Universités, Paris, France
| | - Eric Viollier
- Laboratoire de Géochimie des Eaux, UMR 7154, Université Paris Diderot, Paris 7 and Institut de Physique du Globe (IPGP), Paris, France
| | - Babak Shafei
- AquaNRG Consulting Inc., Houston, TX, United States
| | - Philippe Van Cappellen
- Ecohydrology Research Group, Water Institute and Department of Earth and Environmental Sciences, University of Waterloo, Canada
| |
Collapse
|
43
|
Nikolenko O, Jurado A, Borges AV, Knӧller K, Brouyѐre S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1415-1432. [PMID: 29074237 DOI: 10.1016/j.scitotenv.2017.10.086] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 05/16/2023]
Abstract
This work reviews applications of stable isotope analysis to the studies of transport and transformation of N species in groundwater under agricultural areas. It summarizes evidence regarding factors affecting the isotopic composition of NO3-, NH4+ and N2O in subsurface, and discusses the use of 11B, 18O, 13C, 34S, 87Sr/86Sr isotopes to support the analysis of δ15N values. The isotopic composition of NO3-, NH4+ and N2O varies depending on their sources and dynamics of N cycle processes. The reported δ15N-NO3- values for sources of NO3- are: soil organic N - +3‰-+8‰, mineral fertilizers - -8‰-+7‰; manure/household waste - +5‰ to +35‰. For NH4+ sources, the isotopic signature ranges are: organic matter - +2.4-+4.1‰, rainwater - -13.4-+2.3‰, mineral fertilizers - -7.4-+5.1‰, household waste - +5-+9‰; animal manure - +8-+11‰. For N2O, isotopic composition depends on isotopic signatures of substrate pools and reaction rates. δ15N values of NO3- are influenced by fractionation effects occurring during denitrification (ɛ=5-40‰), nitrification (ɛ=5-35‰) and DNRA (ɛ not reported). The isotopic signature of NH4+ is also affected by nitrification and DNRA as well as mineralization (ɛ=1‰), sorption (ɛ=1-8‰), anammox (ɛ=4.3-7.4‰) and volatilization (ɛ=25‰). As for the N2O, production of N2O leads to its depletion in 15N, whereas consumption - to enrichment in 15N. The magnitude of fractionation effects occurring during the considered processes depends on temperature, pH, DO, C/NO3- ratio, size of the substrate pool, availability of electron donors, water content in subsoil, residence time, land use, hydrogeology. While previous studies have accumulated rich data on isotopic composition of NO3- in groundwater, evidence remains scarce in the cases of NH4+ and N2O. Further research is required to consider variability of δ15N-NH4+ and δ15N-N2O in groundwater across agricultural ecosystems.
Collapse
Affiliation(s)
- Olha Nikolenko
- University of Liѐge, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, -B52/3 Sart-Tilman, 4000 Liѐge, Belgium.
| | - Anna Jurado
- University of Liѐge, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, -B52/3 Sart-Tilman, 4000 Liѐge, Belgium
| | | | - Kay Knӧller
- Department of Catchment Hydrology, UFZ Helmholtz - Centre for Environmental Research, Germany
| | - Serge Brouyѐre
- University of Liѐge, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, -B52/3 Sart-Tilman, 4000 Liѐge, Belgium
| |
Collapse
|
44
|
Galir Balkić A, Ternjej I, Bogut I. Impact of habitat heterogeneity on zooplankton assembly in a temperate river-floodplain system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:143. [PMID: 29450746 DOI: 10.1007/s10661-018-6524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Dissimilar life features of Rotifera, Cladocera and Copepoda enable these organisms to respond differently to changes in the hydrological regime which influence alterations in environmental characteristics. We investigated the effect of habitat heterogeneity (e.g. eupotamal, parapotamal, palaeopotamal) on individual zooplankton group assemblages and biodiversity indices (α, β and γ diversity) during hydro regime change in floodplain waterbodies. Dissolved oxygen and organic nitrogen concentrations changed significantly among hydrological states while water depth was affected by both site and hydro regime replacement. Each studied site supported different zooplankton assemblage that highly depended on species-specific responses to hydro regime change. Also, individual zooplankton groups exhibited different correlations with specific environmental parameters regarding site change. Throughout the study, rotifers' local (α) and among-community (β) diversities were susceptible to the site and inundation change while the microcrustacean biodiversity pattern diverged. Copepods highly discriminated different habitat types and hydrological phases at the regional scale (γ diversity), while we found a complete lack of biodiversity dependence on both site and hydrology for Cladocera. Our results show that heterogeneous environments support the development of different zooplankton assemblages that express the within-group dissimilarities. They also point to the importance of identifying processes in hydrologically variable ecosystems that influence biodiversity patterns at an individual zooplankton group level. Our results suggest the use of appropriate zooplankton groups as biological markers in natural habitats and stress the importance of proper management in preserving biodiversity in floodplain areas.
Collapse
Affiliation(s)
- Anita Galir Balkić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8A, 31000, Osijek, Croatia.
| | - Ivančica Ternjej
- Faculty of Sciences, Department of Biology, Division of Zoology, University of Zagreb, Zagreb, Croatia
| | - Irella Bogut
- Faculty of Education, Department of Natural Sciences, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
45
|
Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS. Appl Environ Microbiol 2017; 83:AEM.00752-17. [PMID: 28455336 DOI: 10.1128/aem.00752-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/25/2017] [Indexed: 11/20/2022] Open
Abstract
Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic and depend on organic cosubstrates for growth. Encrustation of cells in Fe(III) minerals has been observed for mixotrophic NRFeOB but not for autotrophic phototrophic and microaerophilic Fe(II) oxidizers. So far, little is known about cell-mineral associations in the few existing autotrophic NRFeOB. Here, we investigate whether the designated autotrophic Fe(II)-oxidizing strain (closely related to Gallionella and Sideroxydans) or the heterotrophic nitrate reducers that are present in the autotrophic nitrate-reducing Fe(II)-oxidizing enrichment culture KS form mineral crusts during Fe(II) oxidation under autotrophic and mixotrophic conditions. In the mixed culture, we found no significant encrustation of any of the cells both during autotrophic oxidation of 8 to 10 mM Fe(II) coupled to nitrate reduction and during cultivation under mixotrophic conditions with 8 to 10 mM Fe(II), 5 mM acetate, and 4 mM nitrate, where higher numbers of heterotrophic nitrate reducers were present. Two pure cultures of heterotrophic nitrate reducers (Nocardioides and Rhodanobacter) isolated from culture KS were analyzed under mixotrophic growth conditions. We found green rust formation, no cell encrustation, and only a few mineral particles on some cell surfaces with 5 mM Fe(II) and some encrustation with 10 mM Fe(II). Our findings suggest that enzymatic, autotrophic Fe(II) oxidation coupled to nitrate reduction forms poorly crystalline Fe(III) oxyhydroxides and proceeds without cellular encrustation while indirect Fe(II) oxidation via heterotrophic nitrate-reduction-derived nitrite can lead to green rust as an intermediate mineral and significant cell encrustation. The extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible under environmental conditions in most habitats.IMPORTANCE Most described nitrate-reducing Fe(II)-oxidizing bacteria (NRFeOB) are mixotrophic (their growth depends on organic cosubstrates) and can become encrusted in Fe(III) minerals. Encrustation is expected to be harmful and poses a threat to cells if it also occurs under environmentally relevant conditions. Nitrite produced during heterotrophic denitrification reacts with Fe(II) abiotically and is probably the reason for encrustation in mixotrophic NRFeOB. Little is known about cell-mineral associations in autotrophic NRFeOB such as the enrichment culture KS. Here, we show that no encrustation occurs in culture KS under autotrophic and mixotrophic conditions while heterotrophic nitrate-reducing isolates from culture KS become encrusted. These findings support the hypothesis that encrustation in mixotrophic cultures is caused by the abiotic reaction of Fe(II) with nitrite and provide evidence that Fe(II) oxidation in culture KS is enzymatic. Furthermore, we show that the extent of encrustation caused by indirect Fe(II) oxidation by reactive nitrogen species depends on Fe(II) concentrations and is probably negligible in most environmental habitats.
Collapse
|
46
|
Raimonet M, Cazier T, Rocher V, Laverman AM. Nitrifying Kinetics and the Persistence of Nitrite in the Seine River, France. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:585-595. [PMID: 28724105 DOI: 10.2134/jeq2016.06.0242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although a higher oxidation rate for nitrite than for ammonia generally prevents nitrite accumulation in oxic waters, nitrite concentrations in the Seine River (1-31 μM) exceed European norms. We investigated the kinetics of in situ ammonia- and nitrite-oxidizing communities in river water and wastewater treatment plant (WWTP) effluents to determine the role of pelagic nitrification in the origin and persistence of nitrite downstream of Paris. The main source of nitrite is the major Parisian WWTP, and its persistence, up to tens of kilometers downstream of the plant, is explained by low ammonia and nitrite oxidation rates and high river flow. Furthermore, similar nitrite and ammonia oxidation rates preclude a rapid consumption of both preexisting nitrite and nitrite produced by ammonia oxidation. Maximum ammonia oxidation rates are two to three times higher downstream than upstream of the WWTP, indicating the input of ammonia oxidizers and ammonia from the WWTP. In both river water and WWTP effluents, nitrite oxidizers were unable to oxidize all available nitrite. In the human-impacted Seine River, this phenomenon might be due to mixotrophy. This study highlights the low resilience of the river to nitrite contamination as well as the importance of managing nitrite, nitrifiers, and organic matter concentrations in WWTP effluents to avoid nitrite persistence in rivers.
Collapse
|
47
|
Jurado A, Borges AV, Brouyère S. Dynamics and emissions of N 2O in groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:207-218. [PMID: 28152458 DOI: 10.1016/j.scitotenv.2017.01.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
This work reviews the concentrations, the dynamics and the emissions of nitrous oxide (N2O) in groundwater. N2O is an important greenhouse gas (GHG) and the primary stratospheric ozone depleting substance. The major anthropogenic source that contributes to N2O generation in aquifers is agriculture because the use of fertilizers has led to the widespread groundwater contamination by inorganic nitrogen (N) (mainly nitrate, NO3-). Once in the aquifer, this inorganic N is transported and affected by several geochemical processes that produce and consume N2O. An inventory of dissolved N2O concentrations is presented and the highest concentration is about 18.000 times higher than air-equilibrated water (up to 4004μg N L-1). The accumulation of N2O in groundwater is mainly due to denitrification and to lesser extent to nitrification. Their occurrence depend on the geochemical (e.g., NO3-, dissolved oxygen, ammonium and dissolved organic carbon) as well as hydrogeological parameters (e.g., groundwater table fluctuations and aquifer permeability). The coupled understanding of both parameters is necessary to gain insight on the dynamics and the emissions of N2O in groundwater. Overall, groundwater indirect N2O emissions seem to be a minor component of N2O emissions to the atmosphere. Further research might be devoted to evaluate the groundwater contribution to the indirect emissions of N2O because this will help to better constraint the N2O global budget and, consequently, the N budget.
Collapse
Affiliation(s)
- Anna Jurado
- University of Liège, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, B52/3 Sart-Tilman, 4000 Liège, Belgium.
| | | | - Serge Brouyère
- University of Liège, ArGEnCo, Hydrogeology and Environmental Geology, Aquapôle, B52/3 Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
48
|
Jahangir MMR, Fenton O, Müller C, Harrington R, Johnston P, Richards KG. In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland. WATER RESEARCH 2017; 111:254-264. [PMID: 28088722 DOI: 10.1016/j.watres.2017.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Evaluation of the environmental benefits of constructed wetlands (CWs) requires an understanding of their impacts on the groundwater quality under the wetlands. Empirical mass-balance (nitrogen in/nitrogen out) approaches for estimating nitrogen (N) removal in CWs do not characterise the final fate of N; where nitrate (NO3--N) could be reduced to either ammonium (NH4+-N) or N2 with the potential for significant production of N2O. Herein, in situ denitrification and DNRA (dissimilatory nitrate reduction to ammonium) rates were measured in groundwater beneath cells of an earthen lined integrated constructed wetland (ICW, used to remove the nutrients from municipal wastewater) using the 15N-enriched NO3--N push-pull method. Experiments were conducted utilising replicated (n = 3) shallow (1 m depth) and deep (4 m depth) piezometers installed along two control planes. These control planes allowed for the assessment of groundwater underlying high (Cell 2, septic tank waste) and low (Cell 3) load cells of the ICW. Background piezometers were also installed off-site. Results showed that denitrification (N2O-N + N2-N) and DNRA were major NO3--N consumption processes accounting together for 54-79% of the total biochemical consumption of the applied NO3--N. Of which 14-16% and 40-63% were consumed by denitrification and DNRA, respectively. Both processes differed significantly across ICW cells indicating that N transformation depends on nutrient loading rates and were significantly higher in shallow compared to the deep groundwater. In such a reduced environment (low dissolved oxygen and low redox potential), higher DNRA over the denitrification rate can be attributed to the high C concentration and high TC/NO3--N ratio. Low pH (6.5-7.1) in this system might have limited denitrification to some extent to an incomplete state, evidenced by a high N2O-N/(N2O-N+N2-N) ratio (0.35 ± 0.17, SE). A relatively higher N2O-N/(N2O-N+N2-N) ratio and higher DNRA rate over denitrification, suggest that the end products of N transformations are reactive. This N2O can be consumed to N2 and/or emitted to the atmosphere. The DNRA rate and accumulation of NH4+-N indicated that the ICW created a suitable groundwater biogeochemical environment that enhanced NO3--N reduction to NH4+-N. This study showed that CWs significantly influence NO3--N attenuation to reactive forms of N in the groundwater beneath them and that solely focusing on within wetland NO3--N attenuation can underestimate the environmental benefits of wetlands.
Collapse
Affiliation(s)
- M M R Jahangir
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland; Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland; Department of Soil Science, Bangladesh Agricultural University, Mymenisngh, 2202, Bangladesh.
| | - O Fenton
- Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - C Müller
- School of Biology and Environmental Science, University College Dublin, Belfield, Ireland; Department of Plant Ecology (IFZ), Justus-Liebig University Giessen, Germany
| | | | - P Johnston
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Ireland
| | - K G Richards
- Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland
| |
Collapse
|
49
|
Kim H, Bae HS, Reddy KR, Ogram A. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. WATER RESEARCH 2016; 106:51-61. [PMID: 27697684 DOI: 10.1016/j.watres.2016.09.048] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
River tributaries are ecologically important environments that function as sinks of inorganic nitrogen. To gain greater insight into the nitrogen cycle (N-cycle) in these environments, the distributions and activities of microbial populations involved in the N-cycle were studied in riparian and stream sediments of the Santa Fe River (SFR) tributaries located in northern Florida, USA. Riparian sediments were characterized by much higher organic matter content, and extracellular enzyme activities, including cellobiohydrolase, β-d-glucosidase, and phenol oxidase than stream sediments. Compared with stream sediments, riparian sediments exhibited significantly higher activities of nitrification, denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation; correspondingly, with higher copies of amoA (a biomarker for enumerating nitrifiers), nirS and nirK (for denitrifiers), and nrfA (for DNRA bacteria). Among N-cycle processes, denitrification showed the highest activities and the highest concentrations of the corresponding gene (nirK and nirS) copy numbers. In riparian sediments, substantial nitrification activities (6.3 mg-N kg soil-1d-1 average) and numbers of amoA copies (7.3 × 107 copies g soil-1 average) were observed, and nitrification rates correlate with denitrification rates. The guild structures of denitrifiers and nitrifiers in riparian sediments differed significantly from those found in stream sediments, as revealed by analysis of nirS and archaeal amoA sequences. This study shows that riparian sediments serve as sinks for inorganic nitrogen loads from non-point sources of agricultural runoff, with nitrification and denitrification associated with elevated levels of carbon and nitrogen contents and extracellular enzyme activities.
Collapse
Affiliation(s)
- Haryun Kim
- Department of Soil and Water Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Hee-Sung Bae
- Department of Soil and Water Sciences, University of Florida, Gainesville, 32611 FL, USA.
| | - K Ramesh Reddy
- Department of Soil and Water Sciences, University of Florida, Gainesville, 32611 FL, USA
| | - Andrew Ogram
- Department of Soil and Water Sciences, University of Florida, Gainesville, 32611 FL, USA
| |
Collapse
|
50
|
van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht MCM. DNRA and Denitrification Coexist over a Broad Range of Acetate/N-NO 3- Ratios, in a Chemostat Enrichment Culture. Front Microbiol 2016; 7:1842. [PMID: 27933040 PMCID: PMC5121219 DOI: 10.3389/fmicb.2016.01842] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) compete for nitrate in natural and engineered environments. A known important factor in this microbial competition is the ratio of available electron donor and elector acceptor, here expressed as Ac/N ratio (acetate/nitrate-nitrogen). We studied the impact of the Ac/N ratio on the nitrate reduction pathways in chemostat enrichment cultures, grown on acetate mineral medium. Stepwise, conditions were changed from nitrate limitation to nitrate excess in the system by applying a variable Ac/N ratio in the feed. We observed a clear correlation between Ac/N ratio and DNRA activity and the DNRA population in our reactor. The DNRA bacteria dominated under nitrate limiting conditions in the reactor and were outcompeted by denitrifiers under limitation of acetate. Interestingly, in a broad range of Ac/N ratios a dual limitation of acetate and nitrate occurred with co-occurrence of DNRA bacteria and denitrifiers. To explain these observations, the system was described using a kinetic model. The model illustrates that the Ac/N effect and concomitant broad dual limitation range related to the difference in stoichiometry between both processes, as well as the differences in electron donor and acceptor affinities. Population analysis showed that the presumed DRNA-performing bacteria were the same under nitrate limitation and under dual limiting conditions, whereas the presumed denitrifying population changed under single and dual limitation conditions.
Collapse
Affiliation(s)
- Eveline M van den Berg
- Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology Delft, Netherlands
| | - Marissa Boleij
- Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology Delft, Netherlands
| | - J Gijs Kuenen
- Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology Delft, Netherlands
| | - Robbert Kleerebezem
- Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology Delft, Netherlands
| | - Mark C M van Loosdrecht
- Environmental Biotechnology Group, Department of Biotechnology, Delft University of Technology Delft, Netherlands
| |
Collapse
|