1
|
Roig Molina FJ, Amaro González C, Alcaine Otín A, Carro Fernández J. Vibrio vulnificus mutation rate: an in vitro approach. Front Microbiol 2023; 14:1223293. [PMID: 37621400 PMCID: PMC10445137 DOI: 10.3389/fmicb.2023.1223293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Vibrio vulnificus is a multi-host pathogenic species currently subdivided into five phylogenetic lineages (L) plus one pathovar with the ability to infect fish due to a transmissible virulence plasmid. This plasmid (or a fragment of it) has been transmitted between lineages within the species, contributing to the evolution of V. vulnificus. This study aimed to provide an experimental approximation to the V. vulnificus mutation rate by determining spontaneous mutation rates from bacterial cultures of representants of the different lineages by whole-genome sequencing. To this purpose, synonymous SNP differences, i.e., spontaneous mutation not subjected to the evolutive forces, between initial and final culture after serial growth were evaluated and used for mutation rate calculation.
Collapse
Affiliation(s)
- Francisco Jose Roig Molina
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Carmen Amaro González
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain
| | - Alejandro Alcaine Otín
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Jesús Carro Fernández
- Computing for Medical and Biological Applications Group, Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| |
Collapse
|
2
|
Conrad JW, Harwood VJ. Sewage Promotes Vibrio vulnificus Growth and Alters Gene Transcription in Vibrio vulnificus CMCP6. Microbiol Spectr 2022; 10:e0191321. [PMID: 35171011 PMCID: PMC8849060 DOI: 10.1128/spectrum.01913-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a naturally occurring, potentially lethal pathogen found in coastal waters, fish, and shellfish. Sewage spills in coastal waters occur when infrastructure fails due to severe storms or age, and may affect bacterial populations by altering nutrient levels. This study investigated effects of sewage on clonal and natural V. vulnificus populations in microcosms. Addition of 1% sewage to estuarine water caused the density of a pure culture of V. vulnificus CMCP6 and a natural V. vulnificus population to increase significantly, by two to three orders of magnitude, whether measured by quantitative PCR (qPCR) or culture and in batch and continuous cultures. Changes in the transcription of six virulence- and survival-associated genes in response to sewage were assessed using continuous culture. Exposure to sewage affected transcription of genes that may be associated with virulence, i.e., it modulated the oxidative stress response by altering superoxide dismutase transcription, significantly increasing sodB transcription while repressing sodA. Sewage also repressed transcription of nptA, which encodes a sodium-phosphate cotransporter. Sewage had no effect on sodC transcription or the putative virulence-associated genes hupA or wza. The effects of environmentally relevant levels of sewage on V. vulnificus populations and gene transcription suggest that sewage spills that impact warm coastal waters could lead to an increased risk of V. vulnificus infections. IMPORTANCE Vibrio vulnificus infections have profound impacts such as limb amputation and death for individuals with predisposing conditions. The warming climate is contributing to rising V. vulnificus prevalence in waters that were previously too cold to support high levels of the pathogen. Climate change is also expected to increase precipitation in many regions, which puts more pressure on wastewater infrastructure and will result in more frequent sewage spills. The finding that 1% wastewater in estuarine water leads to 100 to over 1,000-fold greater V. vulnificus concentrations suggests that human exposure to oysters and estuarine water could have greater health impacts in the future. Further, wastewater had a significant effect on gene transcription and has the potential to affect virulence during the initial environment-to-host transition.
Collapse
Affiliation(s)
- James W. Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Lin IC, Hussain B, Hsu BM, Chen JS, Hsu YL, Chiu YC, Huang SW, Wang JL. Prevalence, Genetic Diversity, Antimicrobial Resistance, and Toxigenic Profile of Vibrio vulnificus Isolated from Aquatic Environments in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10050505. [PMID: 33946739 PMCID: PMC8147101 DOI: 10.3390/antibiotics10050505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a gram-negative, opportunistic human pathogen associated with life-threatening wound infections and is commonly found in warm coastal marine water environments, globally. In this study, two fishing harbors and three tributaries of the river basin were analyzed for the prevalence of V. vulnificus in the water bodies and shellfish that are under the pressure of external pollutions. The average detection rate of V. vulnificus in the river basins and fishing harbors was 8.3% and 4.2%, respectively, in all seasons. A total of nine strains of V. vulnificus were isolated in pure cultures from 160 samples belonging to river basins and fishing harbors to analyze the antibiotic susceptibility, virulence gene profiles, and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) fingerprinting. All isolates were susceptible to 10 tested antibiotics. The genotypic characterization revealed that 11.1% (n = 1/9) strain was nonvirulent, whereas 88.9% (n = 8/9) isolates were virulent strains, which possessed the four most prevalent toxin genes such as vcgC (88.9%), 16S B (88.9%), vvhA (88.9%), and manIIA (88.9%), followed by nanA (77.8%), CPS1 (66.7), and PRXII (44.4%). Additionally, ERIC-PCR fingerprinting grouped these nine isolates into two main clusters, among which the river basin isolates showed genetically diverse profiles, suggesting multiple sources of V. vulnificus. Ultimately, this study highlighted the virulent strains of V. vulnificus in the coastal aquatic environments of Taiwan, harboring a potential risk of infection to human health through water-borne transmission.
Collapse
Affiliation(s)
- I-Ching Lin
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Changhua City 500, Taiwan;
- Department of Family Medicine, Asia University Hospital, Taichung City 413, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan;
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi 621, Taiwan
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung City 824, Taiwan;
| | - Yu-Ling Hsu
- Department of Nuclear Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
| | - Yi-Chou Chiu
- General Surgery, Surgical Department, Cheng Hsin General Hospital, Taipei 112, Taiwan;
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant Research, Cheng Shiu University, Kaohsiung City 833, Taiwan;
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung City 833, Taiwan
| | - Jiun-Ling Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| |
Collapse
|
4
|
Gibello A, Vela AI, Martínez-Nevado E, Rodriguez-Bertos A, Casamayor A, García J, Domínguez L, Montoto P, Fernández-Garayzábal JF, Amaro C. Potentially human-virulent Vibrio vulnificus isolates from diseased great pompano (Trachinotus goodei). Transbound Emerg Dis 2019; 66:1765-1770. [PMID: 30927558 DOI: 10.1111/tbed.13190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
Vibrio vulnificus is an opportunistic human pathogen responsible for the majority of seafood-associated deaths worldwide and is also a relevant fish pathogen for the aquaculture industry. In addition to infections in aquatic livestock, V. vulnificus also represents a risk to aquarium animals. For the first time, this work describes an important mortality outbreak in Trachinotus goodei in a zoo aquarium, with the isolation of Vibrio vulnificus (Vv) from the internal organs of the diseased fish. The isolates were identified by MALDI-TOF MS, serotyped and characterized by pulsed-field gel electrophoresis (PFGE). Although the isolates from great pompanos did not belong to pathovar piscis (formerly biotype 2) or to any of the fish-related serovars, they all had identical phenotypes, antimicrobial susceptibility profiles and PFGE patterns, which together with their isolation in pure culture from internal organs is strongly indicative of their clinical significance. Moreover, Vv isolates harboured important genetic markers of human virulence potential: they had the clinical variant of the vcg gene, gave the 338 bp DNA amplification product of the pilF gene and resisted the bactericidal activity of human serum. All these results strongly suggest that these Vv isolates should be considered potentially virulent for humans. These results extend the range of fish species affected by V. vulnificus, confirm the threat that this pathogen represents to aquatic animals and highlight the risk that this bacterial pathogen poses to human health.
Collapse
Affiliation(s)
- Alicia Gibello
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Ana Isabel Vela
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | | | - Antonio Rodriguez-Bertos
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain.,Department of Animal Medicine and Surgery, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Almudena Casamayor
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Javier García
- Zoo Aquarium de Madrid, c/ Casa de Campo s/n, Madrid, Spain
| | - Lucas Domínguez
- Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Pablo Montoto
- Zoo Aquarium de Madrid, c/ Casa de Campo s/n, Madrid, Spain
| | - Jose Francisco Fernández-Garayzábal
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain.,Animal Health Surveillance Center (VISAVET), Complutense University, Madrid, Spain
| | - Carmen Amaro
- ERI BioTecMed, University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Le H, LiHua D, JianJun F, Peng L, SongLin G. Immunogenicity study of an expressed outer membrane protein U of Vibrio vulnificus in Japanese eel (Anguilla japonica). J Appl Microbiol 2018; 125:1642-1654. [PMID: 30106200 DOI: 10.1111/jam.14068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
AIMS Vibrio vulnificus is a common bacterial pathogen causing haemorrhagic septicaemia in eel farming. This study investigates the immunogenicity of an outer membrane protein U (OmpU) of V. vulnificus and the feasibility of the protein as a new subunit vaccine against V. vulnificus. METHODS AND RESULTS Partial gene sequence of the OmpU of V. vulnificus was cloned, and then the OmpU was expressed and purified. Three groups of Japanese eels (Anguilla japonica) were intraperitoneally (i.p) injected with bovine serum albumin (BSA group), formalin-killed whole cell of V. vulnificus (FKC group) or the expressed OmpU of V. vulnificus (OMP group). On 14, 21, 28 and 42 days postimmunization (dpi), the whole blood cells were collected to evaluate the stimulation index (SI) and bactericidal activity. The serum was obtained to assess the titres of specific antibody, lysozyme activity, complement activity and bactericidal activity. The lysozyme activities in the suspension of kidney, skin mucus and liver in eels were also ascertained. The results showed that the SI and the titres of anti-V. vulnificus antibody in the OMP group was significantly increased on 28 dpi; lysozyme activity in the kidney and skin mucus of OMP group on 42 and 14 dpi were both significantly higher than BSA group; eels in OMP group showed strong bactericidal capacity on 21 and 28 days; and the relative percent survival of OMP vs BSA group after challenged by V. vulnificus on 28 dpi was 80%. CONCLUSIONS These results showed that the expressed OmpU of V. vulnificus could significantly improve the immune function of Japanese eel and the resistance of eels to the infection of V. vulnificus. SIGNIFICANCE AND IMPACT OF THE STUDY This study offered an alternative preliminary strategy of making aquaculture vaccines against V. vulnificus for eel farming.
Collapse
Affiliation(s)
- H Le
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - D LiHua
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - F JianJun
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - L Peng
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| | - G SongLin
- Fishery College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education, Xiamen, China
| |
Collapse
|
6
|
Roig FJ, González-Candelas F, Sanjuán E, Fouz B, Feil EJ, Llorens C, Baker-Austin C, Oliver JD, Danin-Poleg Y, Gibas CJ, Kashi Y, Gulig PA, Morrison SS, Amaro C. Phylogeny of Vibrio vulnificus from the Analysis of the Core-Genome: Implications for Intra-Species Taxonomy. Front Microbiol 2018; 8:2613. [PMID: 29358930 PMCID: PMC5765525 DOI: 10.3389/fmicb.2017.02613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus (Vv) is a multi-host pathogenic species currently subdivided into three biotypes (Bts). The three Bts are human-pathogens, but only Bt2 is also a fish-pathogen, an ability that is conferred by a transferable virulence-plasmid (pVvbt2). Here we present a phylogenomic analysis from the core genome of 80 Vv strains belonging to the three Bts recovered from a wide range of geographical and ecological sources. We have identified five well-supported phylogenetic groups or lineages (L). L1 comprises a mixture of clinical and environmental Bt1 strains, most of them involved in human clinical cases related to raw seafood ingestion. L2 is formed by a mixture of Bt1 and Bt2 strains from various sources, including diseased fish, and is related to the aquaculture industry. L3 is also linked to the aquaculture industry and includes Bt3 strains exclusively, mostly related to wound infections or secondary septicemia after farmed-fish handling. Lastly, L4 and L5 include a few strains of Bt1 associated with specific geographical areas. The phylogenetic trees for ChrI and II are not congruent to one another, which suggests that inter- and/or intra-chromosomal rearrangements have been produced along Vv evolution. Further, the phylogenetic trees for each chromosome and the virulence plasmid were also not congruent, which also suggests that pVvbt2 has been acquired independently by different clones, probably in fish farms. From all these clones, the one with zoonotic capabilities (Bt2-Serovar E) has successfully spread worldwide. Based on these results, we propose a new updated classification of the species based on phylogenetic lineages rather than on Bts, as well as the inclusion of all Bt2 strains in a pathovar with the particular ability to cause fish vibriosis, for which we suggest the name "piscis."
Collapse
Affiliation(s)
- Francisco J Roig
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain.,Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Joint Research Unit on Infection and Public Health FISABIO-Salud Pública and Universitat de Valencia-I2SysBio, Valencia, Spain.,CIBEResp, National Network Center for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Valencia, Spain
| | - Eva Sanjuán
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Belén Fouz
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de Valencia, Valencia, Spain
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, United Kingdom
| | - James D Oliver
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States.,Duke University Marine Lab, Beaufort, NC, United States
| | - Yael Danin-Poleg
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Cynthia J Gibas
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Yechezkel Kashi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States
| | - Shatavia S Morrison
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina BIOTECMED, University of Valencia, Valencia, Spain.,Departmento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
7
|
Elmahdi S, DaSilva LV, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol 2016; 57:128-34. [DOI: 10.1016/j.fm.2016.02.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
|
8
|
Cruz C, Chycka M, Hedderley D, Fletcher G. Prevalence, characteristics and ecology of Vibrio vulnificus
found in New Zealand shellfish. J Appl Microbiol 2016; 120:1100-7. [DOI: 10.1111/jam.13064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 11/27/2022]
Affiliation(s)
- C.D. Cruz
- The New Zealand Institute for Plant & Food Research Limited; Auckland New Zealand
| | - M. Chycka
- The New Zealand Institute for Plant & Food Research Limited; Auckland New Zealand
| | - D. Hedderley
- The New Zealand Institute for Plant & Food Research Limited; Palmerston North New Zealand
| | - G.C. Fletcher
- The New Zealand Institute for Plant & Food Research Limited; Auckland New Zealand
| |
Collapse
|
9
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
10
|
The Fish Pathogen
Vibrio vulnificus
Biotype 2: Epidemiology, Phylogeny, and Virulence Factors Involved in Warm-Water Vibriosis. Microbiol Spectr 2015; 3. [DOI: 10.1128/microbiolspec.ve-0005-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Vibrio vulnificus
biotype 2 is the etiological agent of warm-water vibriosis, a disease that affects eels and other teleosts, especially in fish farms. Biotype 2 is polyphyletic and probably emerged from aquatic bacteria by acquisition of a transferable virulence plasmid that encodes resistance to innate immunity of eels and other teleosts. Interestingly, biotype 2 comprises a zoonotic clonal complex designated as serovar E that has extended worldwide. One of the most interesting virulence factors produced by serovar E is RtxA1
3
, a multifunctional protein that acts as a lethal factor for fish, an invasion factor for mice, and a survival factor outside the host. Two practically identical copies of
rtxA1
3
are present in all biotype 2 strains regardless of the serovar, one in the virulence plasmid and the other in chromosome II. The plasmid also contains other genes involved in survival and growth in eel blood:
vep07
, a gene for an outer membrane (OM) lipoprotein involved in resistance to eel serum and
vep20
, a gene for an OM receptor specific for eel-transferrin and, probably, other related fish transferrins. All the three genes are highly conserved within biotype 2, which suggests that they are under a strong selective pressure. Interestingly, the three genes are related with transferable plasmids, which emphasizes the role of horizontal gene transfer in the evolution of
V. vulnificus
in nutrient-enriched aquatic environments, such as fish farms.
Collapse
|
11
|
Yokochi N, Tanaka S, Matsumoto K, Oishi H, Tashiro Y, Yoshikane Y, Nakashima M, Kanda K, Kobayashi G. Distribution of virulence markers among Vibrio vulnificus isolates of clinical and environmental origin and regional characteristics in Japan. PLoS One 2013; 8:e55219. [PMID: 23383115 PMCID: PMC3559389 DOI: 10.1371/journal.pone.0055219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/20/2012] [Indexed: 12/20/2022] Open
Abstract
Background Vibrio vulnificus is an opportunistic human pathogen that is widely distributed in estuarine environments and is capable of causing necrotizing fasciitis and sepsis. In Japan, based on epidemiological research, the incidences of V. vulnificus were concentrated in Kyusyu, mainly in coastal areas of the Ariake Sea. To examine the virulence potential, various genotyping methods have recently been developed. This study aimed to investigate the distribution of virulence markers among V. vulnificus isolates of clinical and environmental origin in three coastal areas with different infection incidences and to determine whether these isolates have the siderophore encoding gene viuB. Methodology/Principal Findings We examined the distribution of genotypes of the 16S ribosomal ribonucleic acid (rRNA) gene, vvhA, vcg, and capsular polysaccharide (CPS), and the presence of viuB in 156 isolates collected from patients and environmental samples in Japan. The environmental samples were collected from three coastal areas: the Ariake Sea, Ise & Mikawa Bay, and Karatsu Bay. The results showed disparity in the ratios of genotypes depending on the sample origins. V. vulnificus isolates obtained from patients were classified into the clinical type for all genotypes. In the environmental isolates, the ratios of the clinical type for genotypes of the 16S rRNA gene, vvhA, and vcg were in the order of the Ariake Sea>Ise & Mikawa Bay>Karatsu Bay. Meanwhile, CPS analysis showed no significant difference. Most isolates possessed viuB. Conclusions Many V. vulnificus belonging to the clinical type existed in the Ariake Sea. Three coastal areas with different infection incidences showed distinct ratios of genotypes. This may indicate that the distribution of clinical isolates correlates with the incidence of V. vulnificus infection.
Collapse
Affiliation(s)
- Nana Yokochi
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Shigemitsu Tanaka
- Biomaterials and Commodity Chemicals Research Division, Osaka Municipal Technical Research Institute, Osaka, Japan
| | - Kouichi Matsumoto
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirotaka Oishi
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yukihiro Tashiro
- Institute of Advanced Study, Kyusyu University, Higashi-ku, Fukuoka, Japan
| | - Yu Yoshikane
- Tosa Food Business Creator Project Team, Kochi University, Nankoku, Kochi, Japan
| | - Mikio Nakashima
- Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kohzo Kanda
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Genta Kobayashi
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
- * E-mail:
| |
Collapse
|
12
|
Zhang R, Pan L, Zhao Z, Gu JD. High incidence of plasmids in marine Vibrio species isolated from Mai Po Nature Reserve of Hong Kong. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1661-1668. [PMID: 22684730 PMCID: PMC3399079 DOI: 10.1007/s10646-012-0939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Mai Po Nature Reserve is the largest mangrove ecosystem and the most polluted coastal water body in Hong Kong. Plasmids screening of 100 Vibrio isolates randomly showed 45 % of them contained 1-3 plasmids. These plasmid(s)-bearing isolates could be divided into 12 groups based on their plasmid profiles. Phylogenetic analysis of the partial 16S rRNA gene sequences confirmed that all plasmid(s)-bearing isolates belonged to Vibrio cholerae. Full DNA sequences of the plasmids in Groups I (pVCG1.1 and pVCG1.2), II (pVCG2.1), III (pVCG3.2) and IV (pVCG4.1) have been determined and the results showed that pVCG1.1, pVCG2.1 and pVCG3.2 were almost identical. Plasmids pVCG1.1, pVCG1.2 and pVCG4.1 are comprised of 4,439, 2,357 and 2,163 bp with the overall G+C content of 45.57, 53.54 and 43.09 %, respectively. pVCG1.1 is a novel plasmid, and plasmids pVCG1.2 and pVCG4.1 showed homology of replication initiation proteins to that of the theta type replicons. Attempts to cure the plasmids from their hosts were unsuccessful. These data suggest that plasmids of Vibrio spp. are a significant gene reservoir in the marine ecosystem.
Collapse
Affiliation(s)
- Ruifu Zhang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Jiangsu Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Li Pan
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
| | - Zhenye Zhao
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- Shenzhen-Hong Kong Institution of Industry, Education, Research Environment Engineering Technique Co., Ltd, Shenzhen, Guangdong China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, People’s Republic of China
- The Swire Institute of Marine Science, The University of Hong Kong, Shek O, Cape d’Aguilar, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
13
|
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl Environ Microbiol 2012; 78:3407-15. [PMID: 22344665 DOI: 10.1128/aem.07395-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Collapse
|
14
|
Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup. Int J Food Microbiol 2011; 153:436-43. [PMID: 22227412 DOI: 10.1016/j.ijfoodmicro.2011.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/01/2011] [Accepted: 12/07/2011] [Indexed: 11/21/2022]
Abstract
The biotype 3 group of the human pathogen Vibrio vulnificus emerged in Israel probably as a result of genome hybridization of two bacterial populations. We performed a genomic and phylogenetic study of V. vulnificus strains isolated from the environmental niche from which this group emerged - fish aquaculture in Israel. The genetic relationships and evolutionary aspects of 188 environmental and clinical isolates of the bacterium were studied by genomic typing. Genetic relations were determined based on variation at 12 variable number tandem repeat (VNTR, also termed SSR) loci. Analysis revealed a new cluster, in addition to the main groups of biotype 1& 2 and biotype 3. Similar grouping results were obtained with three different statistical approaches. Isolates forming this new cluster presented unclear biochemical profile nevertheless were not identified as biotype 1 or biotype 3. Further examination of representative strains by multilocus sequence typing (MLST) of 10 housekeeping genes and 5 conserved hypothetical genes supported the identification of this as yet undiscovered phylogroup (phenotypically diverse), termed clade A herein. This new clonal subgroup includes environmental as well as clinical isolates. The results highlight the fish aquaculture environment, and possibly man-made ecological niches as a whole, as a source for the emergence of new pathogenic strains.
Collapse
|
15
|
Jeong HS, Kim JY, Jeon SM, Park MS, Kim SH. Genotypic Characterization of Vibrio vulnificus Clinical Isolates in Korea. Osong Public Health Res Perspect 2011; 2:8-14. [PMID: 24159444 PMCID: PMC3766911 DOI: 10.1016/j.phrp.2011.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022] Open
Abstract
Objectives Vibrio vunificus is known to cause septicemia and severe wound infections in patients with chronic liver diseases or an immuno-compromised condition. We carried out the molecular characterization of V. vulnificus isolates from human Vibrio septicemia cases based on pulsed-field gel electrophoresis (PFGE) using NotI and SfiI. Methods and Results PFGE was used to characterize a total of 78 strains from clinical cases after NotI or SfiI digestion. The geographical distribution of PFGE patterns for the strains from the southern part of Korea, a high-risk region for Vibrio septicemia, indicated that the isolates from southeastern Korea showed a comparatively higher degree of homology than those from southwestern Korea. Conclusions We report the genetic distribution of V. vulnficus isolated from Vibrio septicemia cases during 2000–2004 in Korea. This method has potential use as a subspecies-typing tool for V. vulnificus strains isolated from distant geographic regions.
Collapse
Affiliation(s)
- Hye Sook Jeong
- Division of Enteric and Hepatitis Virus, Center for Infectious Diseases, Korea National Institute of Health, Osong, Korea
| | | | | | | | | |
Collapse
|
16
|
Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR analysis. Appl Environ Microbiol 2011; 77:4200-7. [PMID: 21515718 DOI: 10.1128/aem.00135-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus is a natural inhabitant of estuarine waters. The three known biotypes include (i) most human pathogens, (ii) primarily eel pathogens, and (iii) pathogens associated with fish and with human wound infections in Israel. Despite the frequently lethal consequences of V. vulnificus infections, the growth rates of the various biotypes and their response to environmental changes are not well characterized. We compared the specific growth rates (μ) of a representative of each biotype by culture and quantitative PCR (qPCR) analysis in a defined medium under varied pH, temperature, and salinity. Growth rates based on culturable concentrations were always higher than those based on qPCR estimates; however, both enumeration methods yielded comparable results on the influence of environmental factors on growth rates. Temperature (25°C, 30°C, 37°C), pH (7.0, 8.0), and salinity (5 to 40‰) all had significant effects on the μ of each biotype. Temperature had the greatest effect on the μ of biotype 1 (CMCP6), whereas salinity had the greatest effect on the μ of biotypes 2 (ATCC 33147) and 3 (302/99). The biotypes' growth rates varied significantly; biotype 1 grew most rapidly, while biotype 3 grew most slowly. The highest growth rates were achieved at 37°C, pH 7.0, and salinities of 15 to 30‰ (μ = 4.0, 2.9, and 2.4 generations h(-1) for biotypes 1, 2, and 3, respectively). Other strains of the biotypes yielded comparable results, suggesting that the physiological responses of the biotypes are differentially affected by parameters that are highly variable both in estuarine environments and between the free-living and pathogen states of V. vulnificus.
Collapse
|
17
|
Genetic characterization of Vibrio vulnificus strains from tilapia aquaculture in Bangladesh. Appl Environ Microbiol 2010; 76:4890-5. [PMID: 20495047 DOI: 10.1128/aem.00636-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Outbreaks of Vibrio vulnificus wound infections in Israel were previously attributed to tilapia aquaculture. In this study, V. vulnificus was frequently isolated from coastal but not freshwater aquaculture in Bangladesh. Phylogenetic analyses showed that strains from Bangladesh differed remarkably from isolates commonly recovered elsewhere from fish or oysters and were more closely related to strains of clinical origin.
Collapse
|
18
|
Fouz B, Llorens A, Valiente E, Amaro C. A comparative epizootiologic study of the two fish-pathogenic serovars of Vibrio vulnificus biotype 2. JOURNAL OF FISH DISEASES 2010; 33:383-390. [PMID: 20158583 DOI: 10.1111/j.1365-2761.2009.01130.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vibrio vulnificus biotype 2 is subdivided into two main serovars, serovar E, able to infect fish and humans, and serovar A, only virulent for fish. Serovar E emerged in 1976 as the causative agent of a haemorrhagic septicaemia (warm-water vibriosis) affecting eels cultured in brackish water. Serovar A emerged in 2000 in freshwater-cultured eels vaccinated against serovar E, causing warm-water vibriosis with fish showing a haemorrhagic intestine as the main differential sign. The aim of the present work was to compare the disease caused by both serovars in terms of transmission routes, portals of entry and host range. Results of bath, patch-contact and oral-anal challenges demonstrated that both serovars spread through water and infect healthy eels, serovar A entering mainly by the anus and serovar E by the gills. The course of the disease under laboratory conditions was similar for both serovars in terms of transmission and dependence of degree of virulence on water parameters (temperature and salinity). However, the decrease in degree of virulence in fresh water was significantly greater in serovar E than in serovar A. Finally, both serovars proved pathogenic for tilapia, sea bass and rainbow trout, but not for sea bream, with significant differences in degree of virulence only in rainbow trout. In conclusion, serovar A seems to represent a new antigenic form of V. vulnificus biotype 2 with an unusual portal of entry and is better adapted to fresh water than serovar E.
Collapse
Affiliation(s)
- B Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain.
| | | | | | | |
Collapse
|
19
|
Zhang R, Gu JD. Complete sequence of plasmid pMP1 from the marine environmental Vibrio vulnificus and location of its replication origin. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:456-462. [PMID: 19009320 DOI: 10.1007/s10126-008-9160-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 10/22/2008] [Indexed: 05/27/2023]
Abstract
A novel cryptic plasmid, pMP1, from an environmental Vibrio vulnificus MP-4 isolated from Mai Po Nature Reserve in Hong Kong, has been characterized. The 7.6-kb plasmid had guanine-cytosine content of 40.03% and encoded four open reading frames (ORFs) with >100 amino acids. The predicted protein of ORF1 contained 478 amino acids showing 29% identity and 50% similarity over 309 amino acids to the integrase of Vibrio cholerae phage VP2. ORF2 encoded a putative protein of 596 amino acids, which were 23% identity and 42% similarity over 455 amino acids to the tail tape measure protein TP901 of Chromohalobacter salexigens phage. ORF3 and ORF4 encoded putative proteins of 103 and 287 amino acids, respectively, but showed no homologies to any known proteins. Further experiments indicated that a 3.2-kb fragment from EcoRI digestion could self-replicate. Analysis indicated that a sequence upstream of ORF4 had the features characteristic of theta-type replicons: AT-rich region, six potential direct repeats (iterons) spaced approximately two DNA helical turn apart (about 23 bp), two copies of 9 bp dnaA boxes, three Dam methylation sites, and five inverted repeats. Complementation experiments confirmed that the protein encoded by ORF4 was required for plasmid replication. We propose that ORF4 encode a new type of Rep protein and pMP1 is a new type of theta plasmid.
Collapse
Affiliation(s)
- Ruifu Zhang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | | |
Collapse
|
20
|
Evaluation of genotypic and phenotypic methods to distinguish clinical from environmental Vibrio vulnificus strains. Appl Environ Microbiol 2009; 75:1604-13. [PMID: 19139234 DOI: 10.1128/aem.01594-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a heterogeneous bacterial species that comprises virulent and avirulent strains from environmental and clinical sources that have been grouped into three biotypes. To validate the typing methods proposed to distinguish clinical from environmental isolates, we performed phenotypic (API 20E, API 20NE, and BIOLOG tests) and genetic (ribotyping and DNA polymorphism at several loci) studies with a large strain collection representing different biotypes, origins, and host ranges. No phenotypic method was useful for biotyping or grouping strains with regard to the origin of an isolate, and only the BIOLOG system was reliable for identifying the strains at the species level. DNA polymorphisms divided the population into three major profiles. Profile 1 strains were vcg type C, 16S rRNA type B, and vvh type 1 and included most of the biotype 1 human septicemic isolates; profile 2 strains were vcg type E, 16S rRNA type A, and vvh type 2 and included all biotype 2 isolates together with biotype 1 isolates from fish and water and some human isolates; and profile 3 strains were vcg type E, 16S rRNA type AB, and vvh type 2 and included biotype 3 strains. Ribotyping divided the species into two groups: one group that included profile 1 biotype 1 isolates and one group that included isolates of all three biotypes with the three profiles described above. In conclusion, no genotyping system was able to distinguish either clinical strains from environmental strains or biogroups within the species V. vulnificus, which suggests that new typing methodologies useful for public health have to be developed for this species.
Collapse
|
21
|
Vinogradov E, Wilde C, Anderson EM, Nakhamchik A, Lam JS, Rowe-Magnus DA. Structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562. Carbohydr Res 2008; 344:484-90. [PMID: 19185290 DOI: 10.1016/j.carres.2008.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 12/05/2008] [Accepted: 12/17/2008] [Indexed: 12/20/2022]
Abstract
The structure of the lipopolysaccharide core of Vibrio vulnificus type strain 27562 is presented. LPS hydrolysis gave two oligosaccharides, OS-1 and OS-2, as well as lipid A. NMR spectroscopic data corresponded to the presence of one Kdo residue, one beta-glucopyranose, three heptoses, one glyceric acid, one acetate, three PEtN, and one 5,7-diacylamido-3,5,7,9-tetradeoxynonulosonic acid residue (pseudaminic acid, Pse) in OS1. OS2 differed form OS 1 by the absence of glyceric acid, acetate, and Pse residues. Lipid A was analyzed for fatty acid composition and the following fatty acids were found: C14:0, C12:0-3OH, C16:0, C16:1, C14:0-3OH, C18:0, C18:1 in a ratio of 1:3:3:1:2.5:0.6:0.8.
Collapse
|
22
|
Rengpipat S, Pusiririt S, Rukpratanporn S. Differentiating between isolates of Vibrio vulnificus with monoclonal antibodies. J Microbiol Methods 2008; 75:398-404. [DOI: 10.1016/j.mimet.2008.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 02/02/2023]
|
23
|
Valiente E, Padrós F, Lamas J, Llorens A, Amaro C. Microbial and histopathological study of the vibriosis caused by Vibrio vulnificus serovar E in eels: The metalloprotease Vvp is not an essential lesional factor. Microb Pathog 2008; 45:386-93. [DOI: 10.1016/j.micpath.2008.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/01/2008] [Accepted: 09/12/2008] [Indexed: 01/22/2023]
|
24
|
Miyoshi S, Morita A, Teranishi T, Tomochika K, Yamamoto S, Shinoda S. An Exocellular Cytolysin Produced byVibrio vulnificusCDC B3547, a Clinical Isolate in Biotype 2 (Serovar E). ACTA ACUST UNITED AC 2008. [DOI: 10.1081/txr-120030650] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Rico R, Tapia-Paniagua S, Martínez-Manzanares E, Balebona M, Moriñigo M. Characterization ofVibrio harveyistrains recovered from diseased farmed Senegalese sole (Solea senegalensis). J Appl Microbiol 2008; 105:752-60. [DOI: 10.1111/j.1365-2672.2008.03786.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Valiente E, Lee CT, Lamas J, Hor L, Amaro C. Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity. FISH & SHELLFISH IMMUNOLOGY 2008; 24:134-141. [PMID: 18053741 DOI: 10.1016/j.fsi.2007.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/05/2007] [Accepted: 10/10/2007] [Indexed: 05/25/2023]
Abstract
Vibrio vulnificus biotype 2 serovar E (VSE) is a bacterial pathogen that produces a haemorrhagic septicaemia called vibriosis in eels. Its ability to grow in blood is conferred by a recently described virulence plasmid [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.]. In this study, we analyzed the role of this plasmid together with the role played by the metalloprotease (Vvp) in the interaction between bacteria and eel innate immunity. To this end, we compared and statistically analyzed the differences in resistance to serum and mucus factors (complement, selected antimicrobial peptides, transferrin and lysozyme) and also to phagocytosis/opsonophagocytosis between one VSE strain and its derivatives: a plasmid-cured strain and a vvp-deficient mutant. The wild-type and the metalloprotease-deficient strains were resistant to both the bactericidal action of fresh serum and the phagocytosis and opsonophagocytosis by eel phagocytes, confirming that Vvp is not involved in resistance to eel innate immunity. In contrast, the cured strain was sensitive to both the bactericidal action of eel serum activated by the alternative pathway and phagocytosis/opsonophagocytosis. Since no plasmid-encoded ORF, with homology to known genes, is related to the resistance to innate immunity [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.], this function could be codified by one or more new genes. Further studies are underway to characterize the plasmid-encoded system responsible for V. vulnificus resistance to the innate immune system of eels.
Collapse
Affiliation(s)
- E Valiente
- Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
27
|
Valiente E, Lee CT, Hor LI, Fouz B, Amaro C. Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence. Environ Microbiol 2007; 10:328-38. [PMID: 18028416 DOI: 10.1111/j.1462-2920.2007.01454.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The virulence for eels of Vibrio vulnificus biotype 2 serovar E (VSE) is conferred by a plasmid that codifies ability to survive in eel serum and cause septicaemia. To find out whether the plasmid and the selected chromosomal gene vvp plays a role in the initial steps of infection, the VSE strain CECT4999, the cured strain CT218 and the Vvp-deficient mutant CT201 (obtained in this work by allelic exchange) were used in colonization and virulence experiments. The eel avirulent biotype 1 (BT1) strain YJ016, whose genome has been sequenced, was used for comparative purposes. The global results demonstrate that the plasmid does not play a significant role in surface colonization because (i) CECT4999 and CT218 were equally chemoattracted towards and adherent to eel mucus and gills, and (ii) CT218 persisted in gills from bath-infected eels 2 weeks post infection. In contrast, mutation in vvp gene reduced significantly chemoattraction and attachment to eel mucus and gills, as well as virulence degree by immersion challenge. Co-infection experiments by bath with CECT4999 and CT201 confirmed that Vvp was involved in eel colonization and persistence in gills, because CECT4999 was recovered at higher numbers compared with CT201 from both internal organs of moribund fish (ratio 4:1) and gills from survivors (ratio 50:1). Interestingly, YJ016 also showed chemoattraction and attachment to mucus, and complementation of CT201 with BT1-vvp gene restored both activities together with virulence degree by immersion challenge. Additional experiments with algae mucus and purified mucin gave similar results. In conclusion, the protease Vvp of V. vulnificus seems to play an essential role in colonization of mucosal surfaces present in aquatic environments. Among the V. vulnificus strains colonizing fish mucus, only those harbouring the plasmid could survive in blood and cause septicaemia.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Microbiology and Ecology, University of Valencia, 46100 Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
28
|
Cohen ALV, Oliver JD, DePaola A, Feil EJ, Boyd EF. Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. Appl Environ Microbiol 2007; 73:5553-65. [PMID: 17616611 PMCID: PMC2042058 DOI: 10.1128/aem.00635-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus is a ubiquitous inhabitant of the marine coastal environment, and an important pathogen of humans. We characterized a globally distributed sample of environmental isolates from a range of habitats and hosts and compared these with isolates recovered from cases of human infection. Multilocus sequence typing data using six housekeeping genes divided 63 of the 67 isolates into the two main lineages previously noted for this species, and this division was also confirmed using the 16S rRNA and open reading frame VV0401 markers. Lineage I was comprised exclusively of biotype 1 isolates, whereas lineage II contained biotype 1 and all biotype 2 isolates. Four isolates did not cluster within either lineage: two biotype 3 and two biotype 1 isolates. The proportion of isolates recovered from a clinical setting was noted to be higher in lineage I than in lineage II. Lineage I isolates were also associated with a 33-kb genomic island (region XII), one of three regions identified by genome comparisons as unique to the species. Region XII contained an arylsulfatase gene cluster, a sulfate reduction system, two chondroitinase genes, and an oligopeptide ABC transport system, all of which are absent from the majority of lineage II isolates. Arylsulfatases and the sulfate reduction system, along with performing a scavenging role, have been hypothesized to play a role in pathogenic processes in other bacteria. Our data suggest that lineage I may have a higher pathogenic potential and that region XII, along with other regions, may give isolates a selective advantage either in the human host or in the aquatic environment or both.
Collapse
Affiliation(s)
- Ana Luisa V Cohen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
29
|
Fouz B, Roig FJ, Amaro C. Phenotypic and genotypic characterization of a new fish-virulent Vibrio vulnificus serovar that lacks potential to infect humans. Microbiology (Reading) 2007; 153:1926-1934. [PMID: 17526849 DOI: 10.1099/mic.0.2006/005405-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrio vulnificus is a bacterial species that is virulent for humans and fish. Human isolates are classified into biotypes 1 and 3 (BT1 and BT3) and fish isolates into biotype 2 (BT2). However, a few human infections caused by BT2 isolates have been reported worldwide (zoonosis). These BT2 human isolates belong to serovar E (SerE), which is also present in diseased fish. The aim of the present work was to characterize a new BT2 serovar [serovar A (SerA)], which emerged in the European fish-farming industry in 2000, by means of phenotypic, serological and genetic [plasmid profiling, ribotyping and random amplified polymorphic DNA (RAPD)] methodologies. The results confirmed that SerA constitutes a homogeneous O-serogroup within the species that shares plasmidic information with SerE. Like SerE, this new serogroup was resistant to fresh fish serum, as well as being highly virulent for fish. In contrast, it was sensitive to human serum and avirulent for mice, even after pretreatment with iron. The two serovars presented different biochemical profiles as well as specific patterns by ribotyping and RAPD analysis. In conclusion, SerA seems to constitute a different clonal group that has recently emerged within the species V. vulnificus, with pathogenic potential for fish but not for humans.
Collapse
Affiliation(s)
- Belén Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Francisco J Roig
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Carmen Amaro
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
30
|
Sanjuán E, Amaro C. Multiplex PCR assay for detection of Vibrio vulnificus biotype 2 and simultaneous discrimination of serovar E strains. Appl Environ Microbiol 2007; 73:2029-32. [PMID: 17277209 PMCID: PMC1828805 DOI: 10.1128/aem.02320-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples.
Collapse
Affiliation(s)
- Eva Sanjuán
- Departamento Microbiología y Ecología, Universidad de Valencia, Avenida Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | |
Collapse
|
31
|
Fouz B, Larsen JL, Amaro C. Vibrio vulnificus serovar A: an emerging pathogen in European anguilliculture. JOURNAL OF FISH DISEASES 2006; 29:285-91. [PMID: 16677318 DOI: 10.1111/j.1365-2761.2006.00719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The spread of the emerging pathogen Vibrio vulnificus biotype 2 serovar A in Danish anguilliculture is reported. Serovar A was originally isolated in a Spanish eel farm in 2000 and occurred in Denmark in the summer of 2004, affecting eels of 5-10 g body weight cultured in fresh water. The Danish eels showed clinical signs different from those reported for Spanish eels, such as severe haemorrhages in the head and gill region with necrosis of the soft tissues. Danish isolates were biochemically and serologically identical to Spanish serovar A strains and also highly virulent for eels by both intraperitoneal injection and immersion challenges. Vaccination with Vulnivaccine, a vaccine against V. vulnificus serovar E, cross-protected eels against serovar A. The LD(50) for experimentally infected vaccinated animals was significantly higher than for non-vaccinated animals.
Collapse
Affiliation(s)
- B Fouz
- Department of Microbiology and Ecology, Faculty of Biology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
32
|
Lee CT, Amaro C, Sanjuán E, Hor LI. Identification of DNA sequences specific for Vibrio vulnificus biotype 2 strains by suppression subtractive hybridization. Appl Environ Microbiol 2005; 71:5593-7. [PMID: 16151155 PMCID: PMC1214656 DOI: 10.1128/aem.71.9.5593-5597.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio vulnificus can be divided into three biotypes, and only biotype 2, which is further divided into serovars, contains eel-virulent strains. We compared the genomic DNA of a biotype 2 serovar E isolate (tester) with the genomic DNAs of three biotype 1 strains by suppression subtractive hybridization and then tested the distribution of the tester-specific DNA sequences in a wide collection of bacterial strains. In this way we identified three plasmid-borne DNA sequences that were specific for biotype 2 strains irrespective of the serovar and three chromosomal DNA sequences that were specific for serovar E biotype 2 strains. These sequences have potential for use in the diagnosis of eel vibriosis caused by V. vulnificus and in the detection of biotype 2 serovar E strains.
Collapse
Affiliation(s)
- Chung-Te Lee
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan, Republic of China
| | | | | | | |
Collapse
|
33
|
Senoh M, Miyoshi SI, Okamoto K, Fouz B, Amaro C, Shinoda S. The cytotoxin-hemolysin genes of human and eel pathogenic Vibrio vulnificus strains: comparison of nucleotide sequences and application to the genetic grouping. Microbiol Immunol 2005; 49:513-9. [PMID: 15965298 DOI: 10.1111/j.1348-0421.2005.tb03756.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio vulnificus can be divided into two groups on the basis of pathogenesis. Group 1 is pathogenic only to humans, whereas group 2 is pathogenic to eels and occasionally to humans. Although both groups produce a 50-kDa cytotoxin-hemolysin (V. vulnificus hemolysin; VVH), the toxins are different. In the present study, the nucleotide sequence of the toxin gene (vvhA ) of strain CDC B3547 (a group 2 strain) was determined, and the deduced amino acid sequence was compared to that of strain L-180 (a group 1 strain). The nucleotide sequence of vvhA of strain CDC B3547 was about 96% identical with that of strain L-180, which results in a difference of 3 amino acid residues in the C-terminal lectin domain of VVH. Nevertheless, two primer sets for polymerase chain reaction could be designed to differentiate the toxin gene of each strain. When 27 V. vulnificus clinical isolates were tested, group 1 strains (9 strains) were shown to react only to the primers designed for vvhA of strain L-180; whereas, the gene of group 2 strains (18 strains) could be amplified with the primers for vvhA of strain CDC B3547. These findings may lead to development of a novel genetic grouping system related to the virulence potential or to the host range.
Collapse
Affiliation(s)
- Mitsutoshi Senoh
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Wang S, Levin RE. Quantitative Detection ofVibrio vulnificusin Shellfish by Competitive Polymerase Chain Reaction. FOOD BIOTECHNOL 2005. [DOI: 10.1080/08905430500316383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Parvathi A, Kumar HS, Karunasagar I, Karunasagar I. Study of the occurrence of Vibrio vulnificus in oysters in India by polymerase chain reaction (PCR) and heterogeneity among V. vulnificus by randomly amplified polymorphic DNA PCR and gyrB sequence analysis. Environ Microbiol 2005; 7:995-1002. [PMID: 15946295 DOI: 10.1111/j.1462-2920.2005.00770.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The pathogenic bacterium Vibrio vulnificus is widely distributed in estuarine waters throughout the world. In this study, the presence of V. vulnificus in oysters was studied both by conventional culture and DNA-based molecular technique. Following enrichment in alkaline peptone water (APW), the bacteria were lysed and a nested polymerase chain reaction (PCR) for vvhA gene was performed. The effect of duration of enrichment on the sensitivity of detection by PCR was evaluated. The organism was isolated from 43% of samples after 18 h enrichment in APW by conventional culture method. Nested PCR amplifying a fragment of vvhA gene detected the organism in 11%, 60% and 81% of samples following 0, 6 and 18 h of enrichment. All the biochemically identified V. vulnificus strains possessed vvhA gene and belonged to biotype 1. The genetic relatedness among the strains was studied by randomly amplified polymorphic DNA (RAPD) PCR and gyrB sequence analysis. The results suggest the presence of two distinct clonal groups of V. vulnificus in oysters in India. The study demonstrates, for the first time that gyrB sequence analysis could be used to study the genetic diversity of V. vulnificus.
Collapse
Affiliation(s)
- Ammini Parvathi
- Department of Fishery Microbiology, University of Agricultural Sciences, College of Fisheries, Kankanady, Mangalore, India
| | | | | | | |
Collapse
|
36
|
Levin RE. Vibrio vulnificus, a Notably Lethal Human Pathogen Derived from Seafood: A Review of Its Pathogenicity, Subspecies Characterization, and Molecular Methods of Detection. FOOD BIOTECHNOL 2005. [DOI: 10.1081/fbt-200049071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Wang S, Levin RE. Quantification ofVibrio vulnificusUsing the Polymerase Chain Reaction. FOOD BIOTECHNOL 2005. [DOI: 10.1081/fbt-200049055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Colodner R, Raz R, Meir I, Lazarovich T, Lerner L, Kopelowitz J, Keness Y, Sakran W, Ken-Dror S, Bisharat N. Identification of the emerging pathogen Vibrio vulnificus biotype 3 by commercially available phenotypic methods. J Clin Microbiol 2004; 42:4137-40. [PMID: 15365001 PMCID: PMC516291 DOI: 10.1128/jcm.42.9.4137-4140.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of the emerging pathogen Vibrio vulnificus biotype 3 has become a challenge for clinical laboratories in the last few years. In this study, the abilities of five commercial systems to identify this new species have been evaluated for the first time, using a unique collection of strains. Fifty-one well-documented wild strains of V. vulnificus biotype 3 were processed using API 20 NE, GNI+ Vitek 1 cards, ID-GNB Vitek 2 cards, Neg Combo 20 Microscan panels, and NMIC/ID-5 BD Phoenix panels. The numbers of strains identified as V. vulnificus by ID-GNB, NMIC/ID-5, and GNI+ were 50 (98.0%), 46 (90.2%), and 7 (13.7%), respectively. Neg Combo 20 Microscan panels and API 20 NE were unable to identify any of the strains of this emerging pathogen to the species level and mostly misidentifies them as other species of the Vibrionaceae family. Data on the phenotypic pattern of V. vulnificus biotype 3 when processed in all five systems as presented here could help clinical laboratories in identifying this new pathogen.
Collapse
Affiliation(s)
- Raul Colodner
- Clinical Microbiology Laboratory, Ha'Emek Medical Center, Afula 18101, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sanjuán E, Amaro C. Protocol for specific isolation of virulent strains of Vibrio vulnificus serovar E (biotype 2) from environmental samples. Appl Environ Microbiol 2004; 70:7024-32. [PMID: 15574896 PMCID: PMC535198 DOI: 10.1128/aem.70.12.7024-7032.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/12/2004] [Indexed: 11/20/2022] Open
Abstract
The eel pathogen Vibrio vulnificus biotype 2 comprises at least three serovars, with serovar E being the only one involved in both epizootics of eel vibriosis and sporadic cases of human infections. The virulent strains of this serovar (VSE) have only been recovered from clinical (mainly eel tissue) sources. The main objective of this work was to design and validate a new protocol for VSE-specific isolation from environmental samples. The key element of the new protocol is the broth used for the first step (saline eel serum broth [SEB]), which contains eel serum as a nutritive and selective component. This approach takes advantage of the ability of VSE cells to grow in eel serum and thus to separate themselves from the pool of competitors. The growth yield in SEB after 8 h of incubation was 1,000 times higher for VSE strains than for their putative competitors (including biotype 1 strains of the species). The selective and differential agar Vibrio vulnificus medium (VVM) was selected from five selective media for the second step because it gave the highest plating efficiency not only for the VSE group but also for other V. vulnificus groups, including biotype 3. The entire protocol was validated by field studies, with alkaline peptone water plus VVM as a control. V. vulnificus was isolated by both protocols, but serovar E was only recovered by the new method described here. All selected serovar E isolates were identified as VSE since they were virulent for both eels and iron-overloaded mice and resisted the bactericidal action of eel and iron-overloaded human sera. In conclusion, this new protocol is a suitable method for the isolation of VSE strains from environmental samples and is recommended for epidemiological studies of the pathogenic serovar E.
Collapse
Affiliation(s)
- Eva Sanjuán
- Departamento Microbiología y Ecología, Universidad de Valencia, Avda. Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | | |
Collapse
|
40
|
Yano Y, Yokoyama M, Satomi M, Oikawa H, Chen SS. Occurrence of Vibrio vulnificus in fish and shellfish available from markets in China. J Food Prot 2004; 67:1617-23. [PMID: 15330524 DOI: 10.4315/0362-028x-67.8.1617] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus is a naturally occurring estuarine bacterium often associated with disease such as septicemia in humans following consumption of raw and lightly cooked seafood. In China and neighboring countries, rapid economic growth has encouraged increased consumption of seafood, and dietary habits are changing, with more people eating raw fish. In this study, the prevalence of V. vulnificus was investigated in 48 samples from 11 species of live seafood available from markets in coastal cities of China. The bacterium was detected in four of four razor clam samples, in seven of seven giant tiger prawn samples, and in five of nine mantis shrimp samples. The bacterium was also found in water samples of the prawn aquaria at the markets. The maximum level of V. vulnificus was 3.4 log CFU/g in the razor clam samples and 4.9 log CFU/g in the prawn samples by a direct spreading method. Differential bacterial counts on the prawn body revealed that most of the bacteria were found on the shells (exoskeletons), with very few in the edible muscle. However, dense populations can be found in the intestines. Biochemical tests indicated that the isolates of V. vulnificus were biotype 1 strain, which is pathogenic to humans. These isolates were susceptible to ampicillin, penicillin, kanamycin, streptomycin, and erythromycin. These results suggest that V. vulnificus is a potential health hazard to humans in cities consuming and handling live shellfish, especially giant tiger prawns.
Collapse
Affiliation(s)
- Yutaka Yano
- National Research Institute of Fisheries Science, Yokohama 2368648, Japan.
| | | | | | | | | |
Collapse
|
41
|
Marco-Noales E, Biosca EG, Rojo C, Amaro C. Influence of aquatic microbiota on the survival in water of the human and eel pathogen Vibrio vulnificus serovar E. Environ Microbiol 2004; 6:364-76. [PMID: 15008814 DOI: 10.1111/j.1462-2920.2004.00562.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eel and human pathogen Vibrio vulnificus serovar E (biotype 2) is seldom isolated from natural waters, although it can survive in sterilized artificial seawater microcosms for years. The main objective of the present study was to investigate whether aquatic microbiota can limit its survival and recovery from water samples. A set of preliminary experiments of survival in microcosms containing natural seawater and water from eel farms showed that the persistence of this pathogen was mainly controlled by grazing, and secondarily by bacterial competition. The bacterial competition was further analysed in artificial seawater microcosms co-inoculated with selected virulent serovar E (VSE) strains and potential competitors. Competitors included V. vulnificus biotype 1 isolates and strains of selected species that can grow on the selective media designed for V. vulnificus isolation from water samples. Evidences of bacterial competition that was detrimental for VSE recovery were recorded. Thus, some species produced a deleterious effect on VSE strains under starvation, and others were able to use the resources more efficiently under nutrient input. These results suggest that an overgrowth of more efficient competitor bacteria in conventional media used for isolation of V. vulnificus could mask the recovery of VSE strains and explain the scarcity of reports on the isolation of this human and eel pathogen from natural waters.
Collapse
Affiliation(s)
- Ester Marco-Noales
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia 46100, Spain. Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia 46071, Spain
| | | | | | | |
Collapse
|
42
|
Watanabe H, Miyoshi SI, Kawase T, Tomochika KI, Shinoda S. High growing ability of Vibrio vulnificus biotype 1 is essential for production of a toxic metalloprotease causing systemic diseases in humans. Microb Pathog 2004; 36:117-23. [PMID: 14726228 DOI: 10.1016/j.micpath.2003.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vibrio vulnificus biotype 1, a causative agent of fatal septicemia or wound infection in humans, is known to produce a toxic metalloprotease as an important virulence determinant. V. vulnificus biotype 2 (serovar E), a primary eel pathogen, was found to elaborate an extracellular metalloprotease that was indistinguishable from that of biotype 1. The potential of V. vulnificus biotype 1 for production of the metalloprotease was compared with biotype 2 and other human non-pathogenic Vibrio species (Vibrio anguillarum and Vibrio proteolyticus). When cultivated at 25 degrees C in tryptone-yeast extract broth supplemented with 0.9% NaCl, all bacteria multiplied sufficiently and secreted significant amounts of the metalloprotease. However, at 37 degrees C with 0.9% NaCl, V. anguillarum neither grew nor produced the metalloprotease. In human serum, only V. vulnificus biotype 1 revealed a steady multiplication accompanied with production of the extracellular metalloprotease. This prominent ability of biotype 1 in growth and protease production may contribute to cause serious systemic diseases in humans.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-Naka, 700-8530, Okayama, Japan
| | | | | | | | | |
Collapse
|
43
|
Zorrilla I, Moriñigo MA, Castro D, Balebona MC, Borrego JJ. Intraspecific characterization of Vibrio alginolyticus isolates recovered from cultured fish in Spain. J Appl Microbiol 2004; 95:1106-16. [PMID: 14633040 DOI: 10.1046/j.1365-2672.2003.02078.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Intraspecific differentiation and characterization of Vibrio alginolyticus strains isolated from cultured fish in Spain. MATERIALS AND RESULTS Thirty-four Vibrio alginolyticus strains isolated from cultured fish were intraspecifically characterized on the basis of biochemical and exoenzymatic patterns, outer membrane protein (OMP) profiles, ribotyping and plasmid analyses. The typing methods used did not allow to group V. alginolyticus isolates on the basis of their sources of collection. A higher homogeneity was observed in OMP profiles. A high percentage of isolates were plasmidless. Ribotyping was the highest discriminatory typing method, as all the isolates tested presented 23 profiles using the HindIII restriction enzyme. On the basis of the ribotyping pattern, a similarity matrix and a dendrogram were constructed. CONCLUSIONS The results obtained indicate that V. alginolyticus strains isolated from southwestern Spain belong to different clonal lineages. SIGNIFICANCE AND IMPACT OF THE STUDY This study has shown differences with other similar studies carried out in other areas of Europe with strains of V. alginolyticus with respect to the clonal lineages of the strains isolated in southwestern Spain.
Collapse
Affiliation(s)
- I Zorrilla
- Department of Microbiology, Faculty of Sciences, University of Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
44
|
Gutacker M, Conza N, Benagli C, Pedroli A, Bernasconi MV, Permin L, Aznar R, Piffaretti JC. Population genetics of Vibrio vulnificus: identification of two divisions and a distinct eel-pathogenic clone. Appl Environ Microbiol 2003; 69:3203-12. [PMID: 12788717 PMCID: PMC161503 DOI: 10.1128/aem.69.6.3203-3212.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic relationships among 62 Vibrio vulnificus strains of different geographical and host origins were analyzed by multilocus enzyme electrophoresis (MLEE), random amplification of polymorphic DNA (RAPD), and sequence analyses of the recA and glnA genes. Out of 15 genetic loci analyzed by MLEE, 11 were polymorphic. Cluster analysis identified 43 distinct electrophoretic types (ETs) separating the V. vulnificus population into two divisions (divisions I and II). One ET (ET 35) included all indole-negative isolates from diseased eels worldwide (biotype 2). A second ET (ET 2) marked all of the strains from Israel isolated from patients who handled St. Peter's fish (biotype 3). RAPD analysis of the 62 V. vulnificus isolates identified 26 different profiles separated into two divisions as well. In general, this subdivision was comparable (but not identical) to that observed by MLEE. Phylogenetic analysis of 543 bp of the recA gene and of 402 bp of the glnA gene also separated the V. vulnificus population into two major divisions in a manner similar to that by MLEE and RAPD. Sequence data again indicated the overall subdivision of the V. vulnificus population into different biotypes. In particular, indole-negative eel-pathogenic isolates (biotype 2) on one hand and the Israeli isolates (biotype 3) on the other tended to cluster together in both gene trees. None of the methods showed an association between distinct clones and human clinical manifestations. Furthermore, except for the Israeli strains, only minor clusters comprising geographically related isolates were observed. In conclusion, all three approaches (MLEE, RAPD, and DNA sequencing) generated comparable but not always equivalent results. The significance of the two divisions (divisions I and II) still remains to be clarified, and a reevaluation of the definition of the biotypes is also needed.
Collapse
|
45
|
Le Chevalier P, Le Boulay C, Paillard C. Characterization by restriction fragment length polymorphism and plasmid profiling of Vibrio tapetis strains. J Basic Microbiol 2003; 43:414-422. [PMID: 12964185 DOI: 10.1002/jobm.200310241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A total of nine Vibrio tapetis strains acquired from France, the United Kingdom and Norway were studied for their plasmid content. All the isolates contained from two to four large plasmids, ranging from approximately 60 to 100 kpb. in size. These plasmids were subsequently subjected to restriction fragment length polymorphism analysis (RFLP). Using the EcoRI enzyme, three different restriction patterns were demonstrated, two of which were closely related. On the basis of RFLP patterns, the strain from Norway differed noticeably from the French and British strains.
Collapse
Affiliation(s)
- Patrick Le Chevalier
- Laboratoire Universitaire de Microbiologie Appliquée de Quimper (LUMAQ), IUT de génie biologique, Université de Bretagne Occidentale, 2 rue de l'université, 29334 Quimper, France.
| | | | | |
Collapse
|
46
|
Cerdà-Cuéllar M, Permin L, Larsen JL, Blanch AR. Comparison of selective media for the detection of Vibrio vulnificus in environmental samples. J Appl Microbiol 2001; 91:322-7. [PMID: 11473597 DOI: 10.1046/j.1365-2672.2001.01387.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS To compare two selective agars, cellobiose-colistin (CC) agar and a modification of the Vibrio vulnificus medium (VVMc agar), for the isolation of Vibrio vulnificus from environmental samples. METHODS AND RESULTS The efficiencies of recovery of V. vulnificus collection strains on CC, VVM, VVMc and on thiosulphate-citrate-bile salts-sucrose (TCBS) agar were compared and similar efficiencies were obtained. A slightly higher recovery was observed on VVMc agar. The detection of V. vulnificus in environmental samples (eels and water) was performed by combining culture-based methods (CC and VVMc agars) with DNA-based methods using species-specific probes based on the cytolysin-haemolysin and the 16S rDNA genes. A lower accompanying microbiota was found on CC agar than on VVMc agar. CONCLUSION The comparison between CC and VVMc agars confirms that both are useful for the detection of V. vulnificus in environmental samples. However, the use of any of these media should be combined with a species-specific probe. SIGNIFICANCE AND IMPACT OF THE STUDY The combined use of a selective medium and a specific probe provides a feasible method for the detection of V. vulnificus for epidemiological and ecological studies.
Collapse
Affiliation(s)
- M Cerdà-Cuéllar
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | | | |
Collapse
|
47
|
Lewin A, Bert B, Dalsgaard A, Appel B, Høi L. A highly homologous 68 kbp plasmid found inVibrio vulnificus strains virulent for eels. J Basic Microbiol 2000. [DOI: 10.1002/1521-4028(200012)40:5/6<377::aid-jobm377>3.0.co;2-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Marco-Noales E, Biosca EG, Milán M, Amaro C. An indirect immunofluorescent antibody technique for detection and enumeration of Vibrio vulnificus serovar E (biotype 2): development and applications. J Appl Microbiol 2000; 89:599-606. [PMID: 11054163 DOI: 10.1046/j.1365-2672.2000.01156.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The applications of an indirect fluorescent antibody technique (IFAT), developed to detect and enumerate the pathogenic bacterium Vibrio vulnificus serovar E from water and clinical samples, are described. This technique proved accurate for detecting V. vulnificus, even under starvation conditions and in the non-culturable state, and could differentiate this species from other bacteria which share the same habitats. The IFAT was successfully used to diagnose vibriosis from naturally- and artificially-infected eels. The overall data suggest that applying this technique properly in environmental and epidemiological/epizootiological studies could significantly increase our knowledge of this bacterium.
Collapse
Affiliation(s)
- E Marco-Noales
- Department of Microbiología and Ecología, Universidad de Valencia, Valencia, Spain
| | | | | | | |
Collapse
|
49
|
Zanetti S, Deriu A, Duprè I, Sanguinetti M, Fadda G, Sechi LA. Differentiation of Vibrio alginolyticus strains isolated from Sardinian waters by ribotyping and a new rapid PCR fingerprinting method. Appl Environ Microbiol 1999; 65:1871-5. [PMID: 10223972 PMCID: PMC91269 DOI: 10.1128/aem.65.5.1871-1875.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/1998] [Accepted: 02/01/1999] [Indexed: 11/20/2022] Open
Abstract
We investigated the usefulness of a novel PCR fingerprinting technique, based on the specific amplification of genomic regions, to differentiate 30 Vibrio alginolyticus strains isolated in Sardinian waters. The different profiles obtained were scanned and analyzed by a computer program in order to determine genetic relationships. The results were then compared with the patterns obtained by ribotyping with HindIII, KpnI, and XbaI restriction enzymes. PCR fingerprinting could differentiate the strains analyzed into 12 different patterns, whereas ribotyping with XbaI, which produced the highest number of patterns, generated only 7 different profiles. This study revealed the superior discriminative power of the proposed technique for the differentiation of related V. alginolyticus strains and the potential use of PCR fingerprinting in epidemiological studies.
Collapse
Affiliation(s)
- S Zanetti
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia Sperimentale e Clinica, Università degli studi di Sassari, 07100 Sassari, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Amaro C, Hor LI, Marco-Noales E, Bosque T, Fouz B, Alcaide E. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 1999; 65:1352-5. [PMID: 10049908 PMCID: PMC91189 DOI: 10.1128/aem.65.3.1352-1355.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of strains of Vibrio vulnificus serovar E that are avirulent for eels is reported in this work. These isolates were recovered from water and oysters and differed from eel virulent strains in (i) fermentation and utilization of mannitol, (ii) ribotyping after HindIII digestion, and (iii) susceptibility to eel serum. Lipopolysaccharide of these strains lacked the highest molecular weight immunoreactive bands, which are probably involved in serum resistance.
Collapse
Affiliation(s)
- C Amaro
- Departamento de Microbiología, Facultad de Biología, Universidad de Valencia, Valencia 46100, Spain
| | | | | | | | | | | |
Collapse
|