1
|
Bonetti A, Piva A, Grilli E. Botanicals as a zinc oxide alternative to protect intestinal cells from an Escherichia coli F4 infection in vitro by modulation of enterocyte inflammatory response and bacterial virulence. Front Vet Sci 2023; 10:1141561. [PMID: 36968476 PMCID: PMC10033929 DOI: 10.3389/fvets.2023.1141561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Pharmacological doses of zinc oxide (ZnO) have been widely used in pig industry to control post-weaning diarrhea (PWD) symptoms exacerbated by enterotoxigenic Escherichia coli F4 infections. Because of environmental issues and regulatory restrictions, ZnO is no longer sustainable, and novel nutritional alternatives to manage PWD are urgently required. Botanicals represent a wide class of compounds employed in animal nutrition because of their diverse beneficial functions. The aim of this study was to investigate the in vitro protective action of a panel of essential oils and natural extracts on intestinal Caco-2 cells against an E. coli F4 infection. Moreover, we explored the potential mechanisms of action of all the botanicals compared to ZnO. Amongst the others, thyme essential oil, grape seed extract, and Capsicum oleoresin were the most effective in maintaining epithelial integrity and reducing bacterial translocation. Their mechanism of action was related to the modulation of cellular inflammatory response, the protection of tight junctions' expression and function, and the control of bacterial virulence, thus resembling the positive functions of ZnO. Moreover, despite their mild effects on the host side, ginger and tea tree essential oils provided promising results in the control of pathogen adhesion when employed during the challenge. These outcomes support the advantages of employing selected botanicals to manage E. coli F4 infections in vitro, therefore offering novel environmentally-friendly alternatives to pharmacological doses of ZnO capable to modulate host-pathogen interaction at different levels during PWD in pigs.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
- Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
- *Correspondence: Ester Grilli
| |
Collapse
|
2
|
Effect of hydrophobic groups on adsorption of arginine-based amino acids to solid surfaces in water. Struct Chem 2022. [DOI: 10.1007/s11224-022-02090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Chung ME, Goroncy K, Kolesnikova A, Schönauer D, Schwaneberg U. Display of functional nucleic acid polymerase on Escherichia coli surface and its application in directed polymerase evolution. Biotechnol Bioeng 2020; 117:3699-3711. [PMID: 32827316 DOI: 10.1002/bit.27542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
We report a first of its kind functional cell surface display of nucleic acid polymerase and its directed evolution to efficiently incorporate 2'-O-methyl nucleotide triphosphates (2'-OMe-NTPs). In the development of polymerase cell surface display, two autotransporter proteins (Escherichia coli adhesin involved in diffuse adherence and Pseudomonas aeruginosa esterase A [EstA]) were employed to transport and anchor the 68-kDa Klenow fragment (KF) of E. coli DNA polymerase I on the surface of E. coli. The localization and function of the displayed KF were verified by analysis of cell outer membrane fractions, immunostaining, and fluorometric detection of synthesized DNA products. The EstA cell surface display system was applied to evolve KF for the incorporation of 2'-OMe-NTPs and a KF variant with a 50.7-fold increased ability to successively incorporate 2'-OMe-NTPs was discovered. Expanding the scope of cell-surface displayable proteins to the realm of polymerases provides a novel screening tool for tailoring polymerases to diverse application demands in a polymerase chain reaction and sequencing-based biotechnological and medical applications. Especially, cell surface display enables novel polymerase screening strategies in which the heat-lysis step is bypassed and thus allows the screening of mesophilic polymerases with broad application potentials ranging from diagnostics and DNA sequencing to replication of synthetic genetic polymers.
Collapse
Affiliation(s)
- Mu-En Chung
- SeSaM-Biotech GmbH, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | | | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
4
|
Nakazawa H, Umetsu M, Hirose T, Hattori T, Kumagai I. Identification of Indium Tin Oxide Nanoparticle-Binding Peptides via Phage Display and Biopanning Under Various Buffer Conditions. Protein Pept Lett 2019; 27:557-566. [PMID: 31729292 DOI: 10.2174/0929866526666191113151934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND By recent advances in phage-display approaches, many oligopeptides exhibiting binding affinities for metal oxides have been identified. Indium tin oxide is one of the most widely used conductive oxides, because it has a large band gap of 3.7-4.0 eV. In recent years, there have been reports about several ITO-based biosensors. Development of an ITO binding interface for the clustering of sensor proteins without complex bioconjugates is required. OBJECTIVE In this article, we aimed to identify peptides that bind to indium tin oxide nanoparticles via different binding mechanisms. METHODS Indium tin oxide nanoparticles binding peptide ware selected using phage display and biopanning against indium tin oxide, under five different buffer conditions and these peptides characterized about binding affinity and specificity. RESULTS Three types of indium tin oxide nanoparticles-binding peptides were selected from 10 types of peptide candidates identified in phage display and biopanning. These included ITOBP8, which had an acidic isoelectric point, and was identified when a buffer containing guanidine was used, and ITOBP6 and ITOBP7, which contained a His-His-Lys sequence at their N-termini, and were identified when a highly concentrated phosphate elution buffer with a low ionic strength was used. Among these peptides, ITOBP6 exhibited the strongest indium tin oxide nanoparticlesbinding affinity (dissociation constant, 585 nmol/L; amount of protein bound at saturation, 17.5 nmol/m 2 - particles). CONCLUSION These results indicate that peptides with specific binding properties can be obtained through careful selection of the buffer conditions in which the biopanning procedure is performed.
Collapse
Affiliation(s)
- Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tatsuya Hirose
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Song HW, Yoo G, Bong JH, Kang MJ, Lee SS, Pyun JC. Surface display of sialyltransferase on the outer membrane of Escherichia coli and ClearColi. Enzyme Microb Technol 2019; 128:1-8. [PMID: 31186105 DOI: 10.1016/j.enzmictec.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 01/03/2023]
Abstract
α2,3-Sialyltransferase from Pasteurella multocida (PmST1) is an enzyme that transfers a sialyl group of donor substrates to an acceptor substrate called N-acetyl-d-lactosamine (LacNAc). In this study PmST1 was expressed on the outer membrane of wildtype Escherichia coli (BL21) with lipopolysaccharide (LPS) and ClearColi with no LPS, and then the enzyme activity and expression level of PmST1 were compared. As the first step, the expression levels of PmST1 on the outer membranes of wildtype E. coli (BL21) and ClearColi were compared according to the IPTG induction time, and the absolute amount of surface-displayed PmST1 was calculated using densitometry of SDS-PAGE. As the next step, the influence of LPS on the PmST1 activity was estimated by analyzing Michaelis-Menten plot. The enzyme activity of PmST1 was analyzed by measuring the concentration of CMP, which was a by-product after the transfer of the sialyl group of donor compounds to the acceptor compounds. From a Michaelis-Menten plot, the enzyme activity of the surface-displayed PmST1 and the maximum rate (Vmax) of ClearColi were higher than those of wildtype E. coli (BL21). However, the KM value, which represented the concentration of substrate to reach half the maximum rate (Vmax), was similar for both enzymes. These results represented such a difference in enzyme activity was occurred from the interference of LPS on the mass transport of the donor and acceptor to PmST1 for the sialyl group transfer.
Collapse
Affiliation(s)
- Hyun-Woo Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Gu Yoo
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Seung Seo Lee
- School of Chemistry & Institute for Life Sciences, FNES, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seo-dae-mun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Sarkes DA, Jahnke JP, Stratis-Cullum DN. Semi-automated Biopanning of Bacterial Display Libraries for Peptide Affinity Reagent Discovery and Analysis of Resulting Isolates. J Vis Exp 2017. [PMID: 29286465 PMCID: PMC5755526 DOI: 10.3791/56061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biopanning bacterial display libraries is a proven technique for peptide affinity reagent discovery for recognition of both biotic and abiotic targets. Peptide affinity reagents can be used for similar applications to antibodies, including sensing and therapeutics, but are more robust and able to perform in more extreme environments. Specific enrichment of peptide capture agents to a protein target of interest is enhanced using semi-automated sorting methods which improve binding and wash steps and therefore decrease the occurrence of false positive binders. A semi-automated sorting method is described herein for use with a commercial automated magnetic-activated cell sorting device with an unconstrained bacterial display sorting library expressing random 15-mer peptides. With slight modifications, these methods are extendable to other automated devices, other sorting libraries, and other organisms. A primary goal of this work is to provide a comprehensive methodology and expound the thought process applied in analyzing and minimizing the resulting pool of candidates. These techniques include analysis of on-cell binding using fluorescence-activated cell sorting (FACS), to assess affinity and specificity during sorting and in comparing individual candidates, and the analysis of peptide sequences to identify trends and consensus sequences for understanding and potentially improving the affinity to and specificity for the target of interest.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Sensors and Electron Devices Directorate, US Army Research Laboratory;
| | - Justin P Jahnke
- Sensors and Electron Devices Directorate, US Army Research Laboratory
| | | |
Collapse
|
7
|
Ha NY, Shin HM, Sharma P, Cho HA, Min CK, Kim HI, Yen NTH, Kang JS, Kim IS, Choi MS, Kim YK, Cho NH. Generation of protective immunity against Orientia tsutsugamushi infection by immunization with a zinc oxide nanoparticle combined with ScaA antigen. J Nanobiotechnology 2016; 14:76. [PMID: 27887623 PMCID: PMC5124320 DOI: 10.1186/s12951-016-0229-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/17/2016] [Indexed: 01/31/2023] Open
Abstract
Background Zinc oxide nanoparticle (ZNP) has been applied in various biomedical fields. Here, we investigated the usage of ZNP as an antigen carrier for vaccine development by combining a high affinity peptide to ZNP. Results A novel zinc oxide-binding peptide (ZBP), FPYPGGDA, with high affinity to ZNP (Ka = 2.26 × 106 M−1) was isolated from a random peptide library and fused with a bacterial antigen, ScaA of Orientia tsutsugamushi, the causative agent of scrub typhus. The ZNP/ZBP-ScaA complex was efficiently phagocytosed by a dendritic cell line, DC2.4, in vitro and significantly enhanced anti-ScaA antibody responses in vivo compared to control groups. In addition, immunization with the ZNP/ZBP-ScaA complex promoted the generation of IFN-γ-secreting T cells in an antigen-dependent manner. Finally, we observed that ZNP/ZBP-ScaA immunization provided protective immunity against lethal challenge of O. tsutsugamushi, indicating that ZNP can be used as a potent adjuvant when complexed with ZBP-conjugated antigen. Conclusions ZNPs possess good adjuvant potential as a vaccine carrier when combined with an antigen having a high affinity to ZNP. When complexed with ZBP-ScaA antigen, ZNPs could induce strong antibody responses as well as protective immunity against lethal challenges of O. tsutsugamushi. Therefore, application of ZNPs combined with a specific soluble antigen could be a promising strategy as a novel vaccine carrier system.
Collapse
Affiliation(s)
- Na-Young Ha
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Mu Shin
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Prashant Sharma
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ah Cho
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chan-Ki Min
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong-Il Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Seung Kang
- Department of Microbiology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Żelechowska K, Karczewska-Golec J, Karczewski J, Łoś M, Kłonkowski AM, Węgrzyn G, Golec P. Phage-Directed Synthesis of Photoluminescent Zinc Oxide Nanoparticles under Benign Conditions. Bioconjug Chem 2016; 27:1999-2006. [DOI: 10.1021/acs.bioconjchem.6b00196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kamila Żelechowska
- Solid
State Physics Department, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Karczewska-Golec
- Department
of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Jakub Karczewski
- Solid
State Physics Department, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Marcin Łoś
- Department
of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Grzegorz Węgrzyn
- Department
of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Piotr Golec
- Laboratory
of Molecular Biology (affiliated with the University of Gdansk), Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza
59, 80-308 Gdansk, Poland
| |
Collapse
|
9
|
Gladytz A, John T, Gladytz T, Hassert R, Pagel M, Risselada HJ, Naumov S, Beck-Sickinger AG, Abel B. Peptides@mica: from affinity to adhesion mechanism. Phys Chem Chem Phys 2016; 18:23516-27. [PMID: 27491508 DOI: 10.1039/c6cp03325c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the adsorption of peptides on inorganic surfaces, on the molecular level, is fundamental for medicinal and analytical applications. Peptides can be potent as linkers between surfaces and living cells in biochips or in implantation medicine. Here, we studied the adsorption process of the positively charged pentapeptide RTHRK, a recently identified binding sequence for surface oxidized silicon, and novel analogues thereof to negatively charged mica surfaces. Homogeneous formation of monolayers in the nano- and low micromolar peptide concentration range was observed. We propose an alternative and efficient method to both quantify binding affinity and follow adhesion behavior. This method makes use of the thermodynamic relationship between surface coverage, measured by atomic force microscopy (AFM), and the concomitant free energy of adhesion. A knowledge-based fit to the autocorrelation of the AFM images was used to correct for a biased surface coverage introduced by the finite lateral resolution of the AFM. Binding affinities and mechanisms were further explored by large scale molecular dynamics (MD) simulations. The combination of well validated MD simulations with topological data from AFM revealed a better understanding of peptide adsorption processes on the atomistic scale. We demonstrate that binding affinity is strongly determined by a peptide's ability to form salt bridges and hydrogen bonds with the surface lattice. Consequently, differences in hydrogen bond formation lead to substantial differences in binding affinity despite conservation of the peptide's overall charge. Further, MD simulations give access to relative changes in binding energy of peptide variations in comparison to a lead compound.
Collapse
Affiliation(s)
- A Gladytz
- Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kuroda A, Alexandrov M, Nishimura T, Ishida T. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing. Biotechnol J 2016; 11:757-67. [DOI: 10.1002/biot.201500438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akio Kuroda
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Maxym Alexandrov
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Tomoki Nishimura
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
11
|
Simmerman RF, Zhu T, Baker DR, Wang L, Mishra SR, Lundgren CA, Bruce BD. Engineering Photosystem I Complexes with Metal Oxide Binding Peptides for Bioelectronic Applications. Bioconjug Chem 2015; 26:2097-105. [DOI: 10.1021/acs.bioconjchem.5b00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard F. Simmerman
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| | - Tuo Zhu
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| | - David R. Baker
- Sensors
and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Lijia Wang
- Department
of Physics, University of Memphis, Memphis, Tennessee 38152, United States
| | - Sanjay R. Mishra
- Department
of Physics, University of Memphis, Memphis, Tennessee 38152, United States
| | - Cynthia A. Lundgren
- Sensors
and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Barry D. Bruce
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| |
Collapse
|
12
|
Li J, Zhou Y, Lei C, Fang W, Sun X. Improvement in the UV resistance of baculoviruses by displaying nano-zinc oxide-binding peptides on the surfaces of their occlusion bodies. Appl Microbiol Biotechnol 2015; 99:6841-53. [PMID: 25895092 DOI: 10.1007/s00253-015-6581-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 11/28/2022]
Abstract
The sensitivity of baculoviruses to UV radiation severely limits their large-scale application as biological insecticides. The polyhedron envelope of a baculovirus, which is composed of carbohydrate and polyhedron envelope protein (PEP), is a significant structure for the stability and persistence of occlusion bodies (OBs) under environmental conditions. The results of this study revealed that the rough pitted surface phenotype of a pep-null Autographa californica multiple nucleopolyhedrovirus (AcMNPV) could not be rescued by any of its homologues, such as Helicoverpa armigera nucleopolyhedrovirus pep or Cydia pomonella granulovirus putative peps. In contrast, the N-terminal and middle flexible region (NM region, 1-167 aa) of AcMNPV PEP were able to form an intact OB envelope. Furthermore, this region was capable of carrying eGFP to the surfaces of the OBs. To improve the UV resistance of AcMNPV OBs, two peptides capable of specifically binding to nano-ZnO were separately fused to the NM region of PEP. Under laboratory conditions, infectivity of the recombinant viruses binding to nano-ZnO particles was about ninefold higher than that without the nano-ZnO particles after UV-B irradiation. Pot experiments revealed that the half-life of the recombinant baculovirus binding nano-ZnO particles was 3.3 ± 0.15 days, which was significantly longer than that of the control virus (0.49 ± 0.06 days). These results therefore represent a new approach for the protection the baculoviral insecticides against UV irradiation in the field.
Collapse
Affiliation(s)
- Jin Li
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | | | | | | | | |
Collapse
|
13
|
Rothenstein D, Shopova-Gospodinova D, Bakradze G, Jeurgens LPH, Bill J. Generation of luminescence in biomineralized zirconia by zirconia-binding peptides. CrystEngComm 2015. [DOI: 10.1039/c4ce01510j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Current materials research is inspired from biomineralization processes, where proteins control the formation of inorganic materials under soft reaction conditions.
Collapse
Affiliation(s)
- D. Rothenstein
- Institute for Materials Science
- University of Stuttgart
- 70569 Stuttgart, Germany
| | | | - G. Bakradze
- Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research)
- Dept. Mittemeijer
- 70569 Stuttgart, Germany
| | - L. P. H. Jeurgens
- Max Planck Institute for Intelligent Systems (formerly MPI for Metals Research)
- Dept. Mittemeijer
- 70569 Stuttgart, Germany
| | - J. Bill
- Institute for Materials Science
- University of Stuttgart
- 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Sola-Rabada A, Liang MK, Roe MJ, Perry CC. Peptide-directed crystal growth modification in the formation of ZnO. J Mater Chem B 2015; 3:3777-3788. [DOI: 10.1039/c5tb00253b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ZnO-binding peptides, differing only by Met or Cys at position 5 modify the mechanism of ZnO crystal growth.
Collapse
Affiliation(s)
- Anna Sola-Rabada
- Biomolecular and Materials Interface Research Group
- Interdisciplinary Biomedical Research Centre
- School of Science and Technology
- Nottingham Trent University
- Nottingham
| | - Mei-Keat Liang
- Biomolecular and Materials Interface Research Group
- Interdisciplinary Biomedical Research Centre
- School of Science and Technology
- Nottingham Trent University
- Nottingham
| | - Martin J. Roe
- Advanced Materials Research Group
- X-ray Photoelectron Spectroscopy
- Faculty of Engineering
- The University of Nottingham
- Nottingham
| | - Carole C. Perry
- Biomolecular and Materials Interface Research Group
- Interdisciplinary Biomedical Research Centre
- School of Science and Technology
- Nottingham Trent University
- Nottingham
| |
Collapse
|
15
|
Inclusion of Zinc Oxide Nanoparticles into Virus-Like Peptide Nanocapsules Self-Assembled from Viral β-Annulus Peptide. NANOMATERIALS 2014; 4:778-791. [PMID: 28344248 PMCID: PMC5304702 DOI: 10.3390/nano4030778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 01/24/2023]
Abstract
A viral β-annulus peptide connected with a zinc oxide (ZnO)-binding sequence (HCVAHR) at its N-terminal was synthesized, and the inclusion behavior of quantum-sized ZnO nanoparticles into the peptide nanocapsules formed by self-assembly of the peptide in water was investigated. Dynamic light scattering (DLS) measurements showed that ZnO nanoparticles (approximately 10 nm) in the presence of the peptide (0.1 mM) formed assemblies with an average size of 48 ± 24 nm, whereas ZnO nanoparticles in the absence of the peptide formed large aggregates. Transmission electron microscopy (TEM) observations of the ZnO nanoparticles in the presence of the peptide revealed that ZnO nanoparticles were encapsulated into the peptide nanocapsules with a size of approximately 50 nm. Fluorescence spectra of a mixture of the peptide and ZnO nanoparticles suggested that the ZnO surface and the peptide interact. Template synthesis of ZnO nanoparticles with the peptide nanocapsules afforded larger nanoparticles (approximately 40 nm), which are not quantum-sized ZnO.
Collapse
|
16
|
Atomistic modeling of peptide adsorption on rutile (100) in the presence of water and of contamination by low molecular weight alcohols. Biointerphases 2014; 9:031006. [DOI: 10.1116/1.4883555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Artzy-Schnirman A, Abu-Shah E, Dishon M, Soifer H, Sivan Y, Reiter Y, Benhar I, Sivan U. On the limited recognition of inorganic surfaces by short peptides compared with antibodies. J Pept Sci 2014; 20:446-50. [PMID: 24733719 DOI: 10.1002/psc.2636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 11/07/2022]
Abstract
The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel; The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013; 113:1904-2074. [PMID: 23432378 DOI: 10.1021/cr300143v] [Citation(s) in RCA: 851] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim E Sapsford
- Division of Biology, Department of Chemistry and Materials Science, Office of Science and Engineering Laboratories, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Golec P, Karczewska-Golec J, Łoś M, Węgrzyn G. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2012; 14:1218. [PMID: 23193370 PMCID: PMC3501178 DOI: 10.1007/s11051-012-1218-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/24/2012] [Indexed: 06/05/2023]
Abstract
Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.
Collapse
Affiliation(s)
- Piotr Golec
- Laboratory of Molecular Biology (affiliated with the University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Karczewska-Golec
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Phage Consultants, Partyzantów 10/18, 80-254 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
20
|
Rothenstein D, Claasen B, Omiecienski B, Lammel P, Bill J. Isolation of ZnO-Binding 12-mer Peptides and Determination of Their Binding Epitopes by NMR Spectroscopy. J Am Chem Soc 2012; 134:12547-56. [DOI: 10.1021/ja302211w] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dirk Rothenstein
- Institute
for Materials Science and §Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institute
for Materials Science and §Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Beatrice Omiecienski
- Institute
for Materials Science and §Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Patricia Lammel
- Institute
for Materials Science and §Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Joachim Bill
- Institute
for Materials Science and §Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
21
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO(2 )and ZnO. Sci Rep 2012; 2:234. [PMID: 22355747 PMCID: PMC3270499 DOI: 10.1038/srep00234] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/05/2012] [Indexed: 11/11/2022] Open
Abstract
The abundant pigment-protein membrane complex photosystem-I (PS-I) is at the heart of the Earth's energy cycle. It is the central molecule in the "Z-scheme" of photosynthesis, converting sunlight into the chemical energy of life. Commandeering this intricately organized photosynthetic nanocircuitry and re-wiring it to produce electricity carries the promise of inexpensive and environmentally friendly solar power. We here report that dry PS-I stabilized by surfactant peptides functioned as both the light-harvester and charge separator in solar cells self-assembled on nanostructured semiconductors. Contrary to previous attempts at biophotovoltaics requiring elaborate surface chemistries, thin film deposition, and illumination concentrated into narrow wavelength ranges the devices described here are straightforward and inexpensive to fabricate and perform well under standard sunlight yielding open circuit photovoltage of 0.5 V, fill factor of 71%, electrical power density of 81 µW/cm(2) and photocurrent density of 362 µA/cm(2), over four orders of magnitude higher than any photosystem-based biophotovoltaic to date.
Collapse
Affiliation(s)
- Andreas Mershin
- Center for Bits and Atoms, NE47-383, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA 02139, USA
| | - Kazuya Matsumoto
- Laboratory for Molecular Self-Assembly, NE47-379, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA
| | - Liselotte Kaiser
- Laboratory for Molecular Self-Assembly, NE47-379, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA
| | - Daoyong Yu
- Laboratory for Molecular Self-Assembly, NE47-379, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA
| | - Michael Vaughn
- Biochemistry, Cellular and Molecular Biology & Chemical and Biomolecular Engineering, 226 Hesler Biology Bldg., University of Tennessee at Knoxville, TN 37996, USA
| | - Md. K. Nazeeruddin
- Laboratory for Photonics and Interfaces (Institute of Chemical Science and Engineering), Ecole Polytechnique Federale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Barry D. Bruce
- Biochemistry, Cellular and Molecular Biology & Chemical and Biomolecular Engineering, 226 Hesler Biology Bldg., University of Tennessee at Knoxville, TN 37996, USA
| | - Michael Graetzel
- Laboratory for Photonics and Interfaces (Institute of Chemical Science and Engineering), Ecole Polytechnique Federale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Shuguang Zhang
- Laboratory for Molecular Self-Assembly, NE47-379, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. Biosens Bioelectron 2011; 28:378-85. [DOI: 10.1016/j.bios.2011.07.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022]
|
24
|
Cho NH, Cheong TC, Min JH, Wu JH, Lee SJ, Kim D, Yang JS, Kim S, Kim YK, Seong SY. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. NATURE NANOTECHNOLOGY 2011; 6:675-682. [PMID: 21909083 DOI: 10.1038/nnano.2011.149] [Citation(s) in RCA: 346] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/04/2011] [Indexed: 05/28/2023]
Abstract
Dendritic cell-based cancer immunotherapy requires tumour antigens to be delivered efficiently into dendritic cells and their migration to be monitored in vivo. Nanoparticles have been explored as carriers for antigen delivery, but applications have been limited by the toxicity of the solvents used to make nanoparticles, and by the need to use transfection agents to deliver nanoparticles into cells. Here we show that an iron oxide-zinc oxide core-shell nanoparticle can deliver carcinoembryonic antigen into dendritic cells while simultaneously acting as an imaging agent. The nanoparticle-antigen complex is efficiently taken up by dendritic cells within one hour and can be detected in vitro by confocal microscopy and in vivo by magnetic resonance imaging. Mice immunized with dendritic cells containing the nanoparticle-antigen complex showed enhanced tumour antigen specific T-cell responses, delayed tumour growth and better survival than controls.
Collapse
Affiliation(s)
- Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vila Verde A, Beltramo PJ, Maranas JK. Adsorption of homopolypeptides on gold investigated using atomistic molecular dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5918-5926. [PMID: 21488613 DOI: 10.1021/la104814z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We investigate the role of dynamics on adsorption of peptides to gold surfaces using all-atom molecular dynamics simulations in explicit solvent. We choose six homopolypeptides [Ala(10), Ser(10), Thr(10), Arg(10), Lys(10), and Gln(10)], for which experimental surface coverages are not correlated with amino acid level affinities for gold, with the idea that dynamic properties may also play a role. To assess dynamics we determine both conformational movement and flexibility of the peptide within a given conformation. Low conformational movement indicates stability of a given conformation and leads to less adsorption than homopolypeptides with faster conformational movement. Likewise, low flexibility within a given conformation also leads to less adsorption. Neither amino acid affinities nor dynamic considerations alone predict surface coverage; rather both quantities must be considered in peptide adsorption to gold surfaces.
Collapse
Affiliation(s)
- Ana Vila Verde
- University of Minho, Department of Physics, Braga, Portugal
| | | | | |
Collapse
|
26
|
Vreuls C, Genin A, Zocchi G, Boschini F, Cloots R, Gilbert B, Martial J, Van De Weerdt C. Genetically engineered polypeptides as a new tool for inorganic nano-particles separation in water based media. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12440d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Liang MK, Deschaume O, Patwardhan SV, Perry CC. Direct evidence of ZnO morphology modification via the selective adsorption of ZnO-binding peptides. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02124e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Song L, Liu Y, Chen J. Inorganic binding peptide-mediated immobilization based on baculovirus surface display system. J Basic Microbiol 2010; 50:457-64. [PMID: 20806244 DOI: 10.1002/jobm.200900359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biomolecule-mediated assembly of novel composites has been the subject of numerous investigations during the last years, providing new insights into material science and engineering. Via molecular biology technology, we were able to introduce the genetically engineered polypeptide for inorganics (GEPI) as a molecular binder into biomolecules such as phage viruses, to assemble hybrid functional nanoarchitectures. In the present work, we introduced a novel nanocomposite comprising the Autographa californica nuclear polyhedrosis virus (AcNPV) and nanoparticles bound to it. Our results show that a GEPI-encoding gene was successfully introduced by recombination into a eukaryotic expression bacmid and finally displayed outside of the AcNPV after transfection into Sf9 insect cells using the Bac-to-Bac baculovirus expression system. The recombinant baculovirus maintained both the viral infectivity and the specific binding activity of the GEPI. The construction of the gene in the recombinant plasmid was examined by polymerase chain reaction analysis and enzymatic digestion identification, and verified by gene sequencing. Surface display of the fused peptide was revealed by Western blot analysis in dissolution studies and determined by immuno- gold electron microscopy. Adherence of nanoparticles to the recombinant baculovirus was visualized by transmission electron microscopy analysis. Here, we demonstrated the possibilities of combining peptide-mediated immobilization with baculovirus surface display technology.
Collapse
Affiliation(s)
- Lei Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | | | | |
Collapse
|
29
|
Vallee A, Humblot V, Pradier CM. Peptide interactions with metal and oxide surfaces. Acc Chem Res 2010; 43:1297-306. [PMID: 20672797 DOI: 10.1021/ar100017n] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing interest in bio-interfaces for medical, diagnostic, or biotechnology applications has highlighted the critical scientific challenge behind both the understanding and control of protein-solid surface interactions. In this context, this Account focuses on the molecular-level characterization of the interactions of peptides, ranging in size from a few amino acids to long sequences, with metal and oxide surfaces. In this Account, we attempt to fill the gap between the well-known basic studies of the interaction of a single amino acid with well-defined metal surfaces and the investigations aimed at controlling biocompatibility or biofilm growth processes. We gather studies performed with surface science tools and macroscopic characterization techniques along with those that use modeling methods, and note the trends that emerge. Sulfur drives the interaction of cysteine-containing peptides with metal surfaces, particularly gold. Moreover, intermolecular interactions, such as hydrogen bonds may induce surface self assembly and chiral arrangements of the peptide layer. Depending on the solvent pH and composition, carboxylates or amino groups may also interact with the surface, which could involve conformational changes in the adsorbed peptide. On oxide surfaces such as titania or silica, researchers have identified carboxylate groups as the preferential peptide binding groups because of their strong electrostatic interactions with the charged surface. In high molecular weight peptides, systematic studies of their interaction with various oxide surfaces point to the preferential interaction of certain peptide sequences: basic residues such as arginine assume a special role. Researchers have successfully used these observations to synthesize adhesive sequences and initiate biomineralization. Studies of the interaction of peptides with nanoparticles have revealed similar binding trends. Sulfur-containing peptides adhere preferentially to gold nanoparticles. Peptides containing aromatic nitrogen also display a high affinity for various inorganic nanoparticles. Finally, we describe a novel class of peptides, genetically engineered peptides for inorganics (GEPIs), which are selected from a phage display protocol for their high binding affinity for inorganic surfaces. Extended investigations have focused on the mechanisms of the molecular binding of these peptides to solid surfaces, in particular the high binding affinity of some sulfur-free sequences of GEPIs to gold or platinum surfaces. We expect that this clearer view of the possible preferential interactions between peptides and inorganic surfaces will facilitate the development of new, more focused research in various fields of biotechnology, such as biocompatibility, biomimetics, or tissue engineering.
Collapse
Affiliation(s)
- Anne Vallee
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Case 178, 75252 Paris Cedex 05, France
| | - Vincent Humblot
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Case 178, 75252 Paris Cedex 05, France
| | - Claire-Marie Pradier
- Laboratoire de Réactivité de Surface, UMR CNRS 7197, Université Pierre et Marie Curie Paris 6, 4 place Jussieu, Case 178, 75252 Paris Cedex 05, France
| |
Collapse
|
30
|
Bio-inorganic Synthesis of ZnO Powders Using Recombinant His-tagged ZnO Binding Peptide as a Promoter. Protein J 2010; 29:516-23. [DOI: 10.1007/s10930-010-9282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 2010; 21:412-25. [DOI: 10.1016/j.copbio.2010.07.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 12/18/2022]
|
32
|
Screening of peptides with a high affinity for ZnO using spot-synthesized peptide arrays and computational analysis. Acta Biomater 2010; 6:2301-6. [PMID: 20026000 DOI: 10.1016/j.actbio.2009.12.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 11/17/2009] [Accepted: 12/10/2009] [Indexed: 01/13/2023]
Abstract
Metal-binding peptides have attracted attention for their usefulness in biomineralization processes. In this work screening of high affinity peptides against ZnO was performed using a combinatorial library approach with a peptide array and computational analysis. The computationally assisted peptide screening and design enabled identification of linear peptides with affinity for ZnO with limited experimentation. Starting with the screening data obtained from a random 6-mer library of 420 sequences, the characteristics of the peptides with high ZnO affinity were analyzed using a fuzzy neural network algorithm by comparison of high and low affinity peptides. Three physical properties of amino acids (hydrophobicity, isoelectric point and size) and positional information of each residue were analyzed and a peptide rule with restricted amino acids at certain positions was extracted. The average affinity for ZnO increased 2.0-fold when 300 sequences were synthesized according to the restricted random library, compared with the non-restricted library. In addition, for a peptide library with the amino acids at the restricted sites exchanged the average binding capacity decreased to 0.7-fold. Interestingly, the peptides with high ZnO affinity obtained exhibited binding specificity for ZnO. Computationally assisted screening is an invaluable means for finding peptides with limited experimentation.
Collapse
|
33
|
Okochi M, Sugita T, Furusawa S, Umetsu M, Adschiri T, Honda H. Peptide array-based characterization and design of ZnO-high affinity peptides. Biotechnol Bioeng 2010; 106:845-51. [DOI: 10.1002/bit.22772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Baculoviral capsid display of His-tagged ZnO inorganic binding peptide. Cytotechnology 2010; 62:133-41. [PMID: 20407822 DOI: 10.1007/s10616-010-9269-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 03/30/2010] [Indexed: 10/19/2022] Open
Abstract
Virus-templated fabrication of compound structures can be made through incorporating the specifically inorganic-binding peptide into the viral scaffold, widely used is phage display system. Compared to prokaryotic phages, insect cell-based baculovirus has some strengths such as the adaptability to the proteins' posttranslational modification and non-replication in mammalian cells. As an attempt to explore the baculovirus-mediated bioconjugates, we show in this study that a genetically engineered baculovirus, with a hexahistidine (His(6)) tagged ZnO binding peptide fused to the N-terminus of the viral capsid protein vp39 of AcNPV, was constructed. It maintains both the viral infectivity and the fusion protein's activity. The presence of the fusion protein on the baculovirus particle was demonstrated by western blot analysis of purified budded virus. Its display on the virus capsid was revealed by virus fractionation analysis. The binding of nanosized ZnO powders to the virus capsid was visualized by transmission electron microscopy (TEM). This is the first report of the display of the inorganic-binding peptide on the capsid of eukaryotic baculovirus. Aimed at the nanomaterials' application in the biological field, this research could find useful in the biotracking of the baculovirus transduction process and the preparation of novel functional nanodevices.
Collapse
|
35
|
Estephan E, Larroque C, Bec N, Martineau P, Cuisinier FJG, Cloitre T, Gergely C. Selection and mass spectrometry characterization of peptides targeting semiconductor surfaces. Biotechnol Bioeng 2010; 104:1121-31. [PMID: 19634182 DOI: 10.1002/bit.22478] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report on elaboration of 12-mer peptides that reveal specific recognition for the following semiconductor (SC) surfaces: GaAs(100), InAs(100), GaN(0001), ZnSe(100), ZnTe(100), GaAs(111)A, GaSb(100), CdSe(100). A M13 bacteriophage library was used to screen 10(9) different 12-mer peptides against these substrates to finally isolate, in maximum six amplification cycles, peptides that bind to the target surfaces. The specific peptides for the InAs and ZnSe surfaces were obtained. Contrary, for the other SC surfaces several peptides with high affinities have been isolated. Aiming for a better specificity, when the phage display has been conducted through six cycles, the screening procedure got dominated by a phage present in the M13 bacteriophage library and the SVSVGMKPSPRP peptide has been selected for different SCs. The high amplification potential of this phage has been observed previously with different targets. Thus, precaution should be undertaken in defining adhesion peptides with the phage display technique and real affinity of the obtained biolinkers should be studied with other methods. We employed mass spectrometry (MALDI-TOF/TOF) to demonstrate the preferential attachment (or not) of the SVSVGMKPSPRP peptide to the different SC surfaces. This allows us to define a realistic selection of the expressed peptides presenting affinity for the studied eight SC surfaces. We demonstrate that with increasing the dielectric constants of the employed solvents, adhesion of the SVSVGMKPSPRP peptide onto GaN(0001) is hindered.
Collapse
|
36
|
Hayashi T, Sano KI, Shiba K, Iwahori K, Yamashita I, Hara M. Critical amino acid residues for the specific binding of the Ti-recognizing recombinant ferritin with oxide surfaces of titanium and silicon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10901-10906. [PMID: 19735142 DOI: 10.1021/la901242q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interactions of ferritins fused with a Ti-recognizing peptide (RKLPDA) and their mutants with titanium oxide substrates were explored with an atomic force microscope (AFM). The amino acid sequence of the peptide was systematically modified to elucidate the role of each amino acid residue in the specific interaction. Force measurements revealed a clear correlation among the sequences in the N-terminal domain of ferritin, surface potentials, and long-range electrostatic interactions. Measurements of adhesion forces clearly revealed that hydrogen bonds take part in the specific binding as well as the electrostatic interaction between charged residues and surface charges of Ti oxides. Moreover, our results indicated that not only the charged and polar residues but also a neutral residue (proline) govern the strength of the specific binding, with the order of the residues also being significant. These results demonstrate that the local structure of the peptide governs the special arrangement of charged residues and strongly affects the strength of the bindings.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Integral membrane proteins are important biological macromolecules with structural features and functionalities that make them attractive targets for nanotechnology. I provide here a broad review of current activity in nanotechnology related to membrane proteins, including their application as nanoscale sensors, switches, components of optical devices and as templates for self-assembled arrays.
Collapse
|
38
|
DFT periodic study of adsorption of glycine on the (0001) surface of zinc terminated ZnO. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Tamerler C, Sarikaya M. Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1705-1726. [PMID: 19376767 DOI: 10.1098/rsta.2009.0018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nature provides inspiration for designing materials and systems that derive their functions from highly organized structures. Biological hard tissues are hybrid materials having inorganics within a complex organic matrix, the molecular scaffold controlling the inorganic structures. Biocomposites incorporate both biomacromolecules such as proteins, lipids and polysaccharides, and inorganic materials, such as hydroxyapatite, silica, magnetite and calcite. The ordered organization of hierarchical structures in organisms begins via the molecular recognition of inorganics by proteins that control interactions and is followed by the highly efficient self-assembly across scales. Following the molecular biological principle, proteins could also be used in controlling materials formation in practical engineering via self-assembled, hybrid, functional materials structures. In molecular biomimetics, material-specific peptides could be the key in the molecular engineering of biology-inspired materials. With the recent developments of nanoscale engineering in physical sciences and the advances in molecular biology, we now combine genetic tools with synthetic nanoscale constructs to create a novel methodology. We first genetically select and/or design peptides with specific binding to functional solids, tailor their binding and assembly characteristics, develop bifunctional peptide/protein genetic constructs with both material binding and biological activity, and use these as molecular synthesizers, erectors and assemblers. Here, we give an overview of solid-binding peptides as novel molecular agents coupling bio- and nanotechnology.
Collapse
Affiliation(s)
- Candan Tamerler
- Genetically Engineered Materials Science and Engineering Center, University of WashingtonSeattle, WA 98195, USA
| | | |
Collapse
|
40
|
Dickerson MB, Sandhage KH, Naik RR. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem Rev 2008; 108:4935-78. [PMID: 18973389 DOI: 10.1021/cr8002328] [Citation(s) in RCA: 650] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew B. Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Kenneth H. Sandhage
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Rajesh R. Naik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| |
Collapse
|
41
|
Shiba K. Functionalization of carbon nanomaterials by evolutionary molecular engineering: Potential application in drug delivery systems. J Drug Target 2008; 14:512-8. [PMID: 17046797 DOI: 10.1080/10611860600845033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
By virtue of the progress made in evolutionary molecular engineering, peptide aptamers that specifically recognize target molecules are now routinely created using a peptide phage display system. The system was originally developed for isolating peptides that specifically recognized biomacromolecules (e.g. proteinous receptors), but are now also being used to acquire peptide motifs that bind to inorganic materials, such as semiconductors, metals and carbon nanomaterials. We have created the peptide aptamer against carbon nanohorns, a vesicular carbon nanomaterial whose size is 80-100 nm in diameter. By combining the peptide motif that has affinity to the surfaces of carbon nanohorns with peptide aptamers that can target specific organs, we can functionalize the carbon nanomaterial to provide novel types of carriers for drug delivery systems.
Collapse
Affiliation(s)
- Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, CREST/JST, Tokyo, Japan.
| |
Collapse
|
42
|
Chen H, Su X, Neoh KG, Choe WS. Probing the interaction between peptides and metal oxides using point mutants of a TiO2-binding peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:6852-6857. [PMID: 18533692 DOI: 10.1021/la800314p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
An increasing number of peptides with specific binding affinity to inorganic materials are being isolated using combinatorial peptide libraries without prior knowledge about the interaction between peptides and target materials. The lack of understanding of the mechanism and the contribution of constituent amino acids to the peptides' inorganic-binding ability poses an obstacle to optimizing and tuning of the binding affinity of peptides to inorganic materials and thus hinders the practical application of these peptides. Using the phage surface display technique, we previously identified a disulfide-bond-constrained peptide (-CHKKPSKSC-, STB1) cognitive of TiO2. In the present study, the interaction of STB1 with TiO2 was probed using a series of point mutants of STB1 displayed on phage surfaces. Their binding affinity was measured using a quartz crystal microbalance with energy dissipation measurement and compared on the basis of the delta f or delta D values. The three K residues of STB1 were found to be essential and sufficient for phage particle binding to TiO2. One mutant with five K residues showed not stronger but weaker binding affinity than STB1 due to its conformational restriction, as illustrated by molecular dynamics simulation, to align five K residues in a way conducive to their simultaneous interaction with the TiO2 surface. The contextual influence of noncharged residues on STB1's binding affinity was also investigated. Our results may provide insight into the electrostatic interaction between peptides and inorganic surfaces.
Collapse
Affiliation(s)
- Haibin Chen
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | | | | | | |
Collapse
|
43
|
“Bottom-up” approach for implementing nano/microstructure using biological and chemical interactions. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931092] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Patwardhan SV, Patwardhan G, Perry CC. Interactions of biomolecules with inorganic materials: principles, applications and future prospects. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b704075j] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Artzy Schnirman A, Zahavi E, Yeger H, Rosenfeld R, Benhar I, Reiter Y, Sivan U. Antibody molecules discriminate between crystalline facets of a gallium arsenide semiconductor. NANO LETTERS 2006; 6:1870-4. [PMID: 16967993 DOI: 10.1021/nl0607636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Seamless integration of biomolecules with manmade materials will most likely rely on molecular recognition and specific binding. In the following we show that combinatorial antibody libraries, based on the vast repertoire of the human immune system, can be harnessed to generate such binders. As a demonstration, we isolate antibody fragments that discriminate and bind selectively GaAs (111A) facets as opposed to GaAs (100). The isolated antibodies are utilized for exclusive localization of a fluorescent dye on (111A) surfaces in a structure comprising a mixture of (100) and (111A) surfaces. The potential importance of structure rigidity to facet recognition is suggested vis-a-vis published experiments with short and longer peptides.
Collapse
Affiliation(s)
- Arbel Artzy Schnirman
- Department of Biology, and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Rice JJ, Schohn A, Bessette PH, Boulware KT, Daugherty PS. Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligands. Protein Sci 2006; 15:825-36. [PMID: 16600968 PMCID: PMC2242469 DOI: 10.1110/ps.051897806] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A bacterial display methodology was developed for N- and C-terminal display and demonstrated to enable rapid screening of very large peptide libraries with high precision and efficiency. To overcome limitations of insertional fusion display libraries, a new scaffold was developed through circular permutation of the Escherichia coli outer membrane protein OmpX that presents both N and C termini on the external cell surface. Circularly permuted OmpX (CPX) display was directly compared to insertional fusion display by screening comparable peptide libraries in each format using magnetic and fluorescence activated cell sorting. CPX display enabled in situ measurement of dissociation rate constants with improved accuracy and, consequently, improved affinity discrimination during screening and ranking of isolated clones. Using streptavidin as a model target, bacterial display yielded the well-characterized HP(Q)/(M) motif obtained previously using several alternative peptide display systems, as well as three additional motifs (L(I)/(V) CQNVCY, CGWMY(F)/(Y)xEC, ERCWYVMHWPCNA). Using CPX display, a very high affinity streptavidin-binding peptide was isolated having a dissociation rate constant k(off) = 0.002sec(-1) even after grafting to the C terminus of an unrelated protein. Comparison of individual clones obtained from insertional fusion and terminal fusion libraries suggests that the N-terminal display yields sequences with greater diversity, affinity, and modularity. CPX bacterial display thus provides a highly effective method for screening peptide libraries to rapidly generate ligands with high affinity and specificity.
Collapse
Affiliation(s)
- Jeffrey J Rice
- Department of Chemical Engineering, University of California, Santa Brabara, 93106, USA
| | | | | | | | | |
Collapse
|
47
|
Hayashi T, Sano KI, Shiba K, Kumashiro Y, Iwahori K, Yamashita I, Hara M. Mechanism underlying specificity of proteins targeting inorganic materials. NANO LETTERS 2006; 6:515-9. [PMID: 16522054 DOI: 10.1021/nl060050n] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Adhesion force analysis using atomic force microscopy clearly revealed for the first time the mechanism underlying the specific binding between a titanium surface and ferritin possessing the sequence of Ti-binding peptide in its N-terminal domain. Our results proved that the specific binding is due to double electrostatic bonds between charged residue and surface groups of the substrate. Furthermore, it is also demonstrated that the accretion of surfactant reduces nonspecific interactions, dramatically enhancing the selectivity and specificity of Ti-binding peptide.
Collapse
Affiliation(s)
- Tomohiro Hayashi
- Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Dai H, Choe WS, Thai CK, Sarikaya M, Traxler BA, Baneyx F, Schwartz DT. Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA binding protein. J Am Chem Soc 2006; 127:15637-43. [PMID: 16262431 DOI: 10.1021/ja055499h] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu(2)O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room-temperature precursor electrolyte. The functional TraI derivative (TraIi1753::CN225) is engineered to possess a cysteine-constrained 12-residue Cu(2)O binding sequence, designated CN225, that is inserted into a permissive site in TraI. When TraIi1753::CN225 is included in the precursor electrolyte, stable Cu(2)O nanoparticles form, even though the concentrations of [Cu(+)] and [OH(-)] are at 5% of the solubility product (K(sp,Cu2O)). Negative control experiments verify that Cu(2)O formation is controlled by inclusion of the CN225 binding sequence. Transmission electron microscopy and electron diffraction reveal a core-shell structure for the nonequilibrium nanoparticles: a 2 nm Cu(2)O core is surrounded by an adsorbed protein shell. Quantitative protein adsorption studies show that the unexpected stability of Cu(2)O is imparted by the nanomolar surface binding affinity of TraIi1753::CN225 for Cu(2)O (K(d) = 1.2 x 10(-)(8) M), which provides favorable interfacial energetics (-45 kJ/mol) for the core-shell configuration. The protein shell retains the DNA-binding traits of TraI, as evidenced by the spontaneous organization of nanoparticles onto circular double-stranded DNA.
Collapse
Affiliation(s)
- Haixia Dai
- Departments of Chemical Engineering, Materials Science and Engineering, and Microbiology, University of Washington, Seattle, WA 98195-1750, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Sano KI, Ajima K, Iwahori K, Yudasaka M, Iijima S, Yamashita I, Shiba K. Endowing a ferritin-like cage protein with high affinity and selectivity for certain inorganic materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2005; 1:826-32. [PMID: 17193533 DOI: 10.1002/smll.200500010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Ken-Ichi Sano
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, CREST, JST, c/o Cancer Institute, Koto, Tokyo 135-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Peelle BR, Krauland EM, Wittrup KD, Belcher AM. Design criteria for engineering inorganic material-specific peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:6929-33. [PMID: 16008405 DOI: 10.1021/la050261s] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Development of a fundamental understanding of how peptides specifically interact with inorganic material surfaces is crucial to furthering many applications in the field of nanobiotechnology. Herein, we report systematic study of peptide sequence-activity relationships for binding to II-VI semiconductors (CdS, CdSe, ZnS, ZnSe) and Au using a yeast surface display system, and we define criteria for tuning peptide affinity and specificity for these material surfaces. First, homohexapeptides of the 20 naturally occurring amino acids were engineered, expressed on yeast surface, and assayed for the ability to bind each material surface in order to define functional groups sufficient for binding. Histidine (H6) was able to mediate binding of yeast to the five materials studied, while tryptophan (W6), cysteine (C6), and methionine (M6) exhibited different levels of binding to single-crystalline ZnS and ZnSe and polycrystalline Au surfaces. The ability of neighboring amino acids to up- and down-modulate histidine binding was then evaluated by use of interdigitated peptides (XHXHXHX). While the 20 amino acids exhibited a unique fingerprint of modulation for each material, some general trends emerged. With neutral defined by alanine, up-modulation occurred with glycine, basic amino acids, and the previously defined binding amino acids histidine, tryptophan, cysteine, and methionine, and down-modulation generally occurred with acidic, polar, and hydrophobic residues. We conclude that certain amino acids directly bind the material surface while neighboring amino acids locally modulate the binding environment for the materials we studied. Therefore, by the specific placement of up- and down-modulating amino acids, material specificity can be controlled. Finally, by employing the compositional and spatial criteria developed herein, it was possible to predictively design peptide sequences with material specificity, including a multimaterial binder, a Au-specific binder, and a ZnS-specific binder, that were verified as such in the context of yeast display.
Collapse
Affiliation(s)
- Beau R Peelle
- Department of Biological Engineering, Biology, Chemical Engineering, and Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|