1
|
Simon G, Casalot L, Valette C, Burot C, Rontani JF, Bonin P. Do carotenoids protect phytodetritus-associated bacteria from oxidative stress? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11167-11178. [PMID: 40198437 PMCID: PMC12014824 DOI: 10.1007/s11356-025-36080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025]
Abstract
This study focused on how carotenoid pigments in bacteria attached to phytoplankton protect them from singlet oxygen produced by phytoplankton during senescence, specifically under illumination of the diatom Thalassiosira sp. Its effect was analyzed on bacterial membrane structure (photooxidation of bacterial membrane lipids such as mono-unsaturated fatty acids (MUFAs) and on DNA repair system in two bacterial species, non-pigmented Pseudomonas stutzeri and pigmented Dinoroseobacter shibae. In P. stutzeri cells, 1O₂ transferred from phytodetritus was not completely scavenged by bacterial membranous MUFAs and reached the cytoplasm, allowing both 1O₂ and UV radiation to cause a rapid response of DNA repair systems. In D. shibae, scavenging by bacterial membrane MUFAs and quenching by spheroidenone allowed only a small fraction of 1O₂ to reach the cytoplasm, as shown by a delayed and lower repair system activation. The fact that Rhodobacteriales is the dominant order in bacterioplankton communities associated with algal blooms could thus be partly due to the protective effect of its constituent carotenoids against 1O₂- and UV-induced damage.
Collapse
Affiliation(s)
- Gwénola Simon
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Laurie Casalot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Corinne Valette
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Christopher Burot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | | | - Patricia Bonin
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| |
Collapse
|
2
|
Gonzalez-Henao S, Schrenk MO. An astrobiological perspective on microbial biofilms: their importance for habitability and production of detectable and lasting biosignatures. Appl Environ Microbiol 2025; 91:e0177824. [PMID: 39927769 PMCID: PMC11921390 DOI: 10.1128/aem.01778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
The search for life elsewhere in the universe has remained one of the main goals of astrobiological exploration. In this quest, extreme environments on Earth have served as analogs to study the potential habitability of Mars and icy moons, which include but are not limited to hydrothermal vent systems, acid lakes, deserts, and polar ice, among others. Within the various forms that life manifests, biofilms constitute one of the most widespread phenotypes and are ubiquitous in extreme environments. Biofilms are structured communities of microorganisms enclosed in a matrix of extracellular polymeric substances (EPS) that protect against unfavorable and dynamic conditions. These concentrated structures and their associated chemistry may serve as unique and persistent signatures of life processes that may aid in their detection. Here we propose biofilms as a model system to understand the habitability of extraterrestrial systems and as sources of recognizable and persistent biosignatures for life detection. By testing these ideas in extreme analog environments on Earth, this approach could be used to guide and focus future exploration of samples encompassing the geologic record of early Earth as well as other planets and moons of our solar system.
Collapse
Affiliation(s)
- Sarah Gonzalez-Henao
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Matthew O Schrenk
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Davidov K, Itzahri S, Sinberger LA, Oren M. Unveiling microbial succession dynamics on different plastic surfaces using WGCNA. PLoS One 2025; 20:e0318843. [PMID: 39913363 PMCID: PMC11801547 DOI: 10.1371/journal.pone.0318843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/22/2025] [Indexed: 02/09/2025] Open
Abstract
Over recent decades, marine microorganisms have increasingly adapted to plastic debris, forming distinct plastic-attached microbial communities. Despite this, the colonization and succession processes on plastic surfaces in marine environments remain poorly understood. To address this knowledge gap, we conducted a microbiome succession experiment using four common plastic polymers (PE, PP, PS, and PET), as well as glass and wood, in a temperature-controlled seawater system over a 2- to 90-day period. We employed long-read 16S rRNA metabarcoding to profile the prokaryotic microbiome's taxonomic composition at five time points throughout the experiment. By applying Weighted Gene Co-expression Network Analysis (WGCNA) to our 16S metabarcoding data, we identified unique succession signatures for 77 bacterial genera and observed polymer-specific enrichment in 39 genera. Our findings also revealed that the most significant variations in microbiome composition across surfaces occurred during the initial succession stages, with potential intra-genus relationships that are linked to surface preferences. This research advances our understanding of microbial succession dynamics on marine plastic debris and introduces a robust statistical approach for identifying succession signatures of specific bacterial taxa.
Collapse
Affiliation(s)
- Keren Davidov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Sheli Itzahri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
4
|
Jia J, Liu Q, Zhao E, Li X, Xiong X, Wu C. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. ECO-ENVIRONMENT & HEALTH 2024; 3:516-528. [PMID: 39605964 PMCID: PMC11599983 DOI: 10.1016/j.eehl.2024.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 05/04/2024] [Indexed: 11/29/2024]
Abstract
Microplastics (MPs) in aquatic environments easily support biofilm development, which can interact with other environmental pollutants and act as harbors for microorganisms. Recently, numerous studies have investigated the fate and behavior of MP biofilms in aquatic environments, highlighting their roles in the spread of pathogens and antibiotic resistance genes (ARGs) to aquatic organisms and new habitats. The prevalence and effects of MP biofilms in aquatic environments have been extensively investigated in recent decades, and their behaviors in aquatic environments need to be synthesized systematically with updated information. This review aims to reveal the development of MP biofilm and its interactions with antibiotics, ARGs, and pathogens in aquatic environments. Recent research has shown that the adsorption capabilities of MPs to antibiotics are enhanced after the biofilm formation, and the adsorption of biofilms to antibiotics is biased towards chemisorption. ARGs and microorganisms, especially pathogens, are selectively enriched in biofilms and significantly different from those in surrounding waters. MP biofilm promotes the propagation of ARGs through horizontal gene transfer (HGT) and vertical gene transfer (VGT) and induces the emergence of antibiotic-resistant pathogens, resulting in increased threats to aquatic ecosystems and human health. Some future research needs and strategies in this review are also proposed to better understand the antibiotic resistance induced by MP biofilms in aquatic environments.
Collapse
Affiliation(s)
- Jia Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qian Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - E. Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
5
|
Wu Z, Thoresen PP, Maršík D, Matsakas L, Kulišová M, Fous K, Maťátková O, Masák J, Rova U, Ytreberg E, Granhag L, Christakopoulos P, Shi Y. High acetone soluble organosolv lignin extraction and its application towards green antifouling and wear-resistant coating. Int J Biol Macromol 2024; 282:137456. [PMID: 39532169 DOI: 10.1016/j.ijbiomac.2024.137456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Marine fouling poses significant challenges to the efficiency and longevity of marine engineering equipment. To address this issue, developing effective marine antifouling coatings is critical to ensure the economic viability, environmental sustainability, and safety of offshore operations. In this study, we developed an innovative green antifouling and wear-resistant coating based on lignin, a renewable and sustainable resource. Lignin is considered environmentally friendly because it is abundant, biodegradable, and reduces reliance on petroleum-based materials. The coating was formulated with a controlled hydrophilic-to-hydrophobic ratio of 2:8, leveraging lignin's unique properties. Applying lignin increased the water contact angle by 14.5 %, improving surface hydrophobicity and contributing to the coating's antifouling efficacy. Moreover, the mechanical strength of the coating was enhanced by approximately 200 %, significantly boosting its durability in harsh marine environments. Additionally, the friction coefficient was reduced by about 85 %, further preventing organism adhesion. These results demonstrate that lignin-based coatings offer a greener alternative to traditional antifouling solutions. The results of this study not only help advance antifouling coating technology but are also consistent with the broader goal of promoting environmental responsibility in marine engineering practice.
Collapse
Affiliation(s)
- Zhipeng Wu
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden
| | - Petter Paulsen Thoresen
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Karel Fous
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Erik Ytreberg
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Lena Granhag
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
6
|
Monràs-Riera P, Avila C, Ballesté E. Plastisphere in an Antarctic environment: A microcosm approach. MARINE POLLUTION BULLETIN 2024; 208:116961. [PMID: 39293370 DOI: 10.1016/j.marpolbul.2024.116961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
Microplastics are present even in remote regions like the Southern Ocean. Once in the water, they are rapidly colonised by marine microorganisms, forming the plastisphere. To address this issue in Antarctic waters, we conducted a microcosm experiment by incubating polypropylene, polyethylene, polystyrene microplastic pellets, and quartz for 33 days on Livingston Island, South Shetland Islands, Antarctica. We analysed plastic colonisation and plastisphere dynamics using scanning electron microscopy, flow cytometry, bacterial cultivation, qPCR, and 16S rRNA gene metabarcoding. Our results show rapid and consistent colonisation, although biomass formation was slightly slower than in other oceans, indicating unique environmental constraints. Time was the main factor influencing biofilm communities, while plastic polymer types had little effect. We observed a transition in microbial communities from early- to late-biofilm stages between days 12 and 19. Additionally, we described the bacterial plastisphere composition in this Antarctic environment, including the presence of hydrocarbon-degrading bacteria.
Collapse
Affiliation(s)
- Pere Monràs-Riera
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Conxita Avila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Dao VQ, Johnson CN, Platt WJ. Prescribed fire regimes influence responses of fungal and bacterial communities on new litter substrates in a brackish tidal marsh. PLoS One 2024; 19:e0311230. [PMID: 39352897 PMCID: PMC11444421 DOI: 10.1371/journal.pone.0311230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Processes modifying newly deposited litter substrates should affect fine fuels in fire-managed tidal marsh ecosystems. Differences in chemical composition and dynamics of litter should arise from fire histories that generate pyrodiverse plant communities, tropical cyclones that deposit wrack as litter, tidal inundation that introduces and alters sediments and microbes, and interactions among these different processes. The resulting diversity and dynamics of available litter compounds should affect microbial (fungal and bacterial) communities and their roles in litter substrate dynamics and ecosystem responses over time. We experimentally examined effects of differences in litter types produced by different fire regimes and litter loads (simulating wrack deposition) on microbial community composition and changes over time. We established replicated plots at similar elevations within frequent tidal-inundation zones of a coastal brackish Louisiana marsh. Plots were located within blocks with different prescribed fire regimes. We deployed different measured loads of new sterilized litter collected from zones in which plots were established, then re-measured litter masses at subsequent collection times. We used DNA sequencing to characterize microbial communities, indicator families, and inferred ecosystem functions in litter subsamples. Differences in fire regimes had large, similar effects on fungal and bacterial indicator families and community compositions and were associated with alternate trajectories of community development over time. Both microbial and plant community compositional patterns were associated with fire regimes, but in dissimilar ways. Differences in litter loads introduced differences in sediment accumulation associated with tidal inundation that may have affected microbial communities. Our study further suggests that fire regimes and tropical cyclones, in the context of frequent tidal inundation, may interactively generate substrate heterogeneities and alter microbial community composition, potentially modifying fine fuels and hence subsequent fires. Understanding microbial community compositional and functional responses to fire regimes and tropical cyclones should be useful in management of coastal marsh ecosystems.
Collapse
Affiliation(s)
- Viet Q Dao
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - William J Platt
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
8
|
Kim HJ, Kim YJ, Kang D, Kim H, Cho S, Lee TK, Lee SH, Jung SW, Kang J. Co-occurrence between key HAB species and particle-attached bacteria and substrate specificity of attached bacteria in the coastal ecosystem. HARMFUL ALGAE 2024; 138:102700. [PMID: 39244235 DOI: 10.1016/j.hal.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/09/2024]
Abstract
The ecological dynamics of particle-attached bacteria (PAB) were observed through changes in the core phytoplankton phycosphere, and were associated with the dynamics of free-living bacteria (FLB) using metabarcoding and microscopic analyses over 210 days (with weekly sampling intervals) in the Jangmok coastal ecosystem, South Korea. Cluster analysis and non-metric multidimensional scaling classified the phytoplankton community into six groups comprising core phytoplankton species, including the harmful algal species Akashiwo sanguinea (dinoflagellate) in late autumn, Teleaulax amphioxeia (cryptomonads) in early winter and spring, Skeletonema marinoi-dohrnii complex (diatom) in winter, Pseudo-nitzschia delicatissima (diatom) in early spring, and diatom complexes such as Chaetoceros curvisetus and Leptocylindrus danicus in late spring. We identified 59 and 32 indicators in PAB and FLB, respectively, which rapidly changed with the succession of the six core phytoplankton species. The characteristics of PAB were mainly divided into "Random encounters" or "Attraction of motivation by chemotaxis." When Akashiwo sanguinea bloomed, bacteria of the genera Kordiimonas and Polaribacter, which are commonly observed in PAB and FLB, indicated "Random encounter" characteristics. In addition, Sedimenticola of PAB was uniquely presented in Akashiwo sanguinea, exhibiting characteristics of "Attraction of motivation by chemotaxis." In contrast, FLB followed the strategy of "Random encounters" because it was not affected by specific habitats and energy sources. Thus, many common bacteria were PAB and FLB, thereby dictating the bacteria's strategy of "Random encounters." "Attraction of motivation by chemotaxis" has characteristics of the species-specific interactions between PAB and specific harmful algal species, and is potentially influenced by organic matter of core phytoplankton cell surface and/or EPS released from phytoplankton.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Donhyug Kang
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Hansoo Kim
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Sungho Cho
- Maritime Security and Safety Research Center, Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea; Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| | - Sang Heon Lee
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Junsu Kang
- Ballast Water Research Center, Korea Institute of Ocean Science & Technology, Geoje, 53201, Republic of Korea
| |
Collapse
|
9
|
Hong H, Lv J, Deng A, Tang Y, Liu Z. A review of experimental Assessment Processes of material resistance to marine and freshwater biofouling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120766. [PMID: 38565032 DOI: 10.1016/j.jenvman.2024.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.
Collapse
Affiliation(s)
- Heting Hong
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China; Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China.
| | - Jiawen Lv
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Aijuan Deng
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| | - Yang Tang
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| | - Zhixiong Liu
- Wuhan Regional Climate Center, Hubei Meteorological Bureau, Wuhan, 430074, China
| |
Collapse
|
10
|
Daille LK, Spear JR, Beech I, Vargas IT, De la Iglesia R. Seasonal variation in the biological succession of marine diatoms over 316L stainless steel in a coastal environment of Chile. BIOFOULING 2024; 40:1-13. [PMID: 38213232 DOI: 10.1080/08927014.2023.2300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.
Collapse
Affiliation(s)
- Leslie K Daille
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, RM, Chile
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, RM, Chile
| | - John R Spear
- Department of Civil and Environmental Engineering, CO School of Mines, Golden, CO, USA
| | - Iwona Beech
- Center for Biofilm Engineering, MT State University, Bozeman, MT, USA
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Facultad de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, RM, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago, RM, Chile
| | - Rodrigo De la Iglesia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, RM, Chile
- Marine Energy Research & Innovation Center (MERIC), Santiago, RM, Chile
| |
Collapse
|
11
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
12
|
Ge Z, Lu X. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122691. [PMID: 37797922 DOI: 10.1016/j.envpol.2023.122691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Xie M, Lv M, Zhao Z, Li L, Jiang H, Yu Y, Zhang X, Liu P, Chen J. Plastisphere characterization in habitat of the highly endangered Shinisaurus crocodilurus: Bacterial composition, assembly, function and the comparison with surrounding environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165807. [PMID: 37506917 DOI: 10.1016/j.scitotenv.2023.165807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Plastisphere is a new niche for microorganisms that complicate the ecological effects of plastics, and may profoundly influence biodiversity and habitat conservation. The DaGuishan National Nature Reserve, one of the largest habitats of the highly endangered crocodile lizard (Shinisaurus crocodilurus), is experiencing plastic pollution without sufficient attention. Here, plastisphere collected from captive tanks of crocodile lizards in this nature reserve was characterized for the first time. Three types of plastic (PE-PP, PE1, and PE2) together with the surrounding water and soil samples, were collected, and 16S rRNA sequencing technology was used to characterize the bacterial composition. The results demonstrated that plastisphere was driven by stochastic process and had a distinct bacterial community with higher diversity than that in surrounding water (p < 0.05). Bacteria related to nitrogen and carbon cycles (Pseudomonas psychrotolerans, Methylobacterium-Methylorubrum) were more abundant in plastisphere than in water or soil (p < 0.05). More importantly, plastics recruited pathogens and those bacteria function in antibiotic resistant genes (ARGs) coding. Bacteria related to polymer degradation also proliferated in plastisphere, especially Bacillus subtilis with a fold change of 42.01. The PE2 plastisphere, which had the lowest diversity and was dominated by Methylobacterium-Methylorubrum differed from PE 1 and PE-PP plastispheres totally. Plastics' morphology and aquatic nutrient levels contributed to the heterogeneity of different plastispheres. Overall, this study demonstrated that plastispheres diversify in composition and function, affecting ecosystem services directly or indirectly. Pathogens and bacteria related to ARGs expression enriched in the plastisphere should not be ignored because they may threaten the health of crocodile lizards by increasing the risk of infection. Plastic pollution control should be included in conservation efforts for crocodile lizards. This study provides new insights into the potential impacts of plastisphere, which is important for ecological risk assessments of plastic pollution in the habitats of endangered species.
Collapse
Affiliation(s)
- Mujiao Xie
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Mei Lv
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
14
|
Wang H, Zhu Z, Zhang L, Liu X, Sun W, Yan F, Zhou Y, Wang Z, Wang X, Wei C, Lai J, Chen Q, Zhu D, Zhang Y. The hind information: Exploring the impact of physical damage on mask microbial composition in the aquatic environment. ENVIRONMENTAL RESEARCH 2023; 237:116917. [PMID: 37611784 DOI: 10.1016/j.envres.2023.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Due to poor management and the lack of environmental awareness, lots of masks (an emerging form of plastic pollution) are discarded into the environment during the COVID-19, thereby jeopardizing the health of humans and the environment. Our study introduces a novel perspective by examining the impact of physical damage on the microbial composition of masks in the water environment. We focus on the variations in biofilm formation on each layer of both damaged and undamaged masks, which allows us to understand more about the biofilm on each layer and the significant changes that occur when masks are physically damaged. Research has shown that the community structure of microorganisms on discarded masks can be altered in just ten days, showing an evolution from undifferentiated pioneer colonizing species ("non-picky") to adaptive dominant species ("picky"). Especially, considering that discarded masks were inevitably damaged, we found that the biomass on the damaged samples is 1.62-2.38 times higher than that of the undamaged samples, respectively. Moreover, the microbial community structure on it was also significantly different. Genes involved in biogeochemical cycles of nutrients are more enriched in damaged masks. When damaged, the colonization process and community structure in the middle layer significantly differ from those in the inner and outer layers and even enrich more pathogenic bacteria. Based on the above, it is evident that the environmental risk of masks cannot be assessed as a whole, and the middle layer carries a higher risk.
Collapse
Affiliation(s)
- Hu Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zixian Zhu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xiaohui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Weihong Sun
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Feifei Yan
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yuxin Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, Hubei, PR China
| | - Xiaofeng Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Chunyan Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Lai
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China.
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
15
|
Xiao S, Zhang Y, Wu Y, Li J, Dai W, Pang K, Liu Y, Wu R. Bacterial community succession and the enrichment of antibiotic resistance genes on microplastics in an oyster farm. MARINE POLLUTION BULLETIN 2023; 194:115402. [PMID: 37611336 DOI: 10.1016/j.marpolbul.2023.115402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Microplastics can be colonized by microorganisms and form plastisphere. However, knowledge of bacterial community succession and the enrichment of antibiotic resistance genes (ARGs) and pathogens on microplastics in aquaculture environments is limited. Here, we conducted a 30-day continuous exposure experiment at an oyster farm. Results showed that the alpha-diversity of communities on most microplastics continuously increased and was higher than in planktonic communities after 14 days. Microplastics could selectively enrich certain bacteria from water which can live a sessile lifestyle and promote colonization by other bacteria. The composition and function of plastisphere communities were distinct from those in the surrounding water and influenced by polymer type and exposure time. Microplastics can enrich ARGs (sul1, qnrS and blaTEM) and harbor potential pathogens (e.g., Pseudomonas aeruginosa). Therefore, microplastic pollution may pose a critical threat to aquaculture ecosystems and human health. Our study provides further insight into the ecological risks of microplastics.
Collapse
Affiliation(s)
- Shijie Xiao
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Yang Zhang
- The key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Yongjie Wu
- The key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Jincai Li
- The key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Weijie Dai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kuo Pang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China,.
| | - Renren Wu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China,; The key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China,.
| |
Collapse
|
16
|
Malik N, Lakhawat SS, Kumar V, Sharma V, Bhatti JS, Sharma PK. Recent advances in the omics-based assessment of microbial consortia in the plastisphere environment: Deciphering the dynamic role of hidden players. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2023; 176:207-225. [DOI: 10.1016/j.psep.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
17
|
Khandeparker L, Desai DV, Teja Mittireddi R, Panda E, Hede N, Mapari K. Efficacy of amorphous TiO x-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies. BIOFOULING 2023; 39:853-866. [PMID: 37965754 DOI: 10.1080/08927014.2023.2279997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
Collapse
Affiliation(s)
- Lidita Khandeparker
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Dattesh V Desai
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Ravi Teja Mittireddi
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Emila Panda
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Niyati Hede
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Kaushal Mapari
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| |
Collapse
|
18
|
Rontani JF, Bonin P. Cellular Damage of Bacteria Attached to Senescent Phytoplankton Cells as a Result of the Transfer of Photochemically Produced Singlet Oxygen: A Review. Microorganisms 2023; 11:1565. [PMID: 37375067 PMCID: PMC10303659 DOI: 10.3390/microorganisms11061565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies set out to explain the presence of high proportions of photooxidation products of cis-vaccenic acid (generally considered to be of bacterial origin) in marine environments. These studies show that these oxidation products result from the transfer of singlet oxygen from senescent phytoplankton cells to the bacteria attached to them in response to irradiation by sunlight. This paper summarizes and reviews the key findings of these studies, i.e., the demonstration of the process at work and the effect of different parameters (intensity of solar irradiance, presence of bacterial carotenoids, and presence of polar matrices such as silica, carbonate, and exopolymeric substances around phytoplankton cells) on this transfer. A large part of this review looks at how this type of alteration of bacteria can affect the preservation of algal material in the marine environment, especially in polar regions where conditions drive increased transfer of singlet oxygen from sympagic algae to bacteria.
Collapse
Affiliation(s)
- Jean-François Rontani
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France;
| | | |
Collapse
|
19
|
Bitalac JMS, Lantican NB, Gomez NCF, Onda DFL. Attachment of potential cultivable primo-colonizing bacteria and its implications on the fate of low-density polyethylene (LDPE) plastics in the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131124. [PMID: 36871466 DOI: 10.1016/j.jhazmat.2023.131124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plastics released in the environment become suitable matrices for microbial attachment and colonization. Plastics-associated microbial communities interact with each other and are metabolically distinct from the surrounding environment. However, pioneer colonizing species and their interaction with the plastic during initial colonization are less described. Marine sediment bacteria from sites in Manila Bay were isolated via a double selective enrichment method using sterilized low-density polyethylene (LDPE) sheets as the sole carbon source. Ten isolates were identified to belong to the genera Halomonas, Bacillus, Alteromonas, Photobacterium, and Aliishimia based on 16S rRNA gene phylogeny, and majority of the taxa found exhibit a surface-associated lifestyle. Isolates were then tested for their ability to colonize polyethylene (PE) through co-incubation with LDPE sheets for 60 days. Growth of colonies in crevices, formation of cell-shaped pits, and increased roughness of the surface indicate physical deterioration. Fourier-transform infrared (FT-IR) spectroscopy revealed significant changes in the functional groups and bond indices on LDPE sheets separately co-incubated with the isolates, demonstrating that different species potentially target different substrates of the photo-oxidized polymer backbone. Understanding the activity of primo-colonizing bacteria on the plastic surface can provide insights on the possible mechanisms used to make plastic more bioavailable for other species, and their implications on the fate of plastics in the marine environment.
Collapse
Affiliation(s)
- Justine Marey S Bitalac
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines; Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Nacita B Lantican
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Norchel Corcia F Gomez
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines; Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, 4031 Laguna, Philippines
| | - Deo Florence L Onda
- The Marine Science Institute, University of the Philippines Diliman, 1101 Quezon City, Philippines.
| |
Collapse
|
20
|
What Glues the Glue to the Cell Surface? J Bacteriol 2022; 204:e0038622. [PMID: 36286485 PMCID: PMC9664948 DOI: 10.1128/jb.00386-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the
Caulobacterales
, a highly adhesive polysaccharide called the holdfast mediates attachment to exogenous surfaces. The mechanism by which this polysaccharide is anchored to the cell envelope is not well defined.
Collapse
|
21
|
Díaz-Abad L, Bacco-Mannina N, Miguel Madeira F, Serrao EA, Regalla A, Patrício AR, Frade PR. Red, Gold and Green: Microbial Contribution of Rhodophyta and Other Algae to Green Turtle ( Chelonia mydas) Gut Microbiome. Microorganisms 2022; 10:microorganisms10101988. [PMID: 36296266 PMCID: PMC9610419 DOI: 10.3390/microorganisms10101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.
Collapse
Affiliation(s)
- Lucía Díaz-Abad
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- IMBRSea, International Master of Science in Marine Biological Resources, IMBRSea Universities Consortium, 9000 Ghent, Belgium
| | | | - Fernando Miguel Madeira
- cE3c—Centre for Ecology, Evolution and Environmental Changes, CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Ester A. Serrao
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- CIBIO/InBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Aissa Regalla
- IBAP—Instituto da Biodiversidade e das Áreas Protegidas Dr. Alfredo Simão da Silva, Bissau 1220, Guinea-Bissau
| | - Ana R. Patrício
- MARE—Marine and Environmental Sciences Centre, Ispa—Instituto Universitário, 1149-041 Lisbon, Portugal
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, Cornwall, UK
| | - Pedro R. Frade
- CCMAR—Centre of Marine Sciences, CIMAR, University of Algarve, 8005-139 Faro, Portugal
- Natural History Museum Vienna, 1010 Vienna, Austria
- Correspondence:
| |
Collapse
|
22
|
Singh D, Anand S. Efficacy of a typical clean-in-place protocol against in vitro membrane biofilms. J Dairy Sci 2022; 105:9417-9425. [DOI: 10.3168/jds.2022-21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
|
23
|
do Prado Leite I, Menegotto A, da Cunha Lana P, Júnior LLM. A new look at the potential role of marine plastic debris as a global vector of toxic benthic algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156262. [PMID: 35643140 DOI: 10.1016/j.scitotenv.2022.156262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Marine plastic debris provides a significant surface area for potential colonization by planktonic and benthic harmful microalgae and for the adsorption of their toxins. Furthermore, floating plastics may substantially expand the substrate area available for benthic algae in the ocean, intensifying the transfer of potent toxins through pelagic food webs. In this study, we quantify the available surface area of micro- and macroplastics in different oceanic regions and assess the potential role of floating plastics as vectors for the transfer of toxins from three widespread benthic dinoflagellates, Gambierdiscus spp., Ostreopsis cf. ovata and Prorocentrum lima. To avoid bias associated to the occurrence of benthic algae in deep waters, we selected only records from 0 to 100 m depths. We estimate that 26.8 × 1010 cm2 of plastic surface area is potentially available in surface waters of the global ocean, mostly in the size range of large microplastics (1.01-4.75 mm). Based on the distribution of floating plastics and the habitat suitability of the selected microalgal species, the plastic relative colonization risks will be greater in the Mediterranean Sea and in the subtropical and temperate western margins of the oceans, such as the North American and Asian eastern coasts and, to a lesser extent, southern Brazil and Australia. In places where the colonization of O. cf. ovata cells on floating plastic debris has been properly quantified, such as the Mediterranean and southern Brazil, we estimate a colonization potential of up to 2 × 106 cells km-2 of ocean surface during the regular occurrence period and up to 1.7 × 108 cells km-2 during massive blooms of this species. As plastic pollution and harmful benthic algal blooms have both increased substantially over the past decades, we suggest that their interactive effects can become a major and novel threat to marine ecosystems and human health.
Collapse
Affiliation(s)
- Isabel do Prado Leite
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - André Menegotto
- Department of Ecology, Federal University of Goiás, Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Paulo da Cunha Lana
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Luiz Laureno Mafra Júnior
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil
| |
Collapse
|
24
|
Vaksmaa A, Egger M, Lüke C, Martins PD, Rosselli R, Asbun AA, Niemann H. Microbial communities on plastic particles in surface waters differ from subsurface waters of the North Pacific Subtropical Gyre. MARINE POLLUTION BULLETIN 2022; 182:113949. [PMID: 35932724 DOI: 10.1016/j.marpolbul.2022.113949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The long-term fate of plastics in the ocean and their interactions with marine microorganisms remain poorly understood. In particular, the role of sinking plastic particles as a transport vector for surface microbes towards the deep sea has not been investigated. Here, we present the first data on the composition of microbial communities on floating and suspended plastic particles recovered from the surface to the bathypelagic water column (0-2000 m water depth) of the North Pacific Subtropical Gyre. Microbial community composition of suspended plastic particles differed from that of plastic particles afloat at the sea surface. However, in both compartments, a diversity of hydrocarbon-degrading bacteria was identified. These findings indicate that microbial community members initially present on floating plastics are quickly replaced by microorganisms acquired from deeper water layers, thus suggesting a limited efficiency of sinking plastic particles to vertically transport microorganisms in the North Pacific Subtropical Gyre.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands.
| | - Matthias Egger
- The Ocean Cleanup, Rotterdam, the Netherlands; Egger Research and Consulting, St. Gallen, Switzerland
| | - Claudia Lüke
- Radboud University, Department of Microbiology, Nijmegen, the Netherlands
| | | | - Riccardo Rosselli
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain; LABAQUA S.A.U, C/Dracma 16-18, Pol. Ind. Las Atalayas, 03114 Alicante, Spain
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology & Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
25
|
Kumar M, Kumar R, Chaudhary DR, Jha B. An appraisal of early stage biofilm-forming bacterial community assemblage and diversity in the Arabian Sea, India. MARINE POLLUTION BULLETIN 2022; 180:113732. [PMID: 35594757 DOI: 10.1016/j.marpolbul.2022.113732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The community composition and distribution of early-stage (24 h) biofilm-forming bacteria on two different surfaces (glass slide and polystyrene plastic slide) at three different locations (Diu, Alang and Sikka) were studied using a culture-dependent and next-generation sequencing (NGS) approach in the Arabian Sea, Gujarat, India. The most dominant phyla observed using the NGS approach were the Proteobacteria among the sampling sites. Gammaproteobacteria class dominated both the surfaces among the sites and accounted for 46.7% to 89.2% of total abundance. The culture-dependent analysis showed Proteobacteria and Firmicutes as the dominant phyla on the surfaces within the sampling sites. During the initial colonization, hydrocarbon-degrading bacterial strains have also attached to the surfaces. The outcome of this study would be of great importance for targeting the early stage biofilm-forming and hydrocarbon-degrading bacterial isolates may help to degrade plastic in the marine environment.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Raghawendra Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Bhavnagar, Gujarat 364 002, India.
| |
Collapse
|
26
|
Latva M, Dedman CJ, Wright RJ, Polin M, Christie-Oleza JA. Microbial pioneers of plastic colonisation in coastal seawaters. MARINE POLLUTION BULLETIN 2022; 179:113701. [PMID: 35537304 DOI: 10.1016/j.marpolbul.2022.113701] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e., days to months), but very little data is available regarding the earliest stages of colonisation on buoyant plastics in marine waters (i.e., minutes or hours). We conducted a preliminary study where the earliest hours of microbial colonisation on buoyant plastics in marine coastal waters were investigated by field incubations and amplicon sequencing of the prokaryotic and eukaryotic communities. Our results show that members of the Bacteroidetes group pioneer microbial attachment to plastics but, over time, their presence is masked by other groups - Gammaproteobacteria at first and later by Alphaproteobacteria. Interestingly, the eukaryotic community on plastics exposed to sunlight became dominated by phototrophic organisms from the phylum Ochrophyta, diatoms at the start and brown algae towards the end of the three-day incubations. This study defines the pioneering microbial community that colonises plastics immediately when entering coastal marine environments and that may set the seeding Plastisphere of plastics in the oceans.
Collapse
Affiliation(s)
- Mira Latva
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Craig J Dedman
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Robyn J Wright
- School of Life Sciences, University of Warwick, Coventry, UK; School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Canada
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, UK; IMEDEA (CSIC-UIB), Esporles, Spain
| | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, UK; University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
27
|
Abstract
Lagoons are fragile marine ecosystems that are considerably affected by anthropogenic pollutants. We performed a spatiotemporal characterization of the microbiome of two Moroccan lagoons, Marchica and Oualidia, both classified as Ramsar sites, the former on the Mediterranean coast and the latter on the Atlantic coast. We investigated their microbial diversity and abundance using 16S rRNA amplicon- and shotgun-based metagenomics approaches during the summers of 2014 and 2015. The bacterial microbiome was composed primarily of Proteobacteria (25–53%, 29–29%), Cyanobacteria (34–12%, 11–0.53%), Bacteroidetes (24–16%, 23–43%), Actinobacteria (7–11%, 13–7%), and Verrucomicrobia (4–1%, 15–14%) in Marchica and Oualidia in 2014 and 2015, respectively. Interestingly, 48 strains were newly reported in lagoon ecosystems, while eight unknown viruses were detected in Mediterranean Marchica only. Statistical analysis showed higher microbial diversity in the Atlantic lagoon than in the Mediterranean lagoon and a robust relationship between alpha diversity and geographic sampling locations. This first-ever metagenomics study on Moroccan aquatic ecosystems enriched the national catalog of marine microorganisms. They will be investigated as candidates for bioindication properties, biomonitoring potential, biotechnology valorization, biodiversity protection, and lagoon health assessment.
Collapse
|
28
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
29
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Liu J, Liu Y, Dong W, Li J, Yu S, Wang J, Zuo R. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics. CHEMOSPHERE 2022; 293:133509. [PMID: 34995620 DOI: 10.1016/j.chemosphere.2021.133509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Investigations of the microbial community structures, potential functions and polycyclic aromatic hydrocarbon (PAH) degradation-related genes in PAH-polluted soils are useful for risk assessments, microbial monitoring, and the potential bioremediation of soils polluted by PAHs. In this study, five soil sampling sites were selected at a petrochemical landfill in Beijing, China, to analyze the contamination characteristics of PAHs and their impact on microorganisms. The concentrations of 16 PAHs were detected by gas chromatography-mass spectrometry. The total concentrations of the PAHs ranged from ND to 3166.52 μg/kg, while phenanthrene, pyrene, fluoranthene and benzo [ghi]perylene were the main components in the soil samples. According to the specific PAH ratios, the PAHs mostly originated from petrochemical wastes in the landfill. The levels of the total toxic benzo [a]pyrene equivalent (1.63-107.73 μg/kg) suggested that PAHs might result in adverse effects on soil ecosystems. The metagenomic analysis showed that the most abundant phyla in the soils were Proteobacteria and Actinobacteria, and Solirubrobacter was the most important genus. At the genus level, Bradyrhizobium, Mycobacterium and Anaeromyxobacter significantly increased under PAH stress. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, the most abundant category of functions that are involved in adapting to contaminant pressures was identified. Ten PAH degradation-related genes were significantly influenced by PAH pressure and showed correlations with PAH concentrations. All of the results suggested that the PAHs from the petrochemical landfill could be harmful to soil environments and impact the soil microbial community structures, while microorganisms would change their physiological functions to resist pollutant stress.
Collapse
Affiliation(s)
- Jiayou Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510655, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shihang Yu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
31
|
Djaoudi K, Onrubia JAT, Boukra A, Guesnay L, Portas A, Barry-Martinet R, Angeletti B, Mounier S, Lenoble V, Briand JF. Seawater copper content controls biofilm bioaccumulation and microbial community on microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152278. [PMID: 34902408 DOI: 10.1016/j.scitotenv.2021.152278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The adsorption of trace metals on microplastics (MPs) is affected by the presence of surficial biofilms but their interactions are poorly understood. Here, we present the influence of Cu levels in real seawater (Toulon Bay, NW Mediterranean Sea) on microbial communities and Cu content of the resulting biofilms grown during incubation experiments on high density polyethylene. Two sets of incubation experiments were run with seawater supplied with MPs, sampled in two sites with contrasting Cu levels: Pt12 (most contaminated site) and Pt41P (less contaminated site). For each incubation experiment, 5 treatments were considered differing in Cu concentrations, ranging between 30 and 400 nM and between 6 and 60 nM, for Pt12 and Pt41p, respectively. A control experiment (filtered at 0.2 μm) was run in parallel for each incubation experiment. We observed that, at the time scale of the incubation period, both prokaryotic and eukaryotic richness and diversity were higher in the biofilms formed from the most contaminated site. In addition, we showed that Cu levels are shaping biofilm communities, evidencing co-occurrence patterns between prokaryotes and eukaryotes with diatoms playing a central role. These differences in biofilm formation were reflected in the amount of bioaccumulated Cu per dry weight of MPs, exhibiting higher values in the most contaminated site. Within this site, the increase of Cu seawater content enhanced its bioaccumulation onto MPs until reaching saturation. This study strongly suggests a striking link between seawater copper content, biofilm community shaping and the resulting Cu bioaccumulation onto MPs.
Collapse
Affiliation(s)
- Kahina Djaoudi
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | - Javier Angel Tesán Onrubia
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Amine Boukra
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Lucas Guesnay
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Aurélie Portas
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | | | - Bernard Angeletti
- Aix Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France
| | - Stéphane Mounier
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | - Véronique Lenoble
- Université de Toulon, Aix Marseille Univ., CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, CS 60584, 83041 Toulon, France
| | | |
Collapse
|
32
|
Metcalf R, Oliver DM, Moresco V, Quilliam RS. Quantifying the importance of plastic pollution for the dissemination of human pathogens: The challenges of choosing an appropriate 'control' material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152292. [PMID: 34896491 DOI: 10.1016/j.scitotenv.2021.152292] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Discarded plastic wastes in the environment are serious challenges for sustainable waste management and for the delivery of environmental and public health. Plastics in the environment become rapidly colonised by microbial biofilm, and importantly this so-called 'plastisphere' can also support, or even enrich human pathogens. The plastisphere provides a protective environment and could facilitate the increased survival, transport and dissemination of human pathogens and thus increase the likelihood of pathogens coming into contact with humans, e.g., through direct exposure at beaches or bathing waters. However, much of our understanding about the relative risks associated with human pathogens colonising environmental plastic pollution has been inferred from taxonomic identification of pathogens in the plastisphere, or laboratory experiments on the relative behaviour of plastics colonised by human pathogens. There is, therefore, a pressing need to understand whether plastics play a greater role in promoting the survival and dispersal of human pathogens within the environment compared to other substrates (either natural materials or other pollutants). In this paper, we consider all published studies that have detected human pathogenic bacteria on the surfaces of environmental plastic pollution and critically discuss the challenges of selecting an appropriate control material for plastisphere experiments. Whilst it is clear there is no 'perfect' control material for all plastisphere studies, understanding the context-specific role plastics play compared to other substrates for transferring human pathogens through the environment is important for quantifying the potential risk that colonised plastic pollution may have for environmental and public health.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Vanessa Moresco
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
33
|
Mansky J, Wang H, Ebert M, Härtig E, Jahn D, Tomasch J, Wagner-Döbler I. The Influence of Genes on the "Killer Plasmid" of Dinoroseobacter shibae on Its Symbiosis With the Dinoflagellate Prorocentrum minimum. Front Microbiol 2022; 12:804767. [PMID: 35154034 PMCID: PMC8831719 DOI: 10.3389/fmicb.2021.804767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 01/05/2023] Open
Abstract
The marine bacterium Dinoroseobacter shibae shows a Jekyll-and-Hyde behavior in co-culture with the dinoflagellate Prorocentrum minimum: In the initial symbiotic phase it provides the essential vitamins B12 (cobalamin) and B1 (thiamine) to the algae. In the later pathogenic phase it kills the dinoflagellate. The killing phenotype is determined by the 191 kb plasmid and can be conjugated into other Roseobacters. From a transposon-library of D. shibae we retrieved 28 mutants whose insertion sites were located on the 191 kb plasmid. We co-cultivated each of them with P. minimum in L1 medium lacking vitamin B12. With 20 mutant strains no algal growth beyond the axenic control lacking B12 occurred. Several of these genes were predicted to encode proteins from the type IV secretion system (T4SS). They are apparently essential for establishing the symbiosis. With five transposon mutant strains, the initial symbiotic phase was intact but the later pathogenic phase was lost in co-culture. In three of them the insertion sites were located in an operon predicted to encode genes for biotin (B7) uptake. Both P. minimum and D. shibae are auxotrophic for biotin. We hypothesize that the bacterium depletes the medium from biotin resulting in apoptosis of the dinoflagellate.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Matthias Ebert
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Dieter Jahn
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences – Centre Algatech, Třeboň, Czechia
| | - Irene Wagner-Döbler
- Institute for Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
34
|
Impacts of UV-C irradiation on marine biofilm community succession. Appl Environ Microbiol 2021; 88:e0229821. [PMID: 34936837 DOI: 10.1128/aem.02298-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine biofilms are diverse microbial communities and important ecological habitats forming on surfaces submerged in the ocean. Biofilm communities resist environmental disturbance, making them a nuisance to some human activities ('biofouling'). Anti-fouling solutions rarely address the underlying stability or compositional responses of these biofilms. Using bulk measurements and molecular analyses, we examined temporal and UV-C antifouling-based shifts in marine biofilms in the coastal Western North Atlantic Ocean during early fall. Over a 24-d period, bacterial communities shifted from early dominance of Gammaproteobacteria to increased proportions of Alphaproteobacteria, Bacteroidia and Acidimicrobiia. In a network analysis based on temporal covariance, Rhodobacteraceae (Alphaproteobacteria) nodes were abundant and densely connected with generally positive correlations. In the eukaryotic community, persistent algal, protistan, and invertebrate groups were observed, although consistent temporal succession was not detected. Biofilm UV-C treatment at 13 and 20 days resulted in losses of chlorophyll a and transparent exopolymer particles, indicating biomass disruption. Bacterial community shifts suggested that UV-C treatment decreased biofilm maturation rate and was associated with proportional shifts among diverse bacterial taxa. UV-C treatment was also associated with increased proportions of protists potentially involved in detritivory and parasitism. Older biofilm communities had increased resistance to UV-C, suggesting that early biofilms are more susceptible to UV-C based antifouling. The results suggest that UV-C irradiation is potentially an effective antifouling method in marine environments in terms of biomass removal and in slowing maturation. However, as they mature, biofilm communities may accumulate microbial members that are tolerant or resilient under UV-treatment. Importance Marine biofilms regulate processes from organic matter and pollutant turnover to eukaryotic settlement and growth. Biofilm growth and eukaryotic settlement interfering with human activities via growth on ship hulls, aquaculture operations, or other marine infrastructure are called 'biofouling'. There is a need to develop sustainable anti-fouling techniques by minimizing impacts to surrounding biota. We use the biofouling-antifouling framework to test hypotheses about marine biofilm succession and stability in response to disturbance, using a novel UV-C LED device. We demonstrate strong bacterial biofilm successional patterns and detect taxa potentially contributing to stability under UV-C stress. Despite UV-C-associated biomass losses and varying UV susceptibility of microbial taxa, we detected high compositional resistance among biofilm bacterial communities, suggesting decoupling of disruption in biomass and community composition following UV-C irradiation. We also report microbial covariance patterns over 24 days of biofilm growth, pointing to areas for study of microbial interactions and targeted antifouling.
Collapse
|
35
|
Sanawar H, Kim L, Farhat N, van Loosdrecht M, Vrouwenvelder J. Periodic chemical cleaning with urea: disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes. WATER RESEARCH X 2021; 13:100117. [PMID: 34585132 PMCID: PMC8456046 DOI: 10.1016/j.wroa.2021.100117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Biofouling is one of the major factors causing decline in membrane performance in reverse osmosis (RO) plants, and perhaps the biggest hurdle of membrane technology. Chemical cleaning is periodically carried out at RO membrane installations aiming to restore membrane performance. Typical cleaning agents used in the water treatment industry include sodium hydroxide (NaOH) and hydrochloric acid (HCl) in sequence. Rapid biofilm regrowth and related membrane performance decline after conventional chemical cleaning is a routinely observed phenomenon due to the inefficient removal of biomass from membrane modules. Since extracellular polymeric substances (EPS) make up the strongest and predominant structural framework of biofilms, disintegration of the EPS matrix should be the main target for enhanced biomass removal. Previously, we demonstrated at lab-scale the use of concentrated urea as a chemical cleaning agent for RO membrane systems. The protein denaturation property of urea was exploited to solubilize the proteinaceous foulants, weakening the EPS layer, resulting in enhanced biomass solubilization and removal from RO membrane systems. In this work, we investigated the impact of repeated chemical cleaning cycles with urea/HCl as well as NaOH/HCl on biomass removal and the potential adaptation of the biofilm microbial community. Chemical cleaning with urea/HCl was consistently more effective than NaOH/HCl cleaning over 6 cleaning and regrowth cycles. At the end of the 6 cleaning cycles, the percent reduction was 35% and 41% in feed channel pressure drop, 50% and 70% in total organic carbon, 30% and 40% in EPS proteins, and 40% and 66% in the peak intensities of protein-like matter, after NaOH/HCl cleaning and Urea/HCl cleaning, respectively. 16S ribosomal RNA (rRNA) gene sequencing of the biofilm microbial community revealed that urea cleaning does not select for key biofouling families such as Sphingomonadaceae and Xanthomonadaceae that are known to survive conventional chemical cleaning and produce adhesive EPS. This study reaffirmed that urea possesses all the desirable properties of a chemical cleaning agent, i.e., it dissolves the existing fouling layer, delays fresh fouling accumulation by inhibiting the production of a more viscous EPS, does not cause damage to the membranes, is chemically stable, and environmentally friendly as it can be recycled for cleaning.
Collapse
Affiliation(s)
- H. Sanawar
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - L.H. Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - N.M. Farhat
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - M.C.M. van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - J.S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
36
|
Remple KL, Silbiger NJ, Quinlan ZA, Fox MD, Kelly LW, Donahue MJ, Nelson CE. Coral reef biofilm bacterial diversity and successional trajectories are structured by reef benthic organisms and shift under chronic nutrient enrichment. NPJ Biofilms Microbiomes 2021; 7:84. [PMID: 34853316 PMCID: PMC8636626 DOI: 10.1038/s41522-021-00252-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.
Collapse
Affiliation(s)
- Kristina L. Remple
- grid.410445.00000 0001 2188 0957Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Nyssa J. Silbiger
- grid.253563.40000 0001 0657 9381Department of Biology, California State University, Northridge, CA USA
| | - Zachary A. Quinlan
- grid.263081.e0000 0001 0790 1491Department of Biology, San Diego State University, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Michael D. Fox
- grid.56466.370000 0004 0504 7510Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Linda Wegley Kelly
- grid.263081.e0000 0001 0790 1491Department of Biology, San Diego State University, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - Megan J. Donahue
- grid.410445.00000 0001 2188 0957Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| | - Craig E. Nelson
- grid.410445.00000 0001 2188 0957Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawaiʻi at Mānoa, Honolulu, HI USA
| |
Collapse
|
37
|
González-Pleiter M, Velázquez D, Casero MC, Tytgat B, Verleyen E, Leganés F, Rosal R, Quesada A, Fernández-Piñas F. Microbial colonizers of microplastics in an Arctic freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148640. [PMID: 34246139 DOI: 10.1016/j.scitotenv.2021.148640] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - David Velázquez
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - María Cristina Casero
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid, Spain
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
38
|
Calm and Frenzy: marine obligate hydrocarbonoclastic bacteria sustain ocean wellness. Curr Opin Biotechnol 2021; 73:337-345. [PMID: 34768202 DOI: 10.1016/j.copbio.2021.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
According to current estimates, the annual volume of crude oil entering the ocean due to both anthropogenic activities and naturally occurring seepages reaches approximately 8.3 million metric tons. Huge discharges from accidents have caused large-scale environmental disasters with extensive damage to the marine ecosystem. The natural clean-up of petroleum spills in marine environments is carried out primarily by naturally occurring obligate hydrocarbonoclastic bacteria (OHCB). The natural hosts of OHCB include a range of marine primary producers, unicellular photosynthetic eukaryotes and cyanobacteria, which have been documented as both, suppliers of hydrocarbon-like compounds that fuel the 'cryptic' hydrocarbon cycle and as a source of isolation of new OHCB. A very new body of evidence suggests that OHCB are not only the active early stage colonizers of plastics and hence the important component of the ocean's 'plastisphere' but also encode an array of enzymes experimentally proven to act on petrochemical and bio-based polymers.
Collapse
|
39
|
He D, Zheng J, Ren L, Wu QL. Substrate type and plant phenolics influence epiphytic bacterial assembly during short-term succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148410. [PMID: 34146816 DOI: 10.1016/j.scitotenv.2021.148410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
In natural ecosystems, large amounts of epiphytic bacteria live on the surfaces of submerged plants or non-biological substrates. Although it contributes greatly to host plant health or ecological functions in waters, little is known about the temporal dynamics and assembly mechanisms of epiphytic bacteria. To test whether host plant chemistry leads to divergent community dynamics, we investigated the fine scale temporal community successions of both epiphytic bacteria and the bacterioplankton of the surrounding water in two submerged plants and one non-biological artificial substance. We first observed differentiated epiphytic or surrounding water bacterial communities for different substrates in small spaces (approximately 1 m × 1 m). Selection played dominant roles in affecting the assembly of epiphytic bacteria in the high-phenolic plant Hydrilla verticillata, while for the artificial substance and the low-phenolic plant Vallisneria natans, drift and dispersal drove the assembly of both epiphytic bacteria and bacterioplankton. The higher selection may also contribute to higher turnover rates in both bacterioplankton and epiphytic communities of H. verticillata, with the latter changing drastically in approximately one week. Epiphytic bacteria in H. verticillata developed more complex networks with a higher proportion of positive links, suggesting that more intense interactions such as mutualism or facilitation may exist within epiphytic bacterial communities of the high-phenolic plant. Our results also implied that for the submerged macrophytes used in biological purification, the dynamics of epiphytic biofilm in the purification-related functional capacities might also be considered.
Collapse
Affiliation(s)
- Dan He
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiuwen Zheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lijuan Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino Danish Center for Science and Education, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Characterization of the Microbiome of Corals with Stony Coral Tissue Loss Disease along Florida's Coral Reef. Microorganisms 2021; 9:microorganisms9112181. [PMID: 34835306 PMCID: PMC8623284 DOI: 10.3390/microorganisms9112181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
Stony coral tissue loss disease (SCTLD) is an emergent and often lethal coral disease that was first reported near Miami, FL (USA) in 2014. Our objective was to determine if coral colonies showing signs of SCTLD possess a specific microbial signature across five susceptible species sampled in Florida’s Coral Reef. Three sample types were collected: lesion tissue and apparently unaffected tissue of diseased colonies, and tissue of apparently healthy colonies. Using 16S rRNA high-throughput gene sequencing, our results show that, for every species, the microbial community composition of lesion tissue was significantly different from healthy colony tissue and from the unaffected tissue of diseased colonies. The lesion tissue of all but one species (Siderastrea siderea) had higher relative abundances of the order Rhodobacterales compared with other types of tissue samples, which may partly explain why S. siderea lesions often differed in appearance compared to other species. The order Clostridiales was also present at relatively high abundances in the lesion tissue of three species compared to healthy and unaffected tissues. Stress often leads to the dysbiosis of coral microbiomes and increases the abundance of opportunistic pathogens. The present study suggests that Rhodobacterales and Clostridiales likely play an important role in SCTLD.
Collapse
|
41
|
Coons AK, Busch K, Lenz M, Hentschel U, Borchert E. Biogeography rather than substrate type determines bacterial colonization dynamics of marine plastics. PeerJ 2021; 9:e12135. [PMID: 34603853 PMCID: PMC8445087 DOI: 10.7717/peerj.12135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.
Collapse
Affiliation(s)
- Ashley K Coons
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany.,Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
42
|
Wang J, Lu J, Zhang Y, Wu J, Luo Y. Unique Bacterial Community of the Biofilm on Microplastics in Coastal Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:597-601. [PMID: 32417953 DOI: 10.1007/s00128-020-02875-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Being immersed in seawater for a few days, microorganisms will adhere to the surface of different materials and form biofilms. After being immersed in seawater for 1 week, high-throughput sequencing method was used to analyze the bacterial community structure of the biofilms on the surface of microbeads with different materials including steel, SiO2, and polyvinyl chloride (PVC). Operational taxonomic unit clustering results showed that some differences existed in the bacterial communities attached to the surface of different microbeads. Each microbead made by different material had its unique bacterial community. The heatmap indicated that the dominant genera on the surface of different microbeads were different from each other. Quantitative analysis showed that the relative abundance of dominant genera were different among different types of microbeads. Beta diversity analysis and principal component analysis showed that difference in the bacterial community on surface of steel-bead and PVC-bead was the most significant.
Collapse
Affiliation(s)
- Jianhua Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| | - Yuxuan Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, 264025, Shandong, People's Republic of China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China
| |
Collapse
|
43
|
Matar GK, Ali M, Bagchi S, Nunes S, Liu WT, Saikaly PE. Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. Front Microbiol 2021; 12:708531. [PMID: 34566913 PMCID: PMC8461090 DOI: 10.3389/fmicb.2021.708531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
The relative importance of different ecological processes controlling biofilm community assembly over time on membranes with different surface characteristics has never been investigated in membrane bioreactors (MBRs). In this study, five ultrafiltration hollow-fiber membranes - having identical nominal pore size (0.1μm) but different hydrophobic or hydrophilic surface characteristics - were operated simultaneously in the same MBR tank with a constant flux of 10 liters per square meter per hour (LMH). In parallel, membrane modules operated without permeate flux (0 LMH) were submerged in the same MBR tank, to investigate the passive microbial adsorption onto different hydrophobic or hydrophilic membranes. Samples from the membrane biofilm were collected after 1, 10, 20, and 30days of continuous filtration. The membrane biofilm microbiome were investigated using 16S rRNA gene amplicon sequencing from DNA and cDNA samples. Similar beta diversity trends were observed for both DNA- and cDNA-based analyses. Beta diversity analyses revealed that the nature of the membrane surface (i.e., hydrophobic vs. hydrophilic) did not seem to have an effect in shaping the bacterial community, and a similar biofilm microbiome evolved for all types of membranes. Similarly, membrane modules operated with and without permeate flux did not significantly influence alpha and beta diversity of the membrane biofilm. Nevertheless, different-aged membrane biofilm samples exhibited significant differences. Proteobacteria was the most dominant phylum in early-stage membrane biofilm after 1 and 10days of filtration. Subsequently, the relative reads abundance of the phyla Bacteroidetes and Firmicutes increased within the membrane biofilm communities after 20 and 30days of filtration, possibly due to successional steps that lead to the formation of a relatively aged biofilm. Our findings indicate distinct membrane biofilm assembly patterns with different-aged biofilm. Ecological null model analyses revealed that the assembly of early-stage biofilm community developed after 1 and 10days of filtration was mainly governed by homogenous selection. As the biofilm aged (days 20 and 30), stochastic processes (e.g., ecological drift) started to become important in shaping the assembly of biofilm community.
Collapse
Affiliation(s)
- Gerald K Matar
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Muhammad Ali
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samik Bagchi
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Suzana Nunes
- Biological and Environmental Science and Engineering Division, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Wen-Tso Liu
- 3207 Newmark Civil Engineering Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pascal E Saikaly
- Biological and Environmental Science and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
44
|
Sushmitha TJ, Rajeev M, Sriyutha Murthy P, Ganesh S, Toleti SR, Karutha Pandian S. Bacterial community structure of early-stage biofilms is dictated by temporal succession rather than substrate types in the southern coastal seawater of India. PLoS One 2021; 16:e0257961. [PMID: 34570809 PMCID: PMC8476003 DOI: 10.1371/journal.pone.0257961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023] Open
Abstract
Bacterial communities colonized on submerged substrata are recognized as a key factor in the formation of complex biofouling phenomenon in the marine environment. Despite massive maritime activities and a large industrial sector in the nearshore of the Laccadive Sea, studies describing pioneer bacterial colonizers and community succession during the early-stage biofilm are scarce. We investigated the biofilm-forming bacterial community succession on three substrata viz. stainless steel, high-density polyethylene, and titanium over 15 days of immersion in the seawater intake area of a power plant, located in the southern coastal region of India. The bacterial community composition of biofilms and peripheral seawater were analyzed by Illumina MiSeq sequenced 16S rRNA gene amplicons. The obtained metataxonomic results indicated a profound influence of temporal succession over substrate type on the early-stage biofilm-forming microbiota. Bacterial communities showed vivid temporal dynamics that involved variations in abundant bacterial groups. The proportion of dominant phyla viz. Proteobacteria decreased over biofilm succession days, while Bacteroidetes increased, suggesting their role as initial and late colonizers, respectively. A rapid fluctuation in the proportion of two bacterial orders viz. Alteromonadales and Vibrionales were observed throughout the successional stages. LEfSe analysis identified specific bacterial groups at all stages of biofilm development, whereas no substrata type-specific groups were observed. Furthermore, the results of PCoA and UPGMA hierarchical clustering demonstrated that the biofilm-forming community varied considerably from the planktonic community. Phylum Proteobacteria preponderated the biofilm-forming community, while the Bacteroidetes, Cyanobacteria, and Actinobacteria dominated the planktonic community. Overall, our results refute the common assumption that substrate material has a decisive impact on biofilm formation; rather, it portrayed that the temporal succession overshadowed the influence of the substrate material. Our findings provide a scientific understanding of the factors shaping initial biofilm development in the marine environment and will help in designing efficient site-specific anti-biofouling strategies.
Collapse
Affiliation(s)
- T. J. Sushmitha
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Meora Rajeev
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - P. Sriyutha Murthy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - S. Ganesh
- Department of Chemistry, Scott Christian College, Nagercoil, Tamil Nadu, India
| | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | | |
Collapse
|
45
|
Aires T, Stuij TM, Muyzer G, Serrão EA, Engelen AH. Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Front Microbiol 2021; 12:653998. [PMID: 34434172 PMCID: PMC8381869 DOI: 10.3389/fmicb.2021.653998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.
Collapse
Affiliation(s)
- Tania Aires
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Tamara M Stuij
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ester A Serrão
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CARMABI Foundation, Willemstad, Curaçao
| |
Collapse
|
46
|
Cavalcanti GS, Alker AT, Delherbe N, Malter KE, Shikuma NJ. The Influence of Bacteria on Animal Metamorphosis. Annu Rev Microbiol 2021; 74:137-158. [PMID: 32905754 DOI: 10.1146/annurev-micro-011320-012753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The swimming larvae of many marine animals identify a location on the seafloor to settle and undergo metamorphosis based on the presence of specific surface-bound bacteria. While bacteria-stimulated metamorphosis underpins processes such as the fouling of ship hulls, animal development in aquaculture, and the recruitment of new animals to coral reef ecosystems, little is known about the mechanisms governing this microbe-animal interaction. Here we review what is known and what we hope to learn about how bacteria and the factors they produce stimulate animal metamorphosis. With a few emerging model systems, including the tubeworm Hydroides elegans, corals, and the hydrozoan Hydractinia, we have begun to identify bacterial cues that stimulate animal metamorphosis and test hypotheses addressing their mechanisms of action. By understanding the mechanisms by which bacteria promote animal metamorphosis, we begin to illustrate how, and explore why, the developmental decision of metamorphosis relies on cues from environmental bacteria.
Collapse
Affiliation(s)
- Giselle S Cavalcanti
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Amanda T Alker
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nathalie Delherbe
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Kyle E Malter
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| | - Nicholas J Shikuma
- Viral Information Institute and Department of Biology, San Diego State University, San Diego, California 92182, USA; , , , ,
| |
Collapse
|
47
|
Jacquin J, Callac N, Cheng J, Giraud C, Gorand Y, Denoual C, Pujo-Pay M, Conan P, Meistertzheim AL, Barbe V, Bruzaud S, Ghiglione JF. Microbial Diversity and Activity During the Biodegradation in Seawater of Various Substitutes to Conventional Plastic Cotton Swab Sticks. Front Microbiol 2021; 12:604395. [PMID: 34335485 PMCID: PMC8321090 DOI: 10.3389/fmicb.2021.604395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The European Parliament recently approved a new law banning single-use plastic items for 2021 such as plastic plates, cutlery, straws, cotton swabs, and balloon sticks. Transition to a bioeconomy involves the substitution of these banned products with biodegradable materials. Several materials such as polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), poly(butylene succinate) (PBS), polyhydroxybutyrate-valerate (PHBV), Bioplast, and Mater-Bi could be good candidates to substitute cotton swabs, but their biodegradability needs to be tested under marine conditions. In this study, we described the microbial life growing on these materials, and we evaluated their biodegradability in seawater, compared with controls made of non-biodegradable polypropylene (PP) or biodegradable cellulose. During the first 40 days in seawater, we detected clear changes in bacterial diversity (Illumina sequencing of 16S rRNA gene) and heterotrophic activity (incorporation of 3H-leucine) that coincided with the classic succession of initial colonization, growth, and maturation phases of a biofilm. Biodegradability of the cotton swab sticks was then tested during another 94 days under strict diet conditions with the different plastics as sole carbon source. The drastic decrease of the bacterial activity on PP, PLA, and PBS suggested no bacterial attack of these materials, whereas the bacterial activity in PBAT, Bioplast, Mater-Bi, and PHBV presented similar responses to the cellulose positive control. Interestingly, the different bacterial diversity trends observed for biodegradable vs. non-biodegradable plastics allowed to describe potential new candidates involved in the degradation of these materials under marine conditions. This better understanding of the bacterial diversity and activity dynamics during the colonization and biodegradation processes contributes to an expanding baseline to understand plastic biodegradation in marine conditions and provide a foundation for further decisions on the replacement of the banned single-used plastics.
Collapse
Affiliation(s)
- Justine Jacquin
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,Innovation Plasturgie et Composites, Biopole Clermont Limagne, Saint-Beauzire, France
| | - Nolwenn Callac
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Jingguang Cheng
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Carolane Giraud
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Yonko Gorand
- Plateforme EnRMAT, Laboratoire PROMES, Rembla de la Thermodynamique, Perpignan, France
| | - Clement Denoual
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Mireille Pujo-Pay
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Pascal Conan
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | | | - Valerie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Jean-François Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| |
Collapse
|
48
|
Vaksmaa A, Knittel K, Abdala Asbun A, Goudriaan M, Ellrott A, Witte HJ, Vollmer I, Meirer F, Lott C, Weber M, Engelmann JC, Niemann H. Microbial Communities on Plastic Polymers in the Mediterranean Sea. Front Microbiol 2021; 12:673553. [PMID: 34220756 PMCID: PMC8243005 DOI: 10.3389/fmicb.2021.673553] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Andreas Ellrott
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Harry J Witte
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
49
|
Microbial dysbiosis reflects disease resistance in diverse coral species. Commun Biol 2021; 4:679. [PMID: 34083722 PMCID: PMC8175568 DOI: 10.1038/s42003-021-02163-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Disease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral’s ecological function and ultimately shape reef ecosystems. MacKnight et al. compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. The different species exhibited a spectrum of disease susceptibility and associated mortality that corresponded with their tolerances to microbial change, indicating that coral disease and microbial dysbiosis may ultimately shape reef ecosystems.
Collapse
|
50
|
Yang G, Gong M, Mai L, Zhuang L, Zeng EY. Diversity and structure of microbial biofilms on microplastics in riverine waters of the Pearl River Delta, China. CHEMOSPHERE 2021; 272:129870. [PMID: 33607493 DOI: 10.1016/j.chemosphere.2021.129870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Riverine runoff is a significant transport pathway for microplastics (MPs) discharged from land-based sources to marine environments where MPs accumulate. Knowledge of riverine MP-associated biofilms will improve the understanding of the fate and potential effects of MPs in marine environments. This study aimed to characterize the microbial biofilms colonizing MPs in the riverine water of the Pearl River Delta, China, and identify the seasonal, geographical and environmental influences on MP-associated communities. We sampled MPs and the surrounding surface water from eight outlets in three seasons and analyzed their microbial communities by Illumina sequencing of the 16S rRNA gene libraries. Across all sampling seasons and locations, abundant MP-colonizing taxa belonged to the phylum Proteobacteria, which suggested initial biofilm development on those MPs. The structure and composition of MP-attached microbial communities varied with respect to season and location, and the microbial diversity of the MP-associated biofilm communities decreased in June compared with that in the April and November sampling events. Opportunistic pathogens of the genus Acinetobacter were significantly enriched on the MP surfaces for all sampling events. Among the 15 environmental variables examined, the main drivers of MP-associated biofilm community composition included IC, alkalinity, TOC, TDS, Cl-, NO3-, NO2- and pH. This study provides an insight into the environmental factors that shape microbial biofilm colonization on MPs in estuary environments and a further understanding of the structure, diversity and ecological roles of MP-associated communities.
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Mengting Gong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Lei Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|