1
|
Talens-Perales D, Daròs JA, Polaina J, Marín-Navarro J. Synergistic Enzybiotic Effect of a Bacteriophage Endolysin and an Engineered Glucose Oxidase Against Listeria. Biomolecules 2024; 15:24. [PMID: 39858419 PMCID: PMC11764271 DOI: 10.3390/biom15010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Listeria monocytogenes represents one of the main risks for food safety worldwide. Two enzyme-based antimicrobials (enzybiotics) have been combined in a novel treatment against this pathogenic bacterium, resulting in a powerful synergistic effect. One of the enzymes is an endolysin from Listeria phage vB_LmoS_188 with amidase activity (henceforth A10), and the other is an engineered version of glucose oxidase from Aspergillus niger (GOX). Both enzymes, assayed separately against Listeria innocua, showed antibacterial activity at the appropriate doses. The combination of the two enzybiotics resulted in a synergistic effect with a log reduction in viable cells (log N0/N) of 4, whereas, taken separately, the same dose of A10 and GOX caused only 1.2 and 0.2 log reductions, respectively. Flow cytometry and microscopy analyses revealed that A10 treatment alone induced the aggregation of dead cells. L. monocytogenes showed higher resistance to single treatment with GOX or A10 than L. innocua. However, the synergic combination of A10 and GOX resulted in a high lethality of L. monocytogenes with a log N0/N higher than 5 (below the detection limit in our analysis). Altogether, these results represent a novel efficient and eco-friendly antimicrobial treatment against the most lethal food-borne pathogen.
Collapse
Affiliation(s)
- David Talens-Perales
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain; (D.T.-P.); (J.P.)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, 46022 Valencia, Valencia, Spain;
| | - Julio Polaina
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain; (D.T.-P.); (J.P.)
| | - Julia Marín-Navarro
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), 46980 Paterna, Valencia, Spain; (D.T.-P.); (J.P.)
- Departmento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Baumann AA, Myers AK, Khajeh-Kazerooni N, Rosenthal B, Jenkins M, O'Brien C, Fuller L, Morgan M, Lenaghan SC. Aqueous Ozone Exposure Inhibits Sporulation in the Cyclospora cayetanensis Surrogate Eimeria acervulina. J Food Prot 2024; 87:100260. [PMID: 38460785 DOI: 10.1016/j.jfp.2024.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Ozone is a potent disinfecting agent used to treat potable water and wastewater, effectively clearing protozoa such as Giardia and Cryptosporidium spp. It is unclear whether ozone treatment of water or fresh produce can reduce the spread of the emerging parasite Cyclospora cayetanensis, which causes cyclosporiasis in humans. Obtaining viable C. cayetanensis oocysts to evaluate inactivation methods is challenging because we lack the means to propagate them in vitro, because of delays in case reporting, and because health departments typically add inactivating fixatives to clinical specimens. Research in various surrogate organisms has sought to bolster understanding of the biology of C. cayetanensis. Among these surrogates is the poultry parasite Eimeria acervulina, a closely related and easily cultured parasite of economic significance. We used this surrogate to evaluate the consequences of ozone treatment, using the sporulation state as an indicator of infectious potential. Treating with ozonated water acidified with citric acid reduced sporulation ability in a dose-dependent manner; treatment with up to 4.93 mg/L initial concentration of ozone resulted in a 93% inactivation of sporulation by 7 days posttreatment. This developmental arrest was accompanied by transcriptional changes in genes involved in regulating the response to reactive oxygen species (ROS) in a time course that is consistent with the production of oxygen free radicals. This study shows that ozone is highly effective in preventing sporulation of E. acervulina, a model coccidian used as a surrogate for Cyclospora. Furthermore, ozone exposure induced molecular responses to general oxidative stress, documented with several well-characterized antioxidant enzymes.
Collapse
Affiliation(s)
- Aaron A Baumann
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN, USA
| | - Addison K Myers
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | | | - Benjamin Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Mark Jenkins
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Celia O'Brien
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, USA
| | - Lorraine Fuller
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Mark Morgan
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Scott C Lenaghan
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN, USA; Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
3
|
Serra MEG, Baeza-Noci J, Mendes Abdala CV, Luvisotto MM, Bertol CD, Anzolin AP. The role of ozone treatment as integrative medicine. An evidence and gap map. Front Public Health 2023; 10:1112296. [PMID: 36726625 PMCID: PMC9885089 DOI: 10.3389/fpubh.2022.1112296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction The Brazil has one of the largest public health systems in the world and in the 1980's, Traditional, Complementary and Integrative Medicine were introduced. In 2018, the treatment with ozone became a complementary integrative practice showing several benefits. However, its effectiveness needs to be researched. The objective of this evidence gap map is to describe contributions of Integrative Medicines-Ozone treatment in different clinical conditions, to promote evidence-based practice. Methods We applied the methodology developed by Latin American and Caribbean Center on Health Sciences Information based on the 3iE evidence gap map. The EMBASE, PubMed and Virtual Health Library databases, using the MeSH and DeCS terms for the treatment with Ozone were used. Results 26 systematic reviews were characterized, distributed in a matrix containing 6 interventions (parenteral oxygen/ozone gas mixture; parenteral ozonated water; systemic routes; topical application ozonated water; topical oxygen/ozone gas mixture; and topical ozonated oil) and 55 outcomes (cancer, infection, inflammation, pain, quality of life, wound healing and adverse effects). 334 associations between intervention and outcome were observed, emphasizing the parenteral oxygen/ozone gas mixture intervention (192 associations, 57%). Conclusions The evidence gap map presents an overview of contributions of Ozone treatment in controlling pain, infections, inflammation and wound healing, as well as increasing the quality of life, and it is directed to researchers and health professionals specialized in Ozone treatment. No serious adverse effects were related. Therefore, this treatment may be even more widely known as an integrative treatment, considering its low cost, efficiency and safety. Future studies should adopt economic impact assessments and the organization of health services.
Collapse
Affiliation(s)
| | | | | | | | | | - Ana Paula Anzolin
- Brazilian Society of Medical Ozone Therapy (SOBOM), São Paulo, Brazil,*Correspondence: Ana Paula Anzolin ✉
| |
Collapse
|
4
|
Islam F, Saeed F, Afzaal M, Ahmad A, Hussain M, Khalid MA, Saewan SA, Khashroum AO. Applications of green technologies-based approaches for food safety enhancement: A comprehensive review. Food Sci Nutr 2022; 10:2855-2867. [PMID: 36171783 PMCID: PMC9469842 DOI: 10.1002/fsn3.2915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
Food is the basic necessity for life that always motivated man for its preservation and making it available for an extended period. Food scientists always tried to preserve it with minimum deterioration in quality by employing and investigating innovative preservation techniques. The food sector always remained in search of eco-friendly and sustainable solutions to tackle food safety challenges. Green technologies (ozone, pulsed electric field, ohmic heating, photosensitization, ultraviolet radiations, high-pressure processing, ultrasonic, nanotechnology) are in high demand owing to their eco-friendly, rapid, efficient, and effective nature in controlling microbes with a negligible residual impact on food quality during processing. The use of green technologies would be a desirable substitute for conventionally available preservation techniques. This paper discusses different food preservation techniques with special reference to green technologies to minimize the deleterious impact on the environment and employs these innovative technologies to play role in enhancing the food safety.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | | - Shamaail A. Saewan
- Department of Food SciencesCollege of AgricultureUniversity of BasrahBasrahIraq
| | - Ashraf O. Khashroum
- Department of Plant Production and ProtectionFaculty of AgricultureJerash UniversityJerashJordan
| |
Collapse
|
5
|
Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms. Appl Environ Microbiol 2021; 87:AEM.03027-20. [PMID: 33608290 DOI: 10.1128/aem.03027-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes is a deadly intracellular pathogen mostly associated with consumption of ready-to-eat foods. This study investigated the effectiveness of total beef fat (BF-T) from flaxseed-fed cattle and its fractions enriched with monounsaturated fatty acids (BF-MUFA) and polyunsaturated fatty acids (BF-PUFA), along with commercially available long-chain fatty acids (LC-FA), as natural antimicrobials against L. monocytogenes BF-T was ineffective at concentrations up to 6 mg/ml, while L. monocytogenes was susceptible to BF-MUFA and BF-PUFA, with MICs at pH 7 of 0.33 ± 0.21 mg/ml and 0.06 ± 0.03 mg/ml, respectively. The MIC of C14:0 was significantly lower than those of C16:0 and C18:0 (P < 0.05). Fatty acids c9-C16:1, C18:2n-6, and C18:3n-3 showed stronger inhibitory activity than c9-C18:1 and conjugated C18:2, with MICs of <1 mg/ml. Furthermore, global transcriptional analysis by transcriptome sequencing (RNA-seq) was performed to characterize the response of L. monocytogenes to selected fatty acids. Functional analysis indicated that antimicrobial LC-UFA repressed the expression of genes associated with nutrient transmembrane transport, energy generation, and oxidative stress resistance. On the other hand, upregulation of ribosome assembly and translation process is possibly associated with adaptive and repair mechanisms activated in response to LC-UFA. Virulence genes and genes involved in bile, acid, and osmotic stresses were largely downregulated, and more so for c9-C16:1, C18:2n-6, and C18:3n-3, likely through interaction with the master virulence regulator PrfA and the alternative sigma factor σB IMPORTANCE Listeria monocytogenes is a bacterial pathogen known for its ability to survive and thrive under adverse environments and, as such, its control poses a significant challenge, especially with the trend of minimally processed and ready-to-eat foods. This work investigated the effectiveness of fatty acids from various sources as natural antimicrobials against L. monocytogenes and evaluated their potential role in L. monocytogenes pathogenicity modulation, using the strain ATCC 19111. The findings show that long-chain unsaturated fatty acids (LC-UFA), including unsaturated beef fat fractions from flaxseed-fed cattle, could have the potential to be used as effective antimicrobials for L. monocytogenes through controlling growth as well as virulence attenuation. This not only advances our understanding of the mode of action of LC-UFA against L. monocytogenes but also suggests the potential for use of beef fat or its fractions as natural antimicrobials for controlling foodborne pathogens.
Collapse
|
6
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
7
|
Won S, Lee J, Kim J, Choi H, Kim J. Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures. J Microbiol Biotechnol 2020; 30:259-270. [PMID: 31838794 PMCID: PMC9728365 DOI: 10.4014/jmb.1911.11027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10°C to 42°C, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37°C and was maintained at 42°C. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30°C then decreased sharply at high growth temperatures.
Collapse
Affiliation(s)
- Soyoon Won
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jeongmin Lee
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jieun Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyungseok Choi
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jaehan Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 305-764, Republic of Korea,Corresponding author Phone: +82-042-821-6834 Fax:+82-042-821-8887 E-mail:
| |
Collapse
|
8
|
Kang S, Meng Y, Cheng X, Tu J, Guo D, Xu Y, Liang S, Xia X, Shi C. Effects of 405-nm LED Treatment on the Resistance of Listeria monocytogenes to Subsequent Environmental Stresses. Front Microbiol 2019; 10:1907. [PMID: 31474971 PMCID: PMC6706791 DOI: 10.3389/fmicb.2019.01907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes can persist under a wide range of stress conditions, contributing to its ubiquitous distribution and unique pathogenic traits. Light from light-emitting diodes (LEDs) has recently been shown to inactivate various pathogens. Thus, the aim of the present study was to evaluate the effects of light treatment using a 405-nm LED on the subsequent resistance of L. monocytogenes to environmental stresses, including oxidative stress, ultraviolet (UV) irradiation, low temperature, osmotic pressure, simulated gastric fluid (SGF), and bile salts. Following 405-nm LED illumination at 4°C for 150 min, the survival of L. monocytogenes was examined after exposure to oxidative stress (0.04% H2O2), UV irradiation (253.7 nm), low temperature (4°C), osmotic pressure (10, 15, or 20% NaCl), SGF (pH 2.5), or bile salts (2%). The mechanisms responsible for changes in stress tolerance were identified by assessing the transcriptional responses and membrane integrity of L. monocytogenes. The 405-nm LED treatment reduced the resistance of L. monocytogenes to all the stresses tested. Reverse transcription quantitative real-time polymerase chain reaction analysis indicated that the transcription of multiple genes associated with stress resistance, including betL, gbuA, oppA, fri, bsh, and arcA, was reduced by 405-nm LED. Confocal laser scanning microscopy revealed that 405-nm LED treatment disrupted the integrity of the L. monocytogenes cell membrane compared with untreated bacteria. Therefore, 405-nm LED illumination appears to reduce the resistance of L. monocytogenes to various stress conditions. These findings suggest that 405-nm LED treatment could be used to effectively prevent and/or control with L. monocytogenes contamination along the entire food-processing chain, from production to consumption.
Collapse
Affiliation(s)
- Shenmin Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yujie Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaomeng Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Junhong Tu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yunfeng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Girgin Ersoy Z, Barisci S, Dinc O. Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Dittoe DK, Feye KM, Peyton B, Worlie D, Draper MJ, Ricke SC. The Addition of Viriditec TM Aqueous Ozone to Peracetic Acid as an Antimicrobial Spray Increases Air Quality While Maintaining Salmonella Typhimurium, Non-pathogenic Escherichia coli, and Campylobacter jejuni Reduction on Whole Carcasses. Front Microbiol 2019; 9:3180. [PMID: 30671030 PMCID: PMC6332806 DOI: 10.3389/fmicb.2018.03180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Currently, the most utilized antimicrobial in processing facilities is peracetic acid, PAA; however, this chemical is increasingly recognized as a hazard to human health. Preliminary evidence suggests that ozone, when introduced in a specific manner, can reduce the noxious nature of PAA. Therefore, the objective of the current study was to evaluate the efficacy of TetraClean Systems aqueous ozone, O3, in combination with PAA as an antimicrobial spray on whole chicken carcasses. This trial used 70 whole hen carcasses (7 treatments; 10 replications) that were inoculated in a 400 mL cocktail containing Salmonella, Escherichia coli, and Campylobacter (107 CFU/mL) and allowed to adhere for 60 min at 4°C for a final concentration of 105 to 106 CFU/g. The experimental 5 s (4×) spray treatments included: a no treatment negative control, TW; TW + O3 (10 ppm), TW + PAA (50 ppm), TW + PAA (500 ppm), TW + O3 + PAA (50 ppm), and TW + O3 + PAA (500 ppm). During treatment application, ambient PAA vapor was measured with a ChemDAQ Safecide PAA vapor sensor. After treatment, carcasses were immediately rinsed in 400 mL of nBPW for 2 min. Following rinsing, the dot method was utilizing for enumeration with 10 μL of rinsate being serially diluted, plated on XLD and mCCDA agar, and incubated aerobically at 37°C for 24 h or microaerophilically at 42°C for 48 h. Log-transformed counts were analyzed using ANOVA in JMP 14.0. Means were separated using Tukey’s HSD when P ≤ 0.05. There was a significant treatment effect among Salmonella, E. coli, and Campylobacter counts, and a significant treatment effect among ambient PAA (P < 0.05). TW + O3 + PAA (500 ppm), reduced Salmonella significantly compared to TW (5.71 and 6.30 log CFU/g). Furthermore, TW + PAA (500 ppm), reduced the presence of E. coli significantly compared to TW or no treated control (5.57 and 6.18 log CFU/g). Also, TW + PAA (50 ppm), TW + PAA (500 ppm), and TW + O3 + PAA (500 ppm) significantly reduced Campylobacter compared to carcasses not treated (4.80, 4.81, and 4.86 log CFU/g). Lastly, the addition of ozone significantly reduced the ambient PAA when O3 was added to 500 ppm of PAA, as TW + O3 + PAA (500 ppm) produced less ambient PAA than TW + PAA (500 ppm) (0.052 and 0.565 ppm). In conclusion, the addition of ozone to PAA may demonstrated the ability to effectively reduce ambient PAA, thus increasing employee safety.
Collapse
Affiliation(s)
- Dana Kristen Dittoe
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States.,Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Kristina Marie Feye
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States.,Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Bob Peyton
- TetraClean Systems LLC, Omaha, NE, United States
| | - Drew Worlie
- TetraClean Systems LLC, Omaha, NE, United States
| | | | - Steven C Ricke
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States.,Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
11
|
Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
de Ondarza J. Ozone Sensitivity and Catalase Activity in Pigmented and Non-Pigmented Strains of Serratia Marcescens. Open Microbiol J 2017; 11:12-22. [PMID: 28567147 PMCID: PMC5418915 DOI: 10.2174/1874285801711010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia’s virulence genes and defenses is therefore valuable. Objective: Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Method: Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Results: Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H2O2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Conclusion: Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens.
Collapse
Affiliation(s)
- José de Ondarza
- Department of Biological Sciences, Plattsburgh State University of New York, NY, USA
| |
Collapse
|
13
|
Pieta L, Escudero FLG, Jacobus AP, Cheiran KP, Gross J, Moya MLE, Soares GLG, Margis R, Frazzon APG, Frazzon J. Comparative transcriptomic analysis of Listeria monocytogenes reveals upregulation of stress genes and downregulation of virulence genes in response to essential oil extracted from Baccharis psiadioides. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1277-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Khan I, Tango CN, Miskeen S, Lee BH, Oh DH. Hurdle technology: A novel approach for enhanced food quality and safety – A review. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.11.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Combined effect of ozonation and packaging on shelf life extension of fresh chicken legs during storage under refrigeration. Journal of Food Science and Technology 2016; 53:4270-4277. [PMID: 28115767 DOI: 10.1007/s13197-016-2421-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to investigate the effect of different ozone doses (2, 5, and 10 mg/L) on shelf life extension of fresh chicken legs, packaged in polyamide/poleyethylene bags and stored at 4 ± 1 °C, for a period of 12 days. Parameters taken into account were: microbiological (Total viable count, Pseudomonas spp., Lactic acid bacteria, Yeasts and molds, and Enterobacteriaceae), physicochemical (pH, colour) and sensory (odor, appearance, texture, and taste) attributes. Results showed that colour parameter values (L*, a*, and b*) were not affected by the gaseous ozone dose, whereas only L* and b* were reduced during storage in all samples. pH was reduced by storage time but was not affected by ozonation dose and packaging. Total viable count and Pseudomonas spp., increased statistically significant with ozonation dose and storage time, but were not affected by packaging. Yeasts, molds, Enterobacteriaceae, and Lactic acid bacteria, were decreased during storage, packaging and ozonation dose. Finally, sensory examination (appearance, texture, odor and taste) showed that samples treated with ozone concentration of 10 mg/L retained the original characteristic features of fresh chicken legs as compared to the control samples. The gaseous ozone treatment of 10 mg/L for 1 h, to chicken legs packaged in plastic containers of polyamide/polyethylene under refrigeration, is appropriate for maintaining freshness and quality of chicken, since their shelf life was extended by 4 days, as compared to the control samples.
Collapse
|
16
|
Dziugan P, Balcerek M, Binczarski MJ, Kregiel D, Kucner M, Kunicka-Styczynska A, Pielech-Przybylska K, Smigielski K, Witonska IA. Ozonation as an effective way to stabilize new kinds of fermentation media used in biotechnological production of liquid fuel additives. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:150. [PMID: 27453725 PMCID: PMC4957355 DOI: 10.1186/s13068-016-0574-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Intermediates from processing sugar beets are considered an attractive feedstock for ethanol fermentation due to their high fermentable sugar content. In particular, medium prepared from raw sugar beet juice seems to be suitable for use in fermentation processes, but it is microbiologically unstable and requires sterilization. RESULTS This study investigates the effect of ozone treatment on the activity of microbial cells from Bacillus subtilis, Leuconostoc mesenteroides, Geobacillus stearothermophilus, Candida vini, and Aspergillus brasiliensis in raw sugar beet juice. Raw sugar beet juice contaminated with 10(5) cfu/mL of the microbial strains was treated with gaseous ozone (ozone concentration in the oxygen stream 0.1 g O3/L O2, flow rate 6 L/h, 10-30 min, 18-20 °C). The number of microflora decreased to 0 cfu/mL after 30 min of ozone treatment in all studied samples. CONCLUSIONS Medium prepared from raw sugar beet juice and sterilized by ozonation is suitable for use in fermentation processes.
Collapse
Affiliation(s)
- Piotr Dziugan
- />Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Maria Balcerek
- />Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Michal J. Binczarski
- />Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Dorota Kregiel
- />Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Marcin Kucner
- />Faculty of Biotechnology and Food Sciences, Institute of Technology and Food Analysis, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Alina Kunicka-Styczynska
- />Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Katarzyna Pielech-Przybylska
- />Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Krzysztof Smigielski
- />Faculty of Biotechnology and Food Sciences, Institute of Food Chemistry, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland
| | - Izabela A. Witonska
- />Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
17
|
Herbert U, Kreyenschmidt J. Comparison of Oxygen- and Nitrogen-Enriched Atmospheres on the Growth of Listeria Monocytogenes
Inoculated on Poultry Breast Fillets. J Food Saf 2015. [DOI: 10.1111/jfs.12203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulrike Herbert
- Institute of Animal Science; Faculty of Agriculture; University of Bonn; Katzenburgweg 7-9 Bonn 53115 Germany
| | - Judith Kreyenschmidt
- Institute of Animal Science; Faculty of Agriculture; University of Bonn; Katzenburgweg 7-9 Bonn 53115 Germany
| |
Collapse
|
18
|
Gao H, Liu C. Biochemical and morphological alteration of Listeria monocytogenes under environmental stress caused by chloramine-T and sodium hypochlorite. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Sung HJ, Song WJ, Kim KP, Ryu S, Kang DH. Combination effect of ozone and heat treatments for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in apple juice. Int J Food Microbiol 2013; 171:147-53. [PMID: 24362006 DOI: 10.1016/j.ijfoodmicro.2013.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/25/2013] [Accepted: 11/03/2013] [Indexed: 11/24/2022]
Abstract
We investigated the combination effect of ozone and heat treatments in apple juice for the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. Apple juices inoculated with the three pathogens were treated with gaseous ozone and heat simultaneously for up to 1 min. Gaseous ozone treatment was progressed at a flow rate of 3.0 l/min with a concentration of 2.0-3.0 g/m³ and heat treatment was performed at temperatures of 25, 45, 50, and 55 °C. Populations of surviving pathogens decreased in all samples as treatment temperature increased from 25 to 55 °C. Heat treatment alone (25, 45, 50 and 55 °C) resulted in 0.20, 0.37, 2.16 and 2.54 log CFU/ml reductions of E. coli O157:H7, respectively, in apple juice. Combination treatment of ozone and heat for 1 min reduced this pathogen by 1.50 and 1.60 log CFU/ml, respectively, at 25 and 45 °C, and below the detection limit (1 log CFU/ml) at 50 and 55 °C. We found a synergistic effect in the inactivation of pathogens in apple juice treated with ozone and heated at 50 °C. The reduction trend of S. Typhimurium and L. monocytogenes in apple juice was similar to that of E. coli O157:H7. There were no significant changes of Hunter color values when apple juices were treated with heat only and the combination of ozone and heat. Residual ozone was measured following ozone treatment. In all ozone treated samples, the concentration of residual ozone was reduced to under acceptable levels (<0.4 mg/l). In conclusion, the combination treatment of ozone and heat was significantly effective in the inactivation of foodborne pathogens while maintaining acceptable apple juice quality.
Collapse
Affiliation(s)
- Hye-Jung Sung
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Science, Seoul National University, San 56-1, Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Won-Jae Song
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Science, Seoul National University, San 56-1, Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Kwang-Pyo Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Science, Seoul National University, San 56-1, Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute for Agricultural and Life Science, Seoul National University, San 56-1, Sillim-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Department of Food Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
20
|
Muthukumar A, Muthuchamy M. Optimization of ozone in gaseous phase to inactivate Listeria monocytogenes on raw chicken samples. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Parvanova P, Tzvetkova N, Bratanova-Doncheva S, Chipev N, Fikova R, Donev E. Responses of Fraxinus excelsior L. seedlings to ambient ozone exposure in urban and mountain areas based on physiological characteristics and antioxidant activity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1452-1458. [PMID: 23760537 DOI: 10.1039/c3em30614c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Effects of ozone on the sensitive tree species Fraxinus excelsior L. exposed to ambient air were investigated. The dynamics of photosynthesis, transpiration, stomatal conductance and the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in three-year-old ash seedlings were studied during a four-month period (June-September). Seedlings were exposed to ambient ozone in an urban (the Central City Park of Sofia - Borisova Gradina) and a mountain (Plana Mountain) area in Bulgaria. The sites were located near climate monitoring stations, providing data on ozone concentrations and meteorological parameters. Ozone exposure at the mountain site (AOT40) was more than two times higher compared to the urban site. Significantly higher values of sun radiation, transpiration, stomatal conductance and enzyme activity at the mountain site were also observed. At the urban site higher values of temperature and air humidity were registered. Effects of the measured variables on ash seedlings were complex and interdependent. No direct effect of ozone concentration in ambient air on the leaf physiology and biochemistry could be proved. However, intensified SOD and CAT activity in the presence of elevated ozone suggested antioxidant reaction in response to ozone uptake.
Collapse
Affiliation(s)
- Petya Parvanova
- Institute of Biodiversity and Ecosystem Research - Bulgarian academy of science, Gagarin Street, Sofia 1113, Bulgaria.
| | | | | | | | | | | |
Collapse
|
22
|
Huang Y, Suo Y, Shi C, Szlavik J, Shi XM, Knøchel S. Mutations in gltB and gltC reduce oxidative stress tolerance and biofilm formation in Listeria monocytogenes 4b G. Int J Food Microbiol 2013; 163:223-30. [PMID: 23562858 DOI: 10.1016/j.ijfoodmicro.2013.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/07/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
Abstract
The foodborne pathogen Listeria monocytogenes has the capability to persist on surfaces in food-processing environments, and the organism is resistant to environmental stresses. In this study, a Tn917 insertion mutant of L. monocytogenes 4b G showing reduced biofilm formation and sensitivity to oxidative stress was identified and characterized. The transposon insertion site within the gltB gene was identified by inverse PCR. The gltC gene is located upstream and is reported to be transcribed divergently from gltB. Mutants with deletions in gltB and gltC were constructed and both showed reduced biofilm formation and increased sensitivity to H2O2 compared to the wild-type. In the wild-type strain, gltB and gltC expressions were induced approximately 8-fold and 14-fold by quantitative RT-PCR, respectively, with exposure to H2O2, providing further evidence that their gene products may be involved in the response to oxidative stress. In addition, after the induction by H2O2 and compared with the wild-type, the gltB expression in ΔgltC and the gltC expression in ΔgltB were down-regulated about 4-fold (p<0.05) and 3-fold (p<0.05) respectively. These data demonstrate a possible mutual regulation between gltB and gltC expressions under oxidative stress conditions, partly explaining the similar oxidative stress responses of ΔgltB and ΔgltC. Furthermore, ΔgltB and ΔgltC exhibited decreased adherence to a glass surface compared to the wild-type, while the cell motility of wild-type and mutant strains was similar. It is hypothesized that some cell surface characteristics unrelated with cell motility may be introduced into the mutants by the inactivation of gltB or gltC, which might lead to the reduction in biofilm formation. We conclude that both gltB and gltC are involved in the biofilm formation as well as the oxidative stress tolerance in L. monocytogenes 4b G, by pathways that remain yet unclear.
Collapse
Affiliation(s)
- Yanyan Huang
- MOST-USDA Joint Research Center for Food Safety and Bor Lu Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
23
|
Choi MR, Liu Q, Lee SY, Jin JH, Ryu S, Kang DH. Inactivation of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in apple juice with gaseous ozone. Food Microbiol 2012; 32:191-5. [DOI: 10.1016/j.fm.2012.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
|
24
|
Bactericidal antibiotics do not appear to cause oxidative stress in Listeria monocytogenes. Appl Environ Microbiol 2012; 78:4353-7. [PMID: 22504823 DOI: 10.1128/aem.00324-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial self-destruction by internal production of hydroxyl radicals. The purpose of the present study was to determine if a similar mechanism is involved in antibiotic killing of the infectious human pathogen, Listeria monocytogenes. We treated wild-type L. monocytogenes and oxidative stress mutants (Δsod and Δfri) with three different bactericidal antibiotics and found no difference in killing kinetics. In contrast, wild-type E. coli and an oxidative stress mutant (ΔsodA ΔsodB) differed significantly in their sensitivity to bactericidal antibiotics. We conclude that bactericidal antibiotics did not appear to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which is believed to mediate the oxidative stress reaction.
Collapse
|
25
|
Yao Y, Lu Z, Min H, Gao H, Zhu F. The effect of tetrahydrofuran on the enzymatic activity and microbial community in activated sludge from a sequencing batch reactor. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:56-65. [PMID: 21842397 DOI: 10.1007/s10646-011-0765-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2011] [Indexed: 05/31/2023]
Abstract
Tetrahydrofuran (THF) is a toxic and carcinogenic compound that is commonly released from pharmaceutical, chemical and related industry wastewater. Currently, the effects of THF contamination on wastewater are unknown and a better understanding of THF toxicity toward biological processes in wastewater treatment is critical. In this study, we firstly investigated the toxic effects of THF on enzymatic activity and the microbial diversity in activated sludge from a sequencing batch reactor during long-term exposure to 10 mM THF. The activity of five enzymes (catalase, dehydrogenase, urease, phosphatase and protease) was remarkably decreased in the presence of 10 mM THF during a period of 85 days. Of these five affected enzymes, dehydrogenase activity was close to detection level limits and was nearly completely inhibited. Analysis of the microbial community demonstrated that THF, at a concentration of 10 mM, altered the distribution of microbes within the community and significantly decreased microbial diversity during long-term contamination, according to denaturing gradient gel electrophoresis (DGGE) analysis. The fraction of Actinobacteria increased in the community, while the fraction of Proteobacteria significantly decreased after THF exposure.
Collapse
Affiliation(s)
- Yanlai Yao
- Institute of Microbiology, College of Life Science, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China.
| | | | | | | | | |
Collapse
|
26
|
Chu L, Wang J, Wang B. Effect of gamma irradiation on activities and physicochemical characteristics of sewage sludge. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Erickson MC. Microbial Risks Associated with Cabbage, Carrots, Celery, Onions, and Deli Salads Made with These Produce Items. Compr Rev Food Sci Food Saf 2010; 9:602-619. [DOI: 10.1111/j.1541-4337.2010.00129.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Listeria monocytogenes PrsA2 is required for virulence factor secretion and bacterial viability within the host cell cytosol. Infect Immun 2010; 78:4944-57. [PMID: 20823208 DOI: 10.1128/iai.00532-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of establishing its replication niche within the cytosol of infected host cells, the facultative intracellular bacterial pathogen Listeria monocytogenes must efficiently regulate the secretion and activity of multiple virulence factors. L. monocytogenes encodes two predicted posttranslocation secretion chaperones, PrsA1 and PrsA2, and evidence suggests that PrsA2 has been specifically adapted for bacterial pathogenesis. PrsA-like chaperones have been identified in a number of Gram-positive bacteria, where they are reported to function at the bacterial membrane-cell wall interface to assist in the folding of proteins translocated across the membrane; in some cases, these proteins have been found to be essential for bacterial viability. In this study, the contributions of PrsA2 and PrsA1 to L. monocytogenes growth and protein secretion were investigated in vitro and in vivo. Neither PrsA2 nor PrsA1 was found to be essential for L. monocytogenes growth in broth culture; however, optimal bacterial viability was found to be dependent upon PrsA2 for L. monocytogenes located within the cytosol of host cells. Proteomic analyses of prsA2 mutant strains in the presence of a mutationally activated allele of the virulence regulator PrfA revealed a critical requirement for PrsA2 activity under conditions of PrfA activation, an event which normally takes place within the host cell cytosol. Despite a high degree of amino acid similarity, no detectable degree of functional overlap was observed between PrsA2 and PrsA1. Our results indicate a critical requirement for PrsA2 under conditions relevant to host cell infection.
Collapse
|
29
|
Yan ST, Zheng H, Li A, Zhang X, Xing XH, Chu LB, Ding G, Sun XL, Jurcik B. Systematic analysis of biochemical performance and the microbial community of an activated sludge process using ozone-treated sludge for sludge reduction. BIORESOURCE TECHNOLOGY 2009; 100:5002-5009. [PMID: 19515555 DOI: 10.1016/j.biortech.2009.05.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/15/2009] [Accepted: 05/17/2009] [Indexed: 05/27/2023]
Abstract
Two lab-scale bioreactors (reactors 1 and 2) were employed to examine the changes in biological performance and the microbial community of an activated sludge process fed with ozonated sludge for sludge reduction. During the 122 d operation, the microbial activities and community in the two reactors were evaluated. The results indicated that, when compared with the conventional reactor (reactor 1), the reactor that was fed with the ozonated sludge (reactor 2) showed good removal of COD, TN and cell debris, without formation of any excess sludge. In addition, the protease activity and intracellular ATP concentration of reactor 2 were increased when compared to reactor 1, indicating that reactor 2 had a better ability to digest proteins and cell debris. DGGE analysis revealed that the bacterial communities in the two reactors were different, and that the dissimilarity of the bacterial population was nearly 40%. Reactor 2 also contained more protozoa and metazoa, which could graze on the ozone-treated sludge debris directly.
Collapse
Affiliation(s)
- Sang-Tian Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chu L, Wang J, Wang B, Xing XH, Yan S, Sun X, Jurcik B. Changes in biomass activity and characteristics of activated sludge exposed to low ozone dose. CHEMOSPHERE 2009; 77:269-72. [PMID: 19698970 DOI: 10.1016/j.chemosphere.2009.07.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 05/16/2023]
Abstract
In this paper, the response mechanism of activated sludge exposed to low-dose ozone at less than 20mgO(3)g(-1) total suspended solids (TSS) was studied by analyzing the changes in sludge activity and the evolution of C, N, P and metals from sludge following ozonation. The intracellular ATP concentration was not affected at less than 5mgO(3)g(-1) TSS and thereafter decreased rapidly to around 60% when the ozone dose increased to 20mgO(3)g(-1) TSS. Similarly, the efficiency of sludge solubilization initially changed a little and then increased rapidly to around 30% at an ozone dose of 20mgO(3)g(-1) TSS. However, the activities of superoxide dismutase and protease decreased immediately upon exposure to ozone. These findings indicate that ozone firstly destroys the floc, leading to the disruption of the compact aggregates, which does not affect cells viability but induces a decrease in enzyme activities. Ozone then attacks the bacterial cells of the sludge, causing a decrease in cells viability. During ozonation, the content of carbon, nitrogen and phosphorus in the sludge matrix decreased, while the content of these elements in the micro-solids and supernatant gradually increased. Most of the released metals from the sludge matrix were found in the micro-solids.
Collapse
Affiliation(s)
- Libing Chu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Yan ST, Chu LB, Xing XH, Yu AF, Sun XL, Jurcik B. Analysis of the mechanism of sludge ozonation by a combination of biological and chemical approaches. WATER RESEARCH 2009; 43:195-203. [PMID: 18976790 DOI: 10.1016/j.watres.2008.09.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/30/2008] [Accepted: 09/30/2008] [Indexed: 05/27/2023]
Abstract
Using the practical sludge obtained from municipal sewage treatment plants, the mechanism of the sludge ozonation process was systematically investigated by a combination of biological and chemical approaches, including analysis of the changes in biological response by CFU and PCR-DGGE, bio-macromolecular activity and radical scavenging activity. The results indicated that after the sludge was exposed to ozone at less than 0.02 g O(3)/g TSS, the DGGE fingerprint remained constant and there was still some enzyme activity, indicating that the sludge solubilization was the main process. At greater than 0.02 g O(3)/g TSS, the bacteria began to be broken down and ozone was used to oxidize the bio-macromolecules such as proteins and DNA released from the sludge. Bacteria belonging to 'G-Bacteria' were able to conserve their DNA in the presence of less than 0.08 g O(3)/g TSS. At levels higher than 0.10 g O(3)/g TSS, the disintegration of the sludge matrix became slow and the microbes lost most of their activity, and ozone was used to transform the bio-macromolecules into small molecules. However, at levels higher than 0.14 g O(3)/g TSS, the ozone failed to oxidize the sludge efficiently, because several radical scavengers such as lactic acid and SO(4)(2-) were released from the microbial cells in the sludge.
Collapse
Affiliation(s)
- Sang-Tian Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
32
|
Demirkol O, Cagri-Mehmetoglu A, Qiang Z, Ercal N, Adams C. Impact of food disinfection on beneficial biothiol contents in strawberry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10414-10421. [PMID: 18928295 DOI: 10.1021/jf802209t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, the impact of four food disinfectants including hydrogen peroxide, free chlorine, and gaseous- and aqueous-phase ozone with industrial doses on the concentration of biothiol compounds gamma-glutamylcysteinylglycine (GSH) and cystein (CYS) in strawberry was investigated for 1, 5, 15, 30, and 60 or 120 min. Additionally, the amount of oxidized glutathione (GSSG) was analyzed for calculation of the GSH/GSSG ratio as an indicator of oxidative stress. After this treatment, thiol contents of strawberry samples were examined using high-performance liquid chromatography (HPLC) technique. According to the results of measurements, free chlorine treatment for only 60 min significantly decreased CYS content in strawberry (p < 0.05). A significant decline in the GSH/GSSG ratio was also observed when H2O2 was applied for all time intervals except for 1 min (p < 0.05). However, aqueous-phase ozone treatment did not significantly affect the thiol levels (p < 0.05). In conclusion, this study may provide optimum disinfection methods for strawberry to minimize loss of beneficial biothiols.
Collapse
Affiliation(s)
- Omca Demirkol
- Muhendislik Fakultesi, Gida Muhendisligi Bolumu, Sakarya Universitesi, Esentepe, Sakarya, Turkey.
| | | | | | | | | |
Collapse
|
33
|
Qiang Z, Demirkol O, Ercal N, Adams C. Impact of food disinfection on beneficial biothiol contents in vegetables. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:9830-40. [PMID: 16332139 DOI: 10.1021/jf051359f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this work we investigated the impact of food disinfection on the beneficial biothiol contents in a suite of vegetables consumed daily, including spinach, green bean, asparagus, cucumber, and red pepper. Four disinfection technologies commonly studied and/or used in food processing and preservation, including hydrogen peroxide, free chlorine, and gaseous- and aqueous-phase ozone, were examined with common dosages and contact times. Results indicate that the common disinfection technologies may result in significant loss of beneficial biothiols in vegetables which are essentially important to human health. For example, as much as 70% of biothiols were lost when spinach was treated with hydrogen peroxide (5.0 wt %) for 30 min. Approximately 48-54% of biothiols were destroyed by free chlorine and gaseous- and aqueous-phase ozone under typical contacting conditions. In red pepper, about 60-71% of reduced glutathione was oxidized by the disinfectants. The potential decrease in biothiols during disinfection was dependent upon the biothiol type, the disinfectant, and the vegetable. The effectiveness of total bacterial inactivation by the four disinfection technologies was concurrently evaluated. Results show that free chlorine is most effective, achieving disinfection efficiencies of greater than 4 log for all study vegetables. This study may provide important information for the food industry to design optimum contacting methods for vegetables to simultaneously achieve sufficient bacterial disinfection while minimizing loss of beneficial biothiols.
Collapse
Affiliation(s)
- Zhimin Qiang
- Environmental Research Center for Emerging Contaminants, Department of Civil, Architectural & Environmental Engineering, University of Missouri-Rolla, Rolla, Missouri 65409, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Ozone is an air pollutant that damages a variety of biomolecules. We investigated ozone-induced inactivation of three major antioxidant enzymes. Cu/Zn superoxide dismutase was inactivated by ozone in a concentration-dependent manner. The concentration of ozone for 50% inactivation was approximately 45 microM when 10 microM Cu/Zn superoxide dismutase was incubated for 30 min in the presence of ozone. SDS-polyacrylamide gel electrophoresis (PAGE) showed that the enzyme was randomly fragmented. Both ascorbate and glutathione were very effective in protecting Cu/Zn superoxide dismutase from ozone-induced inactivation. The other two enzymes, catalase and glutathione peroxidase, were much more resistant to ozone than Cu/Zn superoxide dismutase. The ozone concentrations for 50% inactivation of 10 microM catalase and glutathione peroxidase were 500 and 240 microM, respectively. SDS-PAGE demonstrated that ozone caused formation of high molecular weight aggregates in catalase and dimerization in glutathione peroxidase. Glutathione protected catalase and glutathione peroxidase from ozone but the effective concentrations were much higher than that for Cu/Zn superoxide dismutase. Ascorbate was almost ineffective. The result suggests that, among the three antioxidant enzymes, Cu/Zn superoxide dismutase is a major target for ozone-induced inactivation and both glutathione and ascorbate are very effective in protecting the enzyme from ozone.
Collapse
Affiliation(s)
- Yong-Ki Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 192-1 Hyoja-2-dong, Chunchon 200701, South Korea
| | | | | |
Collapse
|
35
|
Cho M, Chung H, Yoon J. Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:2134-2138. [PMID: 12785518 DOI: 10.1021/es026135h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This investigation of sequential disinfection, with ozone followed by free chlorine, was carried out using Bacillus subtilis spores, to make a quantitative evaluation and to improve the mechanistic understanding of their synergistic effect. This study shows that the extent of the synergistic effect in the inactivation of Bacillus subtilis spores appears to be dependent upon the level of preozonation. However, when the ozone pretreatment level exceeded the lag phase of the ozone inactivation curve, the chlorine inactivation curves were almost identical regardless of the level of preozonation. When this sequential disinfection was performed in the reverse order, no enhanced disinfection was observed. This difference, depending on the order of disinfectant application in sequential disinfection, was explained in terms of the enhanced disinfection being the result of the greater intracellular diffusion of free chlorine, caused by the cell surface disruption induced by ozone. The practical implications of this synergistic sequential inactivation with ozone followed by free chlorine were discussed, along with the issue of selecting the amount of each oxidant to use in water treatment plants, to achieve a specific level of microorganism inactivation.
Collapse
Affiliation(s)
- Min Cho
- School of Chemical Engineering, College of Engineering, Seoul National University, San 56-1, Sillim-dong Gwanak-gu, Seoul, 151-742, Korea
| | | | | |
Collapse
|
36
|
Wade WN, Scouten AJ, McWatters KH, Wick RL, Demirci A, Fett WF, Beuchat LR. Efficacy of ozone in killing Listeria monocytogenes on alfalfa seeds and sprouts and effects on sensory quality of sprouts. J Food Prot 2003; 66:44-51. [PMID: 12540180 DOI: 10.4315/0362-028x-66.1.44] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A study was done to determine the efficacy of aqueous ozone treatment in killing Listeria monocytogenes on inoculated alfalfa seeds and sprouts. Reductions in populations of naturally occurring aerobic microorganisms on sprouts and changes in the sensory quality of sprouts were also determined. The treatment (10 or 20 min) of seeds in water (4 degrees C) containing an initial concentration of 21.8 +/- 0.1 microg/ml of ozone failed to cause a significant (P < or = 0.05) reduction in populations of L. monocytogenes. The continuous sparging of seeds with ozonated water (initial ozone concentration of 21.3 +/- 0.2 microg/ml) for 20 min significantly reduced the population by 1.48 log10 CFU/g. The treatment (2 min) of inoculated alfalfa sprouts with water containing 5.0 +/- 0.5, 9.0 +/- 0.5, or 23.2 +/- 1.6 microg/ml of ozone resulted in significant (P < or = 0.05) reductions of 0.78, 0.81, and 0.91 log10 CFU/g, respectively, compared to populations detected on sprouts treated with water. Treatments (2 min) with up to 23.3 +/- 1.6 microg/ml of ozone did not significantly (P > 0.05) reduce populations of aerobic naturally occurring microorganisms. The continuous sparging of sprouts with ozonated water for 5 to 20 min caused significant reductions in L. monocytogenes and natural microbiota compared to soaking in water (control) but did not enhance the lethality compared to the sprouts not treated with continuous sparging. The treatment of sprouts with ozonated water (20.0 microg/ml) for 5 or 10 min caused a significant deterioration in the sensory quality during subsequent storage at 4 degrees C for 7 to 11 days. Scanning electron microscopy of uninoculated alfalfa seeds and sprouts showed physical damage, fungal and bacterial growth, and biofilm formation that provide evidence of factors contributing to the difficulty of killing microorganisms by treatment with ozone and other sanitizers.
Collapse
Affiliation(s)
- W N Wade
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jiménez-Arribas G, Léautaud V, Amábile-Cuevas CF. Regulatory locus soxRS partially protects Escherichia coli against ozone. FEMS Microbiol Lett 2001; 195:175-7. [PMID: 11179648 DOI: 10.1111/j.1574-6968.2001.tb10517.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ozone is one of the major city air pollutants. Since it is known to induce the overexpression of superoxide-dismutase in various models, and is also a powerful oxidant, we tested if ozone can induce the expression of the soxRS regulon of Escherichia coli, which is activated by superoxide and nitric oxide. A sub-lethal exposure to ozone was unable to activate the expression of soxS'::lacZ transcriptional fusions. However, cells lacking the soxRS locus were more susceptible than wild-type to ozone-mediated killing. Constitutive expression of the soxRS regulon did not increase the resistance to ozone. Ozone might be exerting a selective pressure upon oxidative-stress defense mechanisms in airborne bacteria.
Collapse
|