1
|
Saigo T, Satoh K, Kunieda T. Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Zoolog Sci 2025; 42. [PMID: 39932749 DOI: 10.2108/zs240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025]
Abstract
Tardigrades are small metazoans renowned for their exceptional tolerance against various harsh environments in a dehydrated state. Some species exhibited an extraordinary tolerance against high-dose irradiation even in a hydrated state. Given that natural sources of high radiation are rare, the selective pressure to obtain such a high radiotolerance during evolution remains elusive. It has been postulated that high radiation tolerances could be derived from adaptation to dehydration, because both dehydration and radiation cause similar damage on biomolecules at least partly, e.g., DNA cleavage and oxidation of various biomolecules, and dehydration is a common environmental stress that terrestrial organisms should adapt to. Although tardigrades are known for high radiotolerance, the radiotolerance records have been reported only for desiccation-tolerant tardigrade species and nothing was known about the radiotolerance in desiccation-sensitive tardigrade species. Hence, the relationship between desiccation-tolerance and radiotolerance remained unexplored. To this end, we examined the radiotolerance of the desiccation-sensitive tardigrade Grevenius myrops (formerly known as Isohypsibius myrops) in comparison to the well-characterized desiccation-tolerant tardigrade, Ramazzottius varieornatus. The median lethal dose (LD50) of G. myrops was approximately 2240 Gy. This was much lower than those reported for desiccation tolerant eutardigrades. The effects of irradiation on the lifespan and the ovipositions were more severe in G. myrops compared to those in R. varieornatus. The present study provides precise records on the radiotolerance of a desiccation-sensitive tardigrade and the current data supported the correlation between desiccation tolerance and radiotolerance at least in eutardigrades.
Collapse
Affiliation(s)
- Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
| | - Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
2
|
Hibner BM, Cantine MD, Trower EJ, Dodd JE, Gomes ML. How to Make a Rock in 150 Days: Observations of Biofilms Promoting Rapid Beachrock Formation. GEOBIOLOGY 2025; 23:e70009. [PMID: 39916405 DOI: 10.1111/gbi.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/15/2024] [Accepted: 01/13/2025] [Indexed: 05/08/2025]
Abstract
Beachrock is a type of carbonate-cemented rock that forms via rapid cementation in the intertidal zone. Beachrock is a valuable geological tool as an indicator of paleoshorelines and may protect shorelines from erosion. Previous studies present a range of hypotheses about the processes enabling rapid beachrock formation, which span purely physicochemical mechanisms to a significant role for microbially mediated carbonate precipitation. We designed a set of in situ field experiments to explore the rates and mechanisms of beachrock formation on Little Ambergris Cay (Turks and Caicos Islands). Our field site has evidence for rapid beachrock cementation, including the incorporation of 20th century anthropogenic detritus into beachrock. We deployed pouches of sterilized ooid sand in the upper intertidal zone and assessed the extent of cementation and biofilm development after durations of 4 days, 2.5 months, and 5 months. We observed incipient meniscus cements after only 4 days of incubation in the field, suggesting that physicochemical processes are important in driving initial cementation. After 2.5 months, we observed substantial biofilm colonization on our experimental substrates, with interwoven networks of Halomicronema filaments binding clusters of ooids to the nylon pouches. After 5 months, we observed incipient beachrock formation in the form of coherent aggregates of ooids up to 1 cm in diameter, bound together by both networks of microbial filaments and incipient cements. We interpret that the cyanobacteria-dominated beachrock biofilm community on Little Ambergris Cay plays an important role in beachrock formation through the physical stabilization of sediment as cementation proceeds. Together, this combination of physicochemical and microbial mechanisms enables fresh rock to form in as little as 150 days.
Collapse
Affiliation(s)
- Brianna M Hibner
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Marjorie D Cantine
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Elizabeth J Trower
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jacqueline E Dodd
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maya L Gomes
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
3
|
R P, M Basalingappa K, D SK, K R A, K GK, J S, Murugesan K, Radhakrishnan A, Kandaswamy D, Roy B, Thangaswamy S, Selvaraj B, R J, M M. Fluorescence capturing behaviour of cyanobacterial resilience: Insights into UV-exposed ecosystems and its environmental applications. LUMINESCENCE 2024; 39:e4898. [PMID: 39323008 DOI: 10.1002/bio.4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are resilient microorganisms and thrive in environments exposed to UV radiation, ranging from ocean surfaces to scorching hot springs and dry expanses. 'Cyanobacterial Resilience' refers to their ability to withstand UV radiation, revealing intricate genomic secrets and adaptive mechanisms ensuring survival. These mechanisms include metabolic adaptations, robust DNA repair systems and UV-protective compounds such as Scytonemin and Mycosporine, vital for shielding against UV radiation survival. Cyanobacteria are crucial pioneers in UV-exposed ecosystems, highlighting their resilience and adaptability. Some cyanobacteria exhibit luminescence, emitting blue-green light due to phycobiliproteins, while bioluminescence in cyanobacteria, if it occurs, involves different compounds rather than luciferins and luciferase enzymes. This luminescence holds promise for various biotechnological applications, such as biosensors, imaging probes and carbon sequestration, for participating in photocatalytic processes for water purification and CO2 conversion, and contributes to solar simulation studies to advance photosynthesis and renewable energy technologies. The versatile applications of these materials highlight their ecological importance and potential in addressing global challenges. In conclusion, 'Cyanobacterial Resilience' highlights the remarkable adaptation strategies of cyanobacteria in UV-exposed environments. It emphasises their role as pioneers and innovators in biological and technological domains, providing insights into their enduring impact on ecosystems and scientific advancement.
Collapse
Affiliation(s)
- Prathima R
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | | | - Sai Kavya D
- Department of Dermatology, Venereology and Leprosy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arjun K R
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | - Girish Kanavi K
- Division of Molecular Biology, School of Life Sciences, Mysuru, India
| | - Suresh J
- Department of Pharmacognosy, JSS College of Pharmacy, Mysuru, India
| | - Karthikeyan Murugesan
- Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Anjuna Radhakrishnan
- Department of Microbiology, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Deepa Kandaswamy
- Department of Anatomy, Faculty of Medicine and Health Sciences, Quest International University, Perak, Malaysia
| | - Bedanta Roy
- Department of Physiology, Faculty of Medicine, Quest International University, Malaysia
| | - Selvankumar Thangaswamy
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Bharath Selvaraj
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jaganathan R
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Maghimaa M
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Douchi D, Si Larbi G, Fel B, Bonnanfant M, Louwagie M, Jouhet J, Agnely M, Pouget S, Maréchal E. Dryland Endolithic Chroococcidiopsis and Temperate Fresh Water Synechocystis Have Distinct Membrane Lipid and Photosynthesis Acclimation Strategies upon Desiccation and Temperature Increase. PLANT & CELL PHYSIOLOGY 2024; 65:939-957. [PMID: 37944070 DOI: 10.1093/pcp/pcad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
An effect of climate change is the expansion of drylands in temperate regions, predicted to affect microbial biodiversity. Since photosynthetic organisms are at the base of ecosystem's trophic networks, we compared an endolithic desiccation-tolerant Chroococcidiopsis cyanobacteria isolated from gypsum rocks in the Atacama Desert with a freshwater desiccation-sensitive Synechocystis. We sought whether some acclimation traits in response to desiccation and temperature variations were shared, to evaluate the potential of temperate species to possibly become resilient to future arid conditions. When temperature varies, Synechocystis tunes the acyl composition of its lipids, via a homeoviscous acclimation mechanism known to adjust membrane fluidity, whereas no such change occurs in Chroococcidiopsis. Vice versa, a combined study of photosynthesis and pigment content shows that Chroococcidiopsis remodels its photosynthesis components and keeps an optimal photosynthetic capacity at all temperatures, whereas Synechocystis is unable to such adjustment. Upon desiccation on a gypsum surface, Synechocystis is rapidly unable to revive, whereas Chroococcidiopsis is capable to recover after three weeks. Using X-ray diffraction, we found no evidence that Chroococcidiopsis could use water extracted from gypsum crystals in such conditions as a surrogate for missing water. The sulfolipid sulfoquinovosyldiacylglycerol becomes the prominent membrane lipid in both dehydrated cyanobacteria, highlighting an overlooked function for this lipid. Chroococcidiopsis keeps a minimal level of monogalactosyldiacylglycerol, which may be essential for the recovery process. Results support that two independent adaptation strategies have evolved in these species to cope with temperature and desiccation increase and suggest some possible scenarios for microbial biodiversity change triggered by climate change.
Collapse
Affiliation(s)
- Damien Douchi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Benjamin Fel
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Marlène Bonnanfant
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathilde Louwagie
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Mathias Agnely
- Saint Gobain Research Paris, SAINT-GOBAIN, 39 quai Lucien Lefranc, Aubervilliers Cedex 93303, France
| | - Stéphanie Pouget
- Laboratoire Modélisation et Exploration des Matériaux, Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, IRIG; CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université Grenoble Alpes, IRIG, CEA-Grenoble, 17 rue des Martyrs, Grenoble 38000, France
| |
Collapse
|
5
|
Chrismas N, Tindall-Jones B, Jenkins H, Harley J, Bird K, Cunliffe M. Metatranscriptomics reveals diversity of symbiotic interaction and mechanisms of carbon exchange in the marine cyanolichen Lichina pygmaea. THE NEW PHYTOLOGIST 2024; 241:2243-2257. [PMID: 37840369 DOI: 10.1111/nph.19320] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023]
Abstract
Lichens are exemplar symbioses based upon carbon exchange between photobionts and their mycobiont hosts. Historically considered a two-way relationship, some lichen symbioses have been shown to contain multiple photobiont partners; however, the way in which these photobiont communities react to environmental change is poorly understood. Lichina pygmaea is a marine cyanolichen that inhabits rocky seashores where it is submerged in seawater during every tidal cycle. Recent work has indicated that L. pygmaea has a complex photobiont community including the cyanobionts Rivularia and Pleurocapsa. We performed rRNA-based metabarcoding and mRNA metatranscriptomics of the L. pygmaea holobiont at high and low tide to investigate community response to immersion in seawater. Carbon exchange in L. pygmaea is a dynamic process, influenced by both tidal cycle and the biology of the individual symbiotic components. The mycobiont and two cyanobiont partners exhibit distinct transcriptional responses to seawater hydration. Sugar-based compatible solutes produced by Rivularia and Pleurocapsa in response to seawater are a potential source of carbon to the mycobiont. We propose that extracellular processing of photobiont-derived polysaccharides is a fundamental step in carbon acquisition by L. pygmaea and is analogous to uptake of plant-derived carbon in ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Nathan Chrismas
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Beth Tindall-Jones
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Helen Jenkins
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Joanna Harley
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Kimberley Bird
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
| | - Michael Cunliffe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon, PL1 2PB, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
6
|
Bratkic A, Jazbec A, Toplak N, Koren S, Lojen S, Tinta T, Kostanjsek R, Snoj L. The colonization of an irradiated environment: the case of microbial biofilm in a nuclear reactor. Int J Radiat Biol 2024; 100:108-121. [PMID: 37812192 DOI: 10.1080/09553002.2023.2258206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/19/2023] [Indexed: 10/10/2023]
Abstract
The investigation of the microbial community change in the biofilm, growing on the walls of a containment tank of TRIGA nuclear reactor revealed a thriving community in an oligotrophic and heavy-metal-laden environment, periodically exposed to high pulses of ionizing radiation (IR). We observed a vertical IR resistance/tolerance stratification of microbial genera, with higher resistance and less diversity closer to the reactor core. One of the isolated Bacillus strains survived 15 kGy of combined gamma and proton radiation, which was surprising. It appears that there is a succession of genera that colonizes or re-colonizes new or IR-sterilized surfaces, led by Bacilli and/or Actinobacteria, upon which a photoautotrophic and diazotrophic community is established within a fortnight. The temporal progression of the biofilm community was evaluated also as a proxy for microbial response to radiological contamination events. This indicated there is a need for better dose-response models that could describe microbial response to contamination events. Overall, TRIGA nuclear reactor offers a unique insight into IR microbiology and provides useful means to study relevant microbial dose-thresholds during and after radiological contamination.
Collapse
Affiliation(s)
- Arne Bratkic
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Anze Jazbec
- Reactor Physics Division, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | | | - Sonja Lojen
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Rok Kostanjsek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Snoj
- Reactor Physics Division, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
7
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
8
|
Wu L, Long H, Huang S, Niu X, Li S, Yu X, You L, Ran X, Wang J. Bacterial diversity in water from Xifeng Hot Spring in China. Braz J Microbiol 2023; 54:1943-1954. [PMID: 37594656 PMCID: PMC10484846 DOI: 10.1007/s42770-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/15/2023] [Indexed: 08/19/2023] Open
Abstract
The Xifeng Hot Spring is one of the eight largest hot springs in China, which is rich in radon gas and sulphur in karst scenery. Little is known about the microbiota structure in the spring. The water was collected from three sites containing the outlet of spring water discharge site (OWD), spring pool for tourist (SPT) and sewage effluent pool (SEP) in the Xifeng Hot Spring and further analyzed by culture-independent technique and culture-dependent method. A total of 57 phyla were identified from the water samples. The dominate phyla at OWD was Bacteroidetes (46.93%), while it was Proteobacteria in both sites of SEP and SPT with relative richness of 61.9% and 94.9%, respectively. Two bacteria, Deinococcus and Hymenobacter, that confirmed to be radiation-resistant, seven sulphur bacteria and three thermophilic bacteria were detected from Xifeng Hot Spring. Furthermore, it was found that genus Flavobacterium was susceptible to environmental change with abundance of 11 ~ 2825 times higher in OWD than the other two groups. Compared bacteria from the OWD group with that from 14 hot springs in six countries, total 94 unique genera bacteria were found out from the Xifeng Hot Spring including four thiometabolism-related bacteria (Propionispira, Desulforegula, Desulfobacter and Desulfococcus) and the thermophilic bacterium (Symbiobacterium). Using microbial culturing and isolation technology, sixteen strains were isolated from the water samples of three sites. The diversity of microbiota was abundant and variable along with the niche changed in conditions and surroundings. It indicated that numbers of valuable bacteria resources could be explored from the special surroundings of Xifeng Hot Spring.
Collapse
Affiliation(s)
- Lijuan Wu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Hong Long
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Shihui Huang
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xi Niu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Sheng Li
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xing Yu
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Longjiang You
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| | - Xueqin Ran
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
| | - Jiafu Wang
- College of Animal Science/Institute of Agro-Bioengineering, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region and Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China.
| |
Collapse
|
9
|
Tarasashvili MV, Elbakidze K, Doborjginidze ND, Gharibashvili ND. Carbonate precipitation and nitrogen fixation in AMG (Artificial Martian Ground) by cyanobacteria. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:65-77. [PMID: 37087180 DOI: 10.1016/j.lssr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
This article describes experiments performed to study the survival, growth, specific adaptations and bioremediation potential of certain extreme cyanobacteria strains within a simulation of the atmospheric composition, temperature and pressure expected in a future Martian greenhouse. Initial species have been obtained from Mars-analogue sites in Georgia. The results clearly demonstrate that specific biochemical adaptations allow these autotrophs to metabolize within AMG (Artificial Martian Ground) and accumulate biogenic carbon and nitrogen. These findings may thus contribute to the development of future Martian agriculture, as well as other aspects of the life-support systems at habitable Mars stations. The study shows that carbonate precipitation and nitrogen fixation, performed by cyanobacterial communities thriving within the simulated Martian greenhouse conditions, are cross-linked biological processes. At the same time, the presence of the perchlorates (at low concentrations) in the Martian ground may serve as the initial source of oxygen and, indirectly, hydrogen via photo-Fenton reactions. Various carbonates, ammonium and nitrate salts were obtained as the result of these experiments. These affect the pH, salinity and solubility of the AMG and its components, and so the AMG's scanty biogenic properties improved, which is essential for the sustainable growth of the agricultural crops. Therefore, the use of microorganisms for the biological remediation and continuous in situ fertilization of Artificial Martian Ground is possible.
Collapse
Affiliation(s)
- M V Tarasashvili
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia.
| | - Kh Elbakidze
- BTU - Business and Technology University, 82 Ilia Chavchavadze Avenue, 0179, Tbilisi, Georgia
| | - N D Doborjginidze
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia
| | - N D Gharibashvili
- GSRA - Georgian Space Research Agency, 4 Vasil Petriashvili Street, 0179, Tbilisi, Georgia; SpaceFarms Ltd, 14 Kostava Street, 0108, Tbilisi, Georgia
| |
Collapse
|
10
|
Fardelli E, D'Arco A, Lupi S, Billi D, Moeller R, Guidi MC. Spectroscopic evidence of the radioresistance of Chroococcidiopsis biosignatures: A combined Raman, FT-IR and THz-TDs spectroscopy study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122148. [PMID: 36462318 DOI: 10.1016/j.saa.2022.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
In the last decades, Mars has been widely studied with on-site missions and observations, showing a planet that could have hosted life in the past. For this reason, the recent and future space missions on the red planet will search for traces of past and, possibly, present life. As a basis for these missions, Space Agencies, such as the European Space Agency, have conducted many experiments on living organisms, studying their behavior in extraterrestrial conditions, learning to recognize their biosignatures with techniques remotely controllable such as Raman spectroscopy. Among these organisms, the radioresistant cyanobacterium Chroococcidiopsis was irradiated during the STARLIFE campaign with strong radiative insults. In this article we have investigated this cyanobacterium using Raman spectroscopy and extended the characterization of its biosignatures and its response to the radiative stress to the mid- Infrared and Terahertz spectral region using the Fourier Transform InfraRed (FT-IR) and Terahertz Time Domain spectroscopy (THz- TDs), which demonstrates the compatibility and suitability of these techniques for future space missions.
Collapse
Affiliation(s)
- Elisa Fardelli
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy.
| | - Annalisa D'Arco
- University of La Sapienza, Department of Physics, P.le A. Moro, 5, Rome, 00185, Italy
| | - Stefano Lupi
- University of La Sapienza, Department of Physics, P.le A. Moro, 5, Rome, 00185, Italy; INFN - LNF, Via E. Fermi, 54, Frascati, 00044, Italy
| | - Daniela Billi
- University of Tor Vergata, Department of Biology, Via della ricerca scientifica, 1, Rome, 00133, Italy
| | - Ralf Moeller
- Institute of Aerospace Medicine, section Aerospace Microbiology, Linder Hohe, Cologne, 51147, Germany
| | | |
Collapse
|
11
|
Pradhan M, Kumar A, Kirti A, Pandey S, Rajaram H. NtcA, LexA and heptamer repeats involved in the multifaceted regulation of DNA repair genes recF, recO and recR in the cyanobacterium Nostoc PCC7120. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194907. [PMID: 36638863 DOI: 10.1016/j.bbagrm.2023.194907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Regulation of DNA repair genes in cyanobacteria is an unexplored field despite some of them exhibiting high radio-resistance. With RecF pathway speculated to be the major double strand break repair pathway in Nostoc sp. strain PCC7120, regulation of recF, recO and recR genes was investigated. Bioinformatic approach-based identification of promoter and regulatory elements was validated using qRT-PCR analysis, reporter gene and DNA binding assays. Different deletion constructs of the upstream regulatory regions of these genes were analysed in host Nostoc as well as heterologous system Escherichia coli. Studies revealed: (1) Positive regulation of all three genes by NtcA, (2) Negative regulation by LexA, (3) Involvement of contiguous heptamer repeats with/without its yet to be identified interacting partner in regulating (i) binding of NtcA and LexA to recO promoter and its translation, (ii) transcription or translation of recF, (4) Translational regulation of recF and recO through non-canonical and distant S.D. sequence and of recR through a rare initiation codon. Presence of NtcA either precludes binding of LexA to AnLexA-Box or negates its repressive action resulting in higher expression of these genes under nitrogen-fixing conditions in Nostoc. Thus, in Nostoc, expression of recF, recO and recR genes is intricately regulated through multiple regulatory elements/proteins. Contiguous heptamer repeats present across the Nostoc genome in the vicinity of start codon or promoter is likely to have a global regulatory role. This is the first report detailing regulation of DSB repair genes in any algae.
Collapse
Affiliation(s)
- Mitali Pradhan
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anurag Kirti
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sarita Pandey
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
12
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Li C, Zhang X, Ye T, Li X, Wang G. Protection and Damage Repair Mechanisms Contributed To the Survival of Chroococcidiopsis sp. Exposed To a Mars-Like Near Space Environment. Microbiol Spectr 2022; 10:e0344022. [PMID: 36453906 PMCID: PMC9769825 DOI: 10.1128/spectrum.03440-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Chroococcidiopsis spp. can withstand extremely harsh environments, including a Mars-like environment. However, studies are lacking on the molecular mechanisms of Chroococcidiopsis sp. surviving in Mars-like environments. In the HH-21-5 mission, the desert cyanobacterium Chroococcidiopsis sp. was exposed to a Mars-like environment (near space; 35 km altitude) for 4 h, and a single-factor environment of near space was simulated on the ground. We investigated the survival and endurance mechanisms of Chroococcidiopsis sp. ASB-02 after exposing it to near space by studying its physiological and transcriptional properties. After the exposure, Chroococcidiopsis sp. ASB-02 exhibited high cell viability, although photosystem II activity decreased and the levels of reactive oxygen species increased. The single-factor simulation experiments revealed that for the survival of Chroococcidiopsis sp. ASB-02 in near space, UV radiation was the most important limiting factor, and it was followed by temperature. The near space environment triggered multiple metabolic pathway responses in Chroococcidiopsis sp. ASB-02. The upregulation of extracellular polysaccharides as well as carotenoid and scytonemin biosynthesis genes in response to UV radiation attenuated the extent of radiation reaching the cells. At the same time, genes related to protein synthesis were upregulated in response to the low temperature, overcoming the decrease in metabolic activity that was caused by the low temperature. In near space and after rehydration, the genes involved in various DNA and photosystem II repair pathways were upregulated. This reflected the damage to the DNA and photosystem II protein subunits in cells during the flight and suggested that repair mechanisms play an important role in the recovery of Chroococcidiopsis sp. ASB-02. IMPORTANCE This study reported that the protective and repair mechanisms of Chroococcidiopsis sp. ASB-02 contributed to its endurance ability in a Mars-like near space environment. In Chroococcidiopsis sp. ASB-02, a Mars-like near space environment activated the expression of genes involved in extracellular polysaccharides (EPS), carotenoid, scytonemin, and protein syntheses, which provided additional protection. Additionally, the cell damage repair process enhanced the recovery rate of Chroococcidiopsis sp. ASB-02 after the flight. This study will help to enhance the understanding of the tolerance mechanism of Chroococcidiopsis sp. and to provide important guidance as to the survival requirements for microbial life in a Mars-like environment.
Collapse
Affiliation(s)
- Caiyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianyuan Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tong Ye
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gaohong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Horne WH, Volpe RP, Korza G, DePratti S, Conze IH, Shuryak I, Grebenc T, Matrosova VY, Gaidamakova EK, Tkavc R, Sharma A, Gostinčar C, Gunde-Cimerman N, Hoffman BM, Setlow P, Daly MJ. Effects of Desiccation and Freezing on Microbial Ionizing Radiation Survivability: Considerations for Mars Sample Return. ASTROBIOLOGY 2022; 22:1337-1350. [PMID: 36282180 PMCID: PMC9618380 DOI: 10.1089/ast.2022.0065] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.
Collapse
Affiliation(s)
- William H. Horne
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Robert P. Volpe
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Isabel H. Conze
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Vera Y. Matrosova
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elena K. Gaidamakova
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Rok Tkavc
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Cene Gostinčar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Michael J. Daly
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Member, Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC, USA
| |
Collapse
|
15
|
Billi D, Napoli A, Mosca C, Fagliarone C, de Carolis R, Balbi A, Scanu M, Selinger VM, Antonaru LA, Nürnberg DJ. Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: Implications for oxygenic photosynthesis on exoplanets. Front Microbiol 2022; 13:933404. [PMID: 35992689 PMCID: PMC9386421 DOI: 10.3389/fmicb.2022.933404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype’s distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.
Collapse
Affiliation(s)
- Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Daniela Billi,
| | - Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Amedeo Balbi
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Scanu
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Vera M. Selinger
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Laura A. Antonaru
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
16
|
Rzymski P, Poniedziałek B, Hippmann N, Kaczmarek Ł. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars In Situ Resource Utilization. ASTROBIOLOGY 2022; 22:672-684. [PMID: 35196144 PMCID: PMC9233533 DOI: 10.1089/ast.2021.0100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are good candidates for various martian applications as a potential source of food, fertilizer, oxygen, and biofuels. However, the increased levels of highly toxic perchlorates may be a significant obstacle to their growth on Mars. Therefore, in the present study, 17 cyanobacteria strains that belong to Chroococcales, Chroococcidiopsidales, Nostocales, Oscillatoriales, Pleurocapsales, and Synechococcales were exposed to 0.25-1.0% magnesium perchlorate concentrations (1.5-6.0 mM ClO4- ions) for 14 days. The exposure to perchlorate induced at least partial inhibition of growth in all tested strains, although five of them were able to grow at the highest perchlorate concentration: Chroococcidiopsis thermalis, Leptolyngbya foveolarum, Arthronema africanum, Geitlerinema cf. acuminatum, and Cephalothrix komarekiana. Chroococcidiopsis sp. Chroococcidiopsis cubana demonstrated growth up to 0.5%. Strains that maintained growth displayed significantly increased malondialdehyde content, indicating perchlorate-induced oxidative stress, whereas the chlorophyll a/carotenoids ratio tended to be decreased. The results show that selected cyanobacteria from different orders can tolerate perchlorate concentrations typical for the martian regolith, indicating that they may be useful in Mars exploration. Further studies are required to elucidate the biochemical and molecular basis for the perchlorate tolerance in selected cyanobacteria.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Natalia Hippmann
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
17
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
18
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
19
|
Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J Biol Sci 2022; 29:1260-1268. [PMID: 35197792 PMCID: PMC8847929 DOI: 10.1016/j.sjbs.2021.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial communities associated with roots of Panicum turgidum, exposed to arid conditions, were investigated with a combination of cultural and metataxonomic approaches. Traditional culture-based techniques were used and 32 isolates from the irradiated roots were identified as belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla. Four actinobacterial strains were shown to be ionizing-radiation (IR)-resistant: Microbacterium sp. PT8 (4.8 kGy (kGy)), Micrococcus sp. PT11 (4.4 kGy), Kocuria rhizophila PT10 (2.9 kGy) and Promicromonospora panici PT9T (2.6 kGy), based on the D10 dose necessary for a 90% reduction in colony forming units (CFU). Concerning the investigation of microbial communities in situ, metataxonomic analyses of the diversity of IR-resistant microorganisms associated with irradiated roots revealed a marked dominance of Actinobacteria (46.6%) and Proteobacteria (31.5%) compared to Bacteroidetes (4.6%) and Firmicutes (3.2%). Gamma irradiation not only changed the structure of bacterial communities, but also affected their functional properties. Comparative analyses of metabolic profiles indicated the induction of several pathways related to adaptation to oxidative stress in irradiated roots, such as DNA repair, secondary metabolites synthesis, reactive oxygen species (ROS)-mitigating enzymes, etc. P. turgidum is emblematic of desert-adapted plants. Until now, there is no other work that has focused on the microbial profile of irradiated roots of this xerophyte.
Collapse
|
20
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
21
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6551890. [DOI: 10.1093/femsec/fiac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/22/2021] [Accepted: 03/17/2022] [Indexed: 11/14/2022] Open
|
23
|
Lan S, Thomas AD, Rakes JB, Garcia-Pichel F, Wu L, Hu C. Cyanobacterial community composition and their functional shifts associated with biocrust succession in the Gurbantunggut Desert. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:884-898. [PMID: 34533274 DOI: 10.1111/1758-2229.13011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria, as key biocrust components, provide a variety of ecosystem functions in drylands. In this study, to identify whether a cyanobacterial community shift is involved in biocrust succession and whether this is linked to altered ecological functions, we investigated cyanobacterial composition, total carbon and nitrogen contents of biocrusts in the Gurbantunggut Desert. Our findings showed that the biocrust cyanobacteria in the Gurbantunggut desert were mostly filamentous, coexisting with abundant unicellular colonial Chroococcidiopsis. Heterocystous Nostoc, Scytonema and Tolypothrix always represented the majority of biocrust nitrogen-fixing organisms, comprising an average of 92% of the nifH gene reads. Community analysis showed a clear shift in prokaryotic community composition associated with biocrust succession from cyanobacteria- to lichen- and moss-dominated biocrusts, and filamentous non-nitrogen-fixing cyanobacteria-dominated communities were gradually replaced by nitrogen-fixing and unicellular colonial communities. Along the succession, there were concomitant reductions in cyanobacterial relative abundance, whereas Chl-a, total carbon and nitrogen contents increased. Concurrently, distinct carbon and nitrogen stores shifts occurred, implying that the main ecological contribution of cyanobacteria in biocrusts changes from carbon- to nitrogen-fixation along with the succession. Our results suggest that any activity that reverses biocrust succession will influence cyanobacterial community composition and eventually lead to large reductions in soil carbon and nitrogen stores.
Collapse
Affiliation(s)
- Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew David Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Julie Bethany Rakes
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
24
|
Moura JB, Delforno TP, do Prado PF, Duarte IC. Extremophilic taxa predominate in a microbial community of photovoltaic panels in a tropical region. FEMS Microbiol Lett 2021; 368:6350555. [PMID: 34387344 DOI: 10.1093/femsle/fnab105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Photovoltaic panels can be colonized by a highly diverse microbial diversity, despite life-threatening conditions. Although they are distributed worldwide, the microorganisms living on their surfaces have never been profiled in tropical regions using 16S rRNA high-throughput sequencing and PICRUst metagenome prediction of functional content. In this work, we investigated photovoltaic panels from two cities in southeast Brazil, Sorocaba and Itatiba, using these bioinformatics approach. Results showed that, despite significant differences in microbial diversity (p < 0.001), the taxonomic profile was very similar for both photovoltaic panels, dominated mainly by Proteobacteria, Bacteroidota and lower amounts of Cyanobacteria phyla. A predominance of Hymenobacter and Methylobacterium-Methylorubrum was observed at the genus level. We identified a microbial common core composed of Hymenobacter, Deinococcus, Sphingomonas, Methylobacterium-Methylorubrum, Craurococcus-Caldovatus, Massilia, Noviherbaspirillum and 1174-901-12 sharing genera. Predicted metabolisms focused on specific genes associated to radiation and desiccation resistance and pigments, were detected in members of the common core and among the most abundant genera. Our results suggested that taxonomic and functional profiles investigated were consistent with the harsh environment that photovoltaic panels represent. Moreover, the presence of stress genes in the predicted functional content was a preliminary evidence that microbes living there are a possibly source of metabolites with biotechnological interest.
Collapse
Affiliation(s)
- Juliane B Moura
- Department of Biology, Laboratory of Applied Microbiology, Federal University of São Carlos, Rodovia João Leme dos Santos km 110, Itinga 18052-780, Sorocaba-SP, Brazil
| | - Tiago P Delforno
- SENAI Innovation Institute for Biotechnology, Rua Anhaia, 1321, Bom Retiro, São Paulo 01130-000, São Paulo-SP, Brazil
| | - Pierre F do Prado
- Earth Physics and Thermodynamics Department, University of Valencia, C/Dr Moliner n 50, 46010 Burjassot, Valencia, Spain
| | - Iolanda C Duarte
- Department of Biology, Laboratory of Applied Microbiology, Federal University of São Carlos, Rodovia João Leme dos Santos km 110, Itinga 18052-780, Sorocaba-SP, Brazil
| |
Collapse
|
25
|
Mishra S, Kota S, Chaudhary R, Misra HS. Guanine quadruplexes and their roles in molecular processes. Crit Rev Biochem Mol Biol 2021; 56:482-499. [PMID: 34162300 DOI: 10.1080/10409238.2021.1926417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of guanine quadruplexes (G4) in fundamental biological processes like DNA replication, transcription, translation and telomere maintenance is recognized. G4 structure dynamics is regulated by G4 structure binding proteins and is thought to be crucial for the maintenance of genome integrity in both prokaryotic and eukaryotic cells. Growing research over the last decade has expanded the existing knowledge of the functional diversity of G4 (DNA and RNA) structures across the working models. The control of G4 structure dynamics using G4 binding drugs has been suggested as the putative targets in the control of cancer and bacterial pathogenesis. This review has brought forth the collections of recent information that indicate G4 (mostly G4 DNA) roles in microbial pathogenesis, DNA damaging stress response in bacteria and mammalian cells. Studies in mitochondrial gene function regulation by G4s have also been underscored. Finally, the interdependence of G4s and epigenetic modifications and their speculated medical implications through G4 interacting proteins has been discussed.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| | - H S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
26
|
Abstract
Rock varnish is a prominent feature of desert landscapes and the canvas for many prehistoric petroglyphs. How it forms—and, in particular, the basis for its extremely high manganese content—has been an enduring mystery. The work presented here establishes a biological mechanism for this manganese enrichment, underpinned by an apparent antioxidant strategy that enables microbes to survive in the harsh environments where varnish forms. The understanding that varnish is the residue of life using manganese to thrive in the desert illustrates that, even in extremely stark environments, the imprint of life is omnipresent on the landscape. Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese—over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant—a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.
Collapse
|
27
|
Schulze-Makuch D, Lipus D, Arens FL, Baqué M, Bornemann TLV, de Vera JP, Flury M, Frösler J, Heinz J, Hwang Y, Kounaves SP, Mangelsdorf K, Meckenstock RU, Pannekens M, Probst AJ, Sáenz JS, Schirmack J, Schloter M, Schmitt-Kopplin P, Schneider B, Uhl J, Vestergaard G, Valenzuela B, Zamorano P, Wagner D. Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms 2021; 9:microorganisms9051038. [PMID: 34065975 PMCID: PMC8151210 DOI: 10.3390/microorganisms9051038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
- Correspondence: (D.S.-M.); (D.W.); Tel.: +49-(30)-314-23736 (D.S.-M.); +49-(331)-288-28800 (D.W.)
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
| | - Felix L. Arens
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany;
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), 51147 Cologne, Germany;
| | - Markus Flury
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, USA;
- Department of Crop and Soil Science, Washington State University, Puyallup, WA 98371, USA
| | - Jan Frösler
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Jacob Heinz
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Yunha Hwang
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Samuel P. Kounaves
- Department of Chemistry, Tufts University, Boston, MA 02155, USA;
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, 14473 Potsdam, Germany;
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Mark Pannekens
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Johan S. Sáenz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.S.S.); (M.S.)
| | - Janosch Schirmack
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.S.S.); (M.S.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (P.-S.K.); (J.U.)
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
| | - Jenny Uhl
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (P.-S.K.); (J.U.)
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile; (B.V.); (P.Z.)
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile; (B.V.); (P.Z.)
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Correspondence: (D.S.-M.); (D.W.); Tel.: +49-(30)-314-23736 (D.S.-M.); +49-(331)-288-28800 (D.W.)
| |
Collapse
|
28
|
Abstract
Concrete is an extreme but common environment and is home to microbial communities adapted to alkaline, saline, and oligotrophic conditions. Microbes inside the concrete that makes up buildings or roads have received little attention despite their ubiquity and capacity to interact with the concrete. Because concrete is a composite of materials which have their own microbial communities, we hypothesized that the microbial communities of concrete reflect those of the concrete components and that these communities change as the concrete ages. Here, we used a 16S amplicon study to show how microbial communities change over 2 years of outdoor weathering in two sets of concrete cylinders, one prone to the concrete-degrading alkali-silica reaction (ASR) and the other having the risk of the ASR mitigated. After identifying and removing taxa that were likely laboratory or reagent contaminants, we found that precursor materials, particularly the large aggregate (gravel), were the probable source of ∼50 to 60% of the bacteria observed in the first cylinders from each series. Overall, community diversity decreased over 2 years, with temporarily increased diversity in warmer summer months. We found that most of the concrete microbiome was composed of Proteobacteria, Firmicutes, and Actinobacteria, although community composition changed seasonally and over multiyear time scales and was likely influenced by environmental deposition. Although the community composition between the two series was not significantly different overall, several taxa, including Arcobacter, Modestobacter, Salinicoccus, Rheinheimera, Lawsonella, and Bryobacter, appear to be associated with ASR. IMPORTANCE Concrete is the most-used building material in the world and a biologically extreme environment, with a microbiome composed of bacteria that likely come from concrete precursor materials, aerosols, and environmental deposition. These microbes, though seeded from a variety of materials, are all subject to desiccation, heating, starvation, high salinity, and very high pH. Microbes that survive and even thrive under these conditions can potentially either degrade concrete or contribute to its repair. Thus, understanding which microbes survive in concrete, under what conditions, and for how long has potential implications for biorepair of concrete. Further, methodological pipelines for analyzing concrete microbial communities can be applied to concrete from a variety of structures or with different types of damage to identify bioindicator species that can be used for structural health monitoring and service life prediction.
Collapse
|
29
|
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review. Toxins (Basel) 2021; 13:toxins13050322. [PMID: 33946968 PMCID: PMC8145420 DOI: 10.3390/toxins13050322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, the health risk from phycotoxins on the background of the global warming and eutrophication and, from the other side, the current surge of interest which phycotoxins provoke due to their potential as novel compounds in medicine, pharmacy, cosmetics, bioremediation, agriculture and all aspects of biotechnological implications in human life.
Collapse
|
30
|
Guesmi S, Pujic P, Nouioui I, Dubost A, Najjari A, Ghedira K, Igual JM, Miotello G, Cherif A, Armengaud J, Klenk HP, Normand P, Sghaier H. Ionizing-radiation-resistant Kocuria rhizophila PT10 isolated from the Tunisian Sahara xerophyte Panicum turgidum: Polyphasic characterization and proteogenomic arsenal. Genomics 2020; 113:317-330. [PMID: 33279651 DOI: 10.1016/j.ygeno.2020.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/17/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.
Collapse
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute of Tunisia, 43, Avenue Charles Nicolle, 1082 Tunis, Mahrajène, Tunisia; Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia.
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, Lyon, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Afef Najjari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Microorganismes et Biomolécules Actives, 2092 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Guylaine Miotello
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | | | - Haïtham Sghaier
- Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia; Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
31
|
Cirigliano A, Mura F, Cecchini A, Tomassetti MC, Maras DF, Di Paola M, Meriggi N, Cavalieri D, Negri R, Quagliariello A, Hallsworth JE, Rinaldi T. Active microbial ecosystem in
Iron‐Age
tombs of the Etruscan civilization. Environ Microbiol 2020; 23:3957-3969. [DOI: 10.1111/1462-2920.15327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Angela Cirigliano
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Francesco Mura
- CNIS – Center for Nanotechnology Applied to Industry of La Sapienza Sapienza University of Rome Rome Italy
| | - Adele Cecchini
- Associazione No Profit ‘Amici Delle Tombe Dipinte di Tarquinia’ Tarquinia Italy
| | | | - Daniele Federico Maras
- Soprintendenza Archeologia Belle Arti e Paesaggio per l'Area Metropolitana di Roma, la Provincia di Viterbo e l'Etruria Meridionale Ministero dei Beni e delle Attività Culturali e del Turismo Rome Italy
| | | | | | | | - Rodolfo Negri
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science University of Padova Padova Italy
| | - John E. Hallsworth
- Institute for Global Food Security School of Biological Sciences, Queen's University Belfast Belfast UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology Sapienza University of Rome Rome Italy
| |
Collapse
|
32
|
Double strand break (DSB) repair in Cyanobacteria: Understanding the process in an ancient organism. DNA Repair (Amst) 2020; 95:102942. [DOI: 10.1016/j.dnarep.2020.102942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
|
33
|
Jeong SW, Choi YJ. Extremophilic Microorganisms for the Treatment of Toxic Pollutants in the Environment. Molecules 2020; 25:E4916. [PMID: 33114255 PMCID: PMC7660605 DOI: 10.3390/molecules25214916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
As concerns about the substantial effect of various hazardous toxic pollutants on the environment and public health are increasing, the development of effective and sustainable treatment methods is urgently needed. In particular, the remediation of toxic components such as radioactive waste, toxic heavy metals, and other harmful substances under extreme conditions is quite difficult due to their restricted accessibility. Thus, novel treatment methods for the removal of toxic pollutants using extremophilic microorganisms that can thrive under extreme conditions have been investigated during the past several decades. In this review, recent trends in bioremediation using extremophilic microorganisms and related approaches to develop them are reviewed, with relevant examples and perspectives.
Collapse
Affiliation(s)
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul 02504, Korea;
| |
Collapse
|
34
|
Foster L, Boothman C, Ruiz-Lopez S, Boshoff G, Jenkinson P, Sigee D, Pittman JK, Morris K, Lloyd JR. Microbial bloom formation in a high pH spent nuclear fuel pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137515. [PMID: 32325573 DOI: 10.1016/j.scitotenv.2020.137515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms are able to colonise a wide range of extreme environments, including nuclear facilities. In this study, the First Generation Magnox Storage Pond (FGMSP) a high pH, legacy spent nuclear fuel pond (SNFP) situated at Sellafield, Cumbria, UK, was studied. Despite the inhospitable conditions in the FGMSP, microorganisms can cause "blooms" within the facility which to date have not been studied. These microbial blooms significantly reduce visibility in the engineered facility, disrupting fuel retrieval operations and slowing decommissioning. The microbial community colonising the pond during two microbial bloom periods was determined by using physiological measurements and high throughput next generation sequencing techniques. In situ probes within the ponds targeting photosynthetic pigments indicated a cyanobacterial bloom event. Analysis of the 16S rRNA gene data suggested that a single cyanobacterial genus was dominant during the bloom events, which was most closely related to Pseudanabaena sp. Comparisons between the microbial community of FGMSP and an adjacent SNFP that is periodically purged into the FGMSP, showed different community profiles. Data confirm the onset of the microbial blooms occurred when the pond purge rate was reduced, and blooms could be controlled by re-establishing the purging regime. The presence of Pseudanabaena sp. that can colonise the pond and dominate during bloom periods is notable since they have received little attention for their role in cyanobacterial bloom formation. This work also informs bioremediation efforts to treat waters contaminated with radionuclides, which could benefit from the use of cyanobacteria able to tolerate extreme environments and accumulate priority radionuclides.
Collapse
Affiliation(s)
- Lynn Foster
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Christopher Boothman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Sharon Ruiz-Lopez
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Genevieve Boshoff
- National Nuclear Laboratory, Chadwick House, Birchwood, Warrington WA3 6AE, UK.
| | | | - David Sigee
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jon K Pittman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
35
|
Coil DA, Neches RY, Lang JM, Jospin G, Brown WE, Cavalier D, Hampton-Marcell J, Gilbert JA, Eisen JA. Bacterial communities associated with cell phones and shoes. PeerJ 2020; 8:e9235. [PMID: 32551196 PMCID: PMC7292020 DOI: 10.7717/peerj.9235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively. Findings We report here a large-scale study of the microbiome found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiome, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiome of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States. Conclusions We place this data in the context of previous studies and demonstrate that the microbiome of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.
Collapse
Affiliation(s)
- David A Coil
- Genome Center, University of California, Davis, CA, United States of America
| | - Russell Y Neches
- Genome Center, University of California, Davis, CA, United States of America
| | - Jenna M Lang
- Genome Center, University of California, Davis, CA, United States of America
| | - Guillaume Jospin
- Genome Center, University of California, Davis, CA, United States of America
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California, Irvine, CA, United States of America.,Science Cheerleaders, Inc., Philadelphia, PA, United States of America
| | - Darlene Cavalier
- Science Cheerleaders, Inc., Philadelphia, PA, United States of America.,SciStarter.org, Philadelphia, PA, United States of America
| | - Jarrad Hampton-Marcell
- Argonne National Laboratory, University of Chicago, Lemont, IL, United States of America
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, UC San Diego School of Medicine, San Diego, CA, United States of America
| | - Jonathan A Eisen
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
36
|
Foster L, Muhamadali H, Boothman C, Sigee D, Pittman JK, Goodacre R, Morris K, Lloyd JR. Radiation Tolerance of Pseudanabaena catenata, a Cyanobacterium Relevant to the First Generation Magnox Storage Pond. Front Microbiol 2020; 11:515. [PMID: 32318035 PMCID: PMC7154117 DOI: 10.3389/fmicb.2020.00515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/10/2020] [Indexed: 11/30/2022] Open
Abstract
Recently a species of Pseudanabaena was identified as the dominant photosynthetic organism during a bloom event in a high pH (pH ∼11.4), radioactive spent nuclear fuel pond (SNFP) at the Sellafield Ltd., United Kingdom facility. The metabolic response of a laboratory culture containing the cyanobacterium Pseudanabaena catenata, a relative of the major photosynthetic microorganism found in the SNFP, to X-ray irradiation was studied to identify potential survival strategies used to support colonization of radioactive environments. Growth was monitored and the metabolic fingerprints of the cultures, during irradiation and throughout the post-irradiation recovery period, were determined using Fourier transform infrared (FT-IR) spectroscopy. A dose of 95 Gy delivered over 5 days did not significantly affect growth of P. catenata, as determined by turbidity measurements and cell counts. Multivariate statistical analysis of the FT-IR spectral data revealed metabolic variation during the post-irradiation recovery period, with increased polysaccharide and decreased amide spectral intensities. Increases in polysaccharides were confirmed by complementary analytical methods including total carbohydrate assays and calcofluor white staining. This observed increased production of polysaccharides is of significance, since this could have an impact on the fate of the radionuclide inventory in the pond via biosorption of cationic radionuclides, and may also impact on downstream processes through biofilm formation and biofouling.
Collapse
Affiliation(s)
- Lynn Foster
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Howbeer Muhamadali
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, United Kingdom
| | - Christopher Boothman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - David Sigee
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Jon K. Pittman
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Liverpool, United Kingdom
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Jonathan R. Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
37
|
Husseini ZN, Hosseini Tafreshi SA, Aghaie P, Toghyani MA. CaCl 2 pretreatment improves gamma toxicity tolerance in microalga Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110261. [PMID: 32018153 DOI: 10.1016/j.ecoenv.2020.110261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
The Chlorella vulgaris has been generally recognized as a promising microalgal model to study stress-related responses due to its ability to withstand against ionizing and non-ionizing radiation. The objective of the present study was to investigate the effect of CaCl2 pre-treatment at different concentrations on the responses of microalga C. vulgaris under gamma radiation toxicity. Changes in growth, physiological parameters and biochemical compositions of the algae pretreated with 0.17 (normal), 5, and 10 mM CaCl2 were analyzed under 300 Gy gamma irradiation and compared to those of gamma-free control. The results showed that parameters including specific growth rate, cell size, chlorophyll and protein contents, ascorbate peroxidase (APX), and superoxide dismutase (SOD) activity, Ferric Reducing Antioxidant Power (FRAP), and the ratios of nucleic acid to protein negatively affected by gamma irradiation. All these parameters, except for the ratios of nucleic acid to protein significantly increased in the algae when pretreated with a CaCl2 content higher than normal concentration. The analysis also showed that parameters including catalase activity, proline, and carotenoid content, the level of lipid peroxidation, and electrolyte leakage (EL) significantly increased under gamma irradiation but not affected significantly under different CaCl2 pre-treatments. Additionally, specific growth rate, chlorophyll a and protein content, APX and SOD activity, FRAP, lipid peroxidation, electrolyte leakage, and the ratios of nucleic acid to protein were the only parameters that significantly affected by the interaction of gamma toxicity and CaCl2 pretreatment. Overall, the results suggested that regardless of the CaCl2 effect, the algal cells responded to gamma radiation more efficiently by increasing proline, carotenoids content, and CAT activity. More important, it was concluded that calcium had an essential role in modifying the detrimental effect of gamma toxicity on the algae mainly by increasing the activity of ascorbate peroxidase and superoxide dismutase and maintaining the reducing antioxidant power (FRAP) of the cells at a high level.
Collapse
Affiliation(s)
- Zainab Naser Husseini
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran. 8731753153, Iran
| | - Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran. 8731753153, Iran.
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor Universtiy, Po Box 19395-3697, Tehran, Iran
| | | |
Collapse
|
38
|
Hosseini Tafreshi SA, Aghaie P, Toghyani MA, Ramazani-Moghaddam-Arani A. Improvement of ionizing gamma irradiation tolerance of Chlorella vulgaris by pretreatment with polyethylene glycol. Int J Radiat Biol 2020; 96:919-928. [PMID: 32159411 DOI: 10.1080/09553002.2020.1741717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the effects of polyethylene glycol (PEG) 6000 pretreatment on growth and physiological responses of eukaryotic microalga Chlorella vulgaris exposed to ionizing irradiation.Materials and methods: The microalgal cells pretreated with different PEG concentrations (0, 5, 10 and 20%) and then exposed to 300 Gray gamma irradiation at a dose rate of 0.5 Gy s-1. The various growth and physiological parameters including algal growth, cell size, the degree of electrolyte leakage (EL) and lipid peroxidation, the content of pigments and proline and the activity of antioxidant enzymes under gamma-free or 300 Gray gamma irradiation conditions were examined.Results: The results showed that PEG stimulated a higher growth and cell size under both stress-free and gamma-stress conditions. The maximum growth and cell size was reported when the algae was pretreated with 10% PEG. A relative increase of catalase activity was observed in all samples after exposing to gamma irradiation. However, the highest value was recorded for the gamma-radiated algae pretreated with 10% PEG. In the absence of PEG, gamma irradiation induced a significant reduction in ascorbate peroxidase activity, but with PEG pretreatment, the enzyme activity remained constant or even increased after gamma irradiation. On the other hand, although gamma irradiation stress generally suppressed the activity of superoxide dismutase in all cells, pretreating the algae with PEG could diminish this suppressing effect at all applied concentrations. Compared to the PEG-free controls, a lower rate of chlorophylls and membrane integrity loss was shown in the PEG-treated algae when exposed to gamma stress. Total carotenoid content in PEG-treated algae was also similar under both gamma-free and gamma-radiated conditions. A PEG-independent increase in proline accumulation was reported under gamma-irradiation treatment.Conclusions: Overall, the results suggested that PEG pretreatment could improve gamma-irradiation tolerance in C. vulgaris probably by stimulating a range of enzymatic and non-enzymatic reactive oxygen species scavenging systems. The microalgae may also consume PEG to break down and use it as an alternative source of carbon during stress which should be further studied in detail.
Collapse
Affiliation(s)
- Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran
| | | | | |
Collapse
|
39
|
Kashyap Jagadeesh M, Rao Valluri S, Kari V, Kubska K, Kaczmarek Ł. Indexing Exoplanets with Physical Conditions Potentially Suitable for Rock-Dependent Extremophiles. Life (Basel) 2020; 10:life10020010. [PMID: 31991857 PMCID: PMC7175269 DOI: 10.3390/life10020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/30/2022] Open
Abstract
The search for different life forms elsewhere in the universe is a fascinating area of research in astrophysics and astrobiology. Currently, according to the NASA Exoplanet Archive database, 3876 exoplanets have been discovered. The Earth Similarity Index (ESI) is defined as the geometric mean of radius, density, escape velocity, and surface temperature and ranges from 0 (dissimilar to Earth) to 1 (similar to Earth). The ESI was created to index exoplanets on the basis of their similarity to Earth. In this paper, we examined rocky exoplanets whose physical conditions are potentially suitable for the survival of rock-dependent extremophiles, such as the cyanobacteria Chroococcidiopsis and the lichen Acarospora. The Rock Similarity Index (RSI) is first introduced and then applied to 1659 rocky exoplanets. The RSI represents a measure for Earth-like planets on which physical conditions are potentially suitable for rocky extremophiles that can survive in Earth-like extreme habitats (i.e., hot deserts and cold, frozen lands).
Collapse
Affiliation(s)
- Madhu Kashyap Jagadeesh
- Department of Physics, Christ (Deemed to be university), Bengaluru, Karnataka 560029, India
- Correspondence:
| | - Sagarika Rao Valluri
- Department of Electronics and Communication, RNSIT, Bengaluru, Karnataka 560098, India;
| | - Vani Kari
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, Mysuru, Karnataka 570006, India;
| | - Katarzyna Kubska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland; (K.K.)
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland; (K.K.)
| |
Collapse
|
40
|
Qu EB, Omelon CR, Oren A, Meslier V, Cowan DA, Maggs-Kölling G, DiRuggiero J. Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Front Microbiol 2020; 10:2952. [PMID: 31969867 PMCID: PMC6960110 DOI: 10.3389/fmicb.2019.02952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022] Open
Abstract
Studies of microbial biogeography are often convoluted by extremely high diversity and differences in microenvironmental factors such as pH and nutrient availability. Desert endolithic (inside rock) communities are relatively simple ecosystems that can serve as a tractable model for investigating long-range biogeographic effects on microbial communities. We conducted a comprehensive survey of endolithic sandstones using high-throughput marker gene sequencing to characterize global patterns of diversity in endolithic microbial communities. We also tested a range of abiotic variables in order to investigate the factors that drive community assembly at various trophic levels. Macroclimate was found to be the primary driver of endolithic community composition, with the most striking difference witnessed between hot and polar deserts. This difference was largely attributable to the specialization of prokaryotic and eukaryotic primary producers to different climate conditions. On a regional scale, microclimate and properties of the rock substrate were found to influence community assembly, although to a lesser degree than global hot versus polar conditions. We found new evidence that the factors driving endolithic community assembly differ between trophic levels. While phototrophic taxa, mostly oxygenic photosynthesizers, were rigorously selected for among different sites, heterotrophic taxa were more cosmopolitan, suggesting that stochasticity plays a larger role in heterotroph assembly. This study is the first to uncover the global drivers of desert endolithic diversity using high-throughput sequencing. We demonstrate that phototrophs and heterotrophs in the endolithic community assemble under different stochastic and deterministic influences, emphasizing the need for studies of microorganisms in context of their functional niche in the community.
Collapse
Affiliation(s)
- Evan B. Qu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chris R. Omelon
- Department of Geography and Planning, Queen’s University, Kingston, ON, Canada
| | - Aharon Oren
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
41
|
Shifts in microbial community composition in tannery-contaminated soil in response to increased gamma radiation. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Purpose
Contaminated sites from man-made activities such as old-fashioned tanneries are inhabited by virulent microorganisms that exhibit more resistance against extreme and toxic environmental conditions. We investigated the effect of different Gamma radiation doses on microbial community composition in the sediment of an old-fashioned tannery.
Methods
Seven samples collected from the contaminated sites received different gamma radiation doses (I = 0.0, II = 5, III = 10, VI = 15, V = 20, VI = 25, and VII = 30 kGy) as an acute exposure. The shift in microbial community structure was assessed using the high throughput 454 pyrosequencing. Variations in diversity, richness, and the shift in operational taxonomic units (OTUs) were investigated using statistical analysis.
Result
Our results showed that the control sample (I) had the highest diversity, richness, and OTUs when compared with the irradiated samples. Species of Halocella, Parasporobacterium, and Anaerosporobacter had the highest relative abundance at the highest radiation dose of 30 kGy. Members of the Firmicutes also increased by 20% at the highest radiation dose when compared with the control sample (0.0 kGy). Representatives of Synergistetes decreased by 25% while Bacteroidetes retained a steady distribution across the range of gamma radiation intensities.
Conclusion
This study provides information about potential “radioresistant” and/or “radiotolerant” microbial species that are adapted to elevated level of chemical toxicity such as Cr and Sr in tannery. These species can be of a high biotechnological and environmental importance.
Collapse
|
42
|
Hussein MH, Hamouda RA, Elhadary AMA, Abuelmagd MA, Ali S, Rizwan M. Characterization and chromium biosorption potential of extruded polymeric substances from Synechococcus mundulus induced by acute dose of gamma irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31998-32012. [PMID: 31493072 DOI: 10.1007/s11356-019-06202-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
This study characterized the extruded polymeric substances (EPS) secreted from Synechococcus mundulus cultures under the effect of 2-KGy gamma irradiation dose. The EPS demonstrated seven monosaccharides, two uronic acids and several chemical functional groups: O-H, N-H, =C-H, C=C, C=O, COO-, O-SO3, C-O-C and a newly formed peak at 1593 cm-1 (secondary imide). The roughness of EPS was 96.71 nm and only 28.4% total loss in weight was observed at 800 °C with a high degree of crystallinity quantified as CIDSC (0.722) and CIXRD (0.718). Preliminary comparative analyses of EPS exhibited high protein content in the radiologically modified (R-EPS) than control (C-EPS). Modified EPS were characterized with a high biosorption efficiency, which could be attributed to its high content of uronic acids, protein and sulphates as well as various saccharide monomers. Data revealed that 0.0213 mg L-1 h-1 is the maximum biosorption rate (SBRmax) of Cr(VI) for R-EPS, whereas 0.0204 mg L-1 h-1 SBRmax for the C-EPS respectively.
Collapse
Affiliation(s)
- Mervat H Hussein
- Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ragaa A Hamouda
- Department of Biology, Faculty of Sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Abdel Monsef A Elhadary
- Biological Application Department, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | | | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
43
|
Panitz C, Frösler J, Wingender J, Flemming HC, Rettberg P. Tolerances of Deinococcus geothermalis Biofilms and Planktonic Cells Exposed to Space and Simulated Martian Conditions in Low Earth Orbit for Almost Two Years. ASTROBIOLOGY 2019; 19:979-994. [PMID: 30925079 DOI: 10.1089/ast.2018.1913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fossilized biofilms represent one of the oldest known confirmations of life on the Earth. The success of microbes in biofilms results from properties that are inherent in the biofilm, including enhanced interaction, protection, and biodiversity. Given the diversity of microbes that live in biofilms in harsh environments on the Earth, it is logical to hypothesize that, if microbes inhabit other bodies in the Universe, there are also biofilms on those bodies. The Biofilm Organisms Surfing Space experiment was conducted as part of the EXPOSE-R2 mission on the International Space Station. The experiment was an international collaboration designed to perform a comparative study regarding the survival of biofilms versus planktonic cells of various microorganisms, exposed to space and Mars-like conditions. The objective was to determine whether there are lifestyle-dependent differences to cope with the unique mixture of stress factors, including desiccation, temperature oscillations, vacuum, or a Mars-like gas atmosphere and pressure in combination with extraterrestrial or Mars-like ultraviolet (UV) radiation residing during the long-term space mission. In this study, the outcome of the flight and mission ground reference analysis of Deinococcus geothermalis is presented. Cultural tests demonstrated that D. geothermalis remained viable in the desiccated state, being able to survive space and Mars-like conditions and tolerating high extraterrestrial UV radiation for more than 2 years. Culturability decreased, but was better preserved, in the biofilm consortium than in planktonic cells. These results are correlated to differences in genomic integrity after exposure, as visualized by random amplified polymorphic DNA-polymerase chain reaction. Interestingly, cultivation-independent viability markers such as membrane integrity, ATP content, and intracellular esterase activity remained nearly unaffected, indicating that subpopulations of the cells had survived in a viable but nonculturable state. These findings support the hypothesis of long-term survival of microorganisms under the harsh environmental conditions in space and on Mars to a higher degree if exposed as biofilm.
Collapse
Affiliation(s)
- Corinna Panitz
- 1Institute of Pharmacology and Toxicology, University Hospital/RWTH Aachen, Aachen, Germany
| | - Jan Frösler
- 2Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- 2Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | | | - Petra Rettberg
- 3Research Group Astrobiology, Radiation Biology Department, Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Cologne, Germany
| |
Collapse
|
44
|
Billi D, Staibano C, Verseux C, Fagliarone C, Mosca C, Baqué M, Rabbow E, Rettberg P. Dried Biofilms of Desert Strains of Chroococcidiopsis Survived Prolonged Exposure to Space and Mars-like Conditions in Low Earth Orbit. ASTROBIOLOGY 2019; 19:1008-1017. [PMID: 30741568 DOI: 10.1089/ast.2018.1900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dried biofilms and dried multilayered planktonic counterparts obtained from three desert strains of Chroococcidiopsis were exposed to low Earth conditions by using the EXPOSE-R2 facility outside the International Space Station. During the space mission, samples in Tray 1 (space vacuum and solar radiation, from λ ≈ 110 nm) and Tray 2 (Mars-like UV flux, λ > 200 nm and Mars-like atmosphere) received total UV (200-400 nm) fluences of about 4.58 × 102 kJ/m2 and 4.92 × 102 kJ/m2, respectively, and 0.5 Gy of cosmic ionizing radiation. Postflight analyses were performed on 2.5-year-old samples due to the space mission duration, from launch to sample return to the lab. The occurrence of survivors was determined by evaluating cell division upon rehydration and damage to the genome and photosynthetic apparatus by polymerase chain reaction-stop assays and confocal laser scanning microscopy. Biofilms recovered better than their planktonic counterparts, accumulating less damage not only when exposed to UV radiation under space and Mars-like conditions but also when exposed in dark conditions to low Earth conditions and laboratory control conditions. This suggests that, despite the shielding provided by top-cell layers being sufficient for a certain degree of survival of the multilayered planktonic samples, the enhanced survival of biofilms was due to the presence of abundant extracellular polymeric substances and to additional features acquired upon drying.
Collapse
Affiliation(s)
- Daniela Billi
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Clelia Staibano
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Claudia Mosca
- 1University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2German Aerospace Center (DLR), Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories Research Group, Berlin, Germany
| | - Elke Rabbow
- 3German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- 3German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| |
Collapse
|
45
|
Wadsworth J, Rettberg P, Cockell CS. Aggregated Cell Masses Provide Protection against Space Extremes and a Microhabitat for Hitchhiking Co-Inhabitants. ASTROBIOLOGY 2019; 19:995-1007. [PMID: 31194575 DOI: 10.1089/ast.2018.1924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The European Space Agency's EXPOSE facility, located on the outside of the International Space Station, was used to investigate the survival of cell aggregates of a cyanobacterium, Gloeocapsa sp., in space and simulated martian conditions for 531 days in low Earth orbit as part of the "Biofilm Organisms Surfing Space" (BOSS) experiments. Postflight analysis showed that the cell aggregates of the organism conferred protection against space conditions compared to planktonic cells. These cell aggregates, which consisted of groups of metabolically inactive cells that do not form structured layered biofilms, demonstrated that disordered "primitive" aggregates of sheathed cells can provide protection against environmental stress such as UV radiation. Furthermore, the experiment demonstrated that the cyanobacterial cell aggregates provided a microhabitat for a smaller bacterial co-cultured species that also survived in space. This observation shows that viable cells can "hitchhike" through space within the confines of larger protecting cells or cell aggregates, with implications for planetary protection, human health, and other space microbiology applications.
Collapse
Affiliation(s)
- Jennifer Wadsworth
- 1UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Charles S Cockell
- 1UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Changes in soil taxonomic and functional diversity resulting from gamma irradiation. Sci Rep 2019; 9:7894. [PMID: 31133738 PMCID: PMC6536540 DOI: 10.1038/s41598-019-44441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known of the effects of ionizing radiation exposure on soil biota. We exposed soil microcosms to weekly bursts of 60Co gamma radiation over six weeks, at three levels of exposure (0.1 kGy/hr/wk [low], 1 kGy/hr/wk [medium] and 3 kGy/hr/wk [high]). Soil DNA was extracted, and shotgun metagenomes were sequenced and characterised using MG-RAST. We hypothesized that with increasing radiation exposure there would be a decrease in both taxonomic and functional diversity. While bacterial diversity decreased, diversity of fungi and algae unexpectedly increased, perhaps because of release from competition. Despite the decrease in diversity of bacteria and of biota overall, functional gene diversity of algae, bacteria, fungi and total biota increased. Cycles of radiation exposure may increase the range of gene functional strategies viable in soil, a novel ecological example of the effects of stressors or disturbance events promoting some aspects of diversity. Moreover, repeated density-independent population crashes followed by population expansion may allow lottery effects, promoting coexistence. Radiation exposure produced large overall changes in community composition. Our study suggests several potential novel radiation-tolerant groups: in addition to Deinococcus-Thermus, which reached up to 20% relative abundance in the metagenome, the phyla Chloroflexi (bacteria), Chytridiomycota (fungi) and Nanoarcheota (archaea) may be considered as radiation-tolerant.
Collapse
|
47
|
Cui W, Li X, Hull L, Xiao M. GATA-type transcription factors play a vital role in radiation sensitivity of Cryptococcus neoformans by regulating the gene expression of specific amino acid permeases. Sci Rep 2019; 9:6385. [PMID: 31015536 PMCID: PMC6478845 DOI: 10.1038/s41598-019-42778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete fungus that is highly resistant to ionizing radiation and has been identified in highly radioactive environments. Transcription factors (TFs) are master regulators of gene expression by binding to specific DNA sequences within promoters of target genes. A library of 322 signature-tagged gene deletion strains for 155 C. neoformans TF genes has been established. Previous phenome-based functional analysis of the C. neoformans TF mutant library identified key TFs important for various phenotypes, such as growth, differentiation, virulence-factor production, and stress responses. Here, utilizing the established TF mutant library, we identified 5 TFs that are important for radiation sensitivity, including SRE1, BZP2, GAT5, GAT6, and HCM1. Interestingly, BZP2, GAT5 and GAT6 all belong to the GATA-type transcription factors. These factors regulate transcription of nitrogen catabolite repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. In addition to radiation, we found that specific GATA factors are important for other stressors such as rapamycin, fluconazole, and hydroxyurea treatment. Using real-time PCR method, we studied the expression of GATA down-stream genes after radiation exposure and identified that AAP4, AAP5 and URO1 were differentially expressed in the GAT5 and GAT6 mutants compared to the wild type cells. In summary, our data suggest that GATA TFs are important for radiation sensitivity in C. neoformans by regulating specific downstream AAP genes.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
48
|
Billi D, Verseux C, Fagliarone C, Napoli A, Baqué M, de Vera JP. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. ASTROBIOLOGY 2019; 19:158-169. [PMID: 30742497 DOI: 10.1089/ast.2017.1807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the ESA space experiment BIOMEX (BIOlogy and Mars EXperiment), dried Chroococcidiopsis cells were exposed to Mars-like conditions during the EXPOSE-R2 mission on the International Space Station. The samples were exposed to UV radiation for 469 days and to a Mars-like atmosphere for 722 days, approaching the conditions that could be faced on the surface of Mars. Once back on Earth, cell survival was tested by growth-dependent assays, while confocal laser scanning microscopy and PCR-based assay were used to analyze the accumulated damage in photosynthetic pigments (chlorophyll a and phycobiliproteins) and genomic DNA, respectively. Survival occurred only for dried cells (4-5 cell layers thick) mixed with the martian soil simulants P-MRS (phyllosilicatic martian regolith simulant) and S-MRS (sulfatic martian regolith simulant), and viability was only maintained for a few hours after space exposure to a total UV (wavelength from 200 to 400 nm) radiation dose of 492 MJ/m2 (attenuated by 0.1% neutral density filters) and 0.5 Gy of ionizing radiation. These results have implications for the hypothesis that, during Mars's climatic history, desiccation- and radiation-tolerant life-forms could have survived in habitable niches and protected niches while transported.
Collapse
Affiliation(s)
- Daniela Billi
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Cyprien Verseux
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | | | - Alessandro Napoli
- 1 University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mickael Baqué
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| | - Jean-Pierre de Vera
- 2 German Aerospace Center, Institute of Planetary Research, Management and Infrastructure, Astrobiological Laboratories, Berlin, Germany
| |
Collapse
|
49
|
Onofri S, Selbmann L, Pacelli C, Zucconi L, Rabbow E, de Vera JP. Survival, DNA, and Ultrastructural Integrity of a Cryptoendolithic Antarctic Fungus in Mars and Lunar Rock Analogs Exposed Outside the International Space Station. ASTROBIOLOGY 2019; 19:170-182. [PMID: 30376361 DOI: 10.1089/ast.2017.1728] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The search for life beyond Earth involves investigation into the responses of model organisms to the deleterious effects of space. In the frame of the BIOlogy and Mars Experiment, as part of the European Space Agency (ESA) space mission EXPOSE-R2 in low Earth orbit (LEO), dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 were grown on martian and lunar analog regolith pellets, and exposed for 16 months to LEO space and simulated Mars-like conditions on the International Space Station. The results demonstrate that C. antarcticus was able to tolerate the combined stress of different extraterrestrial substrates, space, and simulated Mars-like conditions in terms of survival, DNA, and ultrastructural stability. Results offer insights into the habitability of Mars for future exploration missions on Mars. Implications for the detection of biosignatures in extraterrestrial conditions and planetary protection are discussed.
Collapse
Affiliation(s)
- Silvano Onofri
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian National Antarctic Museum, Viterbo, Italy
| | - Claudia Pacelli
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Elke Rabbow
- 3 Institute of Aerospace Medicine, German Aerospace Centre, Köln, Germany
| | - Jean-Pierre de Vera
- 4 Astrobiological Laboratories, Institute of Planetary Research, Management and Infrastructure, German Aerospace Center (DLR) Berlin, Berlin, Germany
| |
Collapse
|
50
|
Pacelli C, Selbmann L, Zucconi L, Coleine C, de Vera JP, Rabbow E, Böttger U, Dadachova E, Onofri S. Responses of the Black Fungus Cryomyces antarcticus to Simulated Mars and Space Conditions on Rock Analogs. ASTROBIOLOGY 2019; 19:209-220. [PMID: 30067087 DOI: 10.1089/ast.2016.1631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The BIOMEX (BIOlogy and Mars Experiment) is part of the European Space Agency (ESA) space mission EXPOSE-R2 in Low-Earth Orbit, devoted to exposing microorganisms for 1.5 years to space and simulated Mars conditions on the International Space Station. In preparing this mission, dried colonies of the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515, grown on martian and lunar analog regolith pellets, were subjected to several ground-based preflight tests, Experiment Verification Tests, and Science Verification Tests (SVTs) that were performed to verify (i) the resistance of our model organism to space stressors when grown on extraterrestrial rock analogs and (ii) the possibility of detecting biomolecules as potential biosignatures. Here, the results of the SVTs, the last set of experiments, which were performed in ultraviolet radiation combined with simulated space vacuum or simulated martian conditions, are reported. The results demonstrate that C. antarcticus was able to tolerate the conditions of the SVT experiment, regardless of the substratum in which it was grown. DNA maintained high integrity after treatments and was confirmed as a possible biosignature; melanin, which was chosen to be a target for biosignature detection, was unambiguously detected by Raman spectroscopy.
Collapse
Affiliation(s)
- Claudia Pacelli
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Laura Selbmann
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- 2 Section of Mycology, Italian Antarctic National Museum (MNA), Genoa, Italy
| | - Laura Zucconi
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Claudia Coleine
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Jean-Pierre de Vera
- 3 Institute of Planetary Research, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Elke Rabbow
- 4 German Aerospace Centre, Institute of Aerospace Medicine (DLR), Köln, Germany
| | - Ute Böttger
- 5 Institute of Optical Sensor Systems, German Aerospace Center (DLR) Berlin, Berlin, Germany
| | - Ekaterina Dadachova
- 6 College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | - Silvano Onofri
- 1 Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|