1
|
Guo D, Li Q, Zhang Y, Duan J. Microbial remediation and deteriorated corrosion in marine oil pollution remediation engineering: A critical review. MARINE POLLUTION BULLETIN 2024; 209:117051. [PMID: 39393248 DOI: 10.1016/j.marpolbul.2024.117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Research on mechanism of microbial deteriorated corrosion in oil-pollution remediation is limited. This paper discusses principles and technical methods of the cost-effective and environmental-friendly bioremediation in marine oil pollution control including the highly efficient microbial resources and bioenhancement technology. Deteriorated corrosion is creatively put forward to interpret the corrosion phenomenon under pollutant-degrading conditions, primarily induced by anaerobic electroactive microorganisms via electron transfer. It summarizes the potential link of microorganisms between oil pollutant degradation and corrosion destruction and illustrates the importance of screening microorganisms with hydrocarbon degradation and corrosion inhibition functions. We critically point out that the severe damage of metal materials in the oil-containing environment is related to the service environment and the interactions between microbial interspecies. The study of the material failure mechanism and the microbial protection technology in the oil-contaminated environment contributes to the sustainability of safe and clean marine ecological restoration engineering.
Collapse
Affiliation(s)
- Ding Guo
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Qiuyue Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100039, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
2
|
Karmakar M, Jana D, Manna T, Mitra M, Guchhait KC, Dey S, Raul P, Jana S, Roy S, Baitalik A, Ghosh K, Panda AK, Ghosh C. Bioremediation by Brevibacterium sediminis: a prospective pyrene degrading agent to eliminate environmental polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 2024; 40:377. [PMID: 39495360 DOI: 10.1007/s11274-024-04178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Environmental abuses and subsequent array of health hazards by petroleum products have emerged as a global concern that warrants proper remediation. Pyrene (PYR), a polycyclic aromatic hydrocarbon, is a xenobiotic by-product during crude petroleum processing. Biodegradation potential of two bacterial isolates (MK4 and MK9) of Brevibacterium sediminis from oil contaminated sites was explored. MK4 and MK9 could degrade PYR up to 23 and 59% (1000 mg.L- 1), respectively. A first-order formalism with the rate constant for MK4 and MK9 were found to be 0.022 ± 0.001 and 0.081 ± 0.005 day- 1, respectively with the corresponding half life period of 31.4 ± 1.4 and 8.6 ± 0.60 days respectively. Both the isolates produce biosurfactants as established by drop collapse assay, oil spreading and emulsification activity studies. Decrease in pH, change in absorbance (bacterial growth), and catechol formation support adaptation capability of the isolates to degrade PYR by using it as a source of carbon. PYR ring cleavage was induced by the ring hydroxylating dioxogenase enzyme present in the strains, as identified by PCR assay. In silico analyses of the PYR degrading enzyme revealed its higher binding affinity (-7.6 kcal.mol- 1) and stability (Eigen value:1.655763 × 10- 04) to PYR, as further supported by other thoeroretical studies. MK9 strain was more efficient than the MK4 strain in PYR degradation. Studies gain its prominence as it reports for the first time on the aptitude of B. sediminis as novel PYR-degrading agent that can efficiently be used in the bioremediation of petroleum product pollution with a greener approach.
Collapse
Affiliation(s)
- Monalisha Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Tuhin Manna
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Maitreyee Mitra
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kartik Chandra Guchhait
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Subhamoy Dey
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Priyanka Raul
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Anirban Baitalik
- Department of Pure and Applied Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, 721129, India
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
| |
Collapse
|
3
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
4
|
Li R, Ren C, Wu L, Zhang X, Mao X, Fan Z, Cui W, Zhang W, Wei G, Shu D. Fertilizing-induced alterations of microbial functional profiles in soil nitrogen cycling closely associate with crop yield. ENVIRONMENTAL RESEARCH 2023; 231:116194. [PMID: 37217131 DOI: 10.1016/j.envres.2023.116194] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Fertilization and rhizosphere selection are key regulators for soil nitrogen (N) cycling and microbiome. Thus, clarifying how the overall N cycling processes and soil microbiome respond to these factors is a prerequisite for understanding the consequences of high inputs of fertilizers, enhancing crop yields, and formulating reasonable nitrogen management strategies under agricultural intensification scenarios. To do this, we applied shotgun metagenomics sequencing to reconstruct N cycling pathways on the basis of abundance and distribution of related gene families, as well as explored the microbial diversity and interaction via high throughput sequencing based on a two-decade fertilization experiment in Loess Plateau of China semiarid area. We found that bacteria and fungi respond divergent to fertilization regimes and rhizosphere selection, in terms of community diversity, niche breadth, and microbial co-occurrence networks. Moreover, organic fertilization decreased the complexity of bacterial networks but increased the complexity and stability of fungal networks. Most importantly, rhizosphere selection exerted more strongly influences on the soil overall nitrogen cycling than the application of fertilizers, accompanied by the increase in the abundance of nifH, NIT-6, and narI genes and the decrease in the abundance of amoC, norC, and gdhA genes in the rhizosphere soil. Furthermore, keystone families screening from soil microbiome (e.g., Sphingomonadaceae, Sporichthyaceae, and Mortierellaceae), which were affected by the edaphic variables, contributed greatly to crop yield. Collectively, our findings emphasize the pivotal roles of rhizosphere selection interacting with fertilization regimes in sustaining soil nitrogen cycling processes in response to decades-long fertilization, as well as the potential importance of keystone taxa in maintaining crop yield. These findings significantly facilitate our understanding of nitrogen cycling in diverse agricultural soils and lay a foundation for manipulating specific microorganisms to regulate N cycling and promote agroecosystem sustainability.
Collapse
Affiliation(s)
- Ruochen Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Chengyao Ren
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Likun Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinxin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Xinyi Mao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Zhen Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Weili Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China
| | - Wu Zhang
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe, Heilongjiang, 150086, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| | - Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
5
|
Giri A, Pant D, Chandra Srivastava V, Kumar M, Kumar A, Goswami M. Plant -microbe assisted emerging contaminants (ECs) removal and carbon cycling. BIORESOURCE TECHNOLOGY 2023:129395. [PMID: 37380038 DOI: 10.1016/j.biortech.2023.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Continuous increase in the level of atmospheric CO2 and environmental contaminates has aggravated various threats resulting from environmental pollution and climate change. Research into plant -microbe interaction has been a central concern of ecology for over the year. However, despite the clear contribution of plant -microbe to the global carbon cycle, the role of plant -microbe interaction in carbon pools, fluxes and emerging contaminants (ECs) removal are still a poorly understood. The use of plant and microbes in ECs removal and carbon cycling is an attractive strategy because microbes operate as biocatalysts to remove contaminants and plant roots offer a rich niche for their growth and carbon cycling. However, bio-mitigation of CO2 and removal of ECs is still under research phase because of the CO2 capture and fixation efficiency is too low for industrial purposes and cutting-edge removal methods have not been created for such emerging contaminants.
Collapse
Affiliation(s)
- Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Deepak Pant
- Departments of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala 176215, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Manoj Kumar
- Indian Oil Corporation R&D Centre, Sector 13, Faridabad, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Meera Goswami
- Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| |
Collapse
|
6
|
Lopez MF, Martínez FL, Rajal VB, Irazusta VP. Biotechnological potential of microorganisms isolated from the salar del hombre muerto, Argentina. AN ACAD BRAS CIENC 2023; 95:e20211199. [PMID: 36790270 DOI: 10.1590/0001-3765202320211199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/27/2022] [Indexed: 02/12/2023] Open
Abstract
Bacterial strains were isolated from soil and aqueous solution samples from the Salar del Hombre Muerto, Argentina. A total of 141 strains were characterized and the tolerance to sodium chloride was evaluated. We performed a screening to search for molecules of biotechnological interest: carotenoids (11%), emulsifiers (95%), and exopolysaccharides (6%), and to assess the production of enzymes, including proteolytic (39%), lipolytic (26%), hemolytic (50%), and catalase activities (99%); 25 bacterial strains were selected for further studies. Some of them produced biofilms, but only Bacillus sp. HA120b showed that ability in all the conditions assayed. Although 21 strains were able to form emulsions, the emulsifying index Kocuria sp. M9 and Bacillus sp. V3a cultures were greater than 50% and, emulsions were more stable when the bacteria grew in higher salt concentrations. Only pigmented Kocuria sp. M9 showed lipolytic activity on olive oil medium and was able to produce biofilms when cultured without and with 4 M of NaCl. Yellow pigments, lipase activity, and biosurfactant production were observed for Micrococcus sp. SX120. Summarizing, we found that the selected bacteria produced highly interesting molecules with diverse industrial applications and, many of them are functional in the presence of high salt concentrations.
Collapse
Affiliation(s)
- Marta Florencia Lopez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| |
Collapse
|
7
|
Bacosa HP, Cayabo GDB, Inoue C. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microbial consortium from paddy rice soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:617-622. [PMID: 37122120 DOI: 10.1080/10934529.2023.2204803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most widely spread pollutants in the environment including the agricultural soil. PAH degradation by indigenous bacteria is an effective and economical means to remove these pollutants from the environment. Here, we report a bacterial consortium (Pdy-1) isolated from paddy rice soil in northern Japan able to degrade polycyclic aromatic hydrocarbons (PAHs) at high rates. Pdy-1 was incubated with a mixture of PAH compounds (fluorene, phenanthrene, and pyrene) in Bushnell Haas Medium at a final concentration of 100 mg/L each. PDY-1 degraded 100% of fluorene, 95% of phenanthrene, and 52% of pyrene in 5 days. Phenanthrene and pyrene were completely degraded at 10 d and 15 d, respectively. Cloning of the 16S rRNA gene revealed that the consortium was composed of 40% Achromobacter and 7% each of Castelaniella, Rhodanobacter, and Hypomicrobium. Comamonas, Ferrovibrio, Terrimonas, Bordetella, Rhizobium, and Pseudonocardia were also detected. PCR-DGGE showed the dynamics of the consortium during the incubation period. Real-time PCR revealed that PAH degrading genes such as the gram-positive ring dihydroxylating genes (PAH-RDH) and pyrene dioxygenase (nidA) were most abundant at day 5 when the rapid biodegradation of the PAHs was observed. This study improves our understanding on dynamics and characteristics of an effective PAH-degrading bacterial consortium from paddy rice soil.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Environmental Science Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Iligan, Philippines
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Genese Divine B Cayabo
- College of Fisheries and Aquatic Sciences, Western Philippines University, Puerto Princesa City, Palawan, Philippines
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Zhang N, Gao F, Cheng S, Xie H, Hu Z, Zhang J, Liang S. Mn oxides enhanced pyrene removal with both rhizosphere and non-rhizosphere microorganisms in subsurface flow constructed wetlands. CHEMOSPHERE 2022; 307:135821. [PMID: 35944687 DOI: 10.1016/j.chemosphere.2022.135821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) are substantial wastewater pollutants emitted mostly by petroleum refineries and petrochemical industries, and their environmental fate has been of increasing concern among the public. Consequently, subsurface flow constructed wetlands (SFCWs) filled with Mn oxides (W-CW) or without Mn oxides (K-CW) were established to investigate the performance and mechanisms of pyrene (PYR) removal. The average removal rates of PYR in W-CW and K-CW were 96.00% and 92.33%, respectively. The PYR removal via other pathways (microbial degradation, photolysis, volatilisation, etc.) occupied a sizeable proportion, while the total PYR content in K-CW plant roots was significantly higher than that of W-CW. The microorganisms on the root surface and rhizosphere played an important role in PYR degradation in W-CW and K-CW and were higher in W-CW than that in K-CW in all matrix zones. The microorganisms between the 10-16 cm zone from the bottom of W-CW filled with Mn oxides (W-16) were positively correlated with PYR-degrading microorganisms, aerobic bacteria and facultative anaerobes, whereas K-16 without birnessite-coated sand was negatively correlated with these microorganisms.
Collapse
Affiliation(s)
- Ning Zhang
- Environment Research Institute, Shandong University, Jinan, 250100, China
| | - Fuwei Gao
- Zhongke Hualu Soil Remediation Engineering Co., Ltd, Dezhou, 253000, China
| | - Shiyi Cheng
- Jiangsu Ecological Environmental Monitoring Co., Ltd, Nanjing, 320100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Jinan, 250100, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
9
|
Binding and removal of polycyclic aromatic hydrocarbons in cold smoked sausage and beef using probiotic strains. Food Res Int 2022; 161:111793. [DOI: 10.1016/j.foodres.2022.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/09/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
|
10
|
Salix purpurea and Eleocharis obtusa Rhizospheres Harbor a Diverse Rhizospheric Bacterial Community Characterized by Hydrocarbons Degradation Potentials and Plant Growth-Promoting Properties. PLANTS 2021; 10:plants10101987. [PMID: 34685796 PMCID: PMC8538330 DOI: 10.3390/plants10101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Phytoremediation, a method of phytomanagement using the plant holobiont to clean up polluted soils, is particularly effective for degrading organic pollutants. However, the respective contributions of host plants and their associated microbiota within the holobiont to the efficiency of phytoremediation is poorly understood. The identification of plant-associated bacteria capable of efficiently utilizing these compounds as a carbon source while stimulating plant-growth is a keystone for phytomanagement engineering. In this study, we sampled the rhizosphere and the surrounding bulk soil of Salixpurpurea and Eleocharis obusta from the site of a former petrochemical plant in Varennes, QC, Canada. Our objectives were to: (i) isolate and identify indigenous bacteria inhabiting these biotopes; (ii) assess the ability of isolated bacteria to utilize alkanes and polycyclic aromatic hydrocarbons (PAHS) as the sole carbon source, and (iii) determine the plant growth-promoting (PGP) potential of the isolates using five key traits. A total of 438 morphologically different bacterial isolates were obtained, purified, preserved and identified through PCR and 16S rRNA gene sequencing. Identified isolates represent 62 genera. Approximately, 32% of bacterial isolates were able to utilize all five different hydrocarbons compounds. Additionally, 5% of tested isolates belonging to genera Pseudomonas, Acinetobacter, Serratia, Klebsiella, Microbacterium, Bacillus and Stenotrophomonas possessed all five of the tested PGP functional traits. This culture collection of diverse, petroleum-hydrocarbon degrading bacteria, with multiple PGP traits, represents a valuable resource for future use in environmental bio- and phyto-technology applications.
Collapse
|
11
|
Cavé-Radet A, Correa-Garcia S, Monard C, El Amrani A, Salmon A, Ainouche M, Yergeau É. Phenanthrene contamination and ploidy level affect the rhizosphere bacterial communities of Spartina spp. FEMS Microbiol Ecol 2021; 96:5895320. [PMID: 32821911 DOI: 10.1093/femsec/fiaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
Spartina spp. are widely distributed salt marsh plants that have a recent history of hybridization and polyploidization. These events have resulted in a heightened tolerance to hydrocarbon contaminants, but the effects of this phenomenon on the rhizosphere microbial communities are unknown. Here, we grew two parental Spartina species, their hybrid and the resulting allopolyploid in salt marsh sediments that were contaminated or not with phenanthrene. The DNA from the rhizosphere soil was extracted and the bacterial 16S rRNA gene was amplified and sequenced, whereas the abundances of the genes encoding for the PAH (polycyclic aromatic hydrocarbon) ring-hydroxylating dioxygenase (RHD) of Gram-negative and Gram-positive bacteria were quantified by real-time PCR. Both the contamination and the plant genotype significantly affected the bacterial communities. In particular, the allopolyploid S. anglica harbored a more diverse bacterial community in its rhizosphere. The interspecific hybrid and the allopolyploid also harbored significantly more copies of the PAH-RHD gene of Gram-negative bacteria in their rhizosphere than the parental species, irrespective of the contamination treatments. Overall, our results are showing that the recent polyploidization events in the Spartina affected its rhizosphere bacterial communities, both under normal and contaminated conditions, possibly increasing its phytoremediation potential.
Collapse
Affiliation(s)
- Armand Cavé-Radet
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Sara Correa-Garcia
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | - Cécile Monard
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Armel Salmon
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Malika Ainouche
- University of Rennes 1, CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Étienne Yergeau
- Institut national de la recherche scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
12
|
Ruley JA, Tumuhairwe JB, Amoding A, Westengen OT, Vinje H. Rhizobacteria Communities of Phytoremediation Plant Species in Petroleum Hydrocarbon Contaminated Soil of the Sudd Ecosystem, South Sudan. Int J Microbiol 2020; 2020:6639118. [PMID: 33574849 PMCID: PMC7864745 DOI: 10.1155/2020/6639118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 01/04/2023] Open
Abstract
The Sudd wetland is one of the oil-rich regions of South Sudan where environmental pollution resulting from oil extraction activities has been unprecedented. Although phytoremediation is the most feasible technique, its efficacy reduces at high TPH concentration in soil. This has made rhizoremediation the most preferred approach. Rhizoremediation involves use of a combination of phytoremediation and biostimulation. The process is catalyzed by the action of rhizobacteria. Therefore, the objective of this study is to characterize rhizobacteria communities prevalent in phytoremediation species growing in hydrocarbon-contaminated soils biostimulated with cattle manure. The treatments studied were plant species only (T1), plant species and hydrocarbons (T2), plant species and manure (T3), and plant species, manure, and hydrocarbons (T4). The rhizobacteria communities were determined using pyrosequencing of 16S rRNA. In the treatment with phytoremediation species, hydrocarbons 75 g · kg-1soil, and cattle manure 5 g · kg-1soil (T4), there was a significant increase (p < 0.05) in rhizobacteria abundance with the highest ASV observed in H. rufa (4980) and the lowest in S. arundinaceum (3955). In the same treatment, bacteria community diversity was high in H. rufa (Chao1, 10310) and the least in S. arundinaceum (Chao 1, 8260) with Proteobacteria, Firmicutes, and Actinobacteria as the dominant phyla. Similarly, in contaminated soil treated with cattle manure, there was a significant increase (p < 0.05) in abundance of rhizobacteria genera with Pseudomonas dominating across phytoremediation species. H. rufa was dominated by Bacillus, Fusibacter, and Rhodococcus; G. barbadense was mainly associated with Luteimonas and Mycobacterium, and T. diversifolia was inhabited by Bacillus and Luteimonas. The rhizosphere of O. longistaminata was dominated by Bacillus, Fusibacter, and Luteimonas, while S. arundinaceum was largely inhabited by Sphingomonas. These rhizobacteria genera ought to be applied in the Sudd region for bioremediation.
Collapse
Affiliation(s)
- J. A. Ruley
- Department of Agricultural Production, Makerere University, P.O. Box 7062, Kampala, Uganda
- Department of Agricultural Sciences,CNRES, University of Juba, P.O. Box 82, Juba, Sudan
| | - J. B. Tumuhairwe
- Department of Agricultural Production, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - A. Amoding
- Department of Agricultural Production, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - O. T. Westengen
- Department of International Environment and Development Studies (Noragric), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - H. Vinje
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
13
|
Assessment of the Lowland Bog Biomass for Ex Situ Remediation of Petroleum-Contaminated Soils. ENVIRONMENTS 2020. [DOI: 10.3390/environments7100086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bog petroleum-contaminated soils have been remediated ex situ in conditions close to natural ones. It was found that during the first 30 days in natural conditions, the decomposition of total petroleum hydrocarbons (TPH) was 30 ± 5%. On the 60th and 90th days, the process of TPH decomposition was 45 ± 5% and 60 ± 5%, respectively. The effect of various stimulant supplements was negligible. For the entire observed period, bog soil showed a very high self-cleaning potential with pollution concentration of 5 g of petroleum per 100 g of soil sample. Such diagnostic indicators of soil condition as urease and cellulase activities turned out to be most sensitive in the bog soil. The introduction of mineral fertilizers to stimulate the TPH decomposition increased the activity of urease in comparison with the background soil. On the other hand, the nonionic surfactant acted as an inhibitor of microorganisms involved in nitrogen metabolism, even in the presence of mineral fertilizers. The introduction of mineral fertilizers to petroleum-polluted bog soil stimulated the cellulases activity, while surfactants suppressed them in the early stages. The simultaneous introduction of surfactants and fertilizers kept the cellulase activity at the background level. It is concluded that in the case of petroleum pollution of infertile soils, the introduction of the upper layers of the phytomass of lowland bogs by providing looseness and long-term supply of nutrients from the dying parts of the moss will accelerate the self-cleaning processes.
Collapse
|
14
|
Geographic origin determination of Brazilian Cannabis sativa L. (Marihuana) by multi-element concentration. Forensic Sci Int 2020; 315:110459. [PMID: 32853973 DOI: 10.1016/j.forsciint.2020.110459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022]
Abstract
The Marihuana Polygon production of Cannabis sativa L. supplies the northeastern region of Brazil and represents 30% of the nation's market. The international trend of indoor cultivation is also occurring in Brazil, and the Brazilian Federal Police (BFP) has been increasing its apprehension of cannabis seeds sent by mail. The present work aims to assess the utility of the multi-element composition of different cannabis plant parts and soil samples where the plants were cultivated to determine their geographic origin. Statistical tools were applied to classification of marijuana samples from distinct geographic regions within northeastern Brazil, including indoor cultivated samples. The multi-element quantification was determined using inductively-coupled plasma - optical emission spectrometry (ICP-OES), and the data were compared by the Kruskal-Wallis H test, and subsequently, multiple discriminant analysis (MDA). The results of the multi-element concentration of cannabis plant samples were also subjected to a principal component analysis (PCA) and an orthogonal partial least squares discriminant analysis (OPLS-DA). The cannabis plant samples from the Marihuana Polygon could be clearly separated from those cultivated indoors, and the distance between them was detectable. The MDA revealed that phosphorus, calcium, magnesium, selenium, and arsenic concentrations were used as variables for this separation. Our results demonstrate that multi-element composition analysis can be used to indicate the origin or cultivation location of cannabis plants. Routine laboratory analyses consisting of multi-element composition combined with statistical analyses provide a reliable tool by which C. sativa movement, cultivation, and interdiction efforts in Brazil may be assessed.
Collapse
|
15
|
Asaf S, Numan M, Khan AL, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol 2020; 40:138-152. [PMID: 31906737 DOI: 10.1080/07388551.2019.1709793] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The species belonging to the Sphingomonas genus possess multifaceted functions ranging from remediation of environmental contaminations to producing highly beneficial phytohormones, such as sphingan and gellan gum. Recent studies have shown an intriguing role of Sphingomonas species in the degradation of organometallic compounds. However, the actual biotechnological potential of this genus requires further assessment. Some of the species from the genus have also been noted to improve plant-growth during stress conditions such as drought, salinity, and heavy metals in agricultural soil. This role has been attributed to their potential to produce plant growth hormones e.g. gibberellins and indole acetic acid. However, the current literature is scattered, and some of the important areas, such as taxonomy, phylogenetics, genome mapping, and cellular transport systems, are still being overlooked in terms of elucidation of the mechanisms behind stress-tolerance and bioremediation. In this review, we elucidated the prospective role and function of this genus for improved utilization during environmental biotechnology.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
16
|
Kumari S, Das S. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28763-28774. [PMID: 31376126 DOI: 10.1007/s11356-019-05916-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The genetic basis and biochemical aspects of heavy metal endurance abilities have been precisely studied in planktonic bacteria; however, in nature, bacteria mostly grows as surface-attached communities called biofilms. A hallmark trait of biofilm is increased resistance to heavy metals compared with the resistance of planktonic bacteria. A proposed mechanism that contributes to this increased resistance is the enhanced expression of metal-resistant genes. bmtA gene coding for metallothionein protein is one such metal-resistant gene found in many bacterial spp. In the present study, lead (Pb) remediation potential of a biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 was explored. Biofilm-forming marine bacterium P. aeruginosa N6P6 possess bmtA gene and shows resistance towards many heavy metals, i.e., Pb, Cd, Hg, Cr, and Zn. The expression of metallothionein encoding gene bmtA is significantly high in 48-h-old biofilm culture (11. 4 fold) followed by 24-h-old biofilm culture of P. aeruginosa N6P6 (4.7 fold) (P < 0.05). However, in the case of planktonically grown culture of P. aeruginosa N6P6, the highest expression of bmtA gene was observed in 24-h-old culture. The expression of bmtA also increased significantly with increase in Pb concentration up to 800 ppm. CSLM analysis indicated significant reduction in the raw integrated density of biofilm-associated lipids and polysaccharides (PS) of P. aeruginosa N6P6 biofilm grown in Pb (sub-lethal concentration)-amended medium (P < 0.05), whereas no significant reduction was observed in the raw integrated density of EPS-associated protein. The role of bmtA gene as Pb(II)-resistant determinant was characterized by overexpressing the bmtA gene derived from P. aeruginosa N6P6 in Escherichia coli BL21(DE3). ESI-MS and SDS-PAGE analyses validated the presence of 11.5-kDa MT protein isolated from Pb(II)-induced recombinant E. coli BL21(DE3) harboring bmtA gene.
Collapse
Affiliation(s)
- Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
17
|
Pino-Otín MR, Val J, Ballestero D, Navarro E, Sánchez E, Mainar AM. Impact of Artemisia absinthium hydrolate extracts with nematicidal activity on non-target soil organisms of different trophic levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:565-574. [PMID: 31129435 DOI: 10.1016/j.ecoenv.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Natural pesticides are considered a good alternative to synthetic pesticides to reduce environmental impacts. However, biopesticides may have unknown effects on the environment, and can affect non-target organisms. In this study, the ecotoxicological effects of an aqueous extract (hydrolate) from Spanish populations of Artemisia absinthium (var. Candial) showing a promising biopesticide activity, were evaluated on non-target soil organisms from different trophic levels (natural microbial communities characterized through 16S rRNA gene sequencing, the earthworm Eisenia fetida and the plant Allium cepa). The hydrolate usually was considered as a by-product of the distillation to obtain essential oils. However, recently has been found to have nematicide properties. The hydrolate caused acute toxicity at values of LC50 of 3.87% v/v for A. cepa and 0.07 mL/g for E. fetida. All the concentrations except for the most diluted (1% v/v) reduced the bacterial physiological activity compared to controls (LC50 = 25.72% v/v after 24 h of exposure). The hydrolate also slightly altered the ability of the microbial community to degrade carbon substrates. These results indicate that the hydrolate from A. absinthium may affect the survival and metabolic abilities of key soil organisms.
Collapse
Affiliation(s)
- M Rosa Pino-Otín
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain; Colegio Internacional Ánfora, c/ Pirineos, 8, 50410, Cuarte de Huerva, Zaragoza, Spain
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Enrique Navarro
- Instituto Pirenaico de Ecología, Consejo Superior de Investigaciónes Científicas, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Esther Sánchez
- Colegio Internacional Ánfora, c/ Pirineos, 8, 50410, Cuarte de Huerva, Zaragoza, Spain
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain
| |
Collapse
|
18
|
Ely CS, Smets BF. Guild Composition of Root-Associated Bacteria Changes with Increased Soil Contamination. MICROBIAL ECOLOGY 2019; 78:416-427. [PMID: 30701285 DOI: 10.1007/s00248-019-01326-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The interaction of plants and root-associated bacteria encourage the removal of soil contaminants. Engineers and scientists have looked at this phenomenon as a possible means of soil treatment (rhizodegradation). In this study, root-associated bacteria were isolated and selected for growth on a model soil contaminant: polycyclic aromatic hydrocarbons. Isolates were compared genetically to see how plant-bacteria interactions change with soil contamination levels. Characterization of root-associated bacteria was performed using REP-PCR genetic fingerprinting and 16s rRNA gene alignments for identification. Genomic fingerprinting indicated that the composition of PAH-metabolizing bacteria ("guild") was similar among plant species at each treatment level. However, guild composition changed with contamination level and differed from that of bulk soils, suggesting a common rhizosphere effect among plant species related to PAH contamination. PAH-metabolizing bacteria were identified through 16s rRNA gene alignment as members of the α-, β-, and γ-proteobacteria, Actinobacteria, and Bacilli classes. Burkholderia and Pseudomonas spp. were the only genera of bacteria isolated from all plant types in uncontaminated controls. Bacterial species found at the highest treatment included Achromobacter xylosoxidans, Rhodococcus spp., members of the Microbacteriae, Stenotrophomonas rhizophilia, as well as other members of the alpha-proteobacteria. Given their ability to grow on PAHs and inhabit highly contaminated rhizospheres, these bacteria appear good candidates for the promotion of rhizodegradation.
Collapse
Affiliation(s)
- Cairn S Ely
- Central Connecticut State University, 1615 Stanley Street, New Britain, CT, 06050, USA.
- Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| |
Collapse
|
19
|
Li L, Shen X, Zhao C, Liu Q, Liu X, Wu Y. Biodegradation of dibenzothiophene by efficient Pseudomonas sp. LKY-5 with the production of a biosurfactant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:50-57. [PMID: 30921696 DOI: 10.1016/j.ecoenv.2019.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
A potent bacterial strain capable of degrading dibenzothiophene (DBT) was isolated and evaluated for its characteristics. The strain, designated as LKY-5, is rod-shaped, gram-negative, and occurs mainly in clusters. It was identified as belonging to the Pseudomonas genus based on the 16S rDNA sequence and phylogenic analysis. Determination of its DBT depletion efficiency by gas chromatography revealed that the isolate was able to completely degrade up to 100 mg L-1 DBT within 144 h. The pH values, DBT concentrations, and biomasses in the medium varied significantly in the initial 24 h. A biosurfactant produced by LKY-5 was extracted and identified as a di-rhamnolipid with the formula Rha-Rha-C8-C8:1 by HPLC-ESI-MS/MS. There were 26 metabolites in the DBT degradation process. Pseudomonas sp. LKY-5 exhibited unusually high DBT degradation efficiency via multiple metabolic pathways. Compared with the reported 4S and Kodama pathways, two more expanded metabolic pathways for the degradation of DBT are proposed. The polycyclic aromatic sulfur heterocycles (PASHs) in diesel, such as C1-DBT, C2-DBT, C3-DBT, 4,6-DMDBT, and 2,4,6-TMDBT, can also be degraded with 28.2-42.3% efficiency. The results showed that LKY-5 is an excellent bacterial candidate for the bioremediation of PASH-contaminated sites and sediments.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, PR China; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Xianwei Shen
- Qingdao Dongjiakou Economic Zone Management Committee, Qingdao, Shandong, 266409, China
| | - Chaocheng Zhao
- College of Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, PR China.
| | - Qiyou Liu
- College of Chemical Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, PR China
| | - Xuwei Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanan Wu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
20
|
Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. THE ISME JOURNAL 2019; 13:1814-1830. [PMID: 30872807 PMCID: PMC6775975 DOI: 10.1038/s41396-019-0394-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.
Collapse
Affiliation(s)
- François Thomas
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.
| |
Collapse
|
21
|
Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Appl Environ Microbiol 2019; 85:AEM.00244-19. [PMID: 30926731 DOI: 10.1128/aem.00244-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) is known to induce the biodegradation of 1,4-dioxane (dioxane), an emerging contaminant, but the mechanisms by which THF affects dioxane biodegradation in microbial communities are not well understood. To fill this knowledge gap, changes in the microbial community structure in microcosm experiments with synthetic medium and landfill leachate were examined over time using 16S rRNA gene amplicon sequencing and functional gene quantitative PCR assays. The overarching hypothesis being tested was that THF promoted dioxane biodegradation by increasing the abundance of dioxane-degrading bacteria in the consortium. The data revealed that in experiments with synthetic medium, the addition of THF significantly increased the abundance of Pseudonocardia, a genus with several representatives that can grow on both dioxane and THF, and of Rhodococ cus ruber, a species that can use THF as the primary growth substrate while cometabolizing dioxane. However, in similar experiments with landfill leachate, only R. ruber was significantly enriched. When the THF concentration was higher than the dioxane concentration, THF competitively inhibited dioxane degradation since dioxane degradation was negligible, while the dioxane-degrading bacteria and the corresponding THF/dioxane monooxygenase gene copies increased by a few orders of magnitude.IMPORTANCE Widespread in groundwater and carcinogenic to humans, 1,4-dioxane (dioxane) is attracting significant attention in recent years. Advanced oxidation processes can effectively remove dioxane but require high energy consumption and operation costs. Biological removal of dioxane is of particular interest due to the ability of some bacteria to mineralize dioxane at a low energy cost. Although dioxane is generally considered recalcitrant to biodegradation, more than 20 types of bacteria can degrade dioxane as the sole electron donor substrate or the secondary electron donor substrate. In the latter case, tetrahydrofuran (THF) is commonly studied as the primary electron donor substrate. Previous work has shown that THF promotes dioxane degradation at a low THF concentration but inhibits dioxane degradation at a high THF concentration. Our work expanded on the previous work by mechanically examining the effects of THF on dioxane degradation in a microbial community context.
Collapse
|
22
|
Kosek K, Kozioł K, Luczkiewicz A, Jankowska K, Chmiel S, Polkowska Ż. Environmental characteristics of a tundra river system in Svalbard. Part 2: Chemical stress factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1585-1596. [PMID: 30446169 DOI: 10.1016/j.scitotenv.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities in the Arctic environment are subject to multiple stress factors, including contaminants, although typically their concentrations are small. The Arctic contamination research has focused on persistent organic pollutants (POPs) because they are bioaccumulative, resistant to degradation and toxic for all organisms. Pollutants have entered the Arctic predominantly by atmospheric and oceanic long-range transport, and this was facilitated by their volatile or semi-volatile properties, while their chemical stability extended their lifetimes following emission. Chemicals present in the Arctic at detectable and quantifiable concentrations testify to their global impact. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. In this study, the abundance and the types of bacteria in the Arctic freshwater were examined and the microbial characteristics were compared to the amount of potentially harmful chemical compounds in particular elements of the Arctic catchment. The highest concentrations of all determined PAHs were observed in two samples in the vicinity of the estuary both in June and September 2016 and were 1964 ng L-1 (R12) and 3901 ng L-1 (R13) in June, and 2179 ng L-1 (R12) and 1349 ng L-1 (R13) in September. Remarkable concentrations of the sum of phenols and formaldehyde were detected also at the outflow of the Revelva river into the sea (R12) and were 0.24 mg L-1 in June and 0.35 mg L-1 in September 2016. The elevated concentrations of chemical compounds near the estuary suggest a potential impact of the water from the lower tributaries (including the glacier-fed stream measured at R13) or the sea currents and the sea aerosol as pollutant sources. The POPs' degradation at low temperature is not well understood but bacteria capable to degrading such compounds were noted in each sampling point.
Collapse
Affiliation(s)
- Klaudia Kosek
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Krystyna Kozioł
- Institute of Geography, Faculty of Geography and Biology, Pedagogical University in Cracow, Podchorążych 2, Cracow 30-084, Poland; Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., Warsaw 01-452, Poland
| | - Aneta Luczkiewicz
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Katarzyna Jankowska
- Department of Water and Waste-Water Technology, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Stanisław Chmiel
- Faculty of Earth Sciences and Spatial Management, Maria Curie-Skłodowska University, 2 C-D Kraśnicka Ave., Lublin 20-718, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
23
|
Aboagye G, Rowe MT. Evaluation of denaturing gradient gel electrophoresis for the detection of mycobacterial species and their potential association with waterborne pathogens. JOURNAL OF WATER AND HEALTH 2018; 16:938-946. [PMID: 30540268 DOI: 10.2166/wh.2018.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The versatility of denaturing gradient gel electrophoresis (DGGE) protocol provides enough grounds for its wide application over an array of microorganisms. This work was designed to evaluate DGGE for the detection and confirmation of mycobacteria and their association, if any, with waterborne pathogens. A total of 76 samples comprising raw untreated water, schmutzdecke, floccules and final treated water obtained from a common water source, and two water treatment works (WTW1 and WTW2), were analysed. Thirty-five species were identified from the overall samples, with 7% (5/76), 13% (10/76) and 26% (20/76) from the common raw water source, WTW1 and WTW2 respectively. The majority of the species were Cyanobacteria, with high dominance in the raw water entering WTW2. In the final treated water of WTW1 Eutreptiella braarudii was found, and that of WTW2 contained Anabaena nereformis, Anabaena torulosa and Podocarpus nerrifolius. Furthermore, one Mycobacterium species was found in the raw water of WTW1 aside from the detection of Mycobacterium avium ssp. paratuberculosis by the technique. No association between mycobacteria and the other species was observed. This implies DGGE may be employed to study the diversity of other akin mycobacterial species from various sources, and not as a direct means of elucidating microbial associations.
Collapse
Affiliation(s)
- G Aboagye
- School of Biological Sciences, The Queen's University Belfast, Northern Ireland, UK and Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana E-mail:
| | - M T Rowe
- Food Microbiology Branch, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, UK
| |
Collapse
|
24
|
Vasudevan V, Gayathri KV, Krishnan MEG. Bioremediation of a pentacyclic PAH, Dibenz(a,h)Anthracene- A long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. CHEMOSPHERE 2018; 202:387-399. [PMID: 29579674 DOI: 10.1016/j.chemosphere.2018.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Dibenz(a,h)Anthracene (DBahA), classified as a probable human carcinogen (B2) is the first Poly Aromatic Hydrocarbons (PAH) to be chemically purified and used for cancer-based studies. Till date, only 30 papers focus on the bioremediation aspects of DBahA out of more than 200 research publications for each of the other 15 priority PAHs. Thus, the review raises an alarm and calls for efficient bioremediation strategies for considerable elimination of this compound from the environment. This article reviews and segregates the available papers on DBahA bioremoval from the beginning till date into bacteria, fungi and plant-mediated remediation and offers suggestions for the most competent and cost-effective modes to bioremove DBahA from the environment. One of the proficient ways to get rid of this PAH could with the use of biosurfactant-enriched bacterial consortium in DBahA polluted environment, which is given considerable importance here. Among the bacterial and fungal microbiomes, unquestionably the former are the beneficiaries which utilize the breakdown products of this PAH metabolized by the latter. Nevertheless, the use of plant communities for efficient DBahA utilization through fibrous root system is also discussed at length. The current status of DBahA as reflected by the publications at https://www.ncbi.nlm.nih.gov and recommendations among the explored groups [bacterial/fungal/plant communities] for better DBahA elimination are pointed out. Finally, the review emphasizes the pros and cons of all the methodologies used for selective/combinatorial removal of DBahA and present the domain to the researchers to carry forward by incorporating their individual ideas.
Collapse
Affiliation(s)
- Vidya Vasudevan
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, (Deemed to Be University), Porur, Chennai, 600 116, India
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College, Cathedral Road, Chennai, 600 086, India
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, (Deemed to Be University), Porur, Chennai, 600 116, India.
| |
Collapse
|
25
|
Aerobic Batch Degradation of Cresol by Newly Isolated Pseudomonas monteilii Cr13. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.1.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 2018; 34:34. [DOI: 10.1007/s11274-018-2417-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
27
|
Adam IKU, Duarte M, Pathmanathan J, Miltner A, Brüls T, Kästner M. Microbial communities in pyrene amended soil-compost mixture and fertilized soil. AMB Express 2017; 7:7. [PMID: 28050848 PMCID: PMC5209307 DOI: 10.1186/s13568-016-0306-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022] Open
Abstract
Polycyclic aromatic hydrocarbons are distributed ubiquitously in the environment and form metabolites toxic to most organisms. Organic amendment of PAH contaminated soil with compost and farmyard manure has proven to be efficient for PAH bioremediation mediated by native microorganisms, even though information on the identity of PAH degraders in organic-amended soil is still scarce. Here we provide molecular insight into the bacterial communities in soil amended with compost or farmyard manure for which the degradation mass balances of 13C-labeled pyrene have been recently published and assess the relevant bacterial genera capable of degrading pyrene as a model PAH. We performed statistical analyses of bacterial genera abundance data based on total DNA and RNA (for comparison) extracted from the soil samples. The results revealed complex pyrene degrading communities with low abundance of individual degraders instead of a limited number of abundant key players. The bacterial degrader communities of the soil-compost mixture and soil fertilized with farmyard manure differed considerably in composition albeit showing similar degradation kinetics. Additional analyses were carried out on enrichment cultures and enabled the reconstruction of several nearly complete genomes, thus allowing to link microcosm and enrichment experiments. However, pyrene mineralizing bacteria enriched from the compost or unfertilized soil-compost samples did not dominate pyrene degradation in the soils. Based on the present findings, evaluations of PAH degrading microorganisms in complex soil mixtures with high organic matter content should not target abundant key degrading species, since the specific degraders may be highly diverse, of low abundance, and masked by high bacterial background.
Collapse
|
28
|
Liu Y, Li C, Huang L, He Y, Zhao T, Han B, Jia X. Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Wang M, Li E, Liu C, Jousset A, Salles JF. Functionality of Root-Associated Bacteria along a Salt Marsh Primary Succession. Front Microbiol 2017; 8:2102. [PMID: 29163397 PMCID: PMC5670159 DOI: 10.3389/fmicb.2017.02102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 01/23/2023] Open
Abstract
Plant-associated bacteria are known for their high functional trait diversity, from which many are likely to play a role in primary and secondary succession, facilitating plant establishment in suboptimal soils conditions. Here we used an undisturbed salt marsh chronosequence that represents over 100 years of soil development to assess how the functional traits of plant associated bacteria respond to soil type, plant species and plant compartment. We isolated and characterized 808 bacterial colonies from the rhizosphere soil and root endosphere of two salt marsh plants, Limonium vulgare and Artemisia maritima, along the chronosequence. From these, a set of 59 strains (with unique BOX-PCR patterns, 16S rRNA sequence and unique to one of the treatments) were further screened for their plant growth promoting traits (siderophore production, IAA production, exoprotease production and biofilm formation), traits associated with bacterial fitness (antibiotic and abiotic stress resistance - pH, osmotic and oxidative stress, and salinity) and metabolic potential. An overall view of functional diversity (multivariate analysis) indicated that the distributional pattern of bacterial functional traits was driven by soil type. Samples from the late succession (Stage 105 year) showed the most restricted distribution, harboring strains with relatively low functionalities, whereas the isolates from intermediate stage (35 year) showed a broad functional profiles. However, strains with high trait performance were largely from stage 65 year. Grouping the traits according to category revealed that the functionality of plant endophytes did not vary along the succession, thus being driven by plant rather than soil type. In opposition, the functionality of rhizosphere isolates responded strongly to variations in soil type as observed for antibiotic resistance (P = 0.014). Specifically, certain Pseudomonas sp. and Serratia sp. strains revealed high resistance against abiotic stress and antibiotics and produce more siderophores, confirming the high plant-growth promoting activity of these two genera. Overall, this study contributes to a better understanding of the functional diversity and adaptation of the microbiome at typical salt marsh plant species across soil types. Specifically, soil type was influential only in the rhizosphere but not on the endosphere, indicating a strong plant-driven effect on the functionality of endophytes.
Collapse
Affiliation(s)
- Miao Wang
- Research Group of Microbial Community Ecology, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Erqin Li
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Chen Liu
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Joana F. Salles
- Research Group of Microbial Community Ecology, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Ely CS, Smets BF. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:877-883. [PMID: 28318300 DOI: 10.1080/15226514.2017.1303805] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds-morin, caffeic acid, and protocatechuic acid-appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.
Collapse
Affiliation(s)
- Cairn S Ely
- a Department of Engineering , Central Connecticut State University , New Britain , CT , USA
| | - Barth F Smets
- b Department of Environmental Engineering , Technical University of Denmark , Lyngby , Denmark
| |
Collapse
|
31
|
Li CH, Ye C, Hou XP, Chen MH, Zheng XY, Cai XY. Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria with tolerance to hypoxic environments. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:581-589. [PMID: 28281889 DOI: 10.1080/10934529.2017.1293991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hypoxic conditions are considerably different from aerobic and anaerobic conditions, and they are widely distributed in natural environments. Many pollutants, including polycyclic aromatic hydrocarbons (PAHs), tend to accumulate in hypoxic environments. However, PAH biodegradation under hypoxic conditions is poorly understood compared with that under obligate aerobic and obligate anaerobic conditions. In the present study, PAH-degrading bacteria were enriched, and their biodegradation rates were tested using a hypoxic station with an 8% oxygen concentration. PAH-degrading bacteria collected from sediments in low-oxygen environments were enriched using phenanthrene (Phe) or pyrene (Pyr) as the sole carbon and energy source. Individual bacterial colonies showing the ability to degrade Phe or Pyr were isolated and identified by 16S rDNA gene sequencing. Morphological and physiological characterizations of the isolated bacterial colonies were performed. The isolated bacteria were observed by scanning electron microscopy (SEM) and were identified as Pseudomonas sp., Klebsiella sp., Bacillus sp., and Comamonas sp. Phylogenetic tree of the isolated PAH-degrading bacteria was also constructed. The biodegradation ability of these bacteria was tested at an initial Phe or Pyr concentration of 50 mg L-1. The biodegradation kinetics were best fit by a first-order rate model and presented regression coefficients (r2) that varied from 0.7728 to 0.9725 (P < 0.05). The half-lives of the PAHs varied from 2.99 to 3.65 d for Phe and increased to 60.3-82.5 d for Pyr. These half-lives were much shorter than those observed under anaerobic conditions but were similar to those observed under aerobic conditions.
Collapse
Affiliation(s)
- Chun-Hua Li
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Chun Ye
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Xiao-Peng Hou
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Ming-Hua Chen
- a State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing , China
| | - Xiang-Yong Zheng
- c Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University , Zhejiang , China
| | - Xu-Yi Cai
- b School of Water Resource and Environment, China University of Geosciences , Beijing , China
| |
Collapse
|
32
|
Isolation of Viable but Non-culturable Bacteria from Printing and Dyeing Wastewater Bioreactor Based on Resuscitation Promoting Factor. Curr Microbiol 2017; 74:787-797. [DOI: 10.1007/s00284-017-1240-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
|
33
|
Tian W, Zhao J, Zhou Y, Qiao K, Jin X, Liu Q. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:158-164. [PMID: 27736675 DOI: 10.1016/j.ecoenv.2016.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Changes in root exudates, including low molecular weight organic acids (LMWOAs), amino acids and sugars, in rhizosphere soils during the gel-beads/reeds combination remediation for high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) and the degree of the effects on HMW-PAH biodegradation were evaluated in this study. The results showed that the gel-beads/reeds combination remediation notably increased the removal rates of pyrene, benzo(a)pyrene and indeno(1,2,3-cd)pyrene (65.0-68.9%, 60.0-68.5% and 85.2-85.9%, respectively). During the removal of HMW-PAHs, the LMWOAs, particularly maleic acid, enhanced the biodegradation of HMW-PAHs. Arginine and trehalose monitored in reed root exudates promoted the growth of plants and microorganisms and then improved the removal of HMW-PAHs, especially pyrene. However, the contribution of reed root exudates on degradation of 5- and 6-ring PAHs was minor. These results indicated that the utilization of root exudates was certainly not the only important trait for the removal of HMW-PAHs.
Collapse
Affiliation(s)
- Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, PR China.
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yuhang Zhou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xin Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Qing Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
34
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
35
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Polyaromatic hydrocarbon (PAH) degradation potential of a new acid tolerant, diazotrophic P-solubilizing and heavy metal resistant bacterium Cupriavidus sp. MTS-7 isolated from long-term mixed contaminated soil. CHEMOSPHERE 2016; 162:31-39. [PMID: 27475295 DOI: 10.1016/j.chemosphere.2016.07.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 07/09/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
An isolate of Cupriavidus (strain MTS-7) was identified from a long-term PAHs and heavy metals mixed contaminated soil with the potential to biodegrade both LMW and HMW PAHs with added unique traits of acid and alkali tolerance, heavy metal tolerance, self-nutrient assimilation by N fixation and P solubilization. This strain completely degraded the model 3 (150 mg L(-1) Phe), 4 (150 mg L(-1) Pyr) and 5 (50 mg L(-1) BaP) ring PAHs in 4, 20 and 30 days, respectively. It could mineralize 90-100% of PAHs (200 mg L(-1) of Phe and Pyr) within 15 days across pH ranging from 5 to 8 and even in the presence of toxic metal contaminations. During biodegradation, the minimum inhibitory concentrations were 5 (Cu(2+)) and 3 (Cd(2+), Pb(2+), Zn(2+)) mg L(-1) of the potentially bioavailable metal ions and over 17 mg L(-1) metal levels was lethal for the microbe. Further, it could fix 217-274 μg mL(-1) of N and solubilize 79-135 μg mL(-1) of P while PAHs degradation. MTS-7 as a superior candidate could be thus used in the enhanced bioaugmentation and/or phytoremediation of long-term mixed contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
36
|
Umana EJ, Akwaji PI, Markson AAA. Bioremediation of Spent Engine Oil Contaminated Soil by Using Fungus, <i>Penicillium sp.</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.56431/p-q41iwn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study investigated the ability of Penicillium sp. to bio-remediate spent engine oil contaminated soil both in vitro and in vivo. In the in vitro assay, mycelium of a seven day old culture of Penicillium sp. grown on Sabouraud Dextrose Agar (SDA) was punched out using a 0.5mm Cork borer and inoculated on the centre of Petri dishes containing the spent and unspent engine oil and incubated for seven days and daily reading of the mycelia growth obtained using a metre rule. For the in vivo assay, soil received 0 (control), 20/180, 40/360, 60/540, 80/720 and 100ml/900mm concentrations/treatments (inoculation with mycelium of Penicillium sp.). Seeds of Telfeira occidentalis was sown on the soil and assessed for growth performance (plant height, leaf area (using a metre rule) and leaf count (number of leaves) for 7, 14, 21 and 28 Days after Planting (DAP). Results of the in vitro assay showed a significant increase (p<0.05) in the growth diameter of Penicillium sp. relative to control. Results of the in vivo assay showed that spent engine oil had no significant effect (p<0.05) on the growth performance of T. occidentalis at 7, 14, 21 and 28 DAP and on fresh and dry weight (g) 28 DAP relative to control. After 28 days of plant growth, the added spent engine oil was no longer detected. The plant began producing pods 61 DAP. This study showed that Penicillium sp. can biodegrade hydrocarbons present in spent engine oil and as such is a good tool for bioremediation.
Collapse
|
37
|
Umana EJ, Akwaji PI, Markson AAA. Bioremediation of Spent Engine Oil Contaminated Soil by Using Fungus, <i>Penicillium sp.</i>. INTERNATIONAL LETTERS OF NATURAL SCIENCES 2016. [DOI: 10.18052/www.scipress.com/ilns.59.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the ability ofPenicillium sp.to bio-remediate spent engine oil contaminated soil bothin vitroandin vivo. In thein vitroassay, mycelium of a seven day old culture ofPenicillium sp. grown on Sabouraud Dextrose Agar (SDA) was punched out using a 0.5mm Cork borer and inoculated on the centre of Petri dishes containing the spent and unspent engine oil and incubated for seven days and daily reading of the mycelia growth obtained using a metre rule. For thein vivoassay, soil received 0 (control), 20/180, 40/360, 60/540, 80/720 and 100ml/900mm concentrations/treatments (inoculation with mycelium ofPenicillium sp.). Seeds ofTelfeira occidentaliswas sown on the soil and assessed for growth performance (plant height, leaf area (using a metre rule) and leaf count (number of leaves) for 7, 14, 21 and 28 Days after Planting (DAP). Results of thein vitroassay showed a significant increase (p<0.05) in the growth diameter ofPenicillium sp.relative to control. Results of thein vivoassay showed that spent engine oil had no significant effect (p<0.05) on the growth performance ofT. occidentalisat 7, 14, 21 and 28 DAP and on fresh and dry weight (g) 28 DAP relative to control. After 28 days of plant growth, the added spent engine oil was no longer detected. The plant began producing pods 61 DAP. This study showed thatPenicillium sp. can biodegrade hydrocarbons present in spent engine oil and as such is a good tool for bioremediation.
Collapse
|
38
|
Cleary DFR, Polónia ARM, Sousa AI, Lillebø AI, Queiroga H, Gomes NCM. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:824-834. [PMID: 27061465 DOI: 10.1111/plb.12459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation.
Collapse
Affiliation(s)
- D F R Cleary
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A R M Polónia
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A I Sousa
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - A I Lillebø
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - H Queiroga
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| | - N C M Gomes
- Departamento de Biologia, CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
39
|
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340. [PMID: 27621725 PMCID: PMC5002886 DOI: 10.3389/fmicb.2016.01340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoxuan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Liu
- Information Network Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lijun Xi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
40
|
Kumari S, Regar RK, Bajaj A, Ch R, Satyanarayana GNV, Mudiam MKR, Manickam N. Simultaneous Biodegradation of Polyaromatic Hydrocarbons by a Stenotrophomonas sp: Characterization of nid Genes and Effect of Surfactants on Degradation. Indian J Microbiol 2016; 57:60-67. [PMID: 28148980 DOI: 10.1007/s12088-016-0612-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022] Open
Abstract
A polyaromatic hydrocarbon degrading bacterium was isolated from a petroleum contaminated site and designated as Stenotrophomonas sp. strain IITR87. It was found to utilize pyrene, phenanthrene and benzo(a)pyrene as sole carbon source, but not anthracene, chrysene and fluoranthene. Gas chromatography and mass spectroscopy analysis resulted in identification of pyrene metabolites namely monohydroxypyrene, 4-oxa-pyrene-5-one, dimethoxypyrene and monohydroxyphenanthrene. Southern hybridization using naphthalene dioxygenase gene (nidA) as probe against the DNA of strain IITR87 revealed the presence of nidA gene. PCR analysis suggests dispersed occurrence of nid genes in the genome instead of a cluster as reported in a PAH-degrading Mycobacterium vanbaalenii PYR-1. The nid genes in strain IITR87, dioxygenase large subunit (nidA), naphthalene dioxygenase small subunit (nidB) and aldehyde dehydrogenase gene (nidD) showed more than 97 % identity to the reported nid genes from Mycobacterium vanbaalenii PYR-1. Most significantly, the biodegradation of PAHs was enhanced 25-60 % in the presence of surfactants rhamnolipid and Triton X-100 due to increased solubilization and bioavailability. These results could be useful for the improved biodegradation of high-molecular-weight PAHs in contaminated habitats.
Collapse
Affiliation(s)
- Smita Kumari
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Raj Kumar Regar
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Department of Biochemistry, Babu Banarsi Das University, Lucknow, 226028 India
| | - Abhay Bajaj
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ratnasekhar Ch
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Gubbala Naga Venkata Satyanarayana
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| |
Collapse
|
41
|
Romanok KM, Szabo Z, Reilly TJ, Defne Z, Ganju NK. Sediment chemistry and toxicity in Barnegat Bay, New Jersey: Pre- and post-Hurricane Sandy, 2012-13. MARINE POLLUTION BULLETIN 2016; 107:472-488. [PMID: 27158047 DOI: 10.1016/j.marpolbul.2016.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/15/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Hurricane Sandy made landfall in Barnegat Bay, October, 29, 2012, damaging shorelines and infrastructure. Estuarine sediment chemistry and toxicity were investigated before and after to evaluate potential environmental health impacts and to establish post-event baseline sediment-quality conditions. Trace element concentrations increased throughout Barnegat Bay up to two orders of magnitude, especially north of Barnegat Inlet, consistent with northward redistribution of silt. Loss of organic compounds, clay, and organic carbon is consistent with sediment winnowing and transport through the inlets and sediment transport modeling results. The number of sites exceeding sediment quality guidance levels for trace elements tripled post-Sandy. Sediment toxicity post-Sandy was mostly unaffected relative to pre-Sandy conditions, but at the site with the greatest relative increase for trace elements, survival rate of the test amphipod decreased (indicating degradation). This study would not have been possible without comprehensive baseline data enabling the evaluation of storm-derived changes in sediment quality.
Collapse
Affiliation(s)
- Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, United States
| | - Zoltan Szabo
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, United States.
| | - Timothy J Reilly
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ 08648, United States
| | - Zafer Defne
- U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02453, United States
| | - Neil K Ganju
- U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA 02453, United States
| |
Collapse
|
42
|
Zhao J, Chen X, Bao L, Bao Z, He Y, Zhang Y, Li J. Correlation between microbial diversity and toxicity of sludge treating synthetic wastewater containing 4-chlorophenol in sequencing batch reactors. CHEMOSPHERE 2016; 153:138-145. [PMID: 27016808 DOI: 10.1016/j.chemosphere.2016.01.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The relationship between microbial diversity and sludge toxicity in the biotreatment of refractory wastewater was investigated. Synthetic wastewater containing 4-chlorophenol (4-CP) was treated by an activated sludge using a sequencing batch bioreactor (SBR). At the end of a single SBR cycle, a stable operation stage was reached when the 4-CP was not detected both in aqueous and sludge phases and the effluent COD was maintained at approximately 70 mg L(-1) for the blank and control sludge groups. Then, the diversity of the microorganisms and the sludge toxicity were measured. The results showed that the Microtox acute toxicity of the control sludge was higher than those of the blank sludge. The difference analysis of the microbial diversity between the blank and control sludge indicated that the sludge toxicity was closely related to microbial diversity.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Eduaction, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xiurong Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| | - Linlin Bao
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Eduaction, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Zheng Bao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yixuan He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiahui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
43
|
Tian W, Liu Q, Huang R, Jin X, Qiao K. Application of cinder gel-beads/reeds combination strategy for bioremediation of pyrene- and indeno(1,2,3-cd)pyrene-contaminated estuarine wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10895-10902. [PMID: 26897584 DOI: 10.1007/s11356-016-6298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Pseudomonas putida PYR1 and Acinetobacter baumannii INP1 isolated from Liaohe estuarine wetlands were entrapped in cinder beads to make cinder gel-beads. They were combined with reeds for bioremediation of pyrene- and indeno(1,2,3-cd)pyrene-contaminated estuarine wetlands. The results showed that the removal percentages of pyrene and indeno(1,2,3-cd)pyrene (69.2 and 89.8 % respectively) in 40 days using cinder gel-beads/reeds were obviously higher than those using cinder gel-beads(52.6 and 70.0 %) and reeds (33.5 and 78.6 %) alone, about four times those of the control (13.8 and 31.1 %). The removal efficiency of pyrene was in the order cinder gel-beads/reeds > cinder gel-beads > reeds > control, which was different from cinder gel-beads/reeds > reeds > cinder gel-beads > control of indeno(1,2,3-cd)pyrene. This result indicated that the functional mechanism to remove indeno(1,2,3-cd)pyrene with six benzene rings was different from that of pyrene. The synergistic effect of reeds and cinder gel-beads for indeno(1,2,3-cd)pyrene removal was weaker than that of pyrene. But the absorption and transformation of reeds with high efficiency were beneficial to indeno(1,2,3-cd)pyrene removal from wetlands. Additionally, microbial analysis with high-throughput sequencing presented that Gammaproteobacteria were dominant PAH-degrading groups in bioremediation with immobilized bacteria. This strategy can serve as a model system for the removal of more complex or structurally related organic compounds from contaminated sites.
Collapse
Affiliation(s)
- Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China.
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, People's Republic of China.
| | - Qing Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Ruying Huang
- Suzhou Litree Ultra-filtration Membrane Technology Co. LTD, Suzhou, 215000, People's Republic of China
| | - Xin Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Kaili Qiao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| |
Collapse
|
44
|
Kuppusamy S, Thavamani P, Megharaj M, Lee YB, Naidu R. Kinetics of PAH degradation by a new acid-metal-tolerant Trabulsiella isolated from the MGP site soil and identification of its potential to fix nitrogen and solubilize phosphorous. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:99-107. [PMID: 26775109 DOI: 10.1016/j.jhazmat.2015.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/30/2015] [Indexed: 06/05/2023]
Abstract
Development of an efficient bioinoculum is considered as an appropriate remedial approach to treat the PAHs-metal mixed contaminated sites. Therefore, we aimed to isolate a degrader able to exert an outstanding PAH catabolic potential with added traits of pH-metal-resistance, N-fix or P-solubilization from a manufactured gas plant site soil. The identified strain (MTS-6) was a first low and high molecular weight (LMW and HMW) PAHs degrading Trabulsiella sp. tolerant to pH 5. MTS-6 completely degraded the model 3 [150mgL(-1) phenanthrene (Phe)], 4 [150mgL(-1) pyrene (Pyr)] and 5 [50mgL(-1) benzo[a]pyrene (BaP)] ring PAHs in 6, 25 and 90 days, respectively. Presence of co-substrate (100mgL(-1) Phe) increased the biodegradation rate constant (k) and decreased the half-life time (t1/2) of HMW PAHs (100mgL(-1) Pyr or 50mgL(-1) BaP). The strain fixed 47μgmL(-1)N and solubilized 58μgmL(-1)P during PAH metabolism and exhibited an EC50 value of 3-4mgL(-1) for Cu, Cd, Pb and Zn. Over 6mgL(-1) metal levels was lethal for the microbe. The identified bacterium (MTS-6) with exceptional multi-functional traits opens the way for its exploitation in the bioremediation of manufactured gas plant sites in a sustainable way by employing bioaugmentation strategy.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA 5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
45
|
Phi Doan CD, Sano A, Tamaki H, Duc Pham HN, Duong XH, Terashima Y. Identification and biodegradation characteristics of oil-degrading bacteria from subtropical Iriomote Island, Japan, and tropical Con Dao Island, Vietnam. TROPICS 2016. [DOI: 10.3759/tropics.ms16-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Cong Dang Phi Doan
- Tropical Biosphere Research Center, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Vietnam Petroleum Institute, Research and Development Center for Petroleum Safety and Environment
| | - Ayako Sano
- Faculty of Agriculture, University of the Ryukyus
| | - Hisanori Tamaki
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | | | | | | |
Collapse
|
46
|
Louvado A, Gomes NCM, Simões MMQ, Almeida A, Cleary DFR, Cunha A. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 526:312-328. [PMID: 25965373 DOI: 10.1016/j.scitotenv.2015.04.048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 06/04/2023]
Abstract
Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep sea sediments (DSSs). However, their fate here is often oversimplified by theoretical models. Biodegradation of PAHs in DSSs, is assumed to be similar to biodegradation in surface habitats, despite high hydrostatic pressures and low temperatures that should significantly limit PAH biodegradation. Bacteria residing in the DSSs (related mainly to α- and γ-Proteobacteria) have been shown to or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of these bacterial communities to the psychro-peizophilic conditions of the DSSs. This work summarizes some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAH degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on biodegradation of PAHs in DSSs.
Collapse
Affiliation(s)
- A Louvado
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - N C M Gomes
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - M M Q Simões
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Almeida
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - D F R Cleary
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - A Cunha
- CESAM, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
47
|
Zhang M, Warmink J, Pereira E Silva MC, Brons J, Smalla K, van Elsas JD. IncP-1β Plasmids Are Important Carriers of Fitness Traits for Variovorax Species in the Mycosphere--Two Novel Plasmids, pHB44 and pBS64, with Differential Effects Unveiled. MICROBIAL ECOLOGY 2015; 70:141-153. [PMID: 25542203 DOI: 10.1007/s00248-014-0550-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
The Laccaria proxima mycosphere strongly selects Variovorax paradoxus cells. Fifteen independent V. paradoxus strains, isolated from mycospheres sampled at two occasions, were investigated with respect to the occurrence of plasmids of sizes <60-100 kb. Two V. paradoxus strains, HB44 and BS64, were found to contain such plasmids, which were coined pHB44 and pBS64. Replicon typing using a suite of plasmid-specific PCR systems indicated that both plasmids belong to the IncP-1β group. Also, both were able to mobilize selectable IncQ group plasmids into Escherichia coli as well as Pseudomonas fluorescens. Moreover, they showed stable replication in these organisms, confirming their broad host range. Strain BS64 was cured of pBS64 and plasmid pHB44 was subsequently moved into this cured strain by making use of the IncQ group tracer plasmid pSUP104, which was then removed at elevated temperature. Thus, both plasmids could be screened for their ability to confer a phenotype upon strain BS64. No evidence for the presence of genes for xenobiotic degradation and/or antibiotic or heavy metal resistances was found for either of the two plasmids. Remarkably, both could stimulate the production of biofilm material by strain BS64. Also, the population densities of pBS64-containing strain BS64 were temporarily raised in liquid as well as soil systems (versus the plasmid-cured strain), both in the presence of the fungal host Lyophyllum sp. strain Karsten. Strikingly, plasmid pHB44 significantly enhanced the fitness of strain BS64 in soil containing Lyophyllum sp. strain Karsten, but decreased its fitness in soil supplemented with extra FeCl3. The effect was noted both in separate (no inter-strain competition) and joint (competition) inoculations.
Collapse
Affiliation(s)
- Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. CHEMOSPHERE 2015; 128:236-244. [PMID: 25723716 DOI: 10.1016/j.chemosphere.2015.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments.
Collapse
Affiliation(s)
- Xinghui Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China.
| | - Na Xia
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yunjia Lai
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, One Shields Avenue, Davis 95616, CA, United States
| | - Jianwei Dong
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Pujun Zhao
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Baotong Zhu
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Zhihuang Li
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Wan Ye
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Yue Yuan
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| | - Junxiong Huang
- School of Environment, Beijing Normal University, State Key Laboratory of Water Environment Simulation, Beijing 100875, China
| |
Collapse
|
49
|
Meynet P, Head IM, Werner D, Davenport RJ. Re-evaluation of dioxygenase gene phylogeny for the development and validation of a quantitative assay for environmental aromatic hydrocarbon degraders. FEMS Microbiol Ecol 2015; 91:fiv049. [PMID: 25944871 PMCID: PMC4462182 DOI: 10.1093/femsec/fiv049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
Rieske non-heme iron oxygenases enzymes have been widely studied, as they catalyse essential reactions initiating the bacterial degradation of organic compounds, for instance aromatic hydrocarbons. The genes encoding these enzymes offer a potential target for studying aromatic hydrocarbon-degrading organisms in the environment. However, previously reported primer sets that target dioxygenase gene sequences or the common conserved Rieske centre of aromatics dioxygenases have limited specificity and/or target non-dioxygenase genes. In this work, an extensive database of dioxygenase α-subunit gene sequences was constructed, and primer sets targeting the conserved Rieske centre were developed. The high specificity of the primers was confirmed by polymerase chain reaction analysis, agarose gel electrophoresis and sequencing. Quantitative polymerase chain reaction (qPCR) assays were also developed and optimized, following MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR Experiments). Comparison of the qPCR quantification of dioxygenases in spiked sediment samples and in pure cultures demonstrated an underestimation of the Ct value, and the requirement for a correction factor at gene abundances below 108 gene copies per g of sediment. Externally validated qPCR provides a valuable tool to monitor aromatic hydrocarbon degrader population abundances at contaminated sites. Our study aimed to re-evaluate the phylogeny of Rieske non-heme iron dioxygenases using only retrieved primary nucleic acid sequences for the development of quantitative real-time PCR primers.
Collapse
Affiliation(s)
- Paola Meynet
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU, England, UK
| | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU, England, UK
| | - David Werner
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU, England, UK
| | - Russell J Davenport
- School of Civil Engineering and Geosciences, Newcastle University, NE1 7RU, England, UK
| |
Collapse
|
50
|
Impact of metagenomic DNA extraction procedures on the identifiable endophytic bacterial diversity in Sorghum bicolor (L. Moench). J Microbiol Methods 2015; 112:104-17. [DOI: 10.1016/j.mimet.2015.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|