1
|
Li R, Hu Y, Xu Y, Zhou J, Li Y, Liu Q, Yu B. Safety assessment, whole genome sequence, and metabolome analysis of Streptococcus thermophilus CICC 20372 for bone cement fermentation. Arch Microbiol 2023; 206:21. [PMID: 38095705 DOI: 10.1007/s00203-023-03737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.
Collapse
Affiliation(s)
- Rongshan Li
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yangfan Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Jinlong Zhou
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Yunfang Li
- Inner Mongolia Peptide (Mengtai) Biological Engineering Co., Ltd, Hohhot, 011500, China
| | - Qing Liu
- General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
3
|
Long-term daily high-protein, drained yoghurt consumption alters abundance of selected functional groups of the human gut microbiota and fecal short-chain fatty acid profiles in a cohort of overweight and obese women. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
4
|
Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, Kishinaga Y, Naito Y, Higashimura Y. Streptococcus thermophilus extends lifespan through activation of DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr 2022; 70:7-13. [PMID: 35068675 PMCID: PMC8764109 DOI: 10.3164/jcbn.21-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natsumi Desaka
- Department of Food Science, Ishikawa Prefectural University
| | - Chinatsu Ota
- United Graduate School of Agricultural Sciences, Tottori University
| | | | - Kayo Yasuda
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Naoaki Ishii
- Department of Health Management, Tokai University Undergraduate School of Health Studies
| | - Tomohiro Bito
- United Graduate School of Agricultural Sciences, Tottori University
| | - Yukio Kishinaga
- Research and Development Group, Mill Souhonsha Company Limited
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine
| | | |
Collapse
|
5
|
Abstract
The aim of this review was to present various topics related to lactose intolerance with special attention given to the role of fermented foods and probiotics in alleviating gastrointestinal symptoms. Lactose intolerance is a common digestive problem in which the human body is unable to digest lactose, known as milk sugar. Lactose intolerance can either be hereditary or a consequence of intestinal diseases. Recent work has demonstrated that fermented dairy products and probiotics can modify the metabolic activities of colonic microbiota and may alleviate the symptoms of lactose intolerance. We suggest that, lactose free dairy products could be recommended as alternatives for the alleviation of lactose intolerance and for the promotion of human health and wellness.
Collapse
|
6
|
Li Q, Hu W, Liu WX, Zhao LY, Huang D, Liu XD, Chan H, Zhang Y, Zeng JD, Coker OO, Kang W, Ng SSM, Zhang L, Wong SH, Gin T, Chan MTV, Wu JL, Yu J, Wu WKK. Streptococcus thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase. Gastroenterology 2021; 160:1179-1193.e14. [PMID: 32920015 DOI: 10.1053/j.gastro.2020.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Streptococcus thermophilus was identified to be depleted in patients with colorectal cancer (CRC) by shotgun metagenomic sequencing of 526 multicohort fecal samples. Here, we aim to investigate whether this bacterium could act as a prophylactic for CRC prevention. METHODS The antitumor effects of S thermophilus were assessed in cultured colonic epithelial cells and in 2 murine models of intestinal tumorigenesis. The tumor-suppressive protein produced by S thermophilus was identified by mass spectrometry and followed by β-galactosidase activity assay. The mutant strain of S thermophilus was constructed by homologous recombination. The effect of S thermophilus on the gut microbiota composition was assessed by shotgun metagenomic sequencing. RESULTS Oral gavage of S thermophilus significantly reduced tumor formation in both Apcmin/+ and azoxymethane-injected mice. Coincubation with S thermophilus or its conditioned medium decreased the proliferation of cultured CRC cells. β-Galactosidase was identified as the critical protein produced by S thermophilus by mass spectrometry screening and β-galactosidase activity assay. β-Galactosidase secreted by S thermophilus inhibited cell proliferation, lowered colony formation, induced cell cycle arrest, and promoted apoptosis of cultured CRC cells and retarded the growth of CRC xenograft. The mutant S thermophilus without functional β-galactosidase lost its tumor-suppressive effect. Also, S thermophilus increased the gut abundance of known probiotics, including Bifidobacterium and Lactobacillus via β-galactosidase. β-Galactosidase-dependent production of galactose interfered with energy homeostasis to activate oxidative phosphorylation and downregulate the Hippo pathway kinases, which partially mediated the anticancer effects of S thermophilus. CONCLUSION S thermophilus is a novel prophylactic for CRC prevention in mice. The tumor-suppressive effect of S thermophilus is mediated at least by the secretion of β-galactosidase.
Collapse
Affiliation(s)
- Qing Li
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Xin Liu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Liu-Yang Zhao
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Dan Huang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Dong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ju-Deng Zeng
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Olabisi Oluwabukola Coker
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Siu Man Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Hei Wong
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao.
| | - Jun Yu
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Freeze-thaw system for thermostable β-Galactosidase isolation from Gedong Songo Geobacillus sp. isolate. JURNAL KIMIA SAINS DAN APLIKASI 2020. [DOI: 10.14710/jksa.23.11.383-389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effective isolation of intracellular enzymes from thermophilic bacteria is challenging because of their sturdy membrane. On the other hand, the low-cost and nontoxic method is essential for industrial food enzymes. The freeze-thaw cycles using acetone-dry ice as a frozen system was studied for efficient isolation of thermostable b-galactosidase from Geobacillus sp. dYTae-14. This enzyme has been known for application in the dairy industry to reduce the lactose content. In this study, the freeze-thaw method was performed with cycle variations 3, 5, and 7 cycles. Acetone-dry ice (-78°C) is used as a frozen system and boiling water for thawing. The b-galactosidase activity was assayed using ortho-Nitrophenyl-β-galactoside (ONPG) as substrate and protein content determined with the Lowry method. The results show that the most effective freeze-thaw is five cycles. The enzyme’s highest specific activity is 3610.13 units/mg proteins at 40-60 % ammonium sulfate saturation, with a purity value of 2.52.
Collapse
|
8
|
Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging Frontiers in Microbiome Engineering. Trends Immunol 2019; 40:952-973. [PMID: 31601521 DOI: 10.1016/j.it.2019.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.
Collapse
Affiliation(s)
- María Eugenia Inda
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, 50009, Spain
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Aljewicz M, Juśkiewicz J, Polak-Juszczak L. Effect of milk gel acidity and β-glucan structure on fermentation processes in the caecum and bioavailability of mineral compounds in growing rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Streptococcus thermophilus: From yogurt starter to a new promising probiotic candidate? J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
11
|
Landry BP, Tabor JJ. Engineering Diagnostic and Therapeutic Gut Bacteria. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0020-2017. [PMID: 29052539 PMCID: PMC11687543 DOI: 10.1128/microbiolspec.bad-0020-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 12/18/2022] Open
Abstract
Genetically engineered bacteria have the potential to diagnose and treat a wide range of diseases linked to the gastrointestinal tract, or gut. Such engineered microbes will be less expensive and invasive than current diagnostics and more effective and safe than current therapeutics. Recent advances in synthetic biology have dramatically improved the reliability with which bacteria can be engineered with the sensors, genetic circuits, and output (actuator) genes necessary for diagnostic and therapeutic functions. However, to deploy such bacteria in vivo, researchers must identify appropriate gut-adapted strains and consider performance metrics such as sensor detection thresholds, circuit computation speed, growth rate effects, and the evolutionary stability of engineered genetic systems. Other recent reviews have focused on engineering bacteria to target cancer or genetically modifying the endogenous gut microbiota in situ. Here, we develop a standard approach for engineering "smart probiotics," which both diagnose and treat disease, as well as "diagnostic gut bacteria" and "drug factory probiotics," which perform only the former and latter function, respectively. We focus on the use of cutting-edge synthetic biology tools, gut-specific design considerations, and current and future engineering challenges.
Collapse
Affiliation(s)
- Brian P Landry
- Department of Bioengineering, Rice University, Houston, TX 77030
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX 77030
- Department of Biosciences, Rice University, Houston, TX 77030
| |
Collapse
|
12
|
|
13
|
Daeffler KNM, Galley JD, Sheth RU, Ortiz-Velez LC, Bibb CO, Shroyer NF, Britton RA, Tabor JJ. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol Syst Biol 2017; 13:923. [PMID: 28373240 PMCID: PMC5408782 DOI: 10.15252/msb.20167416] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two‐component systems from marine Shewanella species, and validate them in laboratory Escherichia coli. Then, we port these sensors into a gut‐adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways.
Collapse
Affiliation(s)
| | - Jeffrey D Galley
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ravi U Sheth
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Laura C Ortiz-Velez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Noah F Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA .,Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
14
|
Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA, Kim J, Degivry MC, Quéré G, Garault P, van Hylckama Vlieg JET, Garrett WS, Doré J, Veiga P. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME JOURNAL 2016; 10:2235-45. [PMID: 26953599 PMCID: PMC4989305 DOI: 10.1038/ismej.2016.13] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 12/18/2016] [Accepted: 01/08/2016] [Indexed: 01/01/2023]
Abstract
Resident gut microbes co-exist with transient bacteria to form the gut microbiota. Despite increasing evidence suggesting a role for transient microbes on gut microbiota function, the interplay between resident and transient members of this microbial community is poorly defined. We aimed to determine the extent to which a host's autochthonous gut microbiota influences niche permissivity to transient bacteria using a fermented milk product (FMP) as a vehicle for five food-borne bacterial strains. Using conventional and gnotobiotic rats and gut microbiome analyses (16S rRNA genes pyrosequencing and reverse transcription qPCR), we demonstrated that the clearance kinetics of one FMP bacterium, Lactococcus lactis CNCM I-1631, were dependent on the structure of the resident gut microbiota. Susceptibility of the resident gut microbiota to modulation by FMP intervention correlated with increased persistence of L. lactis. We also observed gut microbiome configurations that were associated with altered stability upon exposure to transient bacteria. Our study supports the concept that allochthonous bacteria have transient and subject-specific effects on the gut microbiome that can be leveraged to re-engineer the gut microbiome and improve dysbiosis-related diseases.
Collapse
Affiliation(s)
- Chenhong Zhang
- Metagenopolis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Muriel Derrien
- Life Science, Danone Nutricia Research, Palaiseau, France
| | - Florence Levenez
- Metagenopolis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | - Sonia A Ballal
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jason Kim
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Gaëlle Quéré
- Life Science, Danone Nutricia Research, Palaiseau, France
| | - Peggy Garault
- Life Science, Danone Nutricia Research, Palaiseau, France
| | | | | | - Joël Doré
- Metagenopolis, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | - Patrick Veiga
- Life Science, Danone Nutricia Research, Palaiseau, France.,Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Uriot O, Galia W, Awussi AA, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol 2016; 53:18-29. [DOI: 10.1016/j.fm.2015.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
|
16
|
Junjua M, Galia W, Gaci N, Uriot O, Genay M, Bachmann H, Kleerebezem M, Dary A, Roussel Y. Development of the recombinase-based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter. J Appl Microbiol 2013; 116:620-31. [PMID: 24279757 DOI: 10.1111/jam.12376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022]
Abstract
AIMS To construct and validate the recombinase-based in vivo expression technology (R-IVET) tool in Streptococcus thermophilus (ST). METHODS AND RESULTS The R-IVET system we constructed in the LMD-9 strain includes the plasmid pULNcreB allowing transcriptional fusion with the gene of the site-specific recombinase Cre and the chromosomal cassette containing a spectinomycin resistance gene flanked by two loxP sites. When tested in M17 medium, promoters of the genes encoding the protease PrtS, the heat-shock protein Hsp16 and of the lactose operon triggered deletion of the cassette, indicating promoter activity in these conditions. The lactose operon promoter was also found to be activated during the transit in the murine gastrointestinal tract. CONCLUSIONS The R-IVET system developed in ST is relatively stable, functional, very sensitive and can be used to assay activity of promoters, which are specifically active in in vivo conditions. SIGNIFICANCE AND IMPACT OF THE STUDY This first adaptation of R-IVET to ST provides a highly valuable tool allowing an exploration of the physiological state of ST in the GIT of mammals, fermentation processes or dairy products.
Collapse
Affiliation(s)
- M Junjua
- Unité de Recherche, 'Animal & Fonctionnalités des Produits Animaux', Équipe 'Protéolyse et Biofonctionnalités des Protéines et des Peptides', UC INRA 340, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ceapa C, Wopereis H, Rezaïki L, Kleerebezem M, Knol J, Oozeer R. Influence of fermented milk products, prebiotics and probiotics on microbiota composition and health. Best Pract Res Clin Gastroenterol 2013; 27:139-55. [PMID: 23768559 DOI: 10.1016/j.bpg.2013.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 01/31/2023]
Abstract
The gut microbiota is a highly diverse and relative stabile ecosystem increasingly recognized for its impact on human health. The homeostasis of microbes and the host is also referred to as eubiosis. In contrast, deviation from the normal composition, defined as dysbiosis, is often associated with localized diseases such as inflammatory bowel disease or colonic cancer, but also with systemic diseases like metabolic syndrome and allergic diseases. Modulating a gut microbiota dysbiosis with nutritional concepts may contribute to improving health status, reducing diseases or disease symptoms or supporting already established treatments. The gut microbiota can be modulated by different nutritional concepts, varying from specific food ingredients to complex diets or by the ingestion of particular live microorganisms. To underpin the importance of bacteria in the gut, we describe molecular mechanisms involved in the crosstalk between gut bacteria and the human host, and review the impact of different nutritional concepts such as pre-, pro- and synbiotics on the gastrointestinal ecosystem and their potential health benefits. The aim of this review is to provide examples of potential nutritional concepts that target the gut microbiota to support human physiology and potentially health outcomes.
Collapse
Affiliation(s)
- Corina Ceapa
- Danone Research - Centre for Specialized Nutrition, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Ben-Yahia L, Mayeur C, Rul F, Thomas M. Growth advantage of Streptococcus thermophilus over Lactobacillus bulgaricus in vitro and in the gastrointestinal tract of gnotobiotic rats. Benef Microbes 2013; 3:211-9. [PMID: 22968410 DOI: 10.3920/bm2012.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The yoghurt bacteria, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, are alleged to have beneficial effects on human health. The objective of this study was to characterise growth, biochemical activity and competitive behaviour of these two bacteria in vitro and in vivo. S. thermophilus LMD-9 and L. bulgaricus ATCC 11842 growth and lactate production were monitored in different media and in the gastrointestinal tract (GIT) of germ-free rats. In vitro, particularly in milk, S. thermophilus had a selective growth advantage over L. bulgaricus. The GIT of germ-free rats not supplemented with lactose was colonised by S. thermophilus but not by L. bulgaricus. Both bacteria were able to colonise the GIT of germ-free rats supplemented with 45 g/l lactose in their drinking water. However, if germ-free rats were inoculated with a mixture of the two bacteria and were supplemented with lactose, S. thermophilus rapidly and extensively colonised the GIT (1010 cfu/g faeces) at the expense of L. bulgaricus, which remained in most cases at levels <102 cfu/g faeces. S. thermophilus specifically produced L-lactate, while L. bulgaricus produced only D-lactate, both in vitro and in vivo. S. thermophilus showed competitive and growth advantage over L. bulgaricus in vitro as well as in vivo in the GIT of germ-free rats and, accordingly, L-lactate was the main lactate isomer produced.
Collapse
Affiliation(s)
- L Ben-Yahia
- INRA, UMR 1319 Micalis, Domaine de Vilvert, bâtiment 440, 78350 Jouy-en-Josas, France
| | | | | | | |
Collapse
|
19
|
García-Hernández J, Moreno Y, Chuan C, Hernández M. In vivo study of the survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after consumption of fermented milk. J Food Sci 2012; 77:M593-M597. [PMID: 22950663 DOI: 10.1111/j.1750-3841.2012.02918.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct Viable Count (DVC) method has been recently combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of Lactobacillus delbrueckii subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801. This method has been used to determine their in vitro viability to gastrointestinal juices, being the resistance of L. delbrueckii subsp. bulgaricus and S. thermophilus 26.2% and 9.2%, respectively. On the other hand, an in vivo study has been carried out with the application of this technique for their detection in human feces, after consuming fermented milk. Cells of L. delbrueckii subsp. bulgaricus CECT 4005T were not detected, whereas viable cells of S. thermophilus CECT 801 were detected in a number higher than 10(3) cells per gram in a 30% of the samples after 4 wk of consumption. DVC-FISH is a quick and culture-independent useful method, which has been applied for the 1st time in an in vivo survival study of LAB.
Collapse
Affiliation(s)
- J García-Hernández
- Departamento de Biotecnología, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | |
Collapse
|
20
|
Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 2012; 7:e31951. [PMID: 22384111 PMCID: PMC3285189 DOI: 10.1371/journal.pone.0031951] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/20/2012] [Indexed: 02/06/2023] Open
Abstract
Beneficial microbes and probiotic species, such as Lactobacillus reuteri, produce biologically active compounds that can modulate host mucosal immunity. Previously, immunomodulatory factors secreted by L. reuteri ATCC PTA 6475 were unknown. A combined metabolomics and bacterial genetics strategy was utilized to identify small compound(s) produced by L. reuteri that were TNF-inhibitory. Hydrophilic interaction liquid chromatography-high performance liquid chromatography (HILIC-HPLC) separation isolated TNF-inhibitory compounds, and HILIC-HPLC fraction composition was determined by NMR and mass spectrometry analyses. Histamine was identified and quantified in TNF-inhibitory HILIC-HPLC fractions. Histamine is produced from L-histidine via histidine decarboxylase by some fermentative bacteria including lactobacilli. Targeted mutagenesis of each gene present in the histidine decarboxylase gene cluster in L. reuteri 6475 demonstrated the involvement of histidine decarboxylase pyruvoyl type A (hdcA), histidine/histamine antiporter (hdcP), and hdcB in production of the TNF-inhibitory factor. The mechanism of TNF inhibition by L. reuteri-derived histamine was investigated using Toll-like receptor 2 (TLR2)-activated human monocytoid cells. Bacterial histamine suppressed TNF production via activation of the H2 receptor. Histamine from L. reuteri 6475 stimulated increased levels of cAMP, which inhibited downstream MEK/ERK MAPK signaling via protein kinase A (PKA) and resulted in suppression of TNF production by transcriptional regulation. In summary, a component of the gut microbiome, L. reuteri, is able to convert a dietary component, L-histidine, into an immunoregulatory signal, histamine, which suppresses pro-inflammatory TNF production. The identification of bacterial bioactive metabolites and their corresponding mechanisms of action with respect to immunomodulation may lead to improved anti-inflammatory strategies for chronic immune-mediated diseases.
Collapse
Affiliation(s)
- Carissa M. Thomas
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Teresa Hong
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jan Peter van Pijkeren
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Peera Hemarajata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dan V. Trinh
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Weidong Hu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Markus Kalkum
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology, Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Thomas M, Wrzosek L, Ben-Yahia L, Noordine ML, Gitton C, Chevret D, Langella P, Mayeur C, Cherbuy C, Rul F. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats. PLoS One 2011; 6:e28789. [PMID: 22216112 PMCID: PMC3245227 DOI: 10.1371/journal.pone.0028789] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/15/2011] [Indexed: 12/20/2022] Open
Abstract
Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27(Kip1) cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.
Collapse
Affiliation(s)
- Muriel Thomas
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Laura Wrzosek
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Leila Ben-Yahia
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Marie-Louise Noordine
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Christophe Gitton
- Peptides and Bacterial Communication Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Didier Chevret
- PAPPSO (Plateforme d'Analyse Protéomique de Paris Sud-Ouest) proteomic platform, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Camille Mayeur
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Claire Cherbuy
- Commensal and Probiotics-Host Interactions Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| | - Françoise Rul
- Peptides and Bacterial Communication Laboratory, INRA, UMR1319 Micalis, Jouy-en-Josas, France
| |
Collapse
|
22
|
|
23
|
Rul F, Ben-Yahia L, Chegdani F, Wrzosek L, Thomas S, Noordine ML, Gitton C, Cherbuy C, Langella P, Thomas M. Impact of the metabolic activity of Streptococcus thermophilus on the colon epithelium of gnotobiotic rats. J Biol Chem 2011; 286:10288-96. [PMID: 21239485 DOI: 10.1074/jbc.m110.168666] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thermophilic lactic acid bacterium Streptococcus thermophilus is widely and traditionally used in the dairy industry. Despite the vast level of consumption of S. thermophilus through yogurt or probiotic functional food, very few data are available about its physiology in the gastrointestinal tract (GIT). The objective of the present work was to explore both the metabolic activity and host response of S. thermophilus in vivo. Our study profiles the protein expression of S. thermophilus after its adaptation to the GIT of gnotobiotic rats and describes the impact of S. thermophilus colonization on the colonic epithelium. S. thermophilus colonized progressively the GIT of germ-free rats to reach a stable population in 30 days (10(8) cfu/g of feces). This progressive colonization suggested that S. thermophilus undergoes an adaptation process within GIT. Indeed, we showed that the main response of S. thermophilus in the rat's GIT was the massive induction of the glycolysis pathway, leading to formation of lactate in the cecum. At the level of the colonic epithelium, the abundance of monocarboxylic acid transporter mRNAs (SLC16A1 and SLC5A8) and a protein involved in the cell cycle arrest (p27(kip1)) increased in the presence of S. thermophilus compared with germ-free rats. Based on different mono-associated rats harboring two different strains of S. thermophilus (LMD-9 or LMG18311) or weak lactate-producing commensal bacteria (Bacteroides thetaiotaomicron and Ruminococcus gnavus), we propose that lactate could be a signal produced by S. thermophilus and modulating the colon epithelium.
Collapse
Affiliation(s)
- Françoise Rul
- INRA, MICALIS (UMR 1319), Domaine de Vilvert, F-78352 Jouy-en-Josas, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Studi Filogeni dan Uji Potensi Enzim Ekstraseluler (amilase, β-galaktosidase, protease, katalase) Isolat Alicyclobacillus sp. Gedong Songo. JURNAL KIMIA SAINS DAN APLIKASI 2010. [DOI: 10.14710/jksa.13.3.80-87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Penelitian terdahulu pada sumber air panas Gedong Songo, telah diisolasi 5 isolat Alicyclobacillus sp. yaitu: ATSae10, ANBae10, AYTae7, AYTae31 dan AYTae33 dengan kondisi pertumbuhan 55°C dan pH 4. Tujuan penelitian ini yaitu untuk mendapatkan pohon filogeni dan mendapatkan informasi mengenai potensi enzim ekstraseluler ketiga isolat Alicyclobacillus sp. yang meliputi amilase, β-galaktosidase, protease dan katalase. Konstruksi pohon filogeni dilakukan menggunakan program Phylip 3.68 ed dengan metode parsimony. Uji potensi enzim ekstraseluler isolat Alicyclobacillus sp. dilakukan secara kualitatif. Uji aktifitas amilase menggunakan amilum sebagai substrat, uji aktifitas β-galaktosidase menggunakan ONPG sebagai substrat dan pada uji protease menggunakan gelatin sebagai substrat. Uji katalase dilakukan secara kualitatif dengan melihat adanya gelembung O2 yang dihasilkan oleh aktifitas katalase. Hasil penelitian menunjukkan bahwa ketiga isolat Alicyclobacillus sp. (AYTae7, AYTae31 dan AYTae33) berada dalam satu kelompok kekerabatan dan mempunyai tingkat kekerabatan terdekat dengan Alicyclobacillus sp. KI, Alicyclobacillus sp. T127, Alicyclobacillus acidocaldarius strain DSM 454 dan Uncultured bacterium clone351. Ketiga isolat Alicyclobacillus sp. memiliki enzim termostabil ekstraseluler amilase dan β-galaktosidase.
Collapse
|
25
|
Scientific Opinion on the substantiation of health claims related to live yoghurt cultures and improved lactose digestion (ID 1143, 2976) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1763] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Roy K, Anba J, Corthier G, Rigottier-Gois L, Monnet V, Mistou MY. Metabolic Adaptation of Lactococcus lactis in the Digestive Tract: The Example of Response to Lactose. J Mol Microbiol Biotechnol 2007; 14:137-44. [DOI: 10.1159/000106093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Denou E, Berger B, Barretto C, Panoff JM, Arigoni F, Brüssow H. Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J Bacteriol 2007; 189:8109-19. [PMID: 17827285 PMCID: PMC2168692 DOI: 10.1128/jb.00991-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Work with pathogens like Vibrio cholerae has shown major differences between genes expressed in bacteria grown in vitro and in vivo. To explore this subject for commensals, we investigated the transcription of the Lactobacillus johnsonii NCC533 genome during in vitro and in vivo growth using the microarray technology. During broth growth, 537, 626, and 277 of the 1,756 tested genes were expressed during exponential phase, "adaptation" (early stationary phase), and stationary phase, respectively. One hundred one, 150, and 33 genes, respectively, were specifically transcribed in these three phases. To explore the in vivo transcription program, we fed L. johnsonii containing a resistance plasmid to antibiotic-treated mice. After a 2-day washout phase, we determined the viable-cell counts of lactobacilli that were in the lumina and associated with the mucosae of different gut segments. While the cell counts showed a rather uniform distribution along the gut, we observed marked differences with respect to the expression of the Lactobacillus genome. The largest number of transcribed genes was in the stomach (n = 786); the next-largest numbers occurred in the cecum (n = 391) and the jejunum (n = 296), while only 26 Lactobacillus genes were transcribed in the colon. In vitro and in vivo transcription programs overlapped only partially. One hundred ninety-one of the transcripts from the lactobacilli in the stomach were not detected during in vitro growth; 202 and 213 genes, respectively, were transcribed under all in vitro and in vivo conditions; but the core transcriptome for all growth conditions comprised only 103 genes. Forty-four percent of the NCC533 genes were not detectably transcribed under any of the investigated conditions. Nontranscribed genes were clustered on the genome and enriched in the variable-genome part. Our data revealed not only major differences between in vitro- and in vivo-expressed genes in a Lactobacillus gut commensal organism but also marked changes in the expression of genes along the digestive tract.
Collapse
Affiliation(s)
- Emmanuel Denou
- Nestlé Research Centre, Nestec Ltd., P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Lepercq P, Hermier D, David O, Michelin R, Gibard C, Beguet F, Relano P, Cayuela C, Juste C. Increasing ursodeoxycholic acid in the enterohepatic circulation of pigs through the administration of living bacteria. Br J Nutr 2007; 93:457-69. [PMID: 15946407 DOI: 10.1079/bjn20041386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the feasibility of increasing ursodeoxycholic acid (UDCA) in the enterohepatic circulation of pigs by administering living bacteria capable of epimerising endogenous amidated chenodeoxycholic acid (CDCA) to UDCA. We first demonstrated that combining Bifidobacterium animalis DN-173 010, as a bile salt-hydrolysing bacterium, and Clostridium absonum ATCC 27555, as a CDCA to UDCA epimerising bacterium, led to the efficient epimerisation of glyco- and tauro-CDCA in vitro, with respective UDCA yields of 55·8 (se 2·8) and 36·6 (se 1·5)%. This strain combination was then administered to hypercholesterolaemic pigs over a 3-week period, as two daily preprandial doses of either viable (six experimental pigs) or heat-inactivated bacteria (six controls). The main effects of treatment were on unconjugated bile acids (P=0·035) and UDCA (P<0·0001) absorbed into the portal vein, which increased 1·6–1·7- and 3·5–7·5-fold, respectively, under administration of living compared with inactivated bacteria. In bile, UDCA did not increase significantly, but the increase in biliary lithocholic acid with time in the controls was not observed in the experimental pigs (P=0·007), and the same trend was observed in faeces. All other variables (biliary lipid equilibrium, plasma lipid levels and partition of cholesterol between the different lipoprotein classes) remained unaffected by treatment throughout the duration of the experiment. In conclusion, it is feasible to increase the bioavailability of UDCA to the intestine and the liver by administering active bacteria. This may represent an interesting new probiotic activity, provided that in future it could be expressed by a safe food micro-organism.
Collapse
Affiliation(s)
- Pascale Lepercq
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guarner F, Perdigon G, Corthier G, Salminen S, Koletzko B, Morelli L. Should yoghurt cultures be considered probiotic? Br J Nutr 2007; 93:783-6. [PMID: 16022746 DOI: 10.1079/bjn20051428] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Probiotics are live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Consumption of yoghurt has been shown to induce measurable health benefits linked to the presence of live bacteria. A number of human studies have clearly demonstrated that yoghurt containing viable bacteria (Streptococcus thermophilusandLactobacillus delbrueckiisp.bulgaricus) improves lactose digestion and eliminates symptoms of lactose intolerance. Thus, these cultures clearly fulfil the current concept of probiotics.
Collapse
Affiliation(s)
- Francisco Guarner
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Alvaro E, Andrieux C, Rochet V, Rigottier-Gois L, Lepercq P, Sutren M, Galan P, Duval Y, Juste C, Doré J. Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br J Nutr 2007; 97:126-33. [PMID: 17217568 DOI: 10.1017/s0007114507243065] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The objective of the present study was to evaluate the impact of a regular consumption of yogurt on the composition and metabolism of the human intestinal microbiota. Adult subjects were selected on the basis of daily food records and divided into two groups: yogurt consumers (at least 200 g yogurt consumed per d, n 30); non-consumers (no yogurt, n 21). Their faecal microbiota was analysed using molecular methods (in situ hybridisation and PCR amplification combined with separation by denaturing gel electrophoresis) and its metabolic characteristics were assessed by measuring glycosidase, P-glucuronidase and reductase activities and profiling SCFA, neutral sterols and bile acids. The yogurt starter Lactobacillus delbrueckii ssp. bulgaricus (identity confirmed by 16S rRNA sequencing) was detected in 73% of faecal samples from fermented milk consumers v. 28% from non-consumers (P=0.003). In yogurt consumers, the level of Enterobacteriaceae was significantly lower (P=0.006) and 13-galactosidase activity was significantly increased (P=0.048). In addition, within this group, 3-galactosidase activity and the Bifidobacterium population were both positively correlated with the amount of fermented milk ingested (r 0.66, P<0.0001 and r 0.43, P=0.018, respectively). Apart from these effects, which can be considered beneficial to the host, no other major differences could be detected regarding the composition and metabolic activity of intestinal microbiota.
Collapse
Affiliation(s)
- Elise Alvaro
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hervé C, Fondrevez M, Chéron A, Barloy-Hubler F, Jan G. Transcarboxylase mRNA: A marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut. Int J Food Microbiol 2007; 113:303-14. [PMID: 17156879 DOI: 10.1016/j.ijfoodmicro.2006.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 08/20/2006] [Indexed: 11/17/2022]
Abstract
Dairy propionibacteria have recently been considered as probiotics which may beneficially modulate the intestinal ecosystem. However, appropriate vectors (food matrices containing the probiotic) which preserve their viability and offer good tolerance towards digestive stresses need to be developed. In addition, the development of efficient non-invasive methods which specifically monitor Propionibacterium freudenreichii concentration and activity within the human gut is required. To address this latter need, an enzyme involved in propionic fermentation, transcarboxylase, was evaluated in this study as molecular marker in P. freudenreichii. In vitro, the three transcarboxylase subunits were shown to be encoded by an operon and their expression regulated. It occurred during propionic fermentation, ceased in starved cells and was not affected by digestive stresses. The 5S subunit gene of transcarboxylase allowed specific detection of P. freudenreichii by real time PCR in the complex human faecal microbiota. A dairy vector harbouring P. freudenreichii was developed and afforded elevated probiotic faecal concentrations in humans. In vivo, this PCR method allowed rapid quantification of faecal P. freudenreichii in agreement with the cultural method (cfu counting). Moreover, real time Reverse Transcription (RT) -PCR evidenced transcription of the 5S subunit gene during transit through the human digestive tract. This work constitutes a methodological advance for survival and activity evaluation in human trials of the probiotics belonging to the P. freudenreichii species. It strongly suggests that this bacterium not only survives but remains metabolically active in the human gut.
Collapse
Affiliation(s)
- Christophe Hervé
- Laboratoires Standa, UMR-STLO, 65 rue de Saint-Brieuc, 35042 RENNES cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Mater DDG, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, Corthier G. Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett 2006; 250:185-7. [PMID: 16099606 DOI: 10.1016/j.femsle.2005.07.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022] Open
Abstract
To date, there is significant controversy as to the survival of yogurt bacteria (namely, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) after passage through the human gastrointestinal tract. Survival of both bacterial species in human feces was investigated by culture on selective media. Out of 39 samples recovered from 13 healthy subjects over a 12-day period of fresh yogurt intake, 32 and 37 samples contained viable S. thermophilus (median value of 6.3 x 10(4) CFU g(-1) of feces) and L. delbrueckii (median value of 7.2 x 10(4)CFU g(-1) of feces), respectively. The results of the present study indicate that substantial numbers of yogurt bacteria can survive human gastrointestinal transit.
Collapse
Affiliation(s)
- Denis D G Mater
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, 78350, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Vaughan EE, Heilig HG, Ben-Amor K, de Vos WM. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Alpert CA, Mater DDG, Muller MC, Ouriet MF, Duval-Iflah Y, Corthier G. Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice. ACTA ACUST UNITED AC 2005; 2:173-80. [PMID: 15612415 DOI: 10.1051/ebr:2003010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Since genetically modified (GM) lactic acid bacteria (LAB) might be released in open environments for future nutritional and medical applications, the purpose of this study was to determine an upper limit for the horizontal gene transfer (HGT) in the digestive tract (DT) from Lactococcus lactis carrying heterologous genes (lux genes encoding a bacterial luciferase) to Enterococcus faecalis. Two enterococcal wide host-range conjugative model systems were used: (i) a system composed of a mobilizable plasmid containing the heterologous lux genes and a native conjugative helper plasmid; and (ii) a Tn916-lux transposon. Both systems were tested under the most transfer-prone conditions, i.e. germfree mice mono-associated with the recipient E. faecalis. No transfer was observed with the transposon system. Transfers of the mobilizable plasmid carrying heterologous genes were below 10(2) transconjugants per g of faeces for a single donor dose and reached between 10(3) and 10(4) transconjugants per g of faeces when continuous inoculation of the donor strain was used. Once established in mice, transconjugants persisted at low levels in the mouse DT.
Collapse
Affiliation(s)
- Carl-Alfred Alpert
- Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
35
|
Bellier S, Da Silva NR, Aubin-Houzelstein G, Elbaz C, Vanderwinden JM, Panthier JJ. Accelerated intestinal transit in inbred mice with an increased number of interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 2005; 288:G151-8. [PMID: 15297259 DOI: 10.1152/ajpgi.00048.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal (ICC) play an important role in coordinating intestinal motility, and structural alterations in ICC are found in several human digestive diseases. Mouse models with defects in ICC allow a better understanding of their functions. We investigated the pattern of intestinal motility and the distribution of ICC in the PRM/Alf inbred mouse strain, characterized by a selective intestinal lengthening. In PRM/Alf mice, the digestive transit time, evaluated by using thermophilic Bacillus subtilis spores, was normal, indicating accelerated transit. The contractility and slow-wave frequency, recorded on isolated segments from the proximal small intestine, were significantly increased. The number of ICC was also significantly higher along the small intestine and the colon. The concomitant increase of the contractility, the slow-wave frequency, and the number of ICC is consistent with the proposal of a role of ICC number increase in the higher intestinal transit speed. The PRM/Alf model should be useful to further investigate the roles of ICC in the control of digestive motility.
Collapse
Affiliation(s)
- Sylvain Bellier
- Unité Mixte de Reherche 995 Institut National de Recherche Agronomique-Ecole Nationale Vétérinaire d'Alfort de Génétique Moléculaire et Cellulaire, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort Cedex, France.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
BACKGROUND This article reviews several studies regarding adaptation to the digestive environment by lactic acid bacteria. The behavior of lactic acid bacteria in the digestive tract is worth investigating, and bacterial physiologic changes remain to be examined. METHODS A genetic approach based on the fusion of bacterial promoters with genes of the reporter protein luciferase is described to screen for functions that lactic acid bacteria may suppress or activate in the digestive environment. RESULTS Variations in luciferase expression from different promoters were observed in the digestive tract of mice models. In some cases, the promoter could be activated in response to an inducer provided with the diet. CONCLUSION These data suggest that lactic acid bacteria are metabolically active in the digestive tract and can synthesize proteins to adapt to the digestive environment.
Collapse
Affiliation(s)
- Denis D G Mater
- Unité d'écologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | |
Collapse
|
37
|
Oozeer R, Goupil-Feuillerat N, Alpert CA, van de Guchte M, Anba J, Mengaud J, Corthier G. Lactobacillus casei is able to survive and initiate protein synthesis during its transit in the digestive tract of human flora-associated mice. Appl Environ Microbiol 2002; 68:3570-4. [PMID: 12089044 PMCID: PMC126770 DOI: 10.1128/aem.68.7.3570-3574.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live Lactobacillus casei is present in fermented dairy products and has beneficial properties for human health. In the human digestive tract, the resident flora generally prevents the establishment of ingested lactic acid bacteria, the presence of which is therefore transient. The aim of this work was to determine if L. casei DN-114 001 survives during transit and how this bacterium behaves in the digestive environment. We used the human flora-associated (HFA) mouse model. L. casei DN-114 001 was genetically modified by the introduction of erm and lux genes, encoding erythromycin resistance and luciferase, respectively. For this modified strain (DN-240 041), light emission related to luciferase expression could easily be detected in the contents of the digestive tract. When inoculated into the digestive tract of HFA mice, L. casei (DN-240 041) survives but is eliminated with the same kinetics as an inert transit marker, indicating that it does not establish itself. In pure culture of L. casei, luciferase activities were high in the exponential and early stationary growth phases but decreased to become undetectable 1 day after inoculation. Viability was only slightly reduced even after more than 5 days. After transit in HFA mice, luciferase activity was detected even when 5-day-old L. casei cultures were given to the mice. In culture, the luciferase activity could be restored after 0.5 to 7 h of incubation in fresh medium or milk containing glucose, unless protein synthesis was inhibited by the addition of chloramphenicol or rifampin. These results suggest that in HFA mice L. casei DN-240 041, and thus probably L. casei DN-114 001, is able to initiate new protein synthesis during its transit with the diet. The beneficial properties of L. casei-fermented milk for human health might be related to this protein synthesis in the digestive tract.
Collapse
Affiliation(s)
- R Oozeer
- Unité d'Ecologie et de Physiologie du Système digestif. Unité de Génétique Microbienne, INRA, 78350 Jouy en Josas, France
| | | | | | | | | | | | | |
Collapse
|