1
|
Gunasekera TS, Bowen LL, Alger JC. Metabolic characterization of alkane monooxygenases and the growth phenotypes of Pseudomonas aeruginosa ATCC 33988 on hydrocarbons. J Bacteriol 2025; 207:e0050824. [PMID: 40067022 PMCID: PMC12004949 DOI: 10.1128/jb.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/21/2025] [Indexed: 04/18/2025] Open
Abstract
There is a demand and widespread interest in evaluating microbial community structures and metabolic processes in hydrocarbon environments. The current work aims to detect microbial subgroups (phenotypic subsets) and their metabolic processes, such as substrate specificity and expression of niche-associated genes. In this study, we were able to discriminate different cell types in real time from a complex sample matrix to allow the detection of live, dead, and injured cell populations in jet fuels. We found that the expression of alkB1 and alkB2 genes is induced in a growth-dependent manner and alkB2 induction started before alkB1. This indicates that as an early response of Pseudomonas aeruginosa cells' exposure to alkanes, cells activate alkB2 gene induction. Deletion of alkB1 and alkB2 genes completely inhibited P. aeruginosa ATCC 33988 growth in jet fuel, suggesting that two alkane monooxygenases are responsible for the degradation of alkanes and jet fuel. Interestingly, the AlkB2 has a broader (n-C8-n-C16) substrate range compared to AlkB1 (n-C12-n-C16). The data indicate that two alkane utilization pathways can coexist in P. aeruginosa ATCC 33988, and they are differentially expressed in response to n-C6-n-C16 alkanes found in jet fuel. This study provided additional information on the heterogeneity and phenotypic diversity within the same species after exposure to hydrocarbons. This work advances our understanding of microbial community structures and provides new insight into the alkane metabolism of P. aeruginosa.IMPORTANCEAlkane degradation allows for the natural breakdown of hydrocarbons found in crude oil, which can significantly contribute to environmental remediation. The metabolic process of microbes to hydrocarbons and the expression of niche-associated genes are not well understood. Pseudomonas aeruginosa ATCC 33988, originally isolated from a jet fuel tank, degrades hydrocarbons effectively and outcompetes the type strain Pseudomonas aeruginosa PAO1. In this study, we found differential expression of alkB1 and alkB2 alkane monooxygenase genes and the relative importance of these genes in alkane degradation. We found different phenotypic subsets within the same genotype, which are influenced by hydrocarbon stress. Overall, the research conducted in this study significantly contributes to our knowledge about microbial processes and community structure in hydrocarbon environments.
Collapse
Affiliation(s)
- Thusitha S. Gunasekera
- Fuels and Energy Branch, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Loryn L. Bowen
- University of Dayton Research Institute, University of Dayton, Dayton, Ohio, USA
| | - Jhoanna C. Alger
- University of Dayton Research Institute, University of Dayton, Dayton, Ohio, USA
| |
Collapse
|
2
|
Barry Schroeder AL, Reed AM, Radwan O, Bowen LL, Ruiz ON, Gunasekera TS, Hoffmann A. Identification of Pseudomonas protegens and Bacillus subtilis Antimicrobials for Mitigation of Fuel Biocontamination. Biomolecules 2025; 15:227. [PMID: 40001530 PMCID: PMC11853459 DOI: 10.3390/biom15020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrocarbon fuel biofouling and biocorrosion require expensive cleanup of aviation infrastructures unless appropriate sustainment measures are applied. The identification of novel biological control agents offers promising alternatives to the current chemical biocides used in fuel sustainment. In this study, 496 microbial fuel isolates from our in-house repository were screened to identify new endogenously produced antimicrobial compounds. Using agar plug screening, liquid culture growth testing, and Jet A fuel culture assays, the two fuel-isolate strains Pseudomonas protegens #133, and Bacillus subtilis #232 demonstrated promising biocontrol activity against bacteria, yeast, and filamentous fungi. Liquid chromatography-quadrupole time of flight tandem mass spectrometry (LC-QTOF-MS/MS) of #232 culture filtrate identified several common lipopeptide antimicrobials including gageostatin C, gageopeptin B, and miscellaneous macrolactins. In contrast, LC-QTOF-MS/MS identified the siderophore pyochelin as one of the predominant compounds in #133 culture filtrate with previously demonstrated antimicrobial effect. Jet fuel microbial consortium culture testing of #133 culture filtrate including flow-cytometry live/dead cell mechanism determination demonstrated antimicrobial action against Gram-positive bacteria. The study concludes that antimicrobial compounds secreted by #133 have bactericidal effects against Gordonia sp. and cause cell death through bacterial lysis and membrane damage with potential applications in the biocidal treatment of hydrocarbon-based aviation fuels.
Collapse
Affiliation(s)
- Amanda L. Barry Schroeder
- Environmental Microbiology, Fuels & Combustion Division, University of Dayton Research Institute, Dayton, OH 45469, USA; (A.M.R.); (L.L.B.)
| | - Adam M. Reed
- Environmental Microbiology, Fuels & Combustion Division, University of Dayton Research Institute, Dayton, OH 45469, USA; (A.M.R.); (L.L.B.)
| | - Osman Radwan
- Power & Energy Division, University of Dayton Research Institute, Dayton, OH 45469, USA;
| | - Loryn L. Bowen
- Environmental Microbiology, Fuels & Combustion Division, University of Dayton Research Institute, Dayton, OH 45469, USA; (A.M.R.); (L.L.B.)
| | - Oscar N. Ruiz
- Biomaterials Branch, Photonic, Electronic & Soft Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Thusitha S. Gunasekera
- Fuels & Energy Branch, Aerospace Systems Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA;
| | - Andrea Hoffmann
- Environmental Microbiology, Fuels & Combustion Division, University of Dayton Research Institute, Dayton, OH 45469, USA; (A.M.R.); (L.L.B.)
| |
Collapse
|
3
|
Pazos-Rojas LA, Cuellar-Sánchez A, Romero-Cerón AL, Rivera-Urbalejo A, Van Dillewijn P, Luna-Vital DA, Muñoz-Rojas J, Morales-García YE, Bustillos-Cristales MDR. The Viable but Non-Culturable (VBNC) State, a Poorly Explored Aspect of Beneficial Bacteria. Microorganisms 2023; 12:39. [PMID: 38257865 PMCID: PMC10818521 DOI: 10.3390/microorganisms12010039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Many bacteria have the ability to survive in challenging environments; however, they cannot all grow on standard culture media, a phenomenon known as the viable but non-culturable (VBNC) state. Bacteria commonly enter the VBNC state under nutrient-poor environments or under stressful conditions. This review explores the concept of the VBNC state, providing insights into the beneficial bacteria known to employ this strategy. The investigation covers different chemical and physical factors that can induce the latency state, cell features, and gene expression observed in cells in the VBNC state. The review also covers the significance and applications of beneficial bacteria, methods of evaluating bacterial viability, the ability of bacteria to persist in environments associated with higher organisms, and the factors that facilitate the return to the culturable state. Knowledge about beneficial bacteria capable of entering the VBNC state remains limited; however, beneficial bacteria in this state could face adverse environmental conditions and return to a culturable state when the conditions become suitable and continue to exert their beneficial effects. Likewise, this unique feature positions them as potential candidates for healthcare applications, such as the use of probiotic bacteria to enhance human health, applications in industrial microbiology for the production of prebiotics and functional foods, and in the beer and wine industry. Moreover, their use in formulations to increase crop yields and for bacterial bioremediation offers an alternative pathway to harness their beneficial attributes.
Collapse
Affiliation(s)
- Laura Abisaí Pazos-Rojas
- Faculty of Stomatology, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico; (L.A.P.-R.); (A.R.-U.)
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Alma Cuellar-Sánchez
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Ana Laura Romero-Cerón
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - América Rivera-Urbalejo
- Faculty of Stomatology, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico; (L.A.P.-R.); (A.R.-U.)
| | - Pieter Van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Diego Armando Luna-Vital
- Monterrey Institute of Technology, School of Engineering and Sciences, Monterrey 64700, Mexico; (A.C.-S.); (A.L.R.-C.); (D.A.L.-V.)
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
- Faculty of Biological Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico
| | - María del Rocío Bustillos-Cristales
- Ecology and Survival of Microorganisms Group, Laboratory of Microbial Molecular Ecology (LEMM), Center for Research in Microbiological Sciences, Institute of Sciences, Meritorious Autonomous University of Puebla (BUAP), Puebla 72570, Mexico;
| |
Collapse
|
4
|
Sun X, Zhao R, Wang N, Zhang J, Xiao B, Huang F, Chen A. Milk somatic cell count: From conventional microscope method to new biosensor-based method. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Shleeva MO, Kaprelyants AS. Hypobiosis of Mycobacteria: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:S52-S74. [PMID: 37069114 DOI: 10.1134/s0006297923140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Under suboptimal growth conditions, bacteria can transit to the dormant forms characterized by a significantly reduced metabolic activity, resistance to various stress factors, and absence of cell proliferation. Traditionally, the dormant state is associated with the formation of highly differentiated cysts and spores. However, non-spore-forming bacteria can transfer to the dormant-like hypobiotic state with the generation of less differentiated cyst-like forms (which are different from spores). This review focuses on morphological and biochemical changes occurred during formation of dormant forms of mycobacteria in particular pathogenic M. tuberculosis (Mtb) caused latent forms of tuberculosis. These forms are characterized by the low metabolic activity, the absence of cell division, resistance to some antibiotics, marked morphological changes, and loss of ability to grow on standard solid media ("non-culturable" state). Being produced in vitro, dormant Mtb retained ability to maintain latent infection in mice. After a long period of dormancy, mycobacteria retain a number of stable proteins with a potential enzymatic activity which could participate in maintaining of low-level metabolic activity in period of dormancy. Indeed, the metabolomic analysis showed significant levels of metabolites in the dormant cells even after a long period of dormancy, which may be indicative of residual metabolism in dormant mycobacteria. Special role may play intracellularly accumulated trehalose in dormant mycobacteria. Trehalose appears to stabilize dormant cells, as evidenced by the direct correlation between the trehalose content and cell viability during the long-term dormancy. In addition, trehalose can be considered as a reserve energy substrate consumed during reactivation of dormant mycobacteria due to the ATP-dependent conversion of trehalase from the latent to the active state. Another feature of dormant mycobacteria is a high representation of proteins participating in the enzymatic defense against stress factors and of low-molecular-weight compounds protecting cells in the absence of replication. Dormant mycobacteria contain a large number of hydrolyzing enzymes, which, on the one hand, ensure inactivation of biomolecules damaged by stress. On the other hand, the products of these enzymatic reactions can be used for the maintenance of energy state and vital activity of bacterial cells during their long-term survival in the dormant state, i.e., for creating a situation that we propose to refer to as the "catabolic survival". In general, dormant non-replicating mycobacterial cells can be described as morphologically altered forms that contain principal macromolecules and are stabilized and protected from the damaging factors by an arsenal of proteins and low-molecular-weight compounds. Because of the presumable occurrence of metabolic reactions in such cells, this form of survival should be referred to as hypobiosis.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
6
|
Hu L, Zhang S, Xue Y, Zhang Y, Zhang W, Wang S. Quantitative Detection of Viable but Nonculturable Cronobacter sakazakii Using Photosensitive Nucleic Acid Dye PMA Combined with Isothermal Amplification LAMP in Raw Milk. Foods 2022; 11:foods11172653. [PMID: 36076838 PMCID: PMC9455467 DOI: 10.3390/foods11172653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
An accurate method that rapidly detects the number of viable but nonculturable (VBNC) Cronobacter sakazakii was developed by combining propidium bromide with quantitative LAMP (PMA-QLAMP). The gyrB gene was the target for primers design. The optimal PMA treatment conditions were determined to eliminate the DNA amplification of 108 CFU/mL of dead C. sakazakii without affecting any viable C. sakazakii DNA amplification. Compared with the DNA of 24 strains of common non-C. sakazakii strains found in raw milk and dairy products, the DNA of only six C. sakazakii strains from different sources was amplified using PMA-QLAMP. The ability of PMA-QLAMP to quantitatively detect non-dead C. sakazakii in a 10% powdered infant formula (PIF) solution was limited to 4.3 × 102 CFU/mL and above concentrations. Pasteurizing 106 CFU/mL viable C. sakazakii yielded the maximum ratio of the VBNC C. sakazakii. PMA-QLAMP-based detection indicated that, although approximately 13% of 60 samples were positive for viable C. sakazakii, the C. sakazakii titers in these positive samples were low, and none entered the VBNC state under pasteurization. PMA-QLAMP showed potential as a specific and reliable method for detecting VBNC-C. sakazakii in pasteurized raw milk, thereby providing an early warning system that indicates potential contamination of PIF.
Collapse
Affiliation(s)
- Lianxia Hu
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Shufei Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Yaoguang Zhang
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
| | - Wei Zhang
- College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang 050221, China
- Correspondence: ; Tel.: +86-311-67362689
| |
Collapse
|
7
|
Changes in physiological states of Salmonella Typhimurium measured by qPCR with PMA and DyeTox13 Green Azide after pasteurization and UV treatment. Appl Microbiol Biotechnol 2022; 106:2739-2750. [PMID: 35262785 DOI: 10.1007/s00253-022-11850-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/17/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Diarrheal diseases caused by Salmonella pose a major threat to public health, and assessment of bacterial viability is critical in determining the safety of food and drinking water after disinfection. Viability PCR could overcome the limitations of traditional culture-dependent methods for a more accurate assessment of the viability of a microbial sample. In this study, the physiological changes in Salmonella Typhimurium induced by pasteurization and UV treatment were evaluated using a culture-based method, RT-qPCR, and viability PCR. The plate count results showed no culturable S. Typhimurium after the pasteurization and UV treatments, while viability PCR with propidium monoazide (PMA) and DyeTox13-qPCR indicated that the membrane integrity of S. Typhimurium remained intact with no metabolic activity. The RT-qPCR results demonstrated that invasion protein (invA) was detectable in UV-treated cells even though the log2-fold change ranged from - 2.13 to - 5.53 for PMA treatment. However, the catalytic activity gene purE was under the detection limit after UV treatment, indicating that most Salmonella entered metabolically inactive status after UV disinfection. Also, viability PCRs were tested with artificially contaminated eggs to determine physiological status on actual food matrices. DyeTox13-qPCR methods showed that most Salmonella lost their metabolic activity but retained membrane integrity after UV disinfection. RT-qPCR may not determine the physiological status of Salmonella after UV disinfection because mRNA could be detectable in UV-treated cells depending on the choice of target gene. Viability PCR demonstrated potential for rapid and specific detection of pathogens with physiological states such as membrane integrity and metabolic activity.Key Points• Membrane integrity of Salmonella remained intact with no metabolic activity after UV.• mRNA could be detectable in UV-treated cells depending on the choice of target gene.• Viability PCR could rapidly detect specific pathogens with their physiological states.
Collapse
|
8
|
James C, Dixon R, Talbot L, James SJ, Williams N, Onarinde BA. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria-A Critical Review. Antibiotics (Basel) 2021; 10:1440. [PMID: 34943652 PMCID: PMC8698031 DOI: 10.3390/antibiotics10121440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The dissemination of antibiotic resistance genes (ARGs) is a global health concern. This study identifies and critically reviews the published evidence on whether cooking (heating) food to eliminate bacterial contamination induces sufficient damage to the functionality of ARGs. Overall, the review found that there is evidence in the literature that Antimicrobial Resistant (AMR) bacteria are no more heat resistant than non-AMR bacteria. Consequently, recommended heat treatments sufficient to kill non-AMR bacteria in food (70 °C for at least 2 min, or equivalent) should be equally effective in killing AMR bacteria. The literature shows there are several mechanisms through which functional genes from AMR bacteria could theoretically persist in heat-treated food and be transferred to other bacteria. The literature search found sparce published evidence on whether ARGs may actually persist in food after effective heat treatments, and whether functional genes can be transferred to other bacteria. However, three publications have demonstrated that functional ARGs in plasmids may be capable of persisting in foods after effective heat treatments. Given the global impact of AMR, there is clearly a need for further practical research on this topic to provide sufficient evidence to fully assess whether there is a risk to human health from the persistence of functional ARGs in heat-treated and cooked foods.
Collapse
Affiliation(s)
- Christian James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Ronald Dixon
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Luke Talbot
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
| | - Stephen J. James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| |
Collapse
|
9
|
Horio K, Takahashi H, Kobori T, Watanabe K, Aki T, Nakashimada Y, Okamura Y. Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence In Situ Hybridization. Microorganisms 2021; 9:1208. [PMID: 34204984 PMCID: PMC8228470 DOI: 10.3390/microorganisms9061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, we developed an in situ mRNA detection method termed RNase H-assisted rolling circle amplification-fluorescence in situ hybridization (RHa-RCA-FISH), which can detect even short mRNA in a bacterial cell. However, because this FISH method is sensitive to the sample condition, it is necessary to find a suitable cell permeabilization and collection protocol. Here, we demonstrate its further applicability for detecting intrinsic mRNA expression using lactic acid bacteria (LAB) as a model consortium. Our results show that this method can visualize functional gene expression in LAB cells and can be used for monitoring the temporal transition of gene expression. In addition, we also confirmed that data obtained from bulk analyses such as RNA-seq or microarray do not always correspond to gene expression in individual cells. RHa-RCA-FISH will be a powerful tool to compensate for insufficient data from metatranscriptome analyses while clarifying the carriers of function in microbial consortia. By extending this technique to capture spatiotemporal microbial gene expression at the single-cell level, it will be able to characterize microbial interactions in phytoplankton-bacteria interactions.
Collapse
Affiliation(s)
- Kyohei Horio
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Hirokazu Takahashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Toshiro Kobori
- Division of Food Biotechnology, Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan;
| | - Kenshi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Tsunehiro Aki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yutaka Nakashimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| | - Yoshiko Okamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan; (K.H.); (H.T.); (K.W.); (T.A.); (Y.N.)
| |
Collapse
|
10
|
Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Res Int 2021; 142:110191. [PMID: 33773667 DOI: 10.1016/j.foodres.2021.110191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
This study assessed the impact of eight unit operations [slow pasteurization, high-temperature short time (HTST) pasteurization, cooking, baking, drying, fermentation, supercritical carbon dioxide (CO2), irradiation and extrusion] in different food matrices (milk, orange juice, meatballs, bread, crystallized pineapple, yogurt, orange juice, ground black pepper, snacks, and spaghetti) on the resistance of eight (Bacillus flexus Hk1 Bacillus subtilis Bn1, Bacillus licheniformis Me1, Bacillus mojavensis KJS3, Bacillus subtilis PXN21, Bacillus subtilis PB6, Bacillus coagulans MTCC 5856 and Bacillus coagulans GBI-30, 6086) Bacillus strains with claimed probiotic properties (PB). The number of decimal reductions (γ) caused by the unit operations varied (p < 0.05) amongst the PB. Most of the unit operations caused ≤ 2 γ of PB in the food matrices evaluated. Irradiation caused up to 4.9 γ (p < 0.05) amongst the PB tested. B. subtilis Bn1, B. mojavensis KJS3, B. licheniformis Me1, and B. coagulans GBI-30 showed higher resistance to most of the tested unit operations. These results indicate that the choice of PB for application in foods should also be based on their resistance to unit operations employed during processing. Finally, the high resistance of PB to the unit operations tested comprise valuable data for the development and diversification of probiotic foods with sporeforming strains with claimed probiotic properties.
Collapse
|
11
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Chen H, Li YK, Zhang TT, Bi Y, Shu M, Zhong C, Tang KJ, Wu GP. A Novel Real-Time Loop-Mediated Isothermal Amplification Combined with Immunomagnetic Beads Separation and Ethidium Bromide Monoazide Treatment for Rapid and Ultrasensitive Detection of Viable Escherichia coli O157:H7 in Milk. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01932-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Taher EM, Hemmatzadeh F, Aly SA, Elesswy HA, Petrovski KR. Molecular characterization of antimicrobial resistance genes on farms and in commercial milk with emphasis on the effect of currently practiced heat treatments on viable but nonculturable formation. J Dairy Sci 2020; 103:9936-9945. [PMID: 32861499 DOI: 10.3168/jds.2020-18631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Despite the considerable advances that have been made to improve dairy food safety, there is rising concern that pasteurization is not sufficient for the destruction of plasmid-mediated antimicrobial resistance (AMR) genes of resistant bacteria and could stimulate bacteria to enter into a viable but nonculturable (VBNC) state. In the current study, we surveyed the prevalence of 1 genomic and 9 plasmid-mediated AMR genes in 100 samples (bulk tank milk and milk filter socks) at the farm level and 152 commercial milk samples (pasteurized and UHT milks) and assessed the VBNC state in dairy bacteria. Results revealed that sul2 was the most prevalent plasmid-mediated gene in milk filter socks (96%), bulk tank milk (48%), pasteurized milk (68%), and UHT (43%) milk; in contrast, mecA was not detected in any sample. Additionally, commercial pasteurization (as currently practiced) failed to decrease the prevalence of the blaTEM-B1 (43%), tetK (30%), and tetA (55%) plasmid-mediated AMR genes; thus, commercial pasteurization may be one of the factors creating the VBNC state in some dairy bacteria. Continued research is necessary to identify bacterial species entering the VBNC state after pasteurization, to assess their potential hazard level and shed more light on the expression and possibility of horizontal gene transfer of those plasmid-mediated AMR genes.
Collapse
Affiliation(s)
- Eman M Taher
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Science, The University of Adelaide, Roseworthy, SA 5371, Australia; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Waite Campus, SA 5064, Australia
| | - Salwa A Aly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hamdy A Elesswy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Kiro R Petrovski
- School of Animal and Veterinary Science, The University of Adelaide, Roseworthy, SA 5371, Australia; Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Waite Campus, SA 5064, Australia; Davies Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, North Terrace Campus, SA 5005, Australia
| |
Collapse
|
14
|
Taher E, Hemmatzadeh F, Aly S, Elesswy H, Petrovski K. Survival of staphylococci and transmissibility of their antimicrobial resistance genes in milk after heat treatments. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Irie K, Scott A, Hasegawa N. Investigation into the Physiological State of Heat Stressed Escherichia coli Used in the Evaluation Testing of an Intrinsic Fluorescence-Based RMM. Biocontrol Sci 2020; 25:91-105. [PMID: 32507795 DOI: 10.4265/bio.25.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rapid microbiological methods (RMMs) have been used as novel quality control technologies in industry. The ability of RMMs to detect stressed bacteria, in particular, is of continued interest due to the limitations of the conventional method in stressed bacteria detection. Accordingly, there is a need to better characterize an RMM's ability to detect stressed microorganisms. Previously we reported on the detection ability of an intrinsic fluorescence-based RMM using a 50% injured (determined based on colony-forming ability) bacterial cell group after heat treatment at 55°C for 8 min. In this study, we added further information about the physiological state of the heat treated Escherichia coli, besides proliferation ability, by investigating respiratory activity using CTC fluorescent staining and expression of DnaK, a heat shock protein. It was found that 89% of cells (control 96%) retained respiratory activity, but only 20% (control 41%) retained proliferation ability after heat treatment. The difference between the percentage of cells with respiratory activity versus that of cells still capable of proliferation further supports the existence of viable but non-culturable stressed cells in the test sample. Also, we suggest such analysis would be one approach to confirming the use of stressed as opposed to dead cells when evaluating an RMM's ability to detect stressed microorganisms.
Collapse
|
16
|
Wu D, Forghani F, Daliri EBM, Li J, Liao X, Liu D, Ye X, Chen S, Ding T. Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Nakao H, Kim JD. Simple and Rapid Method for Separating Lactic Acid Bacteria from Commercially Prepared Yogurt. ANAL SCI 2019; 35:1065-1067. [PMID: 31495815 DOI: 10.2116/analsci.19c008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have reported a simple method for separating lactic acid bacteria (LAB) from yogurt. This method is based on the process of destructions and denaturation of casein micelle aggregates by vortexing, and can supply samples containing only LAB. Recovered LAB were clearly observable by microscopy, meaning that morphological changes could be directly detected at the single-cell level. This method will be a helpful tool for the analyzing various LAB, including their enzyme activity and protein expression.
Collapse
Affiliation(s)
| | - Je-Deok Kim
- National Institute for Materials Science (NIMS)
| |
Collapse
|
18
|
Mendis HC, Ozcan A, Santra S, De La Fuente L. A novel Zn chelate (TSOL) that moves systemically in citrus plants inhibits growth and biofilm formation of bacterial pathogens. PLoS One 2019; 14:e0218900. [PMID: 31233560 PMCID: PMC6590827 DOI: 10.1371/journal.pone.0218900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
Ternary solution (TSOL) is a novel Zn chelate-based systemic antimicrobial formulation designed for treating citrus bacterial pathogens 'Candidatus Liberibacter asiaticus' and Xanthomonas citri subsp. citri. TSOL is a component of MS3T, a novel multifunctional surface/sub-surface/systemic therapeutic formulation. Antimicrobial activity of TSOL was compared with the antimicrobial compound ZnO against X. citri subsp. citri and 'Ca. L. asiaticus' surrogate Liberibacter crescens in batch cultures. X. citri subsp. citri and L. crescens were also introduced into microfluidic chambers, and the inhibitory action of TSOL against biofilm formation was evaluated. The minimum inhibitory concentration of TSOL for both X. citri subsp. citri and L. crescens was 40ppm. TSOL was bactericidal to X. citri subsp. citri and L. crescens above 150 ppm and 200 ppm, respectively. On the contrary, ZnO was more effective as a bactericidal agent against L. crescens than X. citri subsp. citri. TSOL was more effective in controlling growth and biofilm formation of X. citri subsp. citri in batch cultures compared to ZnO. Time-lapse video imaging microscopy showed that biofilm formation of X. citri subsp. citri was inhibited in microfluidic chambers treated with 60 ppm TSOL. TSOL also inhibited further growth of already formed X. citri subsp. citri and L. crescens biofilms in microfluidic chambers. Leaf spraying of TSOL showed higher plant uptake and systemic movement in citrus (Citrus reshni) plants compared to that of ZnO, suggesting that TSOL is a promising antimicrobial compound to control vascular plant pathogens such as 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Hajeewaka C. Mendis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
19
|
Role of food sanitising treatments in inducing the ‘viable but nonculturable’ state of microorganisms. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Nishino T, Matsuda Y, Yamazaki Y. Separation of viable lactic acid bacteria from fermented milk. Heliyon 2018; 4:e00597. [PMID: 29862359 PMCID: PMC5968145 DOI: 10.1016/j.heliyon.2018.e00597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022] Open
Abstract
Probiotics are live microorganisms that provide health benefits to humans. Some lactic acid bacteria (LAB) are probiotic organisms used in the production of fermented foods, such as yogurt, cheese, and pickles. Given their widespread consumption, it is important to understand the physiological state of LAB in foods such as yogurt. However, this analysis is complicated, as it is difficult to separate the LAB from milk components such as solid curds, which prevent cell separation by dilution or centrifugation. In this study, we successfully separated viable LAB from yogurt by density gradient centrifugation. The recovery rate was >90 %, and separation was performed until the stationary phase. Recovered cells were observable by microscopy, meaning that morphological changes and cell viability could be directly detected at the single-cell level. The results indicate that viable LAB can be easily purified from fermented milk. We expect that this method will be a useful tool for the analysis of various aspects of probiotic cells, including their enzyme activity and protein expression.
Collapse
Affiliation(s)
- Tomohiko Nishino
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yusuke Matsuda
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404 Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Yuna Yamazaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404 Katakura, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
21
|
Purevdorj-Gage L, Nixon B, Bodine K, Xu Q, Doerrler WT. Differential Effect of Food Sanitizers on Formation of Viable but Nonculturable Salmonella enterica in Poultry. J Food Prot 2018; 81:386-393. [PMID: 29419335 DOI: 10.4315/0362-028x.jfp-17-335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method for microscopic enumeration of viable Salmonella enterica in meat samples was developed by using the LIVE/DEAD BacLight kit technology. A two-step centrifugation and wash process was developed to clean the samples from food and chemical impurities that might otherwise interfere with the appropriate staining reactions. The accuracy of the BacLight kit-based viability assessments was confirmed with various validation tests that were conducted by following the manufacturer's instructions. For the biocide challenge tests, chicken parts each bearing around 8.5 log of S. enterica were sprayed with common food sanitizers such as 1,3-dibromo-5,5-dimethylhydantoin (DBDMH), lactic acid (LA), and peracetic acid (PAA). The log reduction (LR) of S. enterica for each test biocide was evaluated by microscopic and conventional culture plate methods. The results show that both LA and PAA treatments generated a greater number of microscopic counts compared with the corresponding plate counts with differences being around half a log. This discrepancy is believed to occur when cells enter a so-called viable but nonculturable (VBNC) state, and to our knowledge, this is the first report documenting the presence of VBNC in PAA- and LA-treated food samples. In contrast, the BacLight-based viable counts were comparable to the culture-based enumerations of all DBDMH-treated samples. Therefore, we concluded that DBDMH-treated meat did not contain significant VBNC populations of S. enterica. A detailed description of our spray system, the dye validation, and the treatment reproducibility are also provided in this work.
Collapse
Affiliation(s)
- Laura Purevdorj-Gage
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Brian Nixon
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Kyle Bodine
- 1 The Process Development Center, Albemarle Corporation, Gulf States Road, Baton Rouge, Louisiana 70805
| | - Qilong Xu
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820
| | - William T Doerrler
- 2 Southern Microbiological Services, 8000 Innovation Park Drive, Baton Rouge, Louisiana 70820.,3 Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
22
|
Gordeev AA, Chetverin AB. Methods for Screening Live Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:S81-S102. [DOI: 10.1134/s0006297918140080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Microbial diversity of consumption milk during processing and storage. Int J Food Microbiol 2018; 266:21-30. [DOI: 10.1016/j.ijfoodmicro.2017.11.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/04/2023]
|
24
|
Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales MDR, Rodríguez-Andrade O, Morales-García YE, Munive A, Muñoz-Rojas J. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One 2017; 12:e0187913. [PMID: 29117218 PMCID: PMC5678714 DOI: 10.1371/journal.pone.0187913] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.
Collapse
Affiliation(s)
- Dalia Molina-Romero
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- Laboratorio de Biología Molecular y Microbiología, Facultad de Ciencias Biológicas, BUAP, Edificio 112-A, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Antonino Baez
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Verónica Quintero-Hernández
- CONACYT, LEMM, CICM, IC-BUAP, Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Miguel Castañeda-Lucio
- Genética Molecular Microbiana, CICM, IC-BUAP, Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Luis Ernesto Fuentes-Ramírez
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - María del Rocío Bustillos-Cristales
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Osvaldo Rodríguez-Andrade
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Yolanda Elizabeth Morales-García
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- Laboratorio de Biología Molecular y Microbiología, Facultad de Ciencias Biológicas, BUAP, Edificio 112-A, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Antonio Munive
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
| | - Jesús Muñoz-Rojas
- Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Edificio IC11, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Puebla, México
- * E-mail:
| |
Collapse
|
25
|
Buzoleva LS, Sinel’nikova MA. Reversion of nonculturable forms of Listeria monocytogenes under the influence of exometabolites of Aranicola spp. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017050053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Lahuerta-Marin A, Muñoz-Gomez V, Hartley H, Guelbenzu-Gonzalo M, Porter R, Spence N, Allen A, Lavery J, Bagdonaite G, McCleery D. A survey on antimicrobial resistant Escherichia coli isolated from unpasteurised cows' milk in Northern Ireland. Vet Rec 2017; 180:426. [PMID: 28424319 DOI: 10.1136/vr.104097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2017] [Indexed: 11/04/2022]
Affiliation(s)
- A Lahuerta-Marin
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - V Muñoz-Gomez
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - H Hartley
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - M Guelbenzu-Gonzalo
- Disease Surveillance and Investigation Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - R Porter
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - N Spence
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - A Allen
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - J Lavery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - G Bagdonaite
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| | - D McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, UK
| |
Collapse
|
27
|
Zhao X, Zhong J, Wei C, Lin CW, Ding T. Current Perspectives on Viable but Non-culturable State in Foodborne Pathogens. Front Microbiol 2017; 8:580. [PMID: 28421064 PMCID: PMC5378802 DOI: 10.3389/fmicb.2017.00580] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/21/2017] [Indexed: 01/24/2023] Open
Abstract
The viable but non-culturable (VBNC) state, a unique state in which a number of bacteria respond to adverse circumstances, was first discovered in 1982. Unfortunately, it has been reported that many foodborne pathogens can be induced to enter the VBNC state by the limiting environmental conditions during food processing and preservation, such as extreme temperatures, drying, irradiation, pulsed electric field, and high pressure stress, as well as the addition of preservatives and disinfectants. After entering the VBNC state, foodborne pathogens will introduce a serious crisis to food safety and public health because they cannot be detected using conventional plate counting techniques. This review provides an overview of the various features of the VBNC state, including the biological characteristics, induction and resuscitation factors, formation and resuscitation mechanisms, detection methods, and relationship to food safety.
Collapse
Affiliation(s)
- Xihong Zhao
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Junliang Zhong
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Caijiao Wei
- Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of TechnologyWuhan, China
| | - Chii-Wann Lin
- Institute of Biomedical Engineering, National Taiwan UniversityTaipei, Taiwan
| | - Tian Ding
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang UniversityHangzhou, China
| |
Collapse
|
28
|
Kable ME, Srisengfa Y, Laird M, Zaragoza J, McLeod J, Heidenreich J, Marco ML. The Core and Seasonal Microbiota of Raw Bovine Milk in Tanker Trucks and the Impact of Transfer to a Milk Processing Facility. mBio 2016; 7:e00836-16. [PMID: 27555305 PMCID: PMC4999540 DOI: 10.1128/mbio.00836-16] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Currently, the bacterial composition of raw milk in tanker trucks and the outcomes of transfer and storage of that milk at commercial processing facilities are not well understood. We set out to identify the bacteria in raw milk collected for large-scale dairy product manufacturing. Raw bovine milk samples from 899 tanker trucks arriving at two dairy processors in San Joaquin Valley of California during three seasons (spring, summer, and fall) were analyzed by community 16S rRNA gene sequencing. This analysis revealed highly diverse bacterial populations, which exhibited seasonal differences. Raw milk collected in the spring contained the most diverse bacterial communities, with the highest total cell numbers and highest proportions being those of Actinobacteria Even with this complexity, a core microbiota was present, consisting of 29 taxonomic groups and high proportions of Streptococcus and Staphylococcus and unidentified members of Clostridiales Milk samples were also collected from five large-volume silos and from 13 to 25 tankers whose contents were unloaded into each of them during 2 days in the summer. Transfer of the milk to storage silos resulted in two community types. One group of silos contained a high proportion of Streptococcus spp. and was similar in that respect to the tankers that filled them. The community found in the other group of silos was distinct and dominated by Acinetobacter Overall, despite highly diverse tanker milk community structures, distinct milk bacterial communities were selected within the processing facility environment. This knowledge can inform the development of new sanitation procedures and process controls to ensure the consistent production of safe and high-quality dairy products on a global scale. IMPORTANCE Raw milk harbors diverse bacteria that are crucial determinants of the quality and safety of fluid milk and (fermented) dairy products. These bacteria enter farm milk during transport, storage, and processing. Although pathogens are destroyed by pasteurization, not all bacteria and their associated enzymes are eliminated. Our comprehensive analyses of the bacterial composition of raw milk upon arrival and shortly after storage at major dairy processors showed that the communities of milk microbiota are highly diverse. Even with these differences, there was a core microbiota that exhibited distinct seasonal trends. Remarkably, the effects of the processing facility outweighed those of the raw milk microbiome and the microbial composition changed distinctly within some but not all silos within a short time after transfer. This knowledge can be used to inform cleaning and sanitation procedures as well as to enable predictions of the microbial communities in raw milk that result in either high-quality or defective products.
Collapse
Affiliation(s)
- Mary E Kable
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Yanin Srisengfa
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Miles Laird
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Jose Zaragoza
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | | | | | - Maria L Marco
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| |
Collapse
|
29
|
Alqarni B, Colley B, Klebensberger J, McDougald D, Rice SA. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J Microbiol Methods 2016; 127:182-187. [PMID: 27297333 DOI: 10.1016/j.mimet.2016.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Quantitative real-time polymerase chain reaction (qRT-PCR) is a reliable technique for quantifying mRNA levels when normalised by a stable reference gene/s. Many putative reference genes are known to be affected by physiological stresses, such as nutrient limitation and hence may not be suitable for normalisation. In this study of Pseudomonas aeruginosa, the expression of 13 commonly used reference genes, rpoS, proC, recA, rpsL, rho, oprL, anr, tipA, nadB, fabD, ampC, algD and gyrA, were analysed for changes in expression under carbon starvation and nutrient replete conditions. The results showed that rpoS was the only stably expressed housekeeping gene during carbon starvation. In contrast, other commonly used housekeeping genes were shown to vary by as much as 10-100 fold under starvation conditions. This study has identified a suitable reference gene for qRT-PCR in P. aeruginosa during carbon starvation. The results presented here highlight the need to validate housekeeping genes under the chosen experimental conditions.
Collapse
Affiliation(s)
- Budoor Alqarni
- Centre for Marine Bio-Innovation, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; The School of Biotechnology and Biomolecular Sciences, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brendan Colley
- Centre for Marine Bio-Innovation, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; The School of Biotechnology and Biomolecular Sciences, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Janosch Klebensberger
- University of Stuttgart, Institute of Technical Biochemistry, Allmandring 31, D-70569 Stuttgart, Germany
| | - Diane McDougald
- The ithree Institute, The University of Technology Sydney, Australia; Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore
| | - Scott A Rice
- Centre for Marine Bio-Innovation, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; The School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia; Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
30
|
Ayrapetyan M, Oliver JD. The viable but non-culturable state and its relevance in food safety. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.04.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Anderson M, Hinds P, Hurditt S, Miller P, McGrowder D, Alexander-Lindo R. The microbial content of unexpired pasteurized milk from selected supermarkets in a developing country. Asian Pac J Trop Biomed 2015; 1:205-11. [PMID: 23569760 DOI: 10.1016/s2221-1691(11)60028-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/20/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To determine the presence and levels of microbes in unexpired pasteurized milk from randomly selected supermarkets in Kingston, Jamaica. METHODS The quantitative study used a stratified random sampling technique in the selection of the 20 representative milk samples from six (6) supermarkets. Microbiological tests such as methylene blue reduction, standard plate count (SPC), coliform plate count (CPC), purity plate culture, gram staining and biochemical tests were performed to examine the microbes in purchased unexpired pasteurized milk. RESULTS One sample (BCr016) had a pH of 4.0, a rancid odour and curdled appearance. It decolourized within one hour during the methylene blue reduction test and was classified as class 4 milk. Seven of the samples were sterile with no microbe growth on the plate count agar and violet red bile salt agar (VRBA). The milk samples that appeared to be safe for consumption were all 10, 11, 12 and 13 days before expiration. The VRBA sample BCr016, had a colony count of 13 400 CFU/ mL. There was the presence of Escherichia coli in sample LCr021 which had a standard plate count of 1 580 SPC/mL and a coliform count of 500 CFU/mL. Enterobacter sp. was present in colonies from BCr016 and all the other milk samples. CONCLUSIONS Unacceptable levels of Enterobacter spp. and Escherichia coli were found in most of the samples. Effective measures to ensure safe milk for human consumption such as the phosphatase test and methylene blue reduction test should be routinely performed on each batch of milk processed by dairy plants.
Collapse
Affiliation(s)
- Melisa Anderson
- Department of Pathology, Faculty of Medical Sciences, University of the West Indies, Kingston 7, Jamaica
| | | | | | | | | | | |
Collapse
|
32
|
Application of a Fluorescence Microscopy Technique for Detecting Viable Mycobacterium avium ssp. paratuberculosis Cells in Milk. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9918-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014; 5:258. [PMID: 24917854 PMCID: PMC4040921 DOI: 10.3389/fmicb.2014.00258] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.
Collapse
Affiliation(s)
- Laam Li
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| | - James D Oliver
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
34
|
Tamburini S, Foladori P, Ferrentino G, Spilimbergo S, Jousson O. Accurate flow cytometric monitoring of Escherichia coli subpopulations on solid food treated with high pressure carbon dioxide. J Appl Microbiol 2014; 117:440-50. [PMID: 24766564 DOI: 10.1111/jam.12528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/28/2014] [Accepted: 04/16/2014] [Indexed: 12/29/2022]
Abstract
AIMS Evaluation of flow cytometry coupled with viability markers to monitor the inactivation of Escherichia coli cells spiked on solid food following High Pressure Carbon Dioxide (HPCD), a mild processing technology. METHODS AND RESULTS Flow cytometry (FCM) coupled with SYBR-Green I and Propidium Iodide was applied to monitor the effect of HPCD treatment on E. coli cells spiked on fresh cut carrots, therefore mimicking contamination of food products by faecal coliforms. FCM allowed to distinguish E. coli cells from carrot debris and natural flora, to evaluate the reduction of total cells, and to quantify viable and dead cells based on their membrane integrity after HPCD treatment. The comparison of FCM results with conventional cultivation methods revealed that HPCD treatments performed at 120 bar, 22 or 35°C for 5 min disrupted 43 and 53% of bacterial cells, respectively, and produced a large percentage of partially permeabilized (96·5 and 98%) cells. CONCLUSIONS Although treatments at 22°C for 10 min and at 35°C for 7 min were sufficient to inhibit the ability of all E. coli cells to replicate with an inactivation of 8 Log, FCM analysis showed that the inactivation of intact cells was only 2-2·5 Log. A fraction of HPCD-treated cells maintained their metabolic activity and re-growth capacity, indicating that the treatment induces a transitory Viable But Not Cultivable (VNBC) state. SIGNIFICANCE AND IMPACT OF THE STUDY Under stress conditions many pathogens enter in a VBNC state, thus escaping detection by traditional cultivation methods. We provide the first evaluation of HPCD-mediated bacterial inactivation on fresh food using FCM coupled with viability markers, which should assist in the prevention of food-associated health risks.
Collapse
Affiliation(s)
- S Tamburini
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | | | | | | | | |
Collapse
|
35
|
Van Meervenne E, De Weirdt R, Van Coillie E, Devlieghere F, Herman L, Boon N. Biofilm models for the food industry: hot spots for plasmid transfer? Pathog Dis 2014; 70:332-8. [PMID: 24436212 DOI: 10.1111/2049-632x.12134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 12/26/2022] Open
Abstract
Biofilms represent a substantial problem in the food industry, with food spoilage, equipment failure, and public health aspects to consider. Besides, biofilms may be a hot spot for plasmid transfer, by which antibiotic resistance can be disseminated to potential foodborne pathogens. This study investigated biomass and plasmid transfer in dual-species (Pseudomonas putida and Escherichia coli) biofilm models relevant to the food industry. Two different configurations (flow-through and drip-flow) and two different inoculation procedures (donor-recipient and recipient-donor) were tested. The drip-flow configuration integrated stainless steel coupons in the setup while the flow-through configuration included a glass flow cell and silicone tubing. The highest biomass density [10 log (cells cm-²)] was obtained in the silicone tubing when first the recipient strain was inoculated. High plasmid transfer ratios, up to 1/10 (transconjugants/total bacteria), were found. Depending on the order of inoculation, a difference in transfer efficiency between the biofilm models could be found. The ease by which the multiresistance plasmid was transferred highlights the importance of biofilms in the food industry as hot spots for the acquisition of multiresistance plasmids. This can impede the treatment of foodborne illnesses if pathogens acquire this multiresistance in or from the biofilm.
Collapse
Affiliation(s)
- Eva Van Meervenne
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Gent, Belgium; Technology and Food Science Unit, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium; Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent University, Gent, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Viable but nonculturable bacteria: food safety and public health perspective. ISRN MICROBIOLOGY 2013; 2013:703813. [PMID: 24191231 PMCID: PMC3804398 DOI: 10.1155/2013/703813] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/01/2013] [Indexed: 11/28/2022]
Abstract
The viable but nonculturable (VBNC) state is a unique survival strategy of many bacteria in the environment in response to adverse environmental conditions. VBNC bacteria cannot be cultured on routine microbiological media, but they remain viable and retain virulence. The VBNC bacteria can be resuscitated when provided with appropriate conditions. A good number of bacteria including many human pathogens have been reported to enter the VBNC state. Though there have been disputes on the existence of VBNC in the past, extensive molecular studies have resolved most of them, and VBNC has been accepted as a distinct survival state. VBNC pathogenic bacteria are considered a threat to public health and food safety due to their nondetectability through conventional food and water testing methods. A number of disease outbreaks have been reported where VBNC bacteria have been implicated as the causative agent. Further molecular and combinatorial research is needed to tackle the threat posed by VBNC bacteria with regard to public health and food safety.
Collapse
|
37
|
Quigley L, McCarthy R, O'Sullivan O, Beresford TP, Fitzgerald GF, Ross RP, Stanton C, Cotter PD. The microbial content of raw and pasteurized cow milk as determined by molecular approaches. J Dairy Sci 2013; 96:4928-37. [DOI: 10.3168/jds.2013-6688] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/22/2013] [Indexed: 01/31/2023]
|
38
|
Noriega E, Velliou E, Van Derlinden E, Mertens L, Van Impe JFM. Effect of cell immobilization on heat-induced sublethal injury of Escherichia coli, Salmonella Typhimurium and Listeria innocua. Food Microbiol 2013; 36:355-64. [PMID: 24010617 DOI: 10.1016/j.fm.2013.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/15/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
The occurrence of sublethally injured cells in foods poses major public health concerns and is an essential aspect when assessing the microbial response to food preservation strategies, yet there is limited research dealing with its specific implications for mild heating. All available studies so far have been performed in broths colonized by planktonic cells, although their susceptibility to lethal agents has often been reported to be markedly different to the stress tolerance of cell colonies developed in solid foods. In this work, the effect of planktonic and colony growth, as well as the influence of colony density on sublethal injury induced by mild heating of Escherichia coli, Salmonella Typhimurium and Listeria innocua were assessed in food model systems. Detection of injured survivors relied on their inability to form visible colonies on salt-based selective media, which do not affect the growth of healthy cells. Sublethal injury (SI) increased rapidly with shorter exposure times and afterwards, decreased progressively, suggesting a mechanism of cumulative damage triggering lethal instead of SI. Cell arrangement affected the degree of SI, higher values being generally found for gelified systems, although the effect of colony density depended on the target microorganism. This information is essential for optimizing the design of food safety assurance systems.
Collapse
|
39
|
Pradhan S, Mallick SK, Chowdhury R. Vibrio cholerae classical biotype is converted to the viable non-culturable state when cultured with the El Tor biotype. PLoS One 2013; 8:e53504. [PMID: 23326443 PMCID: PMC3541145 DOI: 10.1371/journal.pone.0053504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/30/2012] [Indexed: 12/18/2022] Open
Abstract
A unique event in bacterial epidemiology was the emergence of the El Tor biotype of Vibrio cholerae O1 and the subsequent rapid displacement of the existing classical biotype as the predominant cause of epidemic cholera. We demonstrate that when the El Tor and classical biotypes were cocultured in standard laboratory medium a precipitous decline in colony forming units (CFU) of the classical biotype occurred in a contact dependent manner. Several lines of evidence including DNA release, microscopy and flow cytometric analysis indicated that the drastic reduction in CFU of the classical biotype in cocultures was not accompanied by lysis, although when the classical biotype was grown individually in monocultures, lysis of the cells occurred concomitant with decrease in CFU starting from late stationary phase. Furthermore, uptake of a membrane potential sensitive dye and protection of genomic DNA from extracellular DNase strongly suggested that the classical biotype cells in cocultures retained viability in spite of loss of culturability. These results suggest that coculturing the classical biotype with the El Tor biotype protects the former from lysis allowing the cells to remain viable in spite of the loss of culturability. The stationary phase sigma factor RpoS may have a role in the loss of culturability of the classical biotype in cocultures. Although competitive exclusion of closely related strains has been reported for several bacterial species, conversion of the target bacterial population to the viable non-culturable state has not been demonstrated previously and may have important implications in the evolution of bacterial strains.
Collapse
Affiliation(s)
- Subhra Pradhan
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Sanjaya K. Mallick
- CU-BD Center of Excellence for Nanobiotechnology, Center for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata, India
| | - Rukhsana Chowdhury
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
- * E-mail:
| |
Collapse
|
40
|
Can dead bacterial cells be defined and are genes expressed after cell death? J Microbiol Methods 2012; 90:25-8. [PMID: 22534140 DOI: 10.1016/j.mimet.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 04/10/2012] [Accepted: 04/10/2012] [Indexed: 01/22/2023]
Abstract
There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division.
Collapse
|
41
|
Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 2011; 29:575-99. [DOI: 10.1016/j.biotechadv.2011.03.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/04/2011] [Accepted: 03/31/2011] [Indexed: 11/24/2022]
|
42
|
Changes in transcription profiles reflect strain contributions to defined cultures of Lactococcus lactis subsp. cremoris during milk fermentation. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s13594-011-0030-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
A lysozyme and magnetic bead based method of separating intact bacteria. Anal Bioanal Chem 2011; 401:253-65. [DOI: 10.1007/s00216-011-5065-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/11/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
|
44
|
Trevors JT. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells. J Microbiol Methods 2011; 86:266-73. [PMID: 21616099 DOI: 10.1016/j.mimet.2011.04.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 12/24/2022]
Abstract
Viable but non-culturable (VBNC) bacteria are common in nutrient poor and/or stressed environments as planktonic cells and biofilms. This article discusses approaches to researching VBNC bacteria to obtain knowledge that is lacking on their gene expression while in the VBNC state, and when they enter into and then recover from this state, when provided with the necessary nutrients and environmental conditions to support growth and cell division. Two-dimensional gel electrophoresis of proteins, global gene expression, reverse-transcription polymerase chain reaction (PCR) analysis and sequencing by synthesis coupled with data on cell numbers, viability and species present are central to understanding the VBNC state.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbiology, School of Environmental Sciences, Rm. 3320 Bovey Building, University of Guelph, 50 Stone Rd., East, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
45
|
Fernández D, Irino K, Sanz M, Padola N, Parma A. Characterization of Shiga toxin-producing Escherichia coli isolated from dairy cows in Argentina. Lett Appl Microbiol 2010; 51:377-82. [DOI: 10.1111/j.1472-765x.2010.02904.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Díaz M, Herrero M, García LA, Quirós C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.07.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2009; 34:415-25. [PMID: 20059548 DOI: 10.1111/j.1574-6976.2009.00200.x] [Citation(s) in RCA: 746] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
Collapse
Affiliation(s)
- James D Oliver
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
48
|
Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR. Int J Food Microbiol 2009; 131:246-50. [DOI: 10.1016/j.ijfoodmicro.2009.01.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 11/17/2022]
|
49
|
Quantitative approach to determining the contribution of viable-but-nonculturable subpopulations to malolactic fermentation processes. Appl Environ Microbiol 2009; 75:2977-81. [PMID: 19270138 DOI: 10.1128/aem.01707-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different sizes of viable-but-nonculturable cell subpopulations of a lactic acid bacterium strain were induced by adding increasing amounts of SO(2). The experimental data obtained here were fitted to a segregated kinetic model developed previously. This procedure allowed us to determine in quantitative terms the contribution of this physiological state to malolactic fermentation.
Collapse
|
50
|
Chang CW, Hwang YH, Cheng WY, Chang CP. Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J Appl Microbiol 2007; 102:1636-44. [PMID: 17578429 DOI: 10.1111/j.1365-2672.2006.03195.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To characterize the efficacy of widely accepted heat and chlorination on culturable and non-culturable Legionella pneumophila in starved and warm water. METHODS AND RESULTS For L. pneumophila starved for 1 day (S1), heating at 60 degrees C or more for 30 min or chlorination at 0.5-20 mg l(-1) for 60 min, a loss of 6-8 log culturability was observed, whereas only 17-47% of cells had membrane damage. Non-culturability was also observed after heating or chlorinating the cells starved for 14 days (S14). The effect of heating on membrane deterioration was reduced for S14 cells while the chlorination effect remained. Legionella pneumophila entered a non-culturable phase after being starved for 33-40 days. The disinfection effects of both heating and chlorination on non-culturable N4 and N35 cells (which were collected on the fourth and the 35th days of the non-culturability phase respectively) decreased, indicating the development of disinfection resistance among non-culturable cells that had been subjected to starvation for 1-2 months. CONCLUSIONS Heating and chlorination significantly reduce the culturability of starved L. pneumophila, and damage cell membrane to a much less extent. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the ability of long-term starved L. pneumophila to resist against disinfection treatments, which has implications in terms of public health.
Collapse
Affiliation(s)
- C-W Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | | | | |
Collapse
|