1
|
Miao W, Wang S, Lin T, Yan Y, Bao Z, Zhang D, Jiang Z, Zhang H. Interaction patterns and assembly mechanisms of dinoflagellates and diatoms in a coastal bay suffering from long-term eutrophication. mSphere 2024; 9:e0036624. [PMID: 38940511 PMCID: PMC11288026 DOI: 10.1128/msphere.00366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Dinoflagellates and diatoms are highly prevalent and ecologically important phytoplankton in coastal waters, greatly contributing to primary productivity in marine ecosystems. Although their composition and diversity have been extensively elucidated in the open ocean, their interaction patterns and community assembly in long-term eutrophic coastal waters remain poorly understood. This investigation aimed to elucidate the seasonal successional patterns of dinoflagellates and diatoms by 18S rRNA gene amplicon sequencing in a semi-enclosed bay. The results revealed that dinoflagellate and diatom communities have pronounced seasonal succession patterns, which are primarily associated with temperature. Furthermore, the most prevalent species throughout the year were Heterocapsa rotundata and Skeletonema costatum. Moreover, the assembly of dinoflagellate and diatom communities was mainly dominated by stochastic processes, with drift being the major factor. The co-occurrence of dinoflagellates and diatoms showed seasonal patterns, with the highest interactions observed in autumn. In addition, interactions of Syndiniales with dinoflagellates and diatoms highlighted the roles of parasites in eutrophic conditions. Flavobacteriaceae and Rhodobacteraceae are the bacterial taxa that most frequently interacted with dinoflagellates and diatoms, with interactions between dinoflagellates and bacteria being more complex than those between diatoms and bacteria. Overall, this study provides results that deepen our understanding of the phytoplankton dynamics in coastal eutrophic waters.IMPORTANCEDinoflagellates and diatoms are major phytoplankton groups in coastal waters. The composition and diversity of dinoflagellates and diatoms in the open ocean have been well documented; however, it remains uncertain to what extent their adaptation to long-term eutrophic conditions influences their response to environmental disturbances. Here, we investigated the interactions and assembly processes of dinoflagellates and diatoms in a eutrophic bay throughout the whole year. Our findings revealed that interactions between dinoflagellates and diatoms are primarily shaped by seasonal transitions, while prolonged eutrophic conditions tend to amplify stochastic processes in community assembly. These findings provide novel perspectives on the influence of long-term eutrophication on phytoplankton dynamics within eutrophic waters.
Collapse
Affiliation(s)
- Wenfei Miao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shuqi Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Tenghui Lin
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yi Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| | - Zhibing Jiang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Huajun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Iqbal MM, Nishimura M, Tsukamoto Y, Yoshizawa S. Changes in microbial community structure related to biodegradation of eelgrass (Zostera marina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172798. [PMID: 38688366 DOI: 10.1016/j.scitotenv.2024.172798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Seagrass meadows produce organic carbon and deposit it on the seabed through the decaying process. Microbial activity is closely related to the process of eelgrass death and collapse. We investigated the microbial community structure of eelgrass during the eelgrass decomposition process by using a microcosm containing raw seawater and excised eelgrass leaves collected from a Zostera marina bed in Futtsu, Chiba Prefecture, Japan. The fast-growing microbes (i.e., Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia) rapidly adhered to the eelgrass leaf surface and proliferated in the first two weeks but gradually decreased the relative abundance as the months moved on. On the other hand, the slow-growing microbes (i.e., Cytophagia, Anaerolineae, Thaumarchaeota, and Actinobacteria) became predominant over the eelgrass surface late in the culture experiment (120, 180 days). The fast-growing groups of Gammaproteobacteria and Flavobacteriia appear to be closely related to the initial decomposition of eelgrass, especially the rapid decomposition of leaf-derived biopolymers. Changes in nitrogen content due to the bacterial rapid consumption of readily degradable organic carbon induced changes in the community structure at the early stage of eelgrass decomposition. In addition, shifts in the C/N ratio were driven by microbial community changes during later decomposition phases.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yuya Tsukamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan; Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| |
Collapse
|
3
|
Stojan I, Šantić D, Villena-Alemany C, Trumbić Ž, Matić F, Vrdoljak Tomaš A, Lepen Pleić I, Piwosz K, Kušpilić G, Ninčević Gladan Ž, Šestanović S, Šolić M. Ecology of aerobic anoxygenic phototrophs on a fine-scale taxonomic resolution in Adriatic Sea unravelled by unsupervised neural network. ENVIRONMENTAL MICROBIOME 2024; 19:28. [PMID: 38685092 PMCID: PMC11059731 DOI: 10.1186/s40793-024-00573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
Collapse
Affiliation(s)
- Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Kasia Piwosz
- Department of Fisheries, Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Grozdan Kušpilić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | | | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
4
|
Underwood JC, Hall NC, Mumford AC, Harvey RW, Bliznik PA, Jeanis KM. Relation between the relative abundance and collapse of Aphanizomenon flos-aquae and microbial antagonism in Upper Klamath Lake, Oregon. FEMS Microbiol Ecol 2024; 100:fiae043. [PMID: 38533659 PMCID: PMC11022654 DOI: 10.1093/femsec/fiae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 03/28/2024] Open
Abstract
Aphanizomenon flos-aquae (AFA) is the dominant filamentous cyanobacterium that develops into blooms in Upper Klamath Lake, Oregon, each year. During AFA bloom and collapse, ecosystem conditions for endangered Lost River and shortnose suckers deteriorate, thus motivating the need to identify processes that limit AFA abundance and decline. Here, we investigate the relations between AFA and other members of the microbial community (photosynthetic and nonphotosynthetic bacteria and archaea), how those relations impact abundance and collapse of AFA, and the types of microbial conditions that suppress AFA. We found significant spatial variation in AFA relative abundance during the 2016 bloom period using 16S rRNA sequencing. The Pelican Marina site had the lowest AFA relative abundance, and this was coincident with increased relative abundance of Candidatus Sericytochromatia, Flavobacterium, and Rheinheimera, some of which are known AFA antagonists. The AFA collapse coincided with phosphorus limitation relative to nitrogen and the increased relative abundance of Cyanobium and Candidatus Sericytochromatia, which outcompete AFA when dissolved inorganic nitrogen is available. The data collected in this study indicate the importance of dissolved inorganic nitrogen combined with microbial community structure in suppressing AFA abundance.
Collapse
Affiliation(s)
- Jennifer C Underwood
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Natalie C Hall
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Adam C Mumford
- U.S. Geological Survey, Maryland–Delaware–D.C. Water Science Center, 5522 Research Park Dr, Catonsville, MD 21228, United States
| | - Ronald W Harvey
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Paul A Bliznik
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| | - Kaitlyn M Jeanis
- U.S. Geological Survey, Water Mission Area, 3215 Marine Street, Boulder, CO 80303, United States
| |
Collapse
|
5
|
Liu H, Jing H. The Vertical Metabolic Activity and Community Structure of Prokaryotes along Different Water Depths in the Kermadec and Diamantina Trenches. Microorganisms 2024; 12:708. [PMID: 38674652 PMCID: PMC11052081 DOI: 10.3390/microorganisms12040708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Prokaryotes play a key role in particulate organic matter's decomposition and remineralization processes in the vertical scale of seawater, and prokaryotes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity of the vertical distribution in the trenches. The composition and distribution of prokaryotes in the water columns and benthic boundary layers of the Kermadec Trench and the Diamantina Trench were investigated using high-throughput sequencing and quantitative PCR, together with the Biolog EcoplateTM microplates culture to analyze the microbial metabolic activity. Microbial communities in both trenches were dominated by Nitrososphaera and Halobacteria in archaea, and by Alphaproteobacteria and Gammaproteobacteria in bacteria, and the microbial community structure was significantly different between the water column and the benthic boundary layer. At the surface water, amino acids and polymers were used preferentially; at the benthic boundary layers, amino acids and amines were used preferentially. Cooperative relationships among different microbial groups and their carbon utilization capabilities could help to make better use of various carbon sources along the water depths, reflected by the predominantly positive relationships based on the co-occurrence network analysis. In addition, the distinct microbial metabolic activity detected at 800 m, which was the lower boundary of the twilight zone, had the lowest salinity and might have had higher proportions of refractory carbon sources than the shallower water depths and benthic boundary layers. This study reflected the initial preference of the carbon source by the natural microbes in the vertical scale of different trenches and should be complemented with stable isotopic tracing experiments in future studies to enhance the understanding of the complex carbon utilization pathways along the vertical scale by prokaryotes among different trenches.
Collapse
Affiliation(s)
- Hao Liu
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China;
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya 572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
6
|
Yadav P, Das J, Sundharam SS, Krishnamurthi S. Analysis of Culturable Bacterial Diversity of Pangong Tso Lake via a 16S rRNA Tag Sequencing Approach. Microorganisms 2024; 12:397. [PMID: 38399801 PMCID: PMC10892101 DOI: 10.3390/microorganisms12020397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
The Pangong Tso lake is a high-altitude freshwater habitat wherein the resident microbes experience unique selective pressures, i.e., high radiation, low nutrient content, desiccation, and temperature extremes. Our study attempts to analyze the diversity of culturable bacteria by applying a high-throughput amplicon sequencing approach based on long read technology to determine the spectrum of bacterial diversity supported by axenic media. The phyla Pseudomonadota, Bacteriodetes, and Actinomycetota were retrieved as the predominant taxa in both water and sediment samples. The genera Hydrogenophaga and Rheinheimera, Pseudomonas, Loktanella, Marinomonas, and Flavobacterium were abundantly present in the sediment and water samples, respectively. Low nutrient conditions supported the growth of taxa within the phyla Bacteriodetes, Actinomycetota, and Cyanobacteria and were biased towards the selection of Pseudomonas, Hydrogenophaga, Bacillus, and Enterococcus spp. Our study recommends that media formulations can be finalized after analyzing culturable diversity through a high-throughput sequencing effort to retrieve maximum species diversity targeting novel/relevant taxa.
Collapse
Affiliation(s)
- Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
| | - Shiva S. Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh 160036, India; (P.Y.); (J.D.); (S.S.S.)
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| |
Collapse
|
7
|
Shi Y, Niu X, Chen B, Pu S, Ma H, Li P, Feng G, Ma X. Chemical fertilizer reduction combined with organic fertilizer affects the soil microbial community and diversity and yield of cotton. Front Microbiol 2023; 14:1295722. [PMID: 38053554 PMCID: PMC10694218 DOI: 10.3389/fmicb.2023.1295722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The soil microbial community plays an important role in modulating cotton soil fertility. However, the effects of chemical fertilizer combined with organic fertilizer on soil chemical properties, microbial community structure, and crop yield and quality in arid areas are still unclear. This study aimed to explore the effects of different organic fertilizers on soil microbial community structure and diversity and cotton growth and yield. Methods High-throughput sequencing was used to study the soil bacteria and fungi in different growth stages of cotton. The field fertilization experiment had five treatments. Results The results indicated that the treatments of chemical fertilizer reduction combined with organic fertilizer significantly increased soil available nitrogen and phosphorus in cotton field. There were significant differences in the abundance of the bacterial and fungal communities in the dominant phyla among the treatments. At the phyla level, there were not significantly different in the diversity of bacteria and fungi among treatments. There were significant differences in the composition and diversity of bacterial and fungal communities during the entire cotton growth period (p = 0.001). The rhizosphere bacterial and fungal community structure was significantly affected by soil TK, NH4+, AK, TP, AN, and NO3-. The different fertilization treatments strongly influenced the modular structure of the soil bacterial and fungal community co-occurrence network. A reduction in chemical fertilizer combined with organic fertilizer significantly improved cotton stem diameter and seed yield, and the effect of the biological organic fertilizer on plant growth and yield formation was greater than that of ordinary organic fertilizer. Discussion This study provide a scientific and technical basis for the establishment of environmentally friendly green fertilization technology for cotton in arid areas and the promotion of sustainable development of cotton industry.
Collapse
Affiliation(s)
- YingWu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang, China
| | - XinXiang Niu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - BaoZhu Chen
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - ShengHai Pu
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - HongHong Ma
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Pan Li
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - GuangPing Feng
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - XingWang Ma
- Key Laboratory of Agricultural Environment in Northwest Oasis of Ministry of Agriculture and Countryside, Urumqi, Xinjiang, China
- Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
Okumura Y, Furutono T, Ito K, Hara M. Influence of submarine topography and sediment environment on microbial assemblages in a coastal lagoon in northeastern Japan. MARINE POLLUTION BULLETIN 2023; 194:115404. [PMID: 37591020 DOI: 10.1016/j.marpolbul.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/10/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
The relationships among eutrophication, anoxia, and microbial distribution were investigated for Nagatsura-Ura Lagoon on the northeastern Pacific coast of Japan. In September 2017, the bottom environment in a small area of the inner part of the lagoon (which has a basin-shaped bottom topology) was eutrophic and anoxic, with high carbon, nitrogen, phosphate, acid-volatile sulfide, and low dissolved oxygen and oxidation-reduction potential. Dissolved oxygen levels improved during the winter. Bacillariophyta (diatoms) were the main organic component according to pigment analysis and next-generation sequencing of nucleic acids in seawater samples. Phylum Proteobacteria was dominant among the bacterial flora in the sediment but the proportions of Class Epsilon-proteobacteria and Chlorobium (a green sulfur-utilizing bacterium) were high in the inner part of the lagoon compared to other stations, and these groups were also present in winter. Apparently groups able to thrive in both anoxic and aerobic conditions were predominant in the inner part of the lagoon.
Collapse
Affiliation(s)
- Yutaka Okumura
- Fisheries Resources Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama, Shiogama, Miyagi 985-0001, Japan.
| | - Tarou Furutono
- IDEA Consultants Inc., 1-1-11, Nishikimachi, Aoba, Sendai, Miyagi 980-0012, Japan
| | - Kinuko Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki, Aoba, Aoba, Sendai, Miyagi 980-0845 Japan
| | - Motoyuki Hara
- Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki, Aoba, Aoba, Sendai, Miyagi 980-0845 Japan
| |
Collapse
|
9
|
Šantić D, Stojan I, Matić F, Trumbić Ž, Vrdoljak Tomaš A, Fredotović Ž, Piwosz K, Lepen Pleić I, Šestanović S, Šolić M. Picoplankton diversity in an oligotrophic and high salinity environment in the central Adriatic Sea. Sci Rep 2023; 13:7617. [PMID: 37165047 PMCID: PMC10172355 DOI: 10.1038/s41598-023-34704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
By combining qualitative 16S metabarcoding and quantitative CARD-FISH methods with neural gas analysis, different patterns of the picoplankton community were revealed at finer taxonomic levels in response to changing environmental conditions in the Adriatic Sea. We present the results of a one-year study carried out in an oligotrophic environment where increased salinity was recently observed. We have shown that the initial state of community structure changes according to environmental conditions and is expressed as qualitative and quantitative changes. A general pattern of increasing diversity under harsh environmental conditions, particularly under the influence of increasing salinity at the expense of community abundance was observed. Considering the trend of changing seawater characteristics due to climate change, this study helps in understanding a possible structural change in the microbial community of the Adriatic Sea that could affect higher levels of the marine food web.
Collapse
Affiliation(s)
- Danijela Šantić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Iva Stojan
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia.
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Ruđera Boškovića 37, Split, Croatia.
| | - Frano Matić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Željka Trumbić
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, Split, Croatia
| | - Ana Vrdoljak Tomaš
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, Split, Croatia
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia, Poland
| | - Ivana Lepen Pleić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Stefanija Šestanović
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| | - Mladen Šolić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, Split, Croatia
| |
Collapse
|
10
|
Liu H, Wang F, Liu H, Jing H. Metabolic activity and community structure of prokaryotes associated with particles in the twilight zone of the South China Sea. Front Microbiol 2022; 13:1056860. [PMID: 36560947 PMCID: PMC9763726 DOI: 10.3389/fmicb.2022.1056860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The twilight zone is an important depth of the ocean where particulate organic matter (POM) remineralization takes place, and prokaryotes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity associated with different particles in the twilight zone. The composition and distribution of particle-attached prokaryotes in the twilight zone of the South China Sea (SCS) were investigated using high-throughput sequencing and quantitative PCR, together with the Biolog Ecoplate™ microplates culture to analyze the microbial metabolic activity. We found that α- and γ-Proteobacteria dominating at the lower and upper boundary of the twilight zone, respectively; Methanosarcinales and Halobacteriales of the Euyarchaeota occupied in the larger particles at the upper boundary. Similar microbial community existed between euphotic layer and the upper boundary. Higher amount of shared Operational Taxonomic Units (OTUs) in the larger particles along the water depths, might be due to the fast sinking and major contribution of carbon flux of the larger particles from the euphotic layer. In addition to polymers as the major carbon source, carbohydrates and amino acids were preferentially used by microbial community at the upper and lower boundary, respectively. This could potentially be attributed to the metabolic capabilities of attached microbial groups in different particles, and reflected the initial preference of the carbon source by the natural microbes in the twilight zone as well. The microbial structure and carbon metabolic profiles could be complemented with metatranscriptomic analysis in future studies to augment the understanding of the complex carbon cycling pathways in the twilight zone.
Collapse
Affiliation(s)
- Hao Liu
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongbin Liu,
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,Hongmei Jing,
| |
Collapse
|
11
|
Song B, Almatrafi E, Sang F, Wang W, Zhang C, Shen M, Zhou C, Tang X, Zeng G, Gong J. Managing Fenton-treated sediment with biochar and sheep manure compost: Effects on the evolutionary characteristics of bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115218. [PMID: 35580508 DOI: 10.1016/j.jenvman.2022.115218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/17/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Fenton oxidation is a widely used method for the fast and efficient treatment of contaminated sediment, but few studies have investigated the management of Fenton-treated sediment for resource utilization. In this study, the evolutionary characteristics of bacterial community composition in Fenton-treated riverine sediment were investigated using 16S rRNA gene sequencing after the incorporation of rice straw biochar and sheep manure compost. The Fenton treatment caused a decline in the relative abundance of Bacteroidetes from 39% to 8% on the 7th day, and using biochar and compost rapidly increased the relative abundance of Firmicutes from 13% to 61% and 57%, respectively. Applying 1.25 wt% biochar after the Fenton treatment contributed to high Shannon diversity indices of 4.80, 4.69, and 4.76 on the 7th, 28th, and 56th day, respectively. The reduced differences of Shannon indexes on the 56th day indicated that the bacterial diversity among different treatments tended to be similar over time. The genera Flavisolibacter and Bacillus were representatively detected on the 7th day in the untreated sediment and Fenton/biochar-treated sediment, respectively. The number of feature bacteria decreased significantly from 88 on the 7th day to 29 on the 56th day. The community functions for the carbon, nitrogen, and sulfur cycles were sensitive to the Fenton-treatment and the subsequent treatment with biochar and compost. This study may provide a useful reference for follow-up work on the remediation of contaminated sediment using advanced oxidation processes, and promote the development of resource utilization of amended sediment.
Collapse
Affiliation(s)
- Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fan Sang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenjun Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jilai Gong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
12
|
Gao Y, Wang H, Xu R, Wang YN, Sun Y, Bian R, Li W. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113198. [PMID: 35033874 DOI: 10.1016/j.ecoenv.2022.113198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In this work, the use of chemical reduction combined with microbial stabilization to remediate Cr(VI) in contaminated soil was systematically investigated. The effectiveness, phytotoxicity and microbial diversity resulting from the combination of ferrous sulfate with microbial stabilization by biogas solid residue (BSR) were determined. The stabilization experiments showed that the optimum Cr(VI) conversion rate of 99.92% was achieved with an Fe (II)/Cr(VI) molar ratio of 3:1, a BSR dose of 5.2% (wt), and a water content of 40%. Under these conditions, the residual Cr(VI) content was 0.80 mg/kg, which satisfied the risk screening value (≤ 5.7 mg/kg) for soil contamination of land for general development in China. The remaining Cr(VI) level was stable for 90 days during the chemical reduction and biogenic stabilization process. Moreover, Zucconi test analysis suggested that the soil phytotoxicity to Brassica campestris L. disappeared. The results of microbial diversity analysis indicated that the bacterial community changed significantly during chemical reduction and microbial stabilization processes, and Bacillus, Pseudomonas and Psychrobacter may participate in the reduction of Cr(VI) into Cr(III).
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Rongxing Bian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Weihua Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
13
|
Host genotype structures the microbiome of a globally dispersed marine phytoplankton. Proc Natl Acad Sci U S A 2021; 118:2105207118. [PMID: 34810258 PMCID: PMC8640791 DOI: 10.1073/pnas.2105207118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Microscale interactions between marine phytoplankton and their bacterial microbiomes can influence ecosystem functioning and global biogeochemical cycling through complex exchanges of metabolites and sophisticated ecological processes. Previous investigation of the phytoplankton microbiome has not focused on the role of a host’s underlying genetic background. Through examination of a single phytoplankton species’ microbiome across the global ocean, we found that host genotype strongly influenced microbiome community composition, with associations that potentially persist across generations and ocean basins but assemble rapidly (within days). The long-term association of microbiomes with host genetic background could explain the evolution and maintenance of intricate phytoplankton–bacteria interactions. Phytoplankton support complex bacterial microbiomes that rely on phytoplankton-derived extracellular compounds and perform functions necessary for algal growth. Recent work has revealed sophisticated interactions and exchanges of molecules between specific phytoplankton–bacteria pairs, but the role of host genotype in regulating those interactions is unknown. Here, we show how phytoplankton microbiomes are shaped by intraspecific genetic variation in the host using global environmental isolates of the model phytoplankton host Thalassiosira rotula and a laboratory common garden experiment. A set of 81 environmental T. rotula genotypes from three ocean basins and eight genetically distinct populations did not reveal a core microbiome. While no single bacterial phylotype was shared across all genotypes, we found strong genotypic influence of T. rotula, with microbiomes associating more strongly with host genetic population than with environmental factors. The microbiome association with host genetic population persisted across different ocean basins, suggesting that microbiomes may be associated with host populations for decades. To isolate the impact of host genotype on microbiomes, a common garden experiment using eight genotypes from three distinct host populations again found that host genotype influenced microbial community composition, suggesting that a process we describe as genotypic filtering, analogous to environmental filtering, shapes phytoplankton microbiomes. In both the environmental and laboratory studies, microbiome variation between genotypes suggests that other factors influenced microbiome composition but did not swamp the dominant signal of host genetic background. The long-term association of microbiomes with specific host genotypes reveals a possible mechanism explaining the evolution and maintenance of complex phytoplankton–bacteria chemical exchanges.
Collapse
|
14
|
Duan X, Guo C, Zhang C, Li H, Zhou Y, Gao H, Xia X, He H, McMinn A, Wang M. Effect of East Asian atmospheric particulate matter deposition on bacterial activity and community structure in the oligotrophic Northwest Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117088. [PMID: 33857882 DOI: 10.1016/j.envpol.2021.117088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of anthropogenic East Asian (EA) particulate matters (PM), containing inorganic nutrients and organic matter, are deposited in the oligotrophic Northwest Pacific Ocean. However, the effects of such deposition on marine microbes remain unclear. In this study, the effect of EA PM deposition on marine bacteria was assessed by five on-board microcosm experiments, conducted in oligotrophic basins of the South China Sea. The addition of EA PM to the sampling water induced a clear shift in bacterial community composition from prevailing oligotrophs (i.e., SAR 11 clade, Prochlorococcus, AEGEAN-169 marine group) to less common copiotrophs (i.e., Alteromonas, Ruegeria, Flavobacteriaceae) and thus a slight increase in bacterial diversity. The shift to more active community composition, as well as stimulation of PM nutrients, resulted in a large increase in cell-specific and bulk bacterial production. In contrast, there were only minor changes in bacterial abundance, possibly due to increased top-down mortality. The EA PM also exhibited a stronge toxic effect on pico-cyanobacteria, leading to a significant decrease in their proportion. Moreover, the responses of bacterial metabolism and community composition exhibited significant relationships with the hydrographic condition of the locations. Stronger promotion effects of the EA PM on bacterial production and community shift from oligotrophs to copiotrophs was demonstrated at the more oligotrophic sites with lower chlorophyll a concentrations. These results suggest that PM deposition from polluted areas has the potential to alter the typical oligotrophic microbiomes and change the net metabolic balance of the bacterial community. These will then influence the dynamics of carbon flow in microbial food webs and biogeochemical cycles, especially with the trend of global warming and expansion of low-chlorophyll regions.
Collapse
Affiliation(s)
- Xueping Duan
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Chao Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yao Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
15
|
Izabel-Shen D, Albert S, Winder M, Farnelid H, Nascimento FJA. Quality of phytoplankton deposition structures bacterial communities at the water-sediment interface. Mol Ecol 2021; 30:3515-3529. [PMID: 33993575 DOI: 10.1111/mec.15984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Phytoplankton comprises a large fraction of the vertical carbon flux to deep water via the sinking of particulate organic matter (POM). However, despite the importance of phytoplankton in the coupling of benthic-pelagic productivity, the extent to which its deposition in the sediment affects bacterial dynamics at the water-sediment interface is poorly understood. Here, we conducted a microcosm experiment in which varying mixtures of diatom and cyanobacteria, representing phytoplankton-derived POM of differing quality, served as inputs to sediment cores. Characterization of 16S rRNA gene of the bacterial communities at the water-sediment interface showed that bacterial α-diversity was not affected by POM addition, while bacterial β-diversity changed significantly along the POM quality gradient, with the variation driven by changes in relative abundance rather than in taxon replacement. Analysing individual taxa abundances across the POM gradient revealed two distinct bacterial responses, in which taxa within either diatom- or cyanobacteria-favoured groups were more phylogenetically closely related to one another than other taxa found in the water. Moreover, there was little overlap in taxon identity between sediment and water communities, suggesting the minor role played by sediment bacteria in influencing the observed changes in bacterial communities in the overlying water. Together, these results showed that variability in phytoplankton-originated POM can impact bacterial dynamics at the water-sediment interface. Our findings highlight the importance of considering the potential interactions between phytoplankton and bacteria in benthic-pelagic coupling in efforts to understand the structure and function of bacterial communities under a changing climate.
Collapse
Affiliation(s)
- Dandan Izabel-Shen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Séréna Albert
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Hanna Farnelid
- Center for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | | |
Collapse
|
16
|
Varela MM, Rodríguez-Ramos T, Guerrero-Feijóo E, Nieto-Cid M. Changes in Activity and Community Composition Shape Bacterial Responses to Size-Fractionated Marine DOM. Front Microbiol 2020; 11:586148. [PMID: 33329457 PMCID: PMC7714726 DOI: 10.3389/fmicb.2020.586148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
To study the response of bacteria to different size-fractions of naturally occurring dissolved organic matter (DOM), a natural prokaryotic community from North Atlantic mesopelagic waters (1000 m depth) was isolated and grown in (i) 0.1-μm filtered seawater (CONTROL), (ii) the low-molecular-weight (<1 kDa) DOM fraction (L-DOM), and (iii) the recombination of high- (>1 kDa) and low-molecular-weight DOM fractions (H + L-DOM), to test the potential effect of ultrafiltration on breaking the DOM size continuum. Prokaryotic abundance and leucine incorporation were consistently higher in the H + L-DOM niche than in the L-DOM and CONTROL treatments, suggesting a different interaction with each DOM fraction and the disruption of the structural DOM continuum by ultrafiltration, respectively. Rhodobacterales (Alphaproteobacteria) and Flavobacteriales (Bacteroidetes) were particularly enriched in L-DOM and closely related to the colored DOM (CDOM) fraction, indicating the tight link between these groups and changes in DOM aromaticity. Conversely, some other taxa that were rare or undetectable in the original bacterial community were enriched in the H + L-DOM treatment (e.g., Alteromonadales belonging to Gammaproteobacteria), highlighting the role of the rare biosphere as a seed bank of diversity against ecosystem disturbance. The relationship between the fluorescence of protein-like CDOM and community composition of populations in the H + L-DOM treatment suggested their preference for labile DOM. Conversely, the communities growing on the L-DOM niche were coupled to humic-like CDOM, which may indicate their ability to degrade more reworked DOM and/or the generation of refractory substrates (as by-products of the respiration processes). Most importantly, L- and/or H + L-DOM treatments stimulated the growth of unique bacterial amplicon sequence variants (ASVs), suggesting the potential of environmental selection (i.e., changes in DOM composition and availability), particularly in the light of climate change scenarios. Taken together, our results suggest that different size-fractions of DOM induced niche-specialization and differentiation of mesopelagic bacterial communities.
Collapse
Affiliation(s)
- Marta M. Varela
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain
| | - Tamara Rodríguez-Ramos
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain
| | - Elisa Guerrero-Feijóo
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain
| | - Mar Nieto-Cid
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain
- Laboratorio de Geoquímica Orgánica, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| |
Collapse
|
17
|
Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, Arnoux M, Drou N, Santos MP, Gunsalus KC, Voolstra CR, Amin SA. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci U S A 2020; 117:27445-27455. [PMID: 33067398 PMCID: PMC7959551 DOI: 10.1073/pnas.2012088117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cong Fei
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Gregory Behringer
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marc Arnoux
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Miraflor P Santos
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shady A Amin
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| |
Collapse
|
18
|
Ogata EM, Baker MA, Rosi EJ, Smart TB, Long D, Aanderud ZT. Nutrients and Pharmaceuticals Structure Bacterial Core Communities in Urban and Montane Stream Biofilms. Front Microbiol 2020; 11:526545. [PMID: 33178141 PMCID: PMC7593328 DOI: 10.3389/fmicb.2020.526545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria in stream biofilms contribute to stream biogeochemical processes and are potentially sensitive to the substantial levels of pollution entering urban streams. To examine the effects of contaminants on stream biofilm bacteria in situ, we exposed growing biofilms to experimental additions of nutrients [nitrogen (N), phosphorus (P), and iron (Fe)], pharmaceuticals (caffeine and diphenhydramine), nutrients plus pharmaceuticals, or no contaminants using contaminant exposure substrates (CES) in three catchments in northern Utah. We performed our study at montane and urban sites to examine the influence of existing pollution on biofilm response. We identified bacterial core communities (core) for each contaminant treatment at each land-use type (e.g., nutrient addition montane bacterial core, nutrient addition urban bacterial core, pharmaceutical addition montane bacterial core) by selecting all taxa found in at least 75% of the samples belonging to each specific grouping. Montane and urban land-use distinguished bacterial cores, while nutrients and pharmaceuticals had subtle, but nonetheless distinct effects. Nutrients enhanced the dominance of already abundant copiotrophs [i.e., Pseudomonadaceae (Gammaproteobacteria) and Comamonadaceae (Betaproteobacteria)] within bacterial cores at montane and urban sites. In contrast, pharmaceuticals fostered species-rich bacterial cores containing unique contaminant-degrading taxa within Pseudomonadaceae and Anaerolineaceae (Chloroflexi). Surprisingly, even at urban sites containing ambient pharmaceutical pollution, pharmaceutical additions increased bacterial core richness, specifically within DR-16 (Betaproteobacteria), WCHB1-32 (Bacteroidetes), and Leptotrichiaceae (Fusobacteria). Nutrients exerted greater selective force than pharmaceuticals in nutrient plus pharmaceutical addition treatments, creating bacterial cores more closely resembling those under nutrient rather than pharmaceutical addition, and promoting unique Oscillatoriales (Cyanobacteria) taxa in urban streams. Our results show that additions of N, P, and Fe intensified the dominance of already abundant copiotrophs, while additions of caffeine and diphenhydramine enabled unique taxa associated with contaminant degradation to participate in bacterial cores. Further, biofilm bacteria at urban sites remained sensitive to pharmaceuticals commonly present in waters, suggesting a dynamic interplay among pharmaceutical pollution, bacterial diversity, and contaminant degradation.
Collapse
Affiliation(s)
- Elizabeth M Ogata
- Department of Biology and Ecology Center, Utah State University, Logan, UT, United States
| | - Michelle A Baker
- Department of Biology and Ecology Center, Utah State University, Logan, UT, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Trevor B Smart
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| | - Donald Long
- Department of Biology, Southern Utah University, Cedar City, UT, United States
| | - Zachary T Aanderud
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, United States
| |
Collapse
|
19
|
Liu S, Baetge N, Comstock J, Opalk K, Parsons R, Halewood E, English CJ, Giovannoni S, Bolaños LM, Nelson CE, Vergin K, Carlson CA. Stable Isotope Probing Identifies Bacterioplankton Lineages Capable of Utilizing Dissolved Organic Matter Across a Range of Bioavailability. Front Microbiol 2020; 11:580397. [PMID: 33117322 PMCID: PMC7575717 DOI: 10.3389/fmicb.2020.580397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterioplankton consume about half of the dissolved organic matter (DOM) produced by phytoplankton. DOM released from phytoplankton consists of a myriad of compounds that span a range of biological reactivity from labile to recalcitrant. Linking specific bacterioplankton lineages to the incorporation of DOM compounds into biomass is important to understand microbial niche partitioning. We conducted a series of DNA-stable isotope probing (SIP) experiments using 13C-labeled substrates of varying lability including amino acids, cyanobacteria lysate, and DOM from diatom and cyanobacteria isolates concentrated on solid phase extraction PPL columns (SPE-DOM). Amendments of substrates into Sargasso Sea bacterioplankton communities were conducted to explore microbial response and DNA-SIP was used to determine which lineages of Bacteria and Archaea were responsible for uptake and incorporation. Greater increases in bacterioplankton abundance and DOC removal were observed in incubations amended with cyanobacteria-derived lysate and amino acids compared to the SPE-DOM, suggesting that the latter retained proportionally more recalcitrant DOM compounds. DOM across a range of bioavailability was utilized by diverse prokaryotic taxa with copiotrophs becoming the most abundant 13C-incorporating taxa in the amino acid treatment and oligotrophs becoming the most abundant 13C-incorporating taxa in SPE-DOM treatments. The lineages that responded to SPE-DOM amendments were also prevalent in the mesopelagic of the Sargasso Sea, suggesting that PPL extraction of phytoplankton-derived DOM isolates compounds of ecological relevance to oligotrophic heterotrophic bacterioplankton. Our study indicates that DOM quality is an important factor controlling the diversity of the microbial community response, providing insights into the roles of different bacterioplankton in resource exploitation and efficiency of marine carbon cycling.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nicholas Baetge
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel Parsons
- Bermuda Institute of Ocean Sciences, Saint George, Bermuda
| | - Elisa Halewood
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Chance J English
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Luis M Bolaños
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Hawai'i Sea Grant, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Kevin Vergin
- Microbial DNA Analytics, Phoenix, OR, United States
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
20
|
Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile Dissolved Organic Matter Compound Characteristics Select for Divergence in Marine Bacterial Activity and Transcription. Front Microbiol 2020; 11:588778. [PMID: 33101262 PMCID: PMC7546218 DOI: 10.3389/fmicb.2020.588778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
Bacteria play a key role in the planetary carbon cycle partly because they rapidly assimilate labile dissolved organic matter (DOM) in the ocean. However, knowledge of the molecular mechanisms at work when bacterioplankton metabolize distinct components of the DOM pool is still limited. We, therefore, conducted seawater culture enrichment experiments with ecologically relevant DOM, combining both polymer and monomer model compounds for distinct compound classes. This included carbohydrates (polysaccharides vs. monosaccharides), proteins (polypeptides vs. amino acids), and nucleic acids (DNA vs. nucleotides). We noted pronounced changes in bacterial growth, activity, and transcription related to DOM characteristics. Transcriptional responses differed between compound classes, with distinct gene sets (“core genes”) distinguishing carbohydrates, proteins, and nucleic acids. Moreover, we found a strong divergence in functional transcription at the level of particular monomers and polymers (i.e., the condensation state), primarily in the carbohydrates and protein compound classes. These specific responses included a variety of cellular and metabolic processes that were mediated by distinct bacterial taxa, suggesting pronounced functional partitioning of organic matter. Collectively, our findings show that two important facets of DOM, compound class and condensation state, shape bacterial gene expression, and ultimately select for distinct bacterial (functional) groups. This emphasizes the interdependency of marine bacteria and labile carbon compounds for regulating the transformation of DOM in surface waters.
Collapse
Affiliation(s)
- Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | | | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
21
|
Sala-Comorera L, Caudet-Segarra L, Galofré B, Lucena F, Blanch AR, García-Aljaro C. Unravelling the composition of tap and mineral water microbiota: Divergences between next-generation sequencing techniques and culture-based methods. Int J Food Microbiol 2020; 334:108850. [PMID: 32919261 DOI: 10.1016/j.ijfoodmicro.2020.108850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
The complex and highly diverse microbial environment of drinking water, consisting mainly of bacteria at different metabolic states, is still underexplored. The aim of this work was to characterize the bacterial communities in tap water and bottled mineral water, the two predominant sources of drinking water in modern societies. A total of 11 tap water samples from a range of locations and distribution networks and 10 brands of bottled natural mineral water were analysed using two approaches: a) heterotrophic plate counts by matrix-assisted laser desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) for the culturable heterotrophic communities, and b) Illumina amplicon sequencing for total bacteria including non-culturable bacteria. Culturable heterotrophic bacteria were isolated in WPCA (ISO) agar at 22 ± 2 °C for 72 h and 2046 isolates were identified using MALDI-TOF MS. The Bruker Daltonics Library and a previously customized library (Drinking Water Library) were used as reference databases. For the total bacteria fraction, DNA was extracted from 6 L of water and submitted to Illumina 16S rRNA sequencing of the v4 region. Significant differences were observed between mineral and tap water, with a general dominance of Alphaproteobacteria (mainly the genus Blastomonas) in tap water and Gammaproteobacteria in mineral water with Acidovorax being the dominant genus in 3 out of 7 mineral water brands. The bacterial communities in the different brands of mineral water were highly diverse and characteristic of each one. Moreover, the season in which the water was bottled also affected the species distribution, with some of them identified in only one season. Among the culturable bacteria, the most abundant phylum was Proteobacteria (around 85% of the isolates), followed by Actinobacteria, Firmicutes and Bacteroidetes. Proteobacteria was also the most abundant phylum detected with Illumina sequencing (>99% of the reads). The two methods gave distinct results at the different taxonomic levels and could therefore have a complimentary application in the study of microbiota in mineral water environments. MALDI-TOF MS is a promising method for the rapid identification of heterotrophic bacteria in routine water analysis in the bottling industry. SIGNIFICANCE AND IMPACT OF THE STUDY: The complementarity of MALDI-TOF MS and NGS in the assessment of bacterial community diversity has been demonstrated in water intended for human consumption. The two methods are suitable for routine use in the water industry for water quality management.
Collapse
Affiliation(s)
- Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona. Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain
| | - Laia Caudet-Segarra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona. Spain
| | - Belén Galofré
- Aigües de Barcelona, EMGCIA, C/General Batet 1-7, 08028 Barcelona, Spain
| | - Francisco Lucena
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona. Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona. Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Diagonal 643, E-08028 Barcelona. Spain; The Water Research Institute, University of Barcelona, Montalegre 6, 08001 Barcelona, Spain.
| |
Collapse
|
22
|
Pradeep Ram AS, Keshri J, Sime-Ngando T. Differential impact of top-down and bottom-up forces in structuring freshwater bacterial communities. FEMS Microbiol Ecol 2020; 96:5700279. [PMID: 31922543 DOI: 10.1093/femsec/fiaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
Limited data exist on the simultaneous impact of bottom-up (nutrients) and top-down (viruses and heterotrophic nanoflagellates) forces in shaping freshwater bacterial communities. In our laboratory microcosms, nutrient additions (organic and inorganic) and viral reduction approach led to the proliferation of high nucleic acid (HNA) bacterial subpopulation without an increase in phage abundance. High viral-mediated bacterial lysis in the presence of nanoflagellates yielded high proportion of low nucleic acid bacterial subpopulation. 16S rRNA gene sequence analysis indicated that members of classes Proteobacteria and Bacteroidetes evoked differential responses to nutrients and mortality forces, thereby resulting in differences (P < 0.001) in bacterial community composition and diversity, as observed from analysis of similarities and UniFrac analysis. Bacterial species richness (Chao) and diversity (Shannon) index was significantly higher (P < 0.001) in the presence of both the top-down factors and viruses alone, whereas lower host diversity was observed under nutrient relaxation of growth-limiting substrates due to the explosive growth of opportunistic HNA bacterial subpopulation. Our results are in agreement with the theoretical model of 'killing the winner', where the availability of growth-limiting substrates can act as a stimulating factor for host community composition while top-down forces can operate in the control of host diversity.
Collapse
Affiliation(s)
- A S Pradeep Ram
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| | - J Keshri
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| | - T Sime-Ngando
- Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, Université Clermont-Auvergne, 63178 Aubière Cedex, France
| |
Collapse
|
23
|
Huang J, Yang J, Jiang H, Wu G, Xie Z, Dong H. Surviving onshore soil microbial communities differ among the Qing-Tibetan lakes with different salinity. FEMS Microbiol Ecol 2020; 95:5582604. [PMID: 31589308 DOI: 10.1093/femsec/fiz156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/03/2019] [Indexed: 11/12/2022] Open
Abstract
Little is known about the onshore microbial contribution to the microbial communities in nearby lakes and its response to salinity. In this study, transplanting experiments were established by caging onshore soils with dialysis bags followed by in situ 50-day incubation in nearby lakes with different salinity on the Qinghai-Tibetan Plateau. At the end of the experiment, geochemical and microbial analyses were performed on the original soils, caged soils and lake waters and sediments at the incubation sites. The results showed that the salinity increased significantly (P < 0.05) in the caged soils and such salinity increases showed significant (P < 0.05) positive correlation with the salinity of the studied lakes. The microbial community composition and predicted functions in the caged soils were significantly (P < 0.05) changed in comparison with their corresponding original soils, and such variation could be mainly explained by the succession of members of the Proteobacteria, Bacteroidetes and Actinobacteria from the original soils to their corresponding caged soils. The onshore microbial contribution appeared to be limited (up to 11.2% for sediment and negligible for water, respectively) to nearby lake microbial communities. Nevertheless, the survival of onshore soil microbial communities was mainly limited by the salinity of the receiving lakes.
Collapse
Affiliation(s)
- Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zhanling Xie
- College of Ecology-Environment Engineering, Qinghai University, Xining, 810016, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 5056, USA
| |
Collapse
|
24
|
Bonaglia S, Broman E, Brindefalk B, Hedlund E, Hjorth T, Rolff C, Nascimento FJA, Udekwu K, Gunnarsson JS. Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments. CHEMOSPHERE 2020; 248:126023. [PMID: 32007777 DOI: 10.1016/j.chemosphere.2020.126023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Biodegradation by microorganisms is a useful tool that helps alleviating hydrocarbon pollution in nature. Microbes are more efficient in degradation under aerobic than anaerobic conditions, but the majority of sediment by volume is generally anoxic. Incubation experiments were conducted to study the biodegradation potential of naphthalene-a common polycyclic aromatic hydrocarbon (PAH)-and the diversity of microbial communities in presence/absence of activated carbon (AC) under aerobic/anaerobic conditions. Radio-respirometry experiments with endogenous microorganisms indicated that degradation of naphthalene was strongly stimulated (96%) by the AC addition under anaerobic conditions. In aerobic conditions, however, AC had no effects on naphthalene biodegradation. Bioaugmentation tests with cultured microbial populations grown on naphthalene showed that AC further stimulated (92%) naphthalene degradation in anoxia. Analysis of the 16S rRNA gene sequences implied that sediment amendment with AC increased microbial community diversity and changed community structure. Moreover, the relative abundance of Geobacter, Thiobacillus, Sulfuricurvum, and methanogenic archaea increased sharply after amendment with AC under anaerobic conditions. These results may be explained by the fact that AC particles promoted direct interspecies electron transfer (DIET) between microorganisms involved in PAH degradation pathways. We suggest that important ecosystem functions mediated by microbes-such as hydrocarbon degradation-can be induced and that AC enrichment strategies can be exploited for facilitating bioremediation of anoxic oil-contaminated sediments and soils.
Collapse
Affiliation(s)
- Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Björn Brindefalk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Erika Hedlund
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Carl Rolff
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden; Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Klas Udekwu
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.
| | - Jonas S Gunnarsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, Li H, Weinbauer MG, Jiao N. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol 2020; 3:256. [PMID: 32444696 PMCID: PMC7244761 DOI: 10.1038/s42003-020-0974-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/29/2020] [Indexed: 02/01/2023] Open
Abstract
Viral abundance in deep-sea environments is high. However, the biological, ecological and biogeochemical roles of viruses in the deep sea are under debate. In the present study, microcosm incubations of deep-sea bacterioplankton (2,000 m deep) with normal and reduced pressure of viral lysis were conducted in the western Pacific Ocean. We observed a negative effect of viruses on prokaryotic abundance, indicating the top-down control of bacterioplankton by virioplankton in the deep-sea. The decreased bacterial diversity and a different bacterial community structure with diluted viruses indicate that viruses are sustaining a diverse microbial community in deep-sea environments. Network analysis showed that relieving viral pressure decreased the complexity and clustering coefficients but increased the proportion of positive correlations for the potentially active bacterial community, which suggests that viruses impact deep-sea bacterioplankton interactions. Our study provides experimental evidences of the crucial role of viruses in microbial ecology and biogeochemistry in deep-sea ecosystems.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China.
| | - Yanxia Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| | - Huifang Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| | - Markus G Weinbauer
- Laboratoire d'Océanographie de Villefranche (LOV), UPMC, Université Paris 06, CNRS, Sorbonne Universités, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University (Xiang'an), 361102, Xiamen, Fujian, China
| |
Collapse
|
26
|
Zhang J, Zhang H, Li L, Wang Q, Yu J, Chen Y. Microbial community analysis and correlation with 2-methylisoborneol occurrence in landscape lakes of Beijing. ENVIRONMENTAL RESEARCH 2020; 183:109217. [PMID: 32065914 DOI: 10.1016/j.envres.2020.109217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
The microbial community is an important factor influencing the health of the water ecosystem in landscape lakes; in particular, proliferation of some cyanobacteria could cause odor problems. Exploring the microbial community is important for water quality management. In this study, focusing on seven landscape lakes in Beijing, the microbial communities were investigated based on 16S rRNA gene amplicon sequencing, and typical odor-causing compounds and interfering factors were identified. The results showed that 2-methylisoborneol (MIB) was the major odor-causing compound responsible for the earthy/musty odor in landscape lakes. For algal communities, Chlorella and Diatoms were the main eukaryote algae in the water. The bacterial community was dominated by Proteobacteria at the phylum level, and then Cyanobacteria, Actinobacteria, and Firmicutes, etc., most of which were the major phyla of the heterotrophic bacterial population. The richness and diversity of bacteria in natural-water-source lakes were higher than those in reclaimed-water-source lakes. Synechococcus (Cyanobacteria) and GKS98 (Proteobacteria) in reclaimed-water-source lakes were higher than those in natural-water-source lakes, however, CL500-29 (Actinobacteria) in natural-water-source lakes was higher than that in reclaimed-water-source lakes. These bacteria also had significantly positive correlations with MIB. Cyanobacteria and Actinobacteria were the main MIB compound contributors to the variability of MIB in the landscape lakes in Beijing.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Huixin Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Luwei Li
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100019, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100019, China.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
27
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
28
|
Schweitzer-Natan O, Ofek-Lalzar M, Sher D, Sukenik A. Particle-Associated Microbial Community in a Subtropical Lake During Thermal Mixing and Phytoplankton Succession. Front Microbiol 2019; 10:2142. [PMID: 31572346 PMCID: PMC6753980 DOI: 10.3389/fmicb.2019.02142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Ecosystem dynamics in monomictic lakes are characterized by seasonal thermal mixing and stratification. These physical processes bring about seasonal variations in nutrients and organic matter fluxes, affecting the biogeochemical processes that occur in the water column. Physical and chemical dynamics are generally reflected in seasonal structural changes in the phytoplankton and bacterio-plankton community. In this study, we analyzed, using 16S rRNA amplicon sequencing, the structure of the bacterial community associated with large particles (>20 μm) in Lake Kinneret (Sea of Galilee, Israel), and its associations to phytoplankton populations. The study was carried out during late winter and early spring, a highly dynamic period in terms of thermal mixing, nutrient availability, and shifts in phytoplankton composition. Structural changes in the bacterioplankton population corresponded with limnological variations in the lake. In terms of the entire heterotrophic community, the structural patterns of particle-associated bacteria were mainly correlated with abiotic factors such as pH, ammonia, water temperature and nitrate. However, analysis of microbial taxon-specific correlations with phytoplankton species revealed a strong potential link between specific bacterial populations and the presence of different phytoplankton species, such as the cyanobacterium Microcystis, as well as the dinoflagellates Peridinium and Peridiniopsis. We found that Brevundimonas, a common freshwater genus, and Bdellovibrio, a well-known Gram-negative bacteria predator, were positively associated to Microcystis, suggesting a potentially important role of these three taxa in the microbial ecology of the lake. Our results show that the dynamics of environmental abiotic conditions, rather than specific phytoplankton assemblages, are the main factors positively correlated with changes in the community structure as a whole. Nevertheless, some specific bacteria may interact and be linked with specific phytoplankton, which may potentially control the dynamic patterns of the microbial community.
Collapse
Affiliation(s)
- Orna Schweitzer-Natan
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Assaf Sukenik
- Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Haifa, Israel
| |
Collapse
|
29
|
Sisma-Ventura G, Rahav E. DOP Stimulates Heterotrophic Bacterial Production in the Oligotrophic Southeastern Mediterranean Coastal Waters. Front Microbiol 2019; 10:1913. [PMID: 31474972 PMCID: PMC6706821 DOI: 10.3389/fmicb.2019.01913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Phytoplankton and heterotrophic bacteria rely on a suite of inorganic and organic macronutrients to satisfy their cellular needs. Here, we explored the effect of dissolved inorganic phosphate (PO4) and several dissolved organic molecules containing phosphorus [ATP, glucose-6-phosphate, 2-aminoethylphosphonic acid, collectively referred to as dissolved organic phosphorus (DOP)], on the activity and biomass of autotrophic and heterotrophic microbial populations in the coastal water of the southeastern Mediterranean Sea (SEMS) during summertime. To this end, surface waters were supplemented with PO4, one of the different organic molecules, or PO4 + ATP, and measured the PO4 turnover time (Tt), alkaline phosphatase activity (APA), heterotrophic bacterial production (BP), primary production (PP), and the abundance of the different microbial components. Our results show that PO4 alone does not stimulate any significant change in most of the autotrophic or heterotrophic bacterial variables tested. ATP addition (alone or with PO4) triggers the strongest increase in primary and bacterial productivity or biomass. Heterotrophic bacterial abundance and BP respond faster than phytoplankton (24 h post addition) to the various additions of DOP or PO4 + ATP, followed by a recovery of primary productivity (48 h post addition). These observations suggest that both autotrophic and heterotrophic microbial communities compete for labile organic molecules containing P, such as ATP, to satisfy their cellular needs. It also suggests that SEMS coastal water heterotrophic bacteria are likely C and P co-limited.
Collapse
Affiliation(s)
- Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| |
Collapse
|
30
|
Karlsson CMG, Cerro‐Gálvez E, Lundin D, Karlsson C, Vila‐Costa M, Pinhassi J. Direct effects of organic pollutants on the growth and gene expression of the Baltic Sea model bacterium Rheinheimera sp. BAL341. Microb Biotechnol 2019; 12:892-906. [PMID: 31270938 PMCID: PMC6680617 DOI: 10.1111/1751-7915.13441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Organic pollutants (OPs) are critically toxic, bioaccumulative and globally widespread. Moreover, several OPs negatively influence aquatic wildlife. Although bacteria are major drivers of the ocean carbon cycle and the turnover of vital elements, there is limited knowledge of OP effects on heterotrophic bacterioplankton. We therefore investigated growth and gene expression responses of the Baltic Sea model bacterium Rheinheimera sp. BAL341 to environmentally relevant concentrations of distinct classes of OPs in 2-h incubation experiments. During exponential growth, exposure to a mix of polycyclic aromatic hydrocarbons, alkanes and organophosphate esters (denoted MIX) resulted in a significant decrease (between 9% and 18%) in bacterial abundance and production compared with controls. In contrast, combined exposure to perfluorooctanesulfonic acids and perfluorooctanoic acids (denoted PFAS) had no significant effect on growth. Nevertheless, MIX and PFAS exposures both induced significant shifts in gene expression profiles compared with controls in exponential growth. This involved several functional metabolism categories (e.g. stress response and fatty acids metabolism), some of which were pollutant-specific (e.g. phosphate acquisition and alkane-1 monooxygenase genes). In stationary phase, only two genes in the MIX treatment were significantly differentially expressed. The substantial direct influence of OPs on metabolism during bacterial growth suggests that widespread OPs could severely alter biogeochemical processes governed by bacterioplankton.
Collapse
Affiliation(s)
- Christofer M. G. Karlsson
- Centre for Ecology and Evolution in Microbial Model SystemsEEMiSLinnaeus UniversityStuvaregatan 4Kalmar39231Sweden
| | - Elena Cerro‐Gálvez
- Department of Environmental ChemistryIDAEA‐CSICJordi Girona 18‐26Barcelona08034CatalunyaSpain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model SystemsEEMiSLinnaeus UniversityStuvaregatan 4Kalmar39231Sweden
| | - Camilla Karlsson
- Centre for Ecology and Evolution in Microbial Model SystemsEEMiSLinnaeus UniversityStuvaregatan 4Kalmar39231Sweden
| | - Maria Vila‐Costa
- Department of Environmental ChemistryIDAEA‐CSICJordi Girona 18‐26Barcelona08034CatalunyaSpain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model SystemsEEMiSLinnaeus UniversityStuvaregatan 4Kalmar39231Sweden
| |
Collapse
|
31
|
Duret MT, Lampitt RS, Lam P. Prokaryotic niche partitioning between suspended and sinking marine particles. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:386-400. [PMID: 30246414 DOI: 10.1111/1758-2229.12692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Suspended particles are major organic carbon substrates for heterotrophic microorganisms in the mesopelagic ocean (100-1000 m). Nonetheless, communities associated with these particles have been overlooked compared with sinking particles, the latter generally considered as main carbon transporters to the deep ocean. This study is the first to differentiate prokaryotic communities associated with suspended and sinking particles, collected with a marine snow catcher at four environmentally distinct stations in the Scotia Sea. Amplicon sequencing of 16S rRNA gene revealed distinct prokaryotic communities associated with the two particle-types in the mixed-layer (0-100 m) and upper-mesopelagic zone (mean dissimilarity 42.5% ± 15.2%). Although common remineralising taxa were present within both particle-types, gammaproteobacterial Pseudomonadales and Vibrionales, and alphaproteobacterial Rhodobacterales were found enriched in sinking particles up to 32-fold, while Flavobacteriales (Bacteroidetes) favoured suspended particles. We propose that this niche-partitioning may be driven by organic matter properties found within both particle-types: K-strategists, specialised in the degradation of complex organic compounds, thrived on semi-labile suspended particles, while generalists r-strategists were adapted to the transient labile organic contents of sinking particles. Differences between the two particle-associated communities were more pronounced in the mesopelagic than in the surface ocean, likely resulting from exchanges between particle-pools enabled by the stronger turbulence.
Collapse
Affiliation(s)
- Manon T Duret
- Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | - Phyllis Lam
- Ocean and Earth Science, University of Southampton, Southampton, UK
| |
Collapse
|
32
|
Li BB, Cheng YY, Fan YY, Liu DF, Fang CY, Wu C, Li WW, Yang ZC, Yu HQ. Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:926-933. [PMID: 29763873 DOI: 10.1016/j.scitotenv.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Shewanella species have a diverse respiratory ability and wide distribution in environments and play an important role in bioremediation and the biogeochemical cycles of elements. Primers with more accuracy and broader coverage are required with consideration of the increasing number of Shewanella species and evaluation of their roles in various environments. In this work, a new primer set of 640F/815R was developed to quantify the abundance of Shewanella species in natural and engineered environments. In silico tools for primer evaluation, quantitative polymerase chain reaction (qPCR) and clone library results showed that 640F/815R had a higher specificity and coverage than the previous primers in quantitative analysis of Shewanella. Another newly developed primer pair of 211F/815cR was also adopted to analyze the Shewanella diversity and demonstrated to be the best candidate in terms of specificity and coverage. We detected more Shewanella-related species in freshwater environments and found them to be substantially different from those in marine environments. Abundance and diversity of Shewanella species in wastewater treatment plants were largely affected by the process and operating conditions. Overall, this study suggests that investigations of abundance and diversity of Shewanella in various environments are of great importance to evaluate their ecophysiology and potential ecological roles.
Collapse
Affiliation(s)
- Bing-Bing Li
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yuan-Yuan Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yang-Yang Fan
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Cai-Yun Fang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Chao Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Zong-Chuang Yang
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Markussen T, Happel EM, Teikari JE, Huchaiah V, Alneberg J, Andersson AF, Sivonen K, Riemann L, Middelboe M, Kisand V. Coupling biogeochemical process rates and metagenomic blueprints of coastal bacterial assemblages in the context of environmental change. Environ Microbiol 2018; 20:3083-3099. [PMID: 30084235 DOI: 10.1111/1462-2920.14371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes in marine environments, yet how bacterial communities respond to environmental change is not well known. Metagenomes allow examination of genetic responses of the entire microbial community to environmental change. However, it is challenging to link metagenomes directly to biogeochemical process rates. Here, we investigate metagenomic responses in natural bacterioplankton communities to simulated environmental stressors in the Baltic Sea, including increased river water input, increased nutrient concentration, and reduced oxygen level. This allowed us to identify informative prokaryotic gene markers, responding to environmental perturbation. Our results demonstrate that metagenomic and metabolic changes in bacterial communities in response to environmental stressors are influenced both by the initial community composition and by the biogeochemical factors shaping the functional response. Furthermore, the different sources of dissolved organic matter (DOM) had the largest impact on metagenomic blueprint. Most prominently, changes in DOM loads influenced specific transporter types reflecting the substrate availability and DOC assimilation and consumption pathways. The results provide new knowledge for developing models of ecosystem structure and biogeochemical cycling in future climate change scenarios and advance our exploration of the potential use of marine microorganisms as markers for environmental conditions.
Collapse
Affiliation(s)
- Trine Markussen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Elisabeth M Happel
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jonna E Teikari
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Vimala Huchaiah
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Johannes Alneberg
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
34
|
Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z. Microbial Community Structure and Associations During a Marine Dinoflagellate Bloom. Front Microbiol 2018; 9:1201. [PMID: 29928265 PMCID: PMC5998739 DOI: 10.3389/fmicb.2018.01201] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between microorganisms and algae during bloom events significantly impacts their physiology, alters ambient chemistry, and shapes ecosystem diversity. The potential role these interactions have in bloom development and decline are also of particular interest given the ecosystem impacts of algal blooms. We hypothesized that microbial community structure and succession is linked to specific bloom stages, and reflects complex interactions among taxa comprising the phycosphere environment. This investigation used pyrosequencing and correlation approaches to assess patterns and associations among bacteria, archaea, and microeukaryotes during a spring bloom of the dinoflagellate Alexandrium catenella. Within the bacterial community, Gammaproteobacteria and Bacteroidetes were predominant during the initial bloom stage, while Alphaproteobacteria, Cyanobacteria, and Actinobacteria were the most abundant taxa present during bloom onset and termination. In the archaea biosphere, methanogenic members were present during the early bloom period while the majority of species identified in the late bloom stage were ammonia-oxidizing archaea and Halobacteriales. Dinoflagellates were the major eukaryotic group present during most stages of the bloom, whereas a mixed assemblage comprising diatoms, green-algae, rotifera, and other microzooplankton were present during bloom termination. Temperature and salinity were key environmental factors associated with changes in bacterial and archaeal community structure, respectively, whereas inorganic nitrogen and inorganic phosphate were associated with eukaryotic variation. The relative contribution of environmental parameters measured during the bloom to variability among samples was 35.3%. Interaction analysis showed that Maxillopoda, Spirotrichea, Dinoflagellata, and Halobacteria were keystone taxa within the positive-correlation network, while Halobacteria, Dictyochophyceae, Mamiellophyceae, and Gammaproteobacteria were the main contributors to the negative-correlation network. The positive and negative relationships were the primary drivers of mutualist and competitive interactions that impacted algal bloom fate, respectively. Functional predictions showed that blooms enhance microbial carbohydrate and energy metabolism, and alter the sulfur cycle. Our results suggest that microbial community structure is strongly linked to bloom progression, although specific drivers of community interactions and responses are not well understood. The importance of considering biotic interactions (e.g., competition, symbiosis, and predation) when investigating the link between microbial ecological behavior and an algal bloom's trajectory is also highlighted.
Collapse
Affiliation(s)
- Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Mindy L. Richlen
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Taylor R. Sehein
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - David M. Kulis
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Donald M. Anderson
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| |
Collapse
|
35
|
Smith HJ, Dieser M, McKnight DM, SanClements MD, Foreman CM. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol Ecol 2018; 94:4995909. [DOI: 10.1093/femsec/fiy090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- HJ Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - M Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| | - DM McKnight
- INSTAAR, University of Colorado Boulder, Boulder, CO 80303, USA
| | - MD SanClements
- INSTAAR, University of Colorado Boulder, Boulder, CO 80303, USA
- National Ecological Observatory Network, Boulder, CO 80301, USA
| | - CM Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
36
|
Prokaryotic Community Composition Affected by Seasonal Changes in Physicochemical Properties of Water in Peat Bog Lakes. WATER 2018. [DOI: 10.3390/w10040485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Liu S, Jiang Z, Deng Y, Wu Y, Zhang J, Zhao C, Huang D, Huang X, Trevathan-Tackett SM. Effects of nutrient loading on sediment bacterial and pathogen communities within seagrass meadows. Microbiologyopen 2018. [PMID: 29521006 PMCID: PMC6182560 DOI: 10.1002/mbo3.600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eutrophication can play a significant role in seagrass decline and habitat loss. Microorganisms in seagrass sediments are essential to many important ecosystem processes, including nutrient cycling and seagrass ecosystem health. However, current knowledge of the bacterial communities, both beneficial and detrimental, within seagrass meadows in response to nutrient loading is limited. We studied the response of sediment bacterial and pathogen communities to nutrient enrichment on a tropical seagrass meadow in Xincun Bay, South China Sea. The bacterial taxonomic groups across all sites were dominated by the Gammaproteobacteria and Firmicutes. Sites nearest to the nutrient source and with the highest NH4+ and PO43− content had approximately double the relative abundance of putative denitrifiers Vibrionales, Alteromonadales, and Pseudomonadales. Additionally, the relative abundance of potential pathogen groups, especially Vibrio spp. and Pseudoalteromonas spp., was approximately 2‐fold greater at the sites with the highest nutrient loads compared to sites further from the source. These results suggest that proximity to sources of nutrient pollution increases the occurrence of potential bacterial pathogens that could affect fishes, invertebrates and humans. This study shows that nutrient enrichment does elicit shifts in bacterial community diversity and likely their function in local biogeochemical cycling and as a potential source of infectious diseases within seagrass meadows.
Collapse
Affiliation(s)
- Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Delian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China, Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Stacey M Trevathan-Tackett
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Vic., Australia
| |
Collapse
|
38
|
Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, Reinhardt R, Berman-Frank I, Rodriguez-Valera F, Hess WR. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME JOURNAL 2018; 12:981-996. [PMID: 29335641 PMCID: PMC5864184 DOI: 10.1038/s41396-017-0034-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environment.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Ulrike Pfreundt
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany.,ETH Zürich, Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Stefano-Franscini-Platz 5, CH-8093, Zürich, Switzerland
| | - Natalia Belkin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Kurt Stüber
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, 03550, Alicante, Spain
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany. .,Freiburg Institute for Advanced Studies, University of Freiburg, Albertstr. 19, D-79104, Freiburg, Germany.
| |
Collapse
|
39
|
Pavloudi C, Kristoffersen JB, Oulas A, De Troch M, Arvanitidis C. Sediment microbial taxonomic and functional diversity in a natural salinity gradient challenge Remane's "species minimum" concept. PeerJ 2017; 5:e3687. [PMID: 29043106 PMCID: PMC5642246 DOI: 10.7717/peerj.3687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022] Open
Abstract
Several models have been developed for the description of diversity in estuaries and other brackish habitats, with the most recognized being Remane’s Artenminimum (“species minimum”) concept. It was developed for the Baltic Sea, one of the world’s largest semi-enclosed brackish water body with a unique permanent salinity gradient, and it argues that taxonomic diversity of macrobenthic organisms is lowest within the horohalinicum (5 to 8 psu). The aim of the present study was to investigate the relationship between salinity and sediment microbial diversity at a freshwater-marine transect in Amvrakikos Gulf (Ionian Sea, Western Greece) and assess whether species composition and community function follow a generalized concept such as Remane’s. DNA was extracted from sediment samples from six stations along the aforementioned transect and sequenced for the 16S rRNA gene using high-throughput sequencing. The metabolic functions of the OTUs were predicted and the most abundant metabolic pathways were extracted. Key abiotic variables, i.e., salinity, temperature, chlorophyll-a and oxygen concentration etc., were measured and their relation with diversity and functional patterns was explored. Microbial communities were found to differ in the three habitats examined (river, lagoon and sea) with certain taxonomic groups being more abundant in the freshwater and less in the marine environment, and vice versa. Salinity was the environmental factor with the highest correlation to the microbial community pattern, while oxygen concentration was highly correlated to the metabolic functional pattern. The total number of OTUs showed a negative relationship with increasing salinity, thus the sediment microbial OTUs in this study area do not follow Remane’s concept.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece.,Marine Biology Research Group, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium.,Microbial Ecophysiology Group, Faculty of Biology/Chemistry and MARUM, University of Bremen, Bremen, Germany
| | - Jon B Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| | - Anastasis Oulas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece.,Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marleen De Troch
- Marine Biology Research Group, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Crete, Greece
| |
Collapse
|
40
|
Parulekar NN, Kolekar P, Jenkins A, Kleiven S, Utkilen H, Johansen A, Sawant S, Kulkarni-Kale U, Kale M, Sæbø M. Characterization of bacterial community associated with phytoplankton bloom in a eutrophic lake in South Norway using 16S rRNA gene amplicon sequence analysis. PLoS One 2017; 12:e0173408. [PMID: 28282404 PMCID: PMC5345797 DOI: 10.1371/journal.pone.0173408] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/19/2017] [Indexed: 11/19/2022] Open
Abstract
Interactions between different phytoplankton taxa and heterotrophic bacterial communities within aquatic environments can differentially support growth of various heterotrophic bacterial species. In this study, phytoplankton diversity was studied using traditional microscopic techniques and the bacterial communities associated with phytoplankton bloom were studied using High Throughput Sequencing (HTS) analysis of 16S rRNA gene amplicons from the V1-V3 and V3-V4 hypervariable regions. Samples were collected from Lake Akersvannet, a eutrophic lake in South Norway, during the growth season from June to August 2013. Microscopic examination revealed that the phytoplankton community was mostly represented by Cyanobacteria and the dinoflagellate Ceratium hirundinella. The HTS results revealed that Proteobacteria (Alpha, Beta, and Gamma), Bacteriodetes, Cyanobacteria, Actinobacteria and Verrucomicrobia dominated the bacterial community, with varying relative abundances throughout the sampling season. Species level identification of Cyanobacteria showed a mixed population of Aphanizomenon flos-aquae, Microcystis aeruginosa and Woronichinia naegeliana. A significant proportion of the microbial community was composed of unclassified taxa which might represent locally adapted freshwater bacterial groups. Comparison of cyanobacterial species composition from HTS and microscopy revealed quantitative discrepancies, indicating a need for cross validation of results. To our knowledge, this is the first study that uses HTS methods for studying the bacterial community associated with phytoplankton blooms in a Norwegian lake. The study demonstrates the value of considering results from multiple methods when studying bacterial communities.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/isolation & purification
- Bacteria/metabolism
- Cyanobacteria/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Enzyme-Linked Immunosorbent Assay
- High-Throughput Nucleotide Sequencing
- Lakes/microbiology
- Microcystins/analysis
- Microcystis/genetics
- Microcystis/metabolism
- Norway
- Phytoplankton/genetics
- Phytoplankton/growth & development
- Proteobacteria/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Niranjan Nitin Parulekar
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
- * E-mail:
| | - Pandurang Kolekar
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, India
| | - Andrew Jenkins
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| | - Synne Kleiven
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| | - Hans Utkilen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| | - Anette Johansen
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| | - Sangeeta Sawant
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, India
| | - Urmila Kulkarni-Kale
- Bioinformatics Centre, Savitribai Phule Pune University (formerly University of Pune), Pune, India
| | - Mohan Kale
- Department of Statistics, Savitribai Phule Pune University (formerly University of Pune), Pune, India
| | - Mona Sæbø
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime Sciences, University College of Southeast Norway, Bø i Telemark, Norway
| |
Collapse
|
41
|
Handschuh H, Ryan MP, O’Dwyer J, Adley CC. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers. PLoS One 2017; 12:e0170567. [PMID: 28114359 PMCID: PMC5256958 DOI: 10.1371/journal.pone.0170567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine and identify bacteria inhabiting the supply chain of an airline's drinking water using phenotypic and 16S rDNA sequence-based analysis. Water samples (n = 184) were sourced from long-haul and short-haul aircraft, the airline water source and a water service vehicle. In total, 308 isolates were characterised and their identity determined, which produced 82 identified bacterial species belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga. Statistical differences in bacterial diversity were found to exist across sampling locations (X2 = 39.220, p = 0.009) and furthermore, differences were observed (X2 = 15.475, p = 0.030) across aircraft type (long- or short-haul). This study demonstrates the diverse nature of microorganisms within the aircraft drinking water supply chain. To the best of our knowledge, this is the most extensive study undertaken to date of microbial diversity in aircraft drinking water.
Collapse
Affiliation(s)
- Harald Handschuh
- Microbiology Laboratory, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Michael P. Ryan
- Industrial Biochemistry Programme, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
- * E-mail:
| | - Jean O’Dwyer
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Catherine C. Adley
- Microbiology Laboratory, Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
42
|
Evaluating the Reliability of Counting Bacteria Using Epifluorescence Microscopy. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2017. [DOI: 10.3390/jmse5010004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Jun S, Yoon J. Litorivivens aequoris sp. nov., a gammaproteobacterium isolated from seawater. Arch Microbiol 2016; 199:591-596. [PMID: 28032190 DOI: 10.1007/s00203-016-1329-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/21/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
A Gram-stain-negative, strictly aerobic, beige-pigmented, motile, chemoheterotrophic, rod-shaped or ovoid bacterium, designated strain KMU-37T, was isolated from seawater at Najeong Beach in the Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the genus Litorivivens, class Gammaproteobacteria, showing highest sequence similarity (97.4%) to Litorivivens lipolytica HJTF-7T. The DNA-DNA relatedness values between strains KMU-37T and L. lipolytica HJTF-7T were 11.5 ± 0.4%. The DNA G+C content of strain KMU-37T was determined to be 53.8 mol%. Ubiquinone 8 (Q-8) was the sole respiratory quinone. The predominant cellular fatty acids were C17:1 ω8c and C16:1 ω7c and/or C16:1 ω6c. Strain KMU-37T had phosphatidylethanolamine, phosphatidylglycerol and an unidentified lipid as polar lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species of the genus Litorivivens for which the name Litorivivens aequoris sp. nov. is proposed. The type strain of L. aequoris sp. nov. is KMU-37T (= KCCM 90262T = NBRC 111904T).
Collapse
Affiliation(s)
- Sangeun Jun
- College of Nursing, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea
| | - Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 42601, Republic of Korea.
| |
Collapse
|
44
|
Rofner C, Sommaruga R, Pérez MT. Differential utilization patterns of dissolved organic phosphorus compounds by heterotrophic bacteria in two mountain lakes. FEMS Microbiol Ecol 2016; 92:fiw139. [PMID: 27312963 PMCID: PMC4940451 DOI: 10.1093/femsec/fiw139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed concentration-dependent patterns. We determined bulk uptake rates by the bacterioplankton and examined bacterial taxon-specific substrate uptake patterns using microautoradiography combined with catalyzed reporter deposition–fluorescence in situ hybridization. Our results show that in the oligotrophic alpine lake, bacteria took up ATP, glucose-6-phosphate and glycerol-3-phosphate to similar extents (mean 29.7 ± 4.3% Bacteria), whereas in the subalpine mesotrophic lake, ca. 40% of bacteria took up glucose-6-phosphate, but only ∼20% took up ATP or glycerol-3-phosphate. In both lakes, the R-BT cluster of Betaproteobacteria (lineage of genus Limnohabitans) was over-represented in glucose-6-phosphate and glycerol-3-phosphate uptake, whereas AcI Actinobacteria were under-represented in the uptake of those substrates. Alphaproteobacteria and Bacteroidetes contributed to DOP uptake proportionally to their in situ abundance. Our results demonstrate that R-BT Betaproteobacteria are the most active bacteria in DOP acquisition, whereas the abundant AcI Actinobacteria may either lack high affinity DOP uptake systems or have reduced phosphorus requirements. In phosphorus-limited mountain lakes, the most abundant taxa, the AcI lineage of Actinobacteria and the R-BT cluster of Betaproteobacteria, exhibit strikingly different dissolved organic phosphorus uptake patterns.
Collapse
Affiliation(s)
- Carina Rofner
- Institute of Ecology, Lake and Glacier Ecology Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Ruben Sommaruga
- Institute of Ecology, Lake and Glacier Ecology Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - María Teresa Pérez
- Institute of Ecology, Lake and Glacier Ecology Research Group, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
45
|
Kim HJ, Jung SW, Lim DI, Jang MC, Lee TK, Shin K, Ki JS. Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea. MARINE POLLUTION BULLETIN 2016; 106:139-148. [PMID: 27001714 DOI: 10.1016/j.marpolbul.2016.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
Bacterioplankton communities in a semi-closed bay (Jangmok Bay, South Korea) were analysed using a 16S rDNA multiplex 454 pyrosequencing approach. Diversity and operational taxonomic units of bacterioplankton communities in the Jangmok Bay are highest in cold water seasons and lowest in warm water ones. During cold seasons, α-proteobacteria respond rapidly to pulses of the concentration of inorganic nutrients, while γ-proteobacteria during warm water seasons are the most active type of bacterioplankton resent in the prevailing conditions, which include high dissolved organic carbon, chemical oxygen demand and primary production. Cyanobacteria, a minor group constituting 4.58% of the total bacterioplankton, are more abundant at low temperature. Flavobacteria are more abundant in nutrient-rich conditions and the abundance of this group also demonstrated a delayed decline following summer phytoplankton blooms. The pronounced seasonal oscillations in phosphorus concentration and temperature exert strong selection pressure on bacterioplankton communities.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea.
| | - Dhong-Il Lim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea
| | - Min-Chul Jang
- Ballast Water Center, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea
| | - Taek-Kyun Lee
- South Sea Research Center, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea
| | - Kyoungsoon Shin
- Ballast Water Center, Korea Institute of Ocean Science & Technology, Geoje, 656-834, Republic of Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul 110-743, Republic of Korea.
| |
Collapse
|
46
|
Sarmento H, Morana C, Gasol JM. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME JOURNAL 2016; 10:2582-2592. [PMID: 27128994 DOI: 10.1038/ismej.2016.66] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Abstract
Some prokaryotes are known to be specialized in the use of phytoplankton-derived dissolved organic carbon (DOCp) originated by exudation or cell lysis; however, direct quantification measurements are extremely rare. Several studies have described bacterial selectivity based on DOCp quality, but very few have focused on the quantity of DOCp, and the relative importance of each of these variables (for example, quantity versus quality) on prokaryote responses. We applied an adapted version of the MAR-FISH (microautoradiography coupled with catalyzed reporter deposition fluorescence in situ hybridization) protocol using radiolabelled exudates from axenic algal cultures to calculate a specialization index (d') for large bacterioplankton phylogenetic groups using DOCp from different phytoplankton species and at different concentrations to elucidate to what extent the bacterial response to DOCp is driven by resource quantity (different DOCp concentrations) or by quality (DOCp from different phytoplankton species). All bacterial phylogenetic groups studied had lower d' at higher DOCp concentration, indicating more generalist behavior at higher resource availabilities. Indeed, at increasing resource concentrations, most bacterial groups incorporated DOCp indiscriminately, regardless of its origin (or quality). At low resource concentrations, only some specialists were able to actively incorporate the various types of organic matter effectively. The variability of bacterial responses to different treatments was systematically higher at varying concentrations than at varying DOCp types, suggesting that, at least for this range of concentrations (10-100 μM), DOCp quantity affects bacterial responses more than quality does. Therefore, resource quantity may be more relevant than resource quality in the bacterial responses to DOCp and affect how bacterioplankton use phytoplankton-derived carbon.
Collapse
Affiliation(s)
- Hugo Sarmento
- Department of Hydrobiology, Federal University of São Carlos (UFSCar), São Carlos, Brazil.,Institut de Ciències del Mar-CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| | - Cédric Morana
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Josep M Gasol
- Institut de Ciències del Mar-CSIC, Pg. Marítim de la Barceloneta, Barcelona, Spain
| |
Collapse
|
47
|
Dickinson I, Goodall-Copestake W, Thorne MAS, Schlitt T, Ávila-Jiménez ML, Pearce DA. Extremophiles in an Antarctic Marine Ecosystem. Microorganisms 2016; 4:microorganisms4010008. [PMID: 27681902 PMCID: PMC5029513 DOI: 10.3390/microorganisms4010008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/28/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.
Collapse
Affiliation(s)
- Iain Dickinson
- Department of Applied Sciences, Faculty of Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
| | - William Goodall-Copestake
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Thomas Schlitt
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | | | - David A Pearce
- Department of Applied Sciences, Faculty of Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE1 8ST, UK.
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK.
- The University Centre in Svalbard (UNIS), P.O. Box 156, Svalbard, Longyearbyen N-9171, Norway.
| |
Collapse
|
48
|
Yoon J. Polyphasic Characterization of Lysobacter maris sp. nov., a Bacterium Isolated from Seawater. Curr Microbiol 2015; 72:282-7. [PMID: 26616671 DOI: 10.1007/s00284-015-0949-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/18/2015] [Indexed: 11/25/2022]
Abstract
A strictly aerobic, Gram-negative, apricot-pigmented, non-motile, rod-shaped strain designated KMU-14(T) was isolated from seawater collected from the coastal zone of Yokji Island, Gyeongsangnam-do, Republic of Korea. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel isolate was affiliated with the genus Lysobacter within the class Gammaproteobacteria and that it showed the highest sequence similarity (97.1 %) to Lysobacter concretionis Ko07(T). The hybridization value for DNA-DNA relatedness between the strains of KMU-14(T) and L. concretionis Ko07(T) was 34.8 %, which was lower than 70 %, the recommended delineation value for differentiation of species. The DNA G+C content of strain KMU-14(T) was 64.9 mol%. The major respiratory quinone was ubiquinone 8 (Q-8), and iso-C15:0, iso-C16:0, and 10-methyl C16:0 and/or iso-C17:1 ω9c were the major (>10 %) cellular fatty acids. A polar lipid profile was present consisting of diphosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoglycolipid, two unidentified aminophospholipids, and two unidentified phospholipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel species for which the name Lysobacter maris sp. nov. is proposed. The type strain of L. maris sp. nov. is KMU-14(T) (=KCTC 42381(T) =NBRC 110750(T)).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
49
|
Yoon J, Adachi K, Kasai H. Isolation and characterization of a novel marine Bacteroidetes as Algitalea ulvae gen. nov., sp. nov., isolated from the green alga Ulva pertusa. Antonie van Leeuwenhoek 2015; 108:505-13. [PMID: 26063306 DOI: 10.1007/s10482-015-0504-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/05/2015] [Indexed: 01/08/2023]
Abstract
A polyphasic taxonomic investigation was performed on a bacterial strain, 38-Ka-2(T), which was isolated from the green alga Ulva pertusa Kjellman (Chlorophyta) in Hokkaido, Japan. The bacterial cells were observed to be golden-yellow coloured, Gram-negative, strictly aerobic, non-spore-forming, non-motile and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain is a member of the family Flavobacteriaceae within the phylum Bacteroidetes and that it shows high sequence similarity (94.8 %) to Aquimarina addita JC2680(T). The genomic DNA G+C content of strain 38-Ka-2(T) was determined to be 36 mol%; MK-6 was identified as the major menaquinone; and the presence of iso-C15:0, C18:0 and iso-C17:0 3-OH as the major (>10 %) cellular fatty acids. The polar lipid profile was found to consist of phosphatidylethanolamine, an unidentified glycolipid and two unidentified lipids. From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, strain 38-Ka-2(T) is considered to represent a novel genus for which the name Algitalea ulvae gen. nov., sp. nov. is proposed. The type strain of A. ulvae is 38-Ka-2(T) (=KCTC 32994(T) = NBRC 110017(T)).
Collapse
Affiliation(s)
- Jaewoo Yoon
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701, Republic of Korea,
| | | | | |
Collapse
|
50
|
Padilla CC, Ganesh S, Gantt S, Huhman A, Parris DJ, Sarode N, Stewart FJ. Standard filtration practices may significantly distort planktonic microbial diversity estimates. Front Microbiol 2015; 6:547. [PMID: 26082766 PMCID: PMC4451414 DOI: 10.3389/fmicb.2015.00547] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023] Open
Abstract
Fractionation of biomass by filtration is a standard method for sampling planktonic microbes. It is unclear how the taxonomic composition of filtered biomass changes depending on sample volume. Using seawater from a marine oxygen minimum zone, we quantified the 16S rRNA gene composition of biomass on a prefilter (1.6 μm pore-size) and a downstream 0.2 μm filter over sample volumes from 0.05 to 5 L. Significant community shifts occurred in both filter fractions, and were most dramatic in the prefilter community. Sequences matching Vibrionales decreased from ~40 to 60% of prefilter datasets at low volumes (0.05–0.5 L) to less than 5% at higher volumes, while groups such at the Chromatiales and Thiohalorhabdales followed opposite trends, increasing from minor representation to become the dominant taxa at higher volumes. Groups often associated with marine particles, including members of the Deltaproteobacteria, Planctomycetes, and Bacteroidetes, were among those showing the greatest increase with volume (4 to 27-fold). Taxon richness (97% similarity clusters) also varied significantly with volume, and in opposing directions depending on filter fraction, highlighting potential biases in community complexity estimates. These data raise concerns for studies using filter fractionation for quantitative comparisons of aquatic microbial diversity, for example between free-living and particle-associated communities.
Collapse
Affiliation(s)
- Cory C Padilla
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Sangita Ganesh
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Shelby Gantt
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Alex Huhman
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Darren J Parris
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Neha Sarode
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|