1
|
Lienkamp AC, Burnik J, Heine T, Hofmann E, Tischler D. Characterization of the Glutathione S-Transferases Involved in Styrene Degradation in Gordonia rubripertincta CWB2. Microbiol Spectr 2021; 9:e0047421. [PMID: 34319142 PMCID: PMC8552685 DOI: 10.1128/spectrum.00474-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 11/29/2022] Open
Abstract
The glutathione S-transferases carried on the plasmid for the styrene-specific degradation pathway in the Actinobacterium Gordonia rubripertincta CWB2 were heterologously expressed in Escherichia coli. Both enzymes were purified via affinity chromatography and subjected to activity investigations. StyI and StyJ displayed activity toward the commonly used glutathione S-transferase model substrate 1-chloro-2,4-dinitrobenzene (CDNB) with Km values of 0.0682 ± 0.0074 and 2.0281 ± 0.1301 mM and Vmax values of 0.0158 ± 0.0002 and 0.348 ± 0.008 U mg-1 for StyI and StyJ, respectively. The conversion of the natural substrate styrene oxide to the intermediate (1-phenyl-2-hydroxyethyl)glutathione was detected for StyI with 48.3 ± 2.9 U mg-1. This elucidates one more step in the not yet fully resolved styrene-specific degradation pathway of Gordonia rubripertincta CWB2. A characterization of both purified enzymes adds more insight into the scarce research field of actinobacterial glutathione S-transferases. Moreover, a sequence and phylogenetic analysis puts both enzymes into a physiological and evolutionary context. IMPORTANCE Styrene is a toxic compound that is used at a large scale by industry for plastic production. Bacterial degradation of styrene is a possibility for bioremediation and pollution prevention. Intermediates of styrene derivatives degraded in the styrene-specific pathways are precursors for valuable chemical compounds. The pathway in Gordonia rubripertincta CWB2 has proven to accept a broader substrate range than other bacterial styrene degraders. The enzymes characterized in this study, distinguish CWB2s pathway from other known styrene degradation routes and thus might be the main key for its ability to produce ibuprofen from the respective styrene derivative. A biotechnological utilization of this cascade could lead to efficient and sustainable production of drugs, flavors, and fragrances. Moreover, research on glutathione metabolism in Actinobacteria is rare. Here, a characterization of two glutathione S-transferases of actinobacterial origin is presented, and the utilization of glutathione in the metabolism of an Actinobacterium is proven.
Collapse
Affiliation(s)
- Anna C. Lienkamp
- Microbial Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| | - Jan Burnik
- X-Ray Structure Analysis of Proteins, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Eckhard Hofmann
- X-Ray Structure Analysis of Proteins, Ruhr-Universität Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
2
|
Lienkamp AC, Heine T, Tischler D. Glutathione: A powerful but rare cofactor among Actinobacteria. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:181-217. [PMID: 32386605 DOI: 10.1016/bs.aambs.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine, GSH) is a powerful cellular redox agent. In nature only the l,l-form is common among the tree of life. It serves as antioxidant or redox buffer system, protein regeneration and activation by interaction with thiol groups, unspecific reagent for conjugation during detoxification, marker for amino acid or peptide transport even through membranes, activation or solubilization of compounds during degradative pathways or just as redox shuttle. However, the role of GSH production and utilization in bacteria is more complex and especially little is known for the Actinobacteria. Some recent reports on GSH use in degradative pathways came across and this is described herein. GSH is used by transferases to activate and solubilize epoxides. It allows funneling epoxides as isoprene oxide or styrene oxide into central metabolism. Thus, the distribution of GSH synthesis, recycling and application among bacteria and especially Actinobacteria are highlighted including the pathways and contributing enzymes.
Collapse
Affiliation(s)
- Anna C Lienkamp
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Thomas Heine
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Freiberg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Cloning, characterization and expression analysis of glutathione S-transferase from the Antarctic yeast Rhodotorula mucilaginosa AN5. Protein Expr Purif 2019; 167:105518. [PMID: 31669543 DOI: 10.1016/j.pep.2019.105518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
The gene for glutathione S-transferase (GST) in Antarctic sea-ice yeast Rhodotorula mucilaginosa AN5 was cloned and expressed in Escherichia coli and named RmGST. Sequence analysis showed that the RmGST gene contained a 843 bp open reading frame, which encoded 280 amino acid residues with a calculated molecular mass of 30.4 kDa and isoelectric point of 5.40. RmGST has the typical C- and N-terminal double domains of glutathione S-transferase. Recombinant RmGST (rRmGST) was expressed in E. coli to produce heterologous protein that had a high specific activity of 60.2 U/mg after purification. The apparent Km values of rRmGST for glutathione and 1-chloro-2,4-dinitrobenzene were 0.35 mM and 0.40 mM, respectively. Optimum enzyme activity was measured at 35 °C and at pH 7.0 and complete inactivation was observed after incubation at 55 °C for 60 min rRmGST tolerated high salt concentrations (1.0 M NaCl) and was stable at pH 3.0. Additionally, the recombinant protein nearly kept whole activity in Hg2+ and Mn2+, and could tolerate Ca2+, Cu2+, Mg2+, Cd2+, EDTA, thiourea, urea, Tween-80, H2O2 and Triton X-100. Real-time quantitative PCR showed that relative expression of the GST gene was significantly increased under Cu2+ and low temperature stress. These results indicate that rRmGST is a typical low thermostable enzyme, while its other characteristics, heavy metal and low temperature tolerance, might be related to its Antarctic home environment.
Collapse
|
4
|
Hou Y, Qiao C, Wang Y, Wang Y, Ren X, Wei Q, Wang Q. Cold-Adapted Glutathione S-Transferases from Antarctic Psychrophilic Bacterium Halomonas sp. ANT108: Heterologous Expression, Characterization, and Oxidative Resistance. Mar Drugs 2019; 17:md17030147. [PMID: 30832239 PMCID: PMC6471826 DOI: 10.3390/md17030147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Glutathione S-transferases are one of the most important antioxidant enzymes to protect against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene, designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and expressed in Escherichia coli (E. coli) BL21. The hsgst gene was 603 bp in length and encoded a protein of 200 amino acids. Compared with the mesophilic EcGST, homology modeling indicated HsGST had some structural characteristics of cold-adapted enzymes, such as higher frequency of glycine residues, lower frequency of proline and arginine residues, and reduced electrostatic interactions, which might be in relation to the high catalytic efficiency at low temperature. The recombinant HsGST (rHsGST) was purified to apparent homogeneity with Ni-affinity chromatography and its biochemical properties were investigated. The specific activity of the purified rHsGST was 254.20 nmol/min/mg. The optimum temperature and pH of enzyme were 25 °C and 7.5, respectively. Most importantly, rHsGST retained 41.67% of its maximal activity at 0 °C. 2.0 M NaCl and 0.2% H₂O₂ had no effect on the enzyme activity. Moreover, rHsGST exhibited its protective effects against oxidative stresses in E. coli cells. Due to its high catalytic efficiency and oxidative resistance at low temperature, rHsGST may be a potential candidate as antioxidant in low temperature health foods.
Collapse
Affiliation(s)
- Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Chenhui Qiao
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Yifan Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Yatong Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Xiulian Ren
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Qifeng Wei
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| | - Quanfu Wang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
| |
Collapse
|
5
|
Electrophoretic pattern of glutathione S-transferase (GST) in antibiotic resistance Gram-positive bacteria from poultry litter. Microb Pathog 2017; 110:285-290. [PMID: 28687323 DOI: 10.1016/j.micpath.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
The present study is aimed to assess the role of glutathione S-transferase (GST) in antibiotic resistance among the bacteria isolated from the poultry litter and to identify the effect of GST to reduce the antimicrobial activity of antibiotics. Induction of various antibiotics to Staphylococcus, Streptococcus and Micrococcus sp. isolated from the poultry litter showed that the activity of GST was three to four folds higher than those of control. Analysis of the isozyme pattern of GST revealed that variation in the expression may be due to antibiotic resistance. The results concluded that GST might play an important role in the protection against the toxic effect of the antimicrobial agents which leads bacteria to become resistant to antibiotics.
Collapse
|
6
|
Shi Y, Wang Q, Hou Y, Hong Y, Han X, Yi J, Qu J, Lu Y. Molecular cloning, expression and enzymatic characterization of glutathione S-transferase from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506. Microbiol Res 2013; 169:179-84. [PMID: 23890723 DOI: 10.1016/j.micres.2013.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/25/2013] [Accepted: 06/29/2013] [Indexed: 11/18/2022]
Abstract
A glutathione S-transferase (GST) gene from Antarctic sea-ice bacteria Pseudoalteromonas sp. ANT506 (namely PsGST), was cloned and expressed in Escherichia coli. The open reading frame of PsGST comprised 654 bp encoding a protein of 217 amino acids with a calculated molecular size of 24.3 kDa. The rPsGST possesses the conserved amino acid defining the binding sites of glutathione (G-site) and substrate binding pocket (H-site) in GST N_3 family. PsGST was expressed in E. coli and the recombinant PsGST (rPsGST) was purified by Ni-affinity chromatography with a high specific activity of 74.21 U/mg. The purified rPsGST showed maximum activity at 40 °C and exhibited 14.2% activity at 0 °C. It was completely inactivated at 50 °C for 40 min. These results indicated that rPsGST was a typical cold active GST with low thermostability. The enzyme was little affected by H2O2 and Triton X-100, and 50.2% of the remaining activity was detected in the presence of high salt concentrations (2M NaCl). The enzymatic Km values for CDNB and GSH was 0.22 mM and 1.01 mM, respectively. These specific enzyme properties may be related to the survival environment of Antarctic sea ice bacteria.
Collapse
Affiliation(s)
- Yonglei Shi
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Quanfu Wang
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China.
| | - Yanhua Hou
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Yanyan Hong
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Xiao Han
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Jiali Yi
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Junjie Qu
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| | - Yi Lu
- School of Marine and Technology, Harbin Institute of Technology, 264209 Weihai, PR China
| |
Collapse
|
7
|
Allocati N, Federici L, Masulli M, Di Ilio C. Distribution of glutathione transferases in Gram-positive bacteria and Archaea. Biochimie 2011; 94:588-96. [PMID: 21945597 DOI: 10.1016/j.biochi.2011.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/08/2011] [Indexed: 11/29/2022]
Abstract
Glutathione transferases (GSTs) have been widely studied in Gram-negative bacteria and the structure and function of several representatives have been elucidated. Conversely, limited information is available about the occurrence, classification and functional features of GSTs both in Gram-positive bacteria and in Archaea. An analysis of 305 fully-sequenced Gram-positive genomes highlights the presence of 49 putative GST genes in the genera of both Firmicutes and Actinobacteria phyla. We also performed an analysis on 81 complete genomes of the Archaea domain. Eleven hits were found in the Halobacteriaceae family of the Euryarchaeota phylum and only one in the Crenarchaeota phylum. A comparison of the identified sequences with well-characterized GSTs belonging to both Gram-negative and eukaryotic GSTs sheds light on their putative function and the evolutionary relationships within the large GST superfamily. This analysis suggests that the identified sequences mainly cluster in the new Xi class, while Beta class GSTs, widely distributed in Gram-negative bacteria, are under-represented in Gram-positive bacteria and absent in Archaea.
Collapse
Affiliation(s)
- Nerino Allocati
- Dipartimento di Scienze Biomediche, Università G. d'Annunzio, Via dei Vestini 31, I-66013 Chieti, Italy
| | | | | | | |
Collapse
|
8
|
Johnson T, Newton GL, Fahey RC, Rawat M. Unusual production of glutathione in Actinobacteria. Arch Microbiol 2009; 191:89-93. [PMID: 18719892 PMCID: PMC2605195 DOI: 10.1007/s00203-008-0423-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/16/2008] [Accepted: 07/25/2008] [Indexed: 11/25/2022]
Abstract
Most Actinobacteria produce mycothiol as the major thiol. In addition to mycothiol Rhodococcus AD45 generates a substantial level of glutathione possibly using genes acquired in a lateral transfer. Instead of mycothiol, Rubrobacter radiotolerans and Rubrobacter xylanophilus produce glutathione, whose synthesis appears to involve enzymes substantially different from those in other organisms.
Collapse
Affiliation(s)
- Todd Johnson
- Department of Biology, California State University-Fresno, Fresno, CA 93740, USA
| | | | | | | |
Collapse
|
9
|
Cloning, expression, purification and characterization of recombinant glutathione-S-transferase from Xylella fastidiosa. Protein Expr Purif 2008; 59:153-60. [PMID: 18331799 DOI: 10.1016/j.pep.2008.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/18/2008] [Accepted: 01/23/2008] [Indexed: 11/21/2022]
Abstract
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST.
Collapse
|
10
|
Garcia W, Travensolo RF, Rodrigues NC, Muniz JRC, Caruso CS, Lemos EGM, Araujo APU, Carrilho E. Crystallization and preliminary X-ray diffraction analysis of a glutathione S-transferase from Xylella fastidiosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:85-7. [PMID: 18259055 PMCID: PMC2374177 DOI: 10.1107/s174430910706825x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/23/2007] [Indexed: 11/11/2022]
Abstract
Glutathione S-transferases (GSTs) form a group of multifunctional isoenzymes that catalyze the glutathione-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GST from Xylella fastidiosa (xfGST) was overexpressed in Escherichia coli and purified by conventional affinity chromatography. In this study, the crystallization and preliminary X-ray analysis of xfGST is described. The purified protein was crystallized by the vapour-diffusion method, producing crystals that belonged to the triclinic space group P1. The unit-cell parameters were a = 47.73, b = 87.73, c = 90.74 A, alpha = 63.45, beta = 80.66, gamma = 94.55 degrees. xfGST crystals diffracted to 2.23 A resolution on a rotating-anode X-ray source.
Collapse
Affiliation(s)
- Wanius Garcia
- Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - Regiane F. Travensolo
- Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - Nathalia C. Rodrigues
- Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - João R. C. Muniz
- Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - Célia S. Caruso
- Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - Eliana G. M. Lemos
- Laboratório de Bioquímica de Microrganismos e de Plantas, Departamento de Tecnologia, UNESP, Jaboticabal, Brazil
| | - Ana Paula U. Araujo
- Laboratório de Biofísica Molecular ‘Sérgio Mascarenhas’, Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| | - Emanuel Carrilho
- Grupo de Bioanalítica, Microfabricação e Separações, Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, Brazil
| |
Collapse
|
11
|
Abdalla AM, El-Mogy M, Farid NM, El-Sharabasy M. Two glutathione S-transferase isoenzymes purified from Bulinus truncatus (Gastropoda: Planorbidae). Comp Biochem Physiol B Biochem Mol Biol 2006; 143:76-84. [PMID: 16311050 DOI: 10.1016/j.cbpb.2005.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 10/13/2005] [Accepted: 10/14/2005] [Indexed: 10/25/2022]
Abstract
We purified and characterized two major glutathione S-transferase isoenzymes (GST2 and GST3) from snail Bulinus truncatus (Mollusca, Gastropoda, Planorbidae) tissue. The Km with respect to 1-chloro-2, 4-dinitrobenzene (CDNB) for both isoenzymes was increased as the pH decreased. Km of both isoenzymes with respect to glutathione (GSH) doubled when the pH was increased from 6.0 to 6.5. Acid inactivated GST2 and GST3 and the two enzymes were almost inactive at pH 3.5. However, they retain the full activity for at least 20 h when incubated at pH between 6.0 and 9.0. The optimum temperature was 45 degrees C for GST2 and 50 degrees C for GST3. The half lifetime at 50 degrees C was 70 min and 45 min for GST2 and GST3 isoenzymes, respectively. Addition of 5 mM GSH to the incubation buffer increased the half life of both isoenzymes more than fourfold. The activation energy for catalyzing the conjugation of CDNB was 1.826 and 3.435 kcal/mol for GST2 and GST3, respectively. I50 values for Cibacron blue, bromosulphophthalein, indocyanine green, hematin and ethacrynic acid were 0.76 microM, 47.9 microM, 7.59 microM, 0.03 microM and 0.79 microM for GST2, and 0.479 microM, 79.4 microM, 89.1 microM, 32.4 microM and 1.15 microM for GST3, respectively. Cibacron blue and indocyanine green were non-competitive inhibitors, while hematin was a mixed inhibitor. Bromosulphophthalein was found to be a competitive inhibitor for GST2 and a mixed inhibitor for GST3.
Collapse
Affiliation(s)
- Abdel-Monem Abdalla
- Molecular Biology Department, National Research Centre, Dokki, Cairo, Egypt.
| | | | | | | |
Collapse
|
12
|
Fura A, Shu YZ, Zhu M, Hanson RL, Roongta V, Humphreys WG. Discovering Drugs through Biological Transformation: Role of Pharmacologically Active Metabolites in Drug Discovery. J Med Chem 2004; 47:4339-51. [PMID: 15317447 DOI: 10.1021/jm040066v] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aberra Fura
- Bristol Myers Squibb, Pharmaceutical Research Institute, P.O. Box 5400, Princeton, New Jersey 08534, USA.
| | | | | | | | | | | |
Collapse
|