1
|
Dželalija M, Kvesić-Ivanković M, Jozić S, Ordulj M, Kalinić H, Pavlinović A, Šamanić I, Maravić A. Marine resistome of a temperate zone: Distribution, diversity, and driving factors across the trophic gradient. WATER RESEARCH 2023; 246:120688. [PMID: 37806125 DOI: 10.1016/j.watres.2023.120688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Marine and ocean environments are the most widespread habitats in the world but are still the least studied from the aspect of antibiotic resistance. The indigenous and tetracycline (TET)- and sulfamethoxazole (SXT)-resistant planktonic bacterial communities were simultaneously investigated for the first time along a trophic gradient of a temperate zone, regarding their taxonomic and functional structures as well as biotic and abiotic factors affecting their dynamics as vehicles of antibiotic resistance genes (ARGs), thus impacting the ARGs distribution at seasonal and spatial scales. A total of 80 microbiomes, recovered seasonally from bottom layer and surface waters along a 68-km transect from wastewater-impacted estuary to coastal and pristine open sea in the central Adriatic (Mediterranean Sea), were analysed using 16S rRNA amplicon sequencing, PICRUSt2 bioinformatics and extensive biostatistics. Eighty-one bacterial phyla were identified, with majority (n = 49) in summer when communities were found to be more species enriched across the gradient. Microbial diversity was more site-specific and pronounced in surface microbiomes in winter. Nevertheless, both richness and community diversity decreased with distance from the coast. Although the microbiomes from human-influenced sites significantly differed from those in oligotrophic offshore area, Proteobacteria were still the most abundant phylum during both seasons at the surface and seabed along the gradient, and the major contributors to the marine resistome regarding native and TET- and SXT-resistant microbial communities. Resistome structure was more diverse in winter, whereas peptide, vancomycin and multidrug resistance modules predominated regardless of season, trophic status, or antibiotic. However, multidrug, beta-lactam resistance modules as well as macrolide, phenicol, aminoglycoside, and particularly imipenem resistance genes were much more frequent in winter, suggesting that the diversity of indigenous resistomes is highly dependent on seasonal variations of the water column, driven by thermohaline stratification and nutrients. Moreover, several pathogenic genera stood out as important carriers of multiple resistance traits in TET- and SXT-related resistomes in both seasons, particularly Acinetobacter, Vibrio, Bacillus and Pseudomonas, beside which Proteus, Serratia and Bacteroides prevailed in native resistomes. This study evidenced seasonal and spatial variations of the marine microbiome and resistome and their driving forces along the trophic gradient, providing a comprehensive insight into the diversity and distribution of antibiotic resistance in the marine ecosystem of a temperate zone.
Collapse
Affiliation(s)
- Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Marija Kvesić-Ivanković
- Center of Excellence for Science and Technology-Integration of Mediterranean Region, University of Split, Ruđera Boškovića 31, 21000 Split, Croatia; Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Slaven Jozić
- Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Marin Ordulj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia
| | - Hrvoje Kalinić
- Department of Informatics, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Antonio Pavlinović
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| |
Collapse
|
2
|
Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a real consensus that new antibiotics are urgently needed and are the best chance for combating antibiotic resistance. The phylum Actinobacteria is one of the main producers of new antibiotics, with a recent paradigm shift whereby rare actinomycetes have been increasingly targeted as a source of new secondary metabolites for the discovery of new antibiotics. However, this review shows that the genus Streptomyces is still the largest current producer of new and innovative secondary metabolites. Between January 2015 and December 2020, a significantly high number of novel Streptomyces spp. have been isolated from different environments, including extreme environments, symbionts, terrestrial soils, sediments and also from marine environments, mainly from marine invertebrates and marine sediments. This review highlights 135 new species of Streptomyces during this 6-year period with 108 new species of Streptomyces from the terrestrial environment and 27 new species from marine sources. A brief summary of the different pre-treatment methods used for the successful isolation of some of the new species of Streptomyces is also discussed, as well as the biological activities of the isolated secondary metabolites. A total of 279 new secondary metabolites have been recorded from 121 species of Streptomyces which exhibit diverse biological activity. The greatest number of new secondary metabolites originated from the terrestrial-sourced Streptomyces spp.
Collapse
|
3
|
Baig U, Dahanukar N, Shintre N, Holkar K, Pund A, Lele U, Gujarathi T, Patel K, Jakati A, Singh R, Vidwans H, Tamhane V, Deshpande N, Watve M. Phylogenetic diversity and activity screening of cultivable Actinobacteria isolated from marine sponges and associated environments from the western coast of India. Access Microbiol 2021; 3:000242. [PMID: 34712902 PMCID: PMC8549387 DOI: 10.1099/acmi.0.000242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
The phylogenetic diversity of cultivable actinobacteria isolated from sponges (Haliclona spp.) and associated intertidal zone environments along the northern parts of the western coast of India were studied using 16S rRNA gene sequences. A subset of randomly selected actinobacterial cultures were screened for three activities, namely predatory behaviour, antibacterial activity and enzyme inhibition. We recovered 237 isolates from the phylum Actinobacteria belonging to 19 families and 28 genera, which could be attributed to 95 putative species using maximum-likelihood partition and 100 putative species using Bayesian partition in Poisson tree processes. Although the trends in the discovery of actinobacterial genera isolated from sponges were consistent with previous studies from different study areas, we provide the first report of nine actinobacterial species from sponges. We observed widespread non-obligate epibiotic predatory behaviour in eight actinobacterial genera and we provide the first report of predatory activity in Brevibacterium, Glutamicibacter, Micromonospora, Nocardiopsis, Rhodococcus and Rothia. Sponge-associated actinobacteria showed significantly more predatory behaviour than environmental isolates. While antibacterial activity by actinobacterial isolates mainly affected Gram-positive target bacteria with little or no effect on Gram-negative bacteria, predation targeted both Gram-positive and Gram-negative prey with equal propensity. Actinobacterial isolates from both sponges and associated environments produced inhibitors of serine proteases and angiotensin-converting enzyme. Predatory behaviour was strongly associated with inhibition of trypsin and chymotrypsin. Our study suggests that the sponges and associated environments of the western coast of India are rich in actinobacterial diversity, with widespread predatory activity, antibacterial activity and production of enzyme inhibitors. Understanding the diversity and associations among various actinobacterial activities – with each other and the source of isolation – can provide new insights into marine microbial ecology and provide opportunities to isolate novel therapeutic agents.
Collapse
Affiliation(s)
- Ulfat Baig
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Neelesh Dahanukar
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Neha Shintre
- Department of Microbiology, M.E.S. Abasaheb Garware College, Pune 411004, Maharashtra, India
| | - Ketki Holkar
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Anagha Pund
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Uttara Lele
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Tejal Gujarathi
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Kajal Patel
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Avantika Jakati
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Ruby Singh
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Harshada Vidwans
- Indian Institute of Science Education and Research, Pune (IISER-P), Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Vaijayanti Tamhane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Neelima Deshpande
- Department of Microbiology, M.E.S. Abasaheb Garware College, Pune 411004, Maharashtra, India
| | - Milind Watve
- Behavioural Intervention for Lifestyle Disorders (BILD) Clinic, Deenanath Mangeshkar Hospital and Research Centre, Erandwane, Pune 411004, Maharashtra, India
| |
Collapse
|
4
|
Diversity of actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China. Arch Microbiol 2021; 203:2875-2885. [PMID: 33751173 DOI: 10.1007/s00203-021-02277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Using 16S rRNA gene analysis and high-throughput, the diversity and community structure of actinobacteria in the sediments of Qaidam Lake and Qinghai Lake with different salinity and alkalinity in Qinghai-Xizang Plateau were studied, and the differences of actinobacteria community structure and their relationship with environmental factors were discussed. A total of 77 genera belonging to actinobacteria were found in the samples, of which 31 genera were found in the sediment samples of Qaidam Lake with 19 genera being dominant genera, such as Actinomycetes, Corynebacterium, Morella, Bifidobacterium, and 69 genera were found in the sediment samples of Qinghai Lake with 17 genera becoming dominant, such as Ilumattalaer, Actinotalea, Aquihaans and so on. The correlation analysis of environmental factors and community showed that the community structure of the two salt lakes was mainly affected by total salinity, total organic carbon) (TOC) and CO32-, among which TOC was the most influential factor. The functional differences of metabolic pathway enrichment analysis (KEGG) showed that there was a high abundance of metabolic-related functions in the two salt lakes. There were significant differences in the biosynthesis of energy metabolism and other secondary metabolites between the two salt lakes, which may be the main reason for the difference of actinomycete community. The results show that the actinobacteria diversity was rich in the plateau salt lakes, and affected by a variety of physicochemical factors. In addition, there were a large number of unculturable actinobacteria in the sediment, which provides a theoretical basis for the excavation and utilization of actinobacteria resources in salt lakes.
Collapse
|
5
|
Haider S, Khan IA, Ding H, Chittiboyina AG. Synthetic Approaches for Building Tricyclic Cage-like Motifs Found in Indoxamycins. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210193141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoxamycins A-F, a novel class of polyketides, were isolated from the saline culture
of marine-derived actinomyces by Sato et al. in 2009. Intriguing stereochemical complexity
involving tricyclic [5.5.6] cage-like structures with six consecutive chiral centers challenged
many organic chemists. Chemical ingenuity, implementation of pioneered reactions
along with fine chemical transformations allowed not only the rapid construction of the central
core but also allowed minor structural revision and paved the information to delineate the
absolute stereostructures of these complex polyketide marine natural products. To achieve the
central core structure in indoxamycins A-F, reactions like the Ireland-Claisen rearrangement,
an enantioselective 1,6-enyne reductive cyclization, and one-pot cascade reactions of 1,2-
addition/oxa-Michael/methylenation were employed. Using the chiral pool approach, the
readily available R-carvone was employed as a cost-effective starting material to achieve the concise total syntheses
of (-)-indoxamycins A and B, in which Pauson-Khand, Cu-catalyzed Michael addition and tandem retro-oxa-Michael
addition/1,2-addition/oxa-Michael addition reactions were employed. The antipodes, (+)-indoxamycins can be easily
accessed by simply switching to S-carvone as the starting material. Synthetically prepared indoxamycins A-F are devoid
of antiproliferative properties, which disagree with the work reported by Sato and co-workers for (-)-
indoxamycins A and F. Nevertheless, ready access to such complex natural products allows probing the untapped
potential biological activities of these polyketides including cytotoxicity. A concise overview of interesting, key
chemical transformations including named reactions in establishing the architecture of indoxamycins was compiled to
inspire organic chemists and help reinvigorate novel strategies for the asymmetric synthesis as well as the development
of novel derivatives of indoxamycins with unique physicochemical and biological properties.
Collapse
Affiliation(s)
- Saqlain Haider
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou-310058, China
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States
| |
Collapse
|
6
|
Jia P, Li M, Feng H, Ma M, Gai J, Yang Z. Actinobacterial Communities of Chosen Extreme Habitats in China. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.3.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pengli Jia
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Miao Li
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Haiyan Feng
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Mutian Ma
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, 29 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
7
|
Ma A, Zhang X, Jiang K, Zhao C, Liu J, Wu M, Wang Y, Wang M, Li J, Xu S. Phylogenetic and Physiological Diversity of Cultivable Actinomycetes Isolated From Alpine Habitats on the Qinghai-Tibetan Plateau. Front Microbiol 2020; 11:555351. [PMID: 33117304 PMCID: PMC7566193 DOI: 10.3389/fmicb.2020.555351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Actinomycetes in extreme alpine habitat have attracted much attention due to their unique physiological activities and functions. However, little is known about their ecological distribution and diversity. Here, we explored the phylogenetic relationship and physiological heterogeneity of cultivable actinomycetes from near-root soils of different plant communities in the Laohu Ditch (2200 - 4200 m) and Gaize County area (5018 - 5130 m) on the Qinghai-Tibetan Plateau. A total of 128 actinomycete isolates were obtained, 16S rDNA-sequenced and examined for antimicrobial activities and organic acid, H2S, diffusible pigments, various extracellular enzymes production. Seventy three isolates of the total seventy eight isolates from the Laohu Ditch, frequently isolated from 2200 to 4200 m, were closely related to Streptomyces spp. according to the 16S rDNA sequencing, while four isolates within the genus Nocardia spp. were found at 2200, 2800, and 3800 m. In addition, one potential novel isolate with 92% sequence similarity to its nearest match Micromonospora saelicesensis from the GenBank database, was obtained at 2200 m. From the Gaize County area, fifty Streptomyces isolates varied in diversity at different sites from 5018 to 5130 m. The investigation of phenotypic properties of 128 isolates showed that 94.5, 78.9, 68, 64.8, 53, 51.6, 50, 36.7, 31.2, and 22.7% of the total isolates produced catalase, lipase 2, urease, protease, H2S, lipase 3, amylase, lipase 1, diffusible pigment and organic acid, respectively. The antimicrobial assays of the total isolates revealed that 5, 28, 19, and 2 isolates from Streptomyces spp. exhibited antimicrobial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa, respectively. This study intends to bring helpful insights in the exploitation and utilization of alpine actinomycetes for novel bioactive compounds discovery.
Collapse
Affiliation(s)
- Aiai Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China.,Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Xinfang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kan Jiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Changming Zhao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Junlin Liu
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Mengdan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingming Wang
- Life Science and Engineering College of Northwest University for Nationalities, Lanzhou, China
| | - Jinhui Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shijian Xu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Marine Sediment-Derived Streptomyces Strain Produces Angucycline Antibiotics against Multidrug-Resistant Staphylococcus aureus Harboring SCCmec Type 1 Gene. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Philippine archipelago is geographically positioned in the tropics with rich areas of marine biodiversity. Its marine sediments harbor actinomycetes that exhibit antibacterial activity. Screening of actinomycetes isolated from marine sediments collected near the coast of Islas de Gigantes, Iloilo showed one isolate that exhibited high activity against the multidrug-resistant Staphylococcus aureus (MRSA) strain carrying the Staphylococcal Cassette Chromosome mec (SCCmec) type 1 gene, a biomarker for drug resistance. The isolate was identified as Streptomyces sp. strain DSD011 based on its 16s rRNA and protein-coding genes (atpD, recA, rpoB, and trpB) sequences, and was found to be a new species of salt-tolerant marine Streptomyces. Further, the strain harbors both non-ribosomal peptide synthetase (NRPS) and type II polyketide synthase (PKS) in its genome. The targeted chromatographic isolation and chemical investigations by Liquid Chromatography Mass Spectrometry-Time of Flight (LCMS-TOF), tandem mass spectrometry (MS/MS), and Global Natural Product Social molecular networking (GNPS) of the antibiotics produced by the strain afforded the two polycyclic aromatic polyketide angucycline glycosides, fridamycin A (1) and fridamycin D (2), which are products of type II PKS biosynthesis. Compounds 1 and 2 displayed antibacterial activity against MRSA with minimum inhibitory concentration (MIC) of 500 μg/mL and 62.5 μg/mL, respectively. These results suggest that the underexplored marine sediments near the coast of Islas de Gigantes, Iloilo offer access to undiscovered Streptomyces species that are invaluable sources of antibiotic leads.
Collapse
|
9
|
Yi Z, Cao X, Li H, Jian H, Xu X, Yu L, Tang X. Genomic analysis of Microbacterium sediminis YLB-01 T reveals backgrounds related to its deep-sea environment adaptation. Mar Genomics 2020; 56:100818. [PMID: 33632425 DOI: 10.1016/j.margen.2020.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Microbacterium sediminis YLB-01T, a piezotolerant and psychrotolerant actinomycete, was isolated from deep-sea sediment of the South-West Indian Ocean and could be a good model for understanding the adaptation of extremophiles to the benthic piezosphere. Here, we report the analysis of the complete genome sequence of strain YLB-01T. The genome sequence consists of a single circular chromosome comprising 2,792,195 bp and a linear plasmid comprising 127,669 bp with G + C content of 71.76 and 68.49 mol%, respectively. In this regard, strain YLB-01T possesses the smallest genome size but the highest G + C content among the genus Microbacterium sequenced to date. As the first complete genome sequence of the genus Microbacterium isolated from deep-sea environment, the strain YLB-01T genome is unique or enriched in genes involved in xenobiotics biodegradation and metabolism, compatible solutes, and transposases, some of which might be related to bacterial enhancement of ecological fitness in the deep sea.
Collapse
Affiliation(s)
- Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiaorong Cao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hong Li
- China National Accreditation Insititute for Conformity Assessment, No. 8 Nanhuashi Dajie Chongwen District, Beijing 10086, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiashutong Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Libo Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xixiang Tang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; China Ocean Sample Respository (Biology), Xiamen 361005, China.
| |
Collapse
|
10
|
Bull AT, Goodfellow M. Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns. MICROBIOLOGY-SGM 2020; 165:1252-1264. [PMID: 31184575 DOI: 10.1099/mic.0.000822] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of 'the uncultured microbial majority' has now revealed enormous taxonomic diversity among 'dark' and 'rare' actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify 'gifted' organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.
Collapse
Affiliation(s)
- Alan T Bull
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
11
|
New genus-specific primers for PCR identification of Rubrobacter strains. Antonie Van Leeuwenhoek 2019; 112:1863-1874. [PMID: 31407134 PMCID: PMC6834744 DOI: 10.1007/s10482-019-01314-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/01/2019] [Indexed: 12/02/2022]
Abstract
A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes.
Collapse
|
12
|
Molecular Identification and Phylogenetic Analysis of Multidrug-resistant Bacteria using 16S rDNA Sequencing. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Masand M, Sivakala KK, Menghani E, Thinesh T, Anandham R, Sharma G, Sivakumar N, Jebakumar SRD, Jose PA. Biosynthetic Potential of Bioactive Streptomycetes Isolated From Arid Region of the Thar Desert, Rajasthan (India). Front Microbiol 2018; 9:687. [PMID: 29720968 PMCID: PMC5915549 DOI: 10.3389/fmicb.2018.00687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
Acquisition of Actinobacteria, especially Streptomyces from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some Streptomyces strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method. Among them, 12 strains were identified by a two-level antimicrobial screening method, exerting antimicrobial effects against a panel of indicator strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species. Based on their potent antimicrobial activity, four isolates were further explored by 16S rRNA gene-based identification, genetic screening, and metabolomic analysis; and it was found that these strains belong to the genus Streptomyces. The selected strains were found to have polyketide synthase and non-ribosomal peptide synthetase systems. In addition, extracellular metabolomic screening revealed that the isolates produced analogs of doxorubicinol, pyrromycin, erythromycin, and 6-13 other putative novel metabolites. These results demonstrate the significance of Streptomyces inhabiting the arid region of Thar Desert, suggesting that similar arid environments can be considered as the reservoirs of novel Streptomyces strains that could have biotechnological significance.
Collapse
Affiliation(s)
- Meeta Masand
- School of Life Sciences, Suresh Gyan Vihar University, Jaipur, India
| | | | - Ekta Menghani
- Department of Biotechnology, School of Sciences, JECRC University, Jaipur, India
| | - Thangathurai Thinesh
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rangasamy Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Gaurav Sharma
- School of Life Sciences, Suresh Gyan Vihar University, Jaipur, India
| | - Natesan Sivakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Solomon R D Jebakumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
14
|
Liu C, Jiang Y, Wang X, Chen D, Chen X, Wang L, Han L, Huang X, Jiang C. Diversity, Antimicrobial Activity, and Biosynthetic Potential of Cultivable Actinomycetes Associated with Lichen Symbiosis. MICROBIAL ECOLOGY 2017; 74:570-584. [PMID: 28361265 DOI: 10.1007/s00248-017-0972-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/21/2017] [Indexed: 05/26/2023]
Abstract
Lichens are structured associations of a fungus with a cyanobacteria and/or green algae in a symbiotic relationship, which provide specific habitats for diverse bacterial communities, including actinomycetes. However, few studies have been performed on the phylogenetic relationships and biosynthetic potential of actinomycetes across lichen species. In the present study, a total of 213 actinomycetes strains were isolated from 35 lichen samples (22 lichen genera) collected in Yunnan Province, China. 16S rRNA gene sequence analysis revealed an unexpected level of diversity among these isolates, which were distributed into 38 genera, 19 families, and 9 orders within the Actinobacteria phylum. The detailed taxa of isolates had no clear relationship to the taxonomic affiliations of the associated lichens. To the best of our knowledge, this is the first report to describe the isolation of Actinophytocola, Angustibacter, Herbiconiux, Kibdelosporangium, Kineosporia, Kitasatospora, Nakamurella, Nonomuraea, Labedella, Lechevalieria, Lentzea, Schumannella, and Umezawaea species from lichens. At least 40 isolates (18.78%) are likely to represent novel actinomycetes taxa within 15 genera. In addition, all 213 isolates were tested for antimicrobial activity and screened for genes associated with secondary metabolite production to evaluate their biosynthetic potential. These results demonstrate that the lichens of Yunnan Province represent an extremely rich reservoir for the isolation of a significant diversity of actinomycetes, including novel species, which are potential source for discovering biologically active compounds.
Collapse
Affiliation(s)
- Chengbin Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Science, Northeastern University, Shenyang, 110819, China
| | - Yi Jiang
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China.
| | - Xinyu Wang
- Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dongbo Chen
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China
| | - Xiu Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Science, Northeastern University, Shenyang, 110819, China
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China
| | - Lisong Wang
- Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Science, Northeastern University, Shenyang, 110819, China.
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Science, Northeastern University, Shenyang, 110819, China
| | - Chenglin Jiang
- Yunnan Institute of Microbiology, School of Life Science, Yunnan University, Kunming, 650091, China
| |
Collapse
|
15
|
Zhang S, Liu X, Jiang Q, Shen G, Ding W. Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity. AMB Express 2017; 7:178. [PMID: 28921475 PMCID: PMC5603465 DOI: 10.1186/s13568-017-0475-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 11/10/2022] Open
Abstract
Chloropicrin is widely used to control ginger wilt in China, which have an enormous impact on soil microbial diversity. However, little is known on the possible legacy effects on soil microbial community composition with continuous fumigation over different years. In this report, we used high throughput Illumina sequencing and Biolog ECO microplates to determine the bacterial community and microbial metabolic activity in ginger harvest fields of non-fumigation (NF), chloropicrin-fumigation for 1 year (F_1) and continuous chloropicrin-fumigation for 3 years (F_3). The results showed that microbial richness and diversity in F_3 were the lowest, while the metabolic activity had no significant difference. With the increase of fumigation years, the incidence of bacterial wilt was decreased, the relative abundance of Actinobacteria and Saccharibacteria were gradually increased. Using LEfSe analyses, we found that Saccharibacteria was the most prominent biomarker in F_3. Eight genera associated with antibiotic production in F_3 were screened out, of which seven belonged to Actinobacteria, and one belonged to Bacteroidetes. The study indicated that with the increase of fumigation years, soil antibacterial capacity may be increased (possible reason for reduced the incidence of bacterial wilt), and Saccharibacteria played a potential role in evaluating the biological effects of continuous fumigation.
Collapse
Affiliation(s)
- Shuting Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Xiaojiao Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715 China
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, Netherlands
| | - Qipeng Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Guihua Shen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715 China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, No.2 Tiansheng Road, Beibei, Chongqing, 400715 China
| |
Collapse
|
16
|
Jose PA, Jha B. Intertidal marine sediment harbours Actinobacteria with promising bioactive and biosynthetic potential. Sci Rep 2017; 7:10041. [PMID: 28855551 PMCID: PMC5577230 DOI: 10.1038/s41598-017-09672-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Actinobacteria are the major source of bioactive natural products that find their value in research and drug discovery programmes. Antimicrobial resistance and the resulting high demand for novel antibiotics underscore the need for exploring novel sources of these bacteria endowed with biosynthetic potential. Intertidal ecosystems endure regular periods of immersion and emersion, and represent an untapped source of Actinobacteria. In this study, we studied the diversity and biosynthetic potential of cultivable Actinobacteria from intertidal sediments of Diu Island in the Arabian Sea. A total of 148 Actinobacteria were selectively isolated using a stamping method with eight isolation media. Isolates were grouped into OTUs based on their 16S rRNA gene sequence, and categorized within actinobacterial families such as Glycomycetaceae, Micromonosporaceae, Nocardiaceae, Nocardiopsaceae, Pseudonocardiaceae, Streptomycetaceae, and Thermomonosporaceae. The biosynthetic potential of the Actinobacteria, necessary for secondary metabolite biosynthesis, was screened and confirmed by extensive fingerprinting approaches based on genes coding for polyketide synthases and nonribosomal peptide synthetases. The observed biosynthetic potential was correlated with the antibacterial activity exhibited by these isolates in laboratory conditions. Ultimately, the results demonstrate that intertidal sediment is a rich source of diverse cultivable Actinobacteria with high potential to synthesize novel bioactive compounds in their genomes.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar - 364002, Gujarat, India.
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar - 364002, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), New Delhi, India.
| |
Collapse
|
17
|
Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial Rare Biospheres and Dark Matter Revealed in Habitats of the Chilean Atacama Desert. Sci Rep 2017; 7:8373. [PMID: 28827739 PMCID: PMC5566421 DOI: 10.1038/s41598-017-08937-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022] Open
Abstract
The Atacama Desert is the most extreme non-polar biome on Earth, the core region of which is considered to represent the dry limit for life and to be an analogue for Martian soils. This study focused on actinobacteria because they are keystone species in terrestrial ecosystems and are acknowledged as an unrivalled source of bioactive compounds. Metagenomic analyses of hyper-arid and extreme hyper-arid soils in this desert revealed a remarkable degree of actinobacterial 'dark matter', evidenced by a detected increase of 34% in families against those that are validly published. Rank-abundance analyses indicated that these soils were high-diversity habitats and that the great majority of designated 'rare' genera (up to 60% of all phylotypes) were always rare. These studies have enabled a core actinobacterial microbiome common to both habitats to be defined. The great majority of detected taxa have not been recovered by culture dependent methods, neither, with very few exceptions, has their functional ecology been explored. A microbial seed bank of this magnitude has significance not just for Atacama soil ecosystem resilience but represents an enormous untapped resource for biotechnology discovery programmes in an era where resistance to existing antibiotics is rapidly becoming a major threat to global health.
Collapse
Affiliation(s)
- Hamidah Idris
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Michael Goodfellow
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Roy Sanderson
- School of Biology, Ridley Building, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Juan A. Asenjo
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 851, Santiago, Chile
| | - Alan T. Bull
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ Kent, United Kingdom
| |
Collapse
|
18
|
Liu X, Zhang S, Jiang Q, Bai Y, Shen G, Li S, Ding W. Using community analysis to explore bacterial indicators for disease suppression of tobacco bacterial wilt. Sci Rep 2016; 6:36773. [PMID: 27857159 PMCID: PMC5114674 DOI: 10.1038/srep36773] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Although bacterial communities play important roles in the suppression of pathogenic diseases and crop production, little is known about the bacterial communities associated with bacterial wilt. Based on 16S rRNA gene sequencing, statistical analyses of microbial communities in disease-suppressive and disease-conducive soils from three districts during the vegetation period of tobacco showed that Proteobacteria was the dominant phylum, followed by Acidobacteria. Only samples from September were significantly correlated to disease factors. Fifteen indicators from taxa found in September (1 class, 2 orders, 3 families and 9 genera) were identified in the screen as being associated with disease suppression, and 10 of those were verified for potential disease suppression in March. Kaistobacter appeared to be the genus with the most potential for disease suppression. Elucidating microbially mediated natural disease suppression is fundamental to understanding microecosystem responses to sustainable farming and provides a possible approach for modeling disease-suppressive indicators. Here, using cluster analysis, MRPP testing, LEfSe and specific filters for a Venn diagram, we provide insight into identifying possible indicators of disease suppression of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiaojiao Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Shuting Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Qipeng Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Yani Bai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Guihua Shen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Prieto-Davó A, Dias T, Gomes SE, Rodrigues S, Parera-Valadez Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudêncio SP. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential. Front Microbiol 2016; 7:1594. [PMID: 27774089 PMCID: PMC5053986 DOI: 10.3389/fmicb.2016.01594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.
Collapse
Affiliation(s)
- Alejandra Prieto-Davó
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Tiago Dias
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisbon, Portugal
| | - Sara Rodrigues
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Yessica Parera-Valadez
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ilda Santos-Sanches
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Susana P Gaudêncio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
20
|
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340. [PMID: 27621725 PMCID: PMC5002886 DOI: 10.3389/fmicb.2016.01340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoxuan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Liu
- Information Network Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lijun Xi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
21
|
Wang L, Liu X, Yu S, Shi X, Wang X, Zhang XH. Bacterial community structure in intertidal sediments of Fildes Peninsula, maritime Antarctica. Polar Biol 2016. [DOI: 10.1007/s00300-016-1958-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:273-302. [DOI: 10.1007/82_2016_503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Karuppiah V, Sun W, Li Z. Natural Products of Actinobacteria Derived from Marine Organisms. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2016. [DOI: 10.1016/b978-0-444-63602-7.00013-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Yang J, Li X, Huang L, Jiang H. Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau. Front Microbiol 2015; 6:1345. [PMID: 26648925 PMCID: PMC4663260 DOI: 10.3389/fmicb.2015.01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Xiaoyan Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| |
Collapse
|
25
|
Prakash S, Ramasubburayan R, Iyapparaj P, Ahila NK, Sri Ramkumar V, Palavesam A, Immanuel G, Kannapiran E. Influence of physicochemical and nutritional factors on bacterial diversity in mangrove sediments along the southwest coast of Tamilnadu, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:562. [PMID: 26255268 DOI: 10.1007/s10661-015-4713-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The present study was undertaken to investigate the diversity of mangrove-associated bacterial genera at Manakudy estuary, Southwest coast of India. The root and rhizosphere sediments of both mangrove and their associated plants were collected from chosen area. Results inferred that the maximum nutrients, THB density, and diversity indices were recorded in rhizosphere and root sample of Avicennia officinalis. Altogether, 258 bacterial strains were isolated from the chosen mangrove samples and screened for nitrogen fixing and phosphate solubilizing ability. Screened result inferred that, 36.43 % isolates had nitrogen fixing and 29.45 % isolates had phosphate solubilizing ability. Here, the genus Bacillus spp. (21.71 %) was the most dominant genera. The bacterial diversity indices, i.e., univariate analysis showed remarkable variation between the chosen samples; however, maximum diversity indices was registered by rhizosphere and root sample of A. officinalis. The 95 % confidence interval and ellipse showed that samples were well mendacious within AvTD and VarTD. Likewise, the multivariate analysis like similarity percentage was good discriminator from 16.64 to 100 % by Bray-Curtis dissimilarity. The prinicipal component analysis (PCA) showed marked variation between the tested bacterial communities. Cluster analysis and non-metric multi-dimensional scaling (MDS) were grouped by Bray-Curtis similarity index which strongly evidence that the rhizosphere and root samples of A. officinalis were highly diversified in the study area.
Collapse
Affiliation(s)
- S Prakash
- Research Institute, SRM University, Kattankulathur, Tamil Nadu, Kancheepuram District, 603 203, India,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Appl Environ Microbiol 2015; 81:3086-103. [PMID: 25724963 DOI: 10.1128/aem.03859-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 12/29/2022] Open
Abstract
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds.
Collapse
|
27
|
Antimicrobial and Biocatalytic Potential of Haloalkaliphilic Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Baskaran R, Mohan P, Ganesamoorthy S, Nadda A. Screening of microbial metabolites and bioactive components. Microb Biotechnol 2014. [DOI: 10.1201/b17587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Duncan KR, Haltli B, Gill KA, Correa H, Berrué F, Kerr RG. Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada. J Ind Microbiol Biotechnol 2014; 42:57-72. [PMID: 25371290 DOI: 10.1007/s10295-014-1529-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
Marine sediments from Newfoundland, Canada were explored for biotechnologically promising Actinobacteria using culture-independent and culture-dependent approaches. Culture-independent pyrosequencing analyses uncovered significant actinobacterial diversity (H'-2.45 to 3.76), although the taxonomic diversity of biotechnologically important actinomycetes could not be fully elucidated due to limited sampling depth. Assessment of culturable actinomycete diversity resulted in the isolation of 360 actinomycetes representing 59 operational taxonomic units, the majority of which (94 %) were Streptomyces. The biotechnological potential of actinomycetes from NL sediments was assessed by bioactivity and metabolomics-based screening of 32 representative isolates. Bioactivity was exhibited by 41 % of isolates, while 11 % exhibited unique chemical signatures in metabolomics screening. Chemical analysis of two isolates resulted in the isolation of the cytotoxic metabolite 1-isopentadecanoyl-3β-D-glucopyranosyl-X-glycerol from Actinoalloteichus sp. 2L868 and sungsanpin from Streptomyces sp. 8LB7. These results demonstrate the potential for the discovery of novel bioactive metabolites from actinomycetes isolated from Atlantic Canadian marine sediments.
Collapse
Affiliation(s)
- K R Duncan
- Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Pfeiffer S, Pastar M, Mitter B, Lippert K, Hackl E, Lojan P, Oswald A, Sessitsch A. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database. Environ Microbiol 2014; 16:2389-407. [PMID: 25229098 DOI: 10.1111/1462-2920.12350] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.
Collapse
|
31
|
Rodrigues VD, Torres TT, Ottoboni LMM. Bacterial diversity assessment in soil of an active Brazilian copper mine using high-throughput sequencing of 16S rDNA amplicons. Antonie van Leeuwenhoek 2014; 106:879-90. [PMID: 25129578 DOI: 10.1007/s10482-014-0257-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022]
Abstract
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Collapse
Affiliation(s)
- Viviane D Rodrigues
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas-UNICAMP, POB 6010, Campinas, SP, 13083-875, Brazil,
| | | | | |
Collapse
|
32
|
Antibacterial activity of Pseudonocardia sp. JB05, a rare salty soil actinomycete against Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:182945. [PMID: 25202705 PMCID: PMC4150441 DOI: 10.1155/2014/182945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/09/2014] [Accepted: 07/13/2014] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40 AU mL−1 against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds.
Collapse
|
33
|
Wagner M, Abdel-Mageed WM, Ebel R, Bull AT, Goodfellow M, Fiedler HP, Jaspars M. Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. JOURNAL OF NATURAL PRODUCTS 2014; 77:416-420. [PMID: 24499261 DOI: 10.1021/np400952d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dermacoccus abyssi sp. nov. strains MT1.1 and MT1.2 are actinomycetes isolated from a Mariana Trench sediment at a depth of 10 898 m. The fermentation process using complex media led to the production of three new pigmented heteroaromatic (oxidized and reduced) phenazine compounds, dermacozines H-J (1-3). Extensive use was made of 1D and 2D NMR experiments and high-resolution MS to determine the structures of the compounds. The new dermacozines showed radical scavenging activity, and the highest activity was observed for dermacozine H (1), with an IC50 value of 18.8 μM.
Collapse
Affiliation(s)
- Marcell Wagner
- Mikrobiologisches Institut, Universität Tübingen , Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Acharyabhatta A, Kandula SK, Terli R. Taxonomy and Polyphasic Characterization of Alkaline Amylase Producing Marine Actinomycete Streptomyces rochei BTSS 1001. Int J Microbiol 2013; 2013:276921. [PMID: 24489548 PMCID: PMC3892758 DOI: 10.1155/2013/276921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/07/2013] [Indexed: 12/04/2022] Open
Abstract
Actinomycetes isolated from marine sediments along the southeast coast of Bay of Bengal were investigated for amylolytic activity. Marine actinomycete BTSS 1001 producing an alkaline amylase was identified from marine sediment of Diviseema coast, Bay of Bengal. The isolate produced alkaline amylase with maximum amylolytic activity at pH 9.5 at 50°C. The organism produced white to pale grey substrate mycelium and grayish aerial mycelium with pinkish brown pigmentation. A comprehensive study of morphological, physiological parameters, cultural characteristics, and biochemical studies was performed. The presence of iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and anteiso-C17 : 0 as the major cellular fatty acids, LL-diaminopimelic acid as the characteristic cell wall component, and menaquinones MK-9H(6) and MK-9H(8) as the major isoprenoid quinones is attributed to the strain BTSS 1001 belonging to the genus Streptomyces. Comparison of 16S rRNA gene sequences showed that strain BTSS 1001 exhibited the highest similarities to the type strains of Streptomyces rochei (99%), Streptomyces plicatus (99%), and Streptomyces enissocaesilis (99%). Using the polyphasic taxonomical approach and phenotypic characteristic studies, the isolate BTSS 1001 was characterized as marine actinomycete Streptomyces rochei.
Collapse
Affiliation(s)
- Aparna Acharyabhatta
- Department of Biotechnology, Dr. L. Bullayya College, New Resapuvanipalem, Visakhapatnam, Andhra Pradesh 530013, India
| | - Siva Kumar Kandula
- Department of Biotechnology, Andhra University, Visakhapatnam 530003, India
| | - Ramana Terli
- School of Life Sciences, GITAM University, Visakhapatnam 530045, India
| |
Collapse
|
35
|
Actinomycetes diversity among rRNA gene clones and cellular isolates from Sambhar salt lake, India. ScientificWorldJournal 2013; 2013:781301. [PMID: 24307879 PMCID: PMC3836413 DOI: 10.1155/2013/781301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
The vertical stratification of actinomycetes diversity in Sambhar salt lake (India's largest salt lake) was investigated by using cultivable and uncultivable approaches. The isolates from cultured approaches were clustered on the basis of cultural, morphological, biochemical, and cell wall characteristics, and results were further strengthened by 16S rDNA-RFLP into five major groups. 16S rDNA sequencing of the representative isolates from each clusters was identified as belonging to Streptomyces, Actinopolyspora, Microbispora, Saccharopolyspora, and Actinoplanes genera, while culture independent group was established as Streptomyces (130 clones, 20 OTUs), Micromonospora (96 clones, 7 OTUs), Streptosporangium (79 clones, 9 OTUs), Thermomonospora (46 clones, 8 OTUs), and Dactylosporangium (58 clones, 8 OTUs). The diversity assessment using Shannon and Wiener index was found to be 1.55, 1.52, 1.55, and 1.49 from surface lake water, at depth of 1.5 m, shallow layer of water with algal population, and finally at depth of 2.5 m, respectively. We observed diversity in terms of the species richness as Streptomyces is dominant genus in both culture dependent and culture independent techniques followed by Microbispora (culture dependent methods) and Micromonospora (culture independent method) genera, respectively.
Collapse
|
36
|
Phylogenetic and chemical diversity of a hybrid-isoprenoid-producing streptomycete lineage. Appl Environ Microbiol 2013; 79:6894-902. [PMID: 23995934 DOI: 10.1128/aem.01814-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces species dedicate a large portion of their genomes to secondary metabolite biosynthesis. A diverse and largely marine-derived lineage within this genus has been designated MAR4 and identified as a prolific source of hybrid isoprenoid (HI) secondary metabolites. These terpenoid-containing compounds are common in nature but rarely observed as bacterial secondary metabolites. To assess the phylogenetic diversity of the MAR4 lineage, complementary culture-based and culture-independent techniques were applied to marine sediment samples collected off the Channel Islands, CA. The results, including those from an analysis of publically available sequence data and strains isolated as part of prior studies, placed 40 new strains in the MAR4 clade, of which 32 originated from marine sources. When combined with sequences cloned from environmental DNA, 28 MAR4 operational taxonomic units (0.01% genetic distance) were identified. Of these, 82% consisted exclusively of either cloned sequences or cultured strains, supporting the complementarity of these two approaches. Chemical analyses of diverse MAR4 strains revealed the production of five different HI structure classes. All 21 MAR4 strains tested produced at least one HI class, with most strains producing from two to four classes. The two major clades within the MAR4 lineage displayed distinct patterns in the structural classes and the number and amount of HIs produced, suggesting a relationship between taxonomy and secondary metabolite production. The production of HI secondary metabolites appears to be a phenotypic trait of the MAR4 lineage, which represents an emerging model with which to study the ecology and evolution of HI biosynthesis.
Collapse
|
37
|
Fan J, Li L, Han J, Ming H, Li J, Na G, Chen J. Diversity and structure of bacterial communities in Fildes Peninsula, King George Island. Polar Biol 2013. [DOI: 10.1007/s00300-013-1358-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. THE ISME JOURNAL 2013; 7:1038-50. [PMID: 23178673 PMCID: PMC3635239 DOI: 10.1038/ismej.2012.139] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/17/2022]
Abstract
A wide array of microorganisms survive and thrive in extreme environments. However, we know little about the patterns of, and controls over, their large-scale ecological distribution. To this end, we have applied a bar-coded 16S rRNA pyrosequencing technology to explore the phylogenetic differentiation among 59 microbial communities from physically and geochemically diverse acid mine drainage (AMD) sites across Southeast China, revealing for the first time environmental variation as the major factor explaining community differences in these harsh environments. Our data showed that overall microbial diversity estimates, including phylogenetic diversity, phylotype richness and pairwise UniFrac distance, were largely correlated with pH conditions. Furthermore, multivariate regression tree analysis also identified solution pH as a strong predictor of relative lineage abundance. Betaproteobacteria, mostly affiliated with the 'Ferrovum' genus, were explicitly predominant in assemblages under moderate pH conditions, whereas Alphaproteobacteria, Euryarchaeota, Gammaproteobacteria and Nitrospira exhibited a strong adaptation to more acidic environments. Strikingly, such pH-dependent patterns could also be observed in a subsequent comprehensive analysis of the environmental distribution of acidophilic microorganisms based on 16S rRNA gene sequences previously retrieved from globally distributed AMD and associated environments, regardless of the long-distance isolation and the distinct substrate types. Collectively, our results suggest that microbial diversity patterns are better predicted by contemporary environmental variation rather than geographical distance in extreme AMD systems.
Collapse
Affiliation(s)
- Jia-Liang Kuang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lin-Xing Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zheng-Shuang Hua
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Sheng-Jin Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Min Hu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jin-Tian Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen-Sheng Shu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Prieto-Davó A, Villarreal-Gómez LJ, Forschner-Dancause S, Bull AT, Stach JEM, Smith DC, Rowley DC, Jensen PR. Targeted search for actinomycetes from nearshore and deep-sea marine sediments. FEMS Microbiol Ecol 2013; 84:510-8. [PMID: 23360553 DOI: 10.1111/1574-6941.12082] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/27/2022] Open
Abstract
Sediment samples collected off the coast of San Diego were analyzed for actinomycete diversity using culture-independent techniques. Eight new operational taxonomic units (OTUs) in the Streptomycetaceae were identified as well as new diversity within previously cultured marine OTUs. Sequences belonging to the marine actinomycete genus Salinispora were also detected, despite the fact that this genus has only been reported from more tropical environments. Independent analyses of marine sediments from the Canary Basin (3814 m) and the South Pacific Gyre (5126 and 5699 m) also revealed Salinispora sequences providing further support for the occurrence of this genus in deep-sea sediments. Efforts to culture Salinispora spp. from these samples have yet to be successful. This is the first report of Salinispora spp. from marine sediments > 1100 m and suggests that the distribution of this genus is broader than previously believed.
Collapse
Affiliation(s)
- Alejandra Prieto-Davó
- Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Y, He J, Tian XP, Li J, Yang LL, Xie Q, Tang SK, Chen YG, Zhang S, Li WJ. Streptomyces glycovorans sp. nov., Streptomyces xishensis sp. nov. and Streptomyces abyssalis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol 2012; 62:2371-2377. [DOI: 10.1099/ijs.0.035386-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains YIM M 10366T, YIM M 10378T and YIM M 10400T were isolated from marine sediments collected from the Xisha Islands in the South China Sea. All three isolates were able to grow optimally at pH 7.0, 28–37 °C and 0–3 % (w/v) NaCl. Comparison of 16S rRNA gene sequences showed that these strains are members of the genus
Streptomyces
, exhibiting moderately high 16S rRNA gene sequence similarities of 97.0–98.8 % to members of the most closely related
Streptomyces
species. Morphological characteristics, physiological characteristics and compositions of whole-cell sugars and phospholipids are consistent with the diagnostic characteristics of the genus
Streptomyces
, but still allowed differentiation amongst the three strains and their neighbours. Based on 16S rRNA gene sequence analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data, strains YIM M 10366T, YIM M 10378T and YIM M 10400T were identified as members of three novel species of the genus
Streptomyces
, for which the names Streptomyces glycovorans sp. nov. (type strain YIM M 10366T = DSM 42021T = CCTCC AA2010005T), Streptomyces xishensis sp. nov. (type strain YIM M 10378T = DSM 42022T = CCTCC AA 2010006T) and Streptomyces abyssalis sp. nov. (type strain YIM M 10400T = DSM 42024T = CCTCC AA 2010008T) are proposed.
Collapse
Affiliation(s)
- Ying Xu
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Jie He
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Xin-Peng Tian
- Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Jie Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Ling-Ling Yang
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Qiong Xie
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing 100094, PR China
| | - Shu-Kun Tang
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Yi-Guang Chen
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, PR China
| | - Si Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Science, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürumqi 830011, PR China
- The Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
41
|
Souza V, Eguiarte LE, Travisano M, Elser JJ, Rooks C, Siefert JL. Travel, sex, and food: what's speciation got to do with it? ASTROBIOLOGY 2012; 12:634-640. [PMID: 22920513 PMCID: PMC3426884 DOI: 10.1089/ast.2011.0768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
We discuss the potential interactions among travel (dispersal and gene flow), bacterial "sex" (mainly as horizontal gene transfer), and food (metabolic plasticity and responses to nutrient availability) in shaping microbial communities. With regard to our work at a unique desert oasis, the Cuatro Ciénegas Basin in Coahuila, Mexico, we propose that diversification and low phosphorus availability, in combination with mechanisms for nutrient recycling and community cohesion, result in enhanced speciation through reproductive as well as geographic isolation. We also discuss these mechanisms in the broader sense of ecology and evolution. Of special relevance to astrobiology and central to evolutionary biology, we ask why there are so many species on Earth and provide a working hypothesis and a conceptual framework within which to consider the question. Key Words: Microbial ecology-Microbial mats-Evolution-Horizontal gene transfer-Metabolism.
Collapse
Affiliation(s)
- Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México.
| | | | | | | | | | | |
Collapse
|
42
|
Piterina AV, Bartlett J, Pembroke JT. Phylogenetic analysis of the bacterial community in a full scale autothermal thermophilic aerobic digester (ATAD) treating mixed domestic wastewater sludge for land spread. WATER RESEARCH 2012; 46:2488-2504. [PMID: 22386327 DOI: 10.1016/j.watres.2012.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/15/2011] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
The bacterial community associated with a full scale autothermal thermophilic aerobic digester (ATAD) treating sludge, originating from domestic wastewater and destined for land spread, was analysed using a number of molecular approaches optimised specifically for this high temperature environment. 16S rDNA genes were amplified directly from sludge with universally conserved and Bacteria-specific rDNA gene primers and a clone library constructed that corresponded to the late thermophilic stage (t = 23 h) of the ATAD process. Sequence analyses revealed various 16S rDNA gene sequence types reflective of high bacterial community diversity. Members of the bacterial community included α- and β-Proteobacteria, Actinobacteria with High G + C content and Gram-Positive bacteria with a prevalence of the Firmicutes (Low G + C) division (class Clostridia and Bacillus). Most of the ATAD clones showed affiliation with bacterial species previously isolated or detected in other elevated temperature environments, at alkaline pH, or in cellulose rich environments. Several phylotypes associated with Fe(III)- and Mn(IV)-reducing anaerobes were also detected. The presence of anaerobes was of interest in such large scale systems where sub-optimal aeration and mixing is often the norm while the presence of large amounts of capnophiles suggest the possibility of limited convection and entrapment of CO(2) within the sludge matrix during digestion. Comparative analysis with organism identified in other ATAD systems revealed significant differences based on optimised techniques. The abundance of thermophilic, alkalophilic and cellulose-degrading phylotypes suggests that these organisms are responsible for maintaining the elevated temperature at the later stages of the ATAD process.
Collapse
Affiliation(s)
- Anna V Piterina
- Molecular Biochemistry Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
43
|
Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol 2012; 78:3221-8. [PMID: 22367083 DOI: 10.1128/aem.07307-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently proposed a scout model of the microbial life cycle (S. S. Epstein, Nature 457:1083, 2009), the central element of which is the hypothesis that dormant microbial cells wake up into active (so-called scout) cells stochastically, independently of environmental cues. Here, we check the principal prediction of this hypothesis: under growth-permissive conditions, dormant cells initiate growth at random time intervals and exhibit no species-specific lag phase. We show that a range of microorganisms, including environmental species, Escherichia coli, and Mycobacterium smegmatis, indeed wake up in a seemingly stochastic manner and independently of environmental conditions, even in the longest incubations conducted (months to years long). As is implicit in the model, most of the cultures we obtained after long incubations were not inherently slow growers. Of the environmental isolates that required ≥7 months to form visible growth, only 5% needed an equally long incubation upon subculturing, with the majority exhibiting regrowth within 24 to 48 h. This apparent change was not a result of adaptive mutation; rather, most microbial species that appear to be slow growers were in fact fast growers with a delayed initiation of division. Genuine slow growth thus appears to be less significant than previously believed. Random, low-frequency exit from the nongrowing state may be a key element of a general microbial survival strategy, and the phylogenetic breadth of the organisms exhibiting such exit indicates that it represents a general phenomenon. The stochasticity of awakening can also provide a parsimonious explanation to several microbiological observations, including the apparent randomness of latent infections and the existence of viable-but-nonculturable cells (VBNC).
Collapse
|
44
|
Abstract
In this study, we examine the temporal pattern of colony appearance during cultivation experiments, and whether this pattern could inform on optimizing the process of microbial discovery. In a series of long-term cultivation experiments, we observed an expected gradual increase over time of the total number of microbial isolates, culminating in a 700-fold colony count increase at 18 months. Conventional thought suggests that long-term incubations result in a culture collection enriched with species that are slow growing or rare, may be unavailable from short-term experiments, and likely are novel. However, after we examined the phylogenetic novelty of the isolates as a function of the time of their isolation, we found no correlation between the two. The probability of discovering either a new or rare species late in the incubation matched that of species isolated earlier. These outcomes are especially notable because of their generality: observations were essentially identical for marine and soil bacteria as well as for spore formers and non-spore formers. These findings are consistent with the idea of the stochastic awakening of dormant cells, thus lending support to the scout model. The process of microbial discovery is central to the study of environmental microorganisms and the human microbiome. While long-term incubation does not appear to increase the probability of discovering novel species, the technology enabling such incubations, i.e., single-cell cultivation, may still be the method of choice. While it does not necessarily allow more species to grow from a given inoculum, it minimizes the overall isolation effort and supplies needed.
Collapse
|
45
|
Sanyika TW, Stafford W, Cowan DA. The soil and plant determinants of community structures of the dominant actinobacteria in Marion Island terrestrial habitats, Sub-Antarctica. Polar Biol 2012. [DOI: 10.1007/s00300-012-1160-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Ultrasound induced production of thrombinase by marine actinomycetes: Kinetic and optimization studies. Biochem Eng J 2012. [DOI: 10.1016/j.bej.2011.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Zhang L, Xi L, Ruan J, Huang Y. Microbacterium marinum sp. nov., isolated from deep-sea water. Syst Appl Microbiol 2012; 35:81-5. [PMID: 22280899 DOI: 10.1016/j.syapm.2011.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 11/29/2022]
Abstract
Two Gram-positive, rod-shaped bacterial strains, H101(T) and H207, were isolated from deep sea water collected from South-West Indian Ocean. Phylogenetic analysis of 16S rRNA gene sequences showed that the two strains were closely related to one another (100% similarity), and had the closest relationship with Microbacterium hominis NBRC 15708(T) and Microbacterium insulae KCTC 19247(T) (98.2-98.3% similarities). DNA-DNA hybridization value between strains H101(T) and H207 was 87.2 ± 3.7%, and the values between the two strains and the closely related type strains were well below 70%. The two strains also shared a number of physiological and biochemical characteristics that were distinct from the closely related species, and grew at 2-37 ° C, pH 5-11 and 0-8% (w/v) NaCl. Both strains contained MK-12, MK-13 and MK-11 as the detected menaquinones. The peptidoglycan was of type B1γ with an interpeptide bridge D-Glu(Hyg)→ Gly(2)→ l-Lys. The major cellular fatty acids were anteiso-C(15:0), anteiso-C(17:0), and iso-C(16:0). Based on the genetic and phenotypic properties, it is proposed that strains H101(T) and H207 be classified as representatives of a novel species of the genus Microbacterium, with the name Microbacterium marinum sp. nov. The type strain is H101(T) (= CGMCC 4.6941(T) = DSM 24947(T)).
Collapse
Affiliation(s)
- Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
48
|
Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 2011. [DOI: 10.1007/s00300-011-1100-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Peeters K, Hodgson DA, Convey P, Willems A. Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. MICROBIAL ECOLOGY 2011; 62:399-413. [PMID: 21424822 DOI: 10.1007/s00248-011-9842-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/28/2011] [Indexed: 05/16/2023]
Abstract
Cultivation techniques were used to study the heterotrophic bacterial diversity in two microbial mat samples originating from the littoral zone of two continental Antarctic lakes (Forlidas Pond and Lundström Lake) in the Dufek Massif (within the Pensacola Mountains group of the Transantarctic Mountains) and Shackleton Range, respectively. Nearly 800 isolates were picked after incubation on several growth media at different temperatures. They were grouped using a whole-genome fingerprinting technique, repetitive element palindromic PCR and partial 16S rRNA gene sequencing. Phylogenetic analysis of the complete 16S rRNA gene sequences of 82 representatives showed that the isolates belonged to four major phylogenetic groups: Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes. A relatively large difference between the samples was apparent. Forlidas Pond is a completely frozen water body underlain by hypersaline brine, with summer thaw forming a slightly saline littoral moat. This was reflected in the bacterial diversity with a dominance of isolates belonging to Firmicutes, whereas isolates from the freshwater Lundström Lake revealed a dominance of Actinobacteria. A total of 42 different genera were recovered, including first records from Antarctica for Albidiferax, Bosea, Curvibacter, Luteimonas, Ornithinibacillus, Pseudoxanthomonas, Sphingopyxis and Spirosoma. Additionally, a considerable number of potential new species and new genera were recovered distributed over different phylogenetic groups. For several species where previously only the type strain was available in cultivation, we report additional strains. Comparison with public databases showed that overall, 72% of the phylotypes are cosmopolitan whereas 23% are currently only known from Antarctica. However, for the Bacteroidetes, the majority of the phylotypes recovered are at present known only from Antarctica and many of these represent previously unknown species.
Collapse
Affiliation(s)
- Karolien Peeters
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Fac. Science, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
50
|
Peeters K, Ertz D, Willems A. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 2011; 34:360-7. [DOI: 10.1016/j.syapm.2011.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/28/2022]
|