1
|
Fuller ME, Thakur N, Hedman PC, Zhao Y, Chiu PC. Combined sorption-biodegradation for removal of energetic compounds from stormwater runoff. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136595. [PMID: 39615382 DOI: 10.1016/j.jhazmat.2024.136595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 01/28/2025]
Abstract
Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar. Some columns also received biodegradable polymers as a slow-release carbon source and MC degrading bacterial cultures. MC removal was greater under combined sorption-biodegradation conditions than under sorption only conditions, ranging from 2.5-fold for 2,4,6-trinitrotoluene (TNT) to > 25-fold for hexahydro-1,3,5-trinitro-s-triazine (RDX). Biochar improved removal for some MC, which was attributed to it acting as a buffer by its ability to sorb/degrade these compounds, thus delaying their elution from the columns until the biodegradation activity increased. It was also found that labile carbon source availability, rather than microbial culture viability, was responsible for the apparent reduction in energetic removal over time. These results provide a foundation for further development of technologies for remediation of energetic compounds in military range stormwater runoff.
Collapse
Affiliation(s)
- Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Nikita Thakur
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Paul C Hedman
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Yuwei Zhao
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA
| | - Pei C Chiu
- University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
2
|
Zhou X, Yao Q, Li N, Xia M, Deng Y. Multi-Omics Strategies to Investigate the Biodegradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine in Rhodococcus sp. Strain DN22. Microorganisms 2023; 12:76. [PMID: 38257903 PMCID: PMC10820124 DOI: 10.3390/microorganisms12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is an energetic and persistent explosive with long-lasting properties. Rhodococcus sp. strain DN22 has been discovered to be a microbe capable of degrading RDX. Herein, the complete genome of Rhodococcus sp. strain DN22 was sequenced and analyzed. The entire sequences of genes that encoded the two proteins participating in RDX degradation in Rhodococcus sp. strain DN22 were obtained, and were validated through proteomic data. In addition, few studies have investigated the physiological changes and metabolic pathways occurring within Rhodococcus sp. cells when treated with RDX, particularly through mass spectrometry-based omics. Hence, proteomic and metabolomic analyses were carried out on Rhodococcus sp. strain DN22 with the existence or lack of RDX in the medium. A total of 3186 proteins were identified between the two groups, with 115 proteins being significantly differentially expressed proteins. There were 1056 metabolites identified in total, among which 130 metabolites were significantly different. Through the combined analysis of differential proteomics and metabolomics, KEGG pathways including two-component system, ABC transporters, alanine, aspartate and glutamate metabolism, arginine biosynthesis, purine metabolism, nitrogen metabolism, and phosphotransferase system (PTS), were observed to be significantly enriched. These findings provided ponderable perspectives on the physiological alterations and metabolic pathways in Rhodococcus sp. strain DN22, responding to the existence or lack of RDX. This study is anticipated to expand the knowledge of Rhodococcus sp. strain DN22, as well as advancing understanding of microbial degradation.
Collapse
Affiliation(s)
- Xiangzhe Zhou
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| | - Qifa Yao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nuomin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| | - Min Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (X.Z.)
| |
Collapse
|
3
|
Zhang H, Zhu Y, Wang S, Zhao S, Nie Y, Ji C, Wang Q, Liao X, Cao H, Liu X. Spatial-vertical variations of energetic compounds and microbial community response in soils from an ammunition demolition site in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162553. [PMID: 36898332 DOI: 10.1016/j.scitotenv.2023.162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ammunition-related activities have caused severe energetic compound (EC) contamination and pose serious risks to ecosystems. However, little is known regarding the spatial-vertical variations of ECs or their migration in soils at ammunition demolition sites. Although the toxic effect of some ECs to microorganisms have been reported through laboratory simulations, the responses of indigenous microbial communities to ammunition demolition activities are unclear. In this study, the spatial-vertical variations of ECs in 117 topsoil samples and three soil profiles from a typical ammunition demolition site in China were studied. Heavy contamination of ECs was concentrated in the top soils of the work platforms, and ECs were also detected in the surrounding area and nearby farmland. ECs showed different migration characteristics in the 0-100 cm soil layer of the different soil profiles. Demolition activities and surface runoff play critical roles in the spatial-vertical variations and migration of ECs. These findings suggest that ECs are able to migrate from the topsoil to the subsoil and from the core demolition area to further ecosystems. The work platforms exhibited lower microbial diversity and different microbiota compositions compared to the surrounding areas and farmlands. Using the random forest analysis, pH and 1,3,5-trinitrobenzene (TNB) were characterized as the most important factors affecting microbial diversity. Network analysis revealed that Desulfosporosinus was highly sensitive to ECs and may be a unique indicator of EC contamination. These findings provide key information in understanding EC migration characteristics in soils and the potential threats to indigenous soil microorganisms in ammunition demolition sites.
Collapse
Affiliation(s)
- Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Bannon DI, Bao W, Dillman JF, Wolfinger R, Phillips CS, Perkins EJ. Gene Expression and Pathway Analysis in Rat Brain and Liver After Exposure to Royal Demolition Explosive (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine). Int J Toxicol 2023; 42:278-286. [PMID: 36941229 DOI: 10.1177/10915818231157713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The nitramine explosive, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is associated with acute and chronic toxicity in mammals and targets both the central nervous system and liver. After a single oral dose of RDX in male rats, the systemic distribution of RDX and the toxicodynamic response was measured using clinical chemistry and Affymetrix Rat Genome® 230 2.0 gene expression arrays, respectively. Nominal doses of 0, 9 and 36 mg/kg pure RDX were administered to animals followed by liver, cerebral cortex, and hippocampus gene expression analysis at 0, 3.5, 24, and 48 hours. RDX quickly entered the liver and brain, increasing up to 24 hours. For the 36 mg/kg dose, RDX was still measurable in liver and brain at 48 hours, but was non-detectible for the 9 mg/kg dose. At 3.5 hours, the time within which most convulsions reportedly occur after RDX ingestion, the hippocampus displayed the highest response for both gene expression and pathways, while the cortex was relatively non-responsive. The top 2 impacted pathways, primarily involved in neurotransmission, were the GABAergic and glutamatergic pathways. High numbers of genes also responded to RDX in the liver with P450 metabolism pathways significantly involved. Compared to the liver, the hippocampus displayed more consistent biological effects across dose and time with neurotransmission pathways predominating. Overall, based on gene expression data, RDX responses were high in both the hippocampus and liver, but were minimal in the cerebral cortex. These results identify the hippocampus as an important target for RDX based on gene expression.
Collapse
Affiliation(s)
- Desmond I Bannon
- 1022Toxicology, United States Defense Centers for Public Health - Aberdeen, Aberdeen Proving Ground, MD, USA
| | - Wenjun Bao
- 294098SAS Institute Inc Cary, Cary, NC, USA
| | - James F Dillman
- Cell and Molecular Biology, 493459US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | | | - Christopher S Phillips
- Cell and Molecular Biology, 493459US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Edward J Perkins
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| |
Collapse
|
5
|
Aamir Khan M, Sharma A, Yadav S, Celin SM, Sharma S. A sketch of microbiological remediation of explosives-contaminated soil focused on state of art and the impact of technological advancement on hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. CHEMOSPHERE 2022; 294:133641. [PMID: 35077733 DOI: 10.1016/j.chemosphere.2022.133641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
When high-energy explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT) are discharged into the surrounding soil and water during production, testing, open dumping, military, or civil activities, they leave a toxic footprint. The US Environmental Protection Agency has labeled RDX as a potential human carcinogen that must be degraded from contaminated sites quickly. Bioremediation of RDX is an exciting prospect that has received much attention in recent years. However, a lack of understanding of RDX biodegradation and the limitations of current approaches have hampered the widespread use of biodegradation-based strategies for RDX remediation at contamination sites. Consequently, new bioremediation technologies are required to enhance performance. In this review, we explore the requirements for in-silico analysis for producing biological models of microbial remediation of RDX in soil. On the other hand, potential gene editing methods for getting the host with target gene sequences responsible for the breakdown of RDX are also reported. Microbial formulations and biosensors for detection and bioremediation are also briefly described. The biodegradation of RDX offers an alternative remediation method that is both cost-effective and ecologically acceptable. It has the potential to be used in conjunction with other cutting-edge technologies to further increase the efficiency of RDX degradation.
Collapse
Affiliation(s)
- Mohd Aamir Khan
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Sonal Yadav
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - S Mary Celin
- Centre for Fire, Explosives and Environment Safety, Defence Research & Development Organization, Brig. Mazumdar Road, Delhi, 110 054, India
| | - Satyawati Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
6
|
Behrendorff JBYH. Reductive Cytochrome P450 Reactions and Their Potential Role in Bioremediation. Front Microbiol 2021; 12:649273. [PMID: 33936006 PMCID: PMC8081977 DOI: 10.3389/fmicb.2021.649273] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450 enzymes, or P450s, are haem monooxygenases renowned for their ability to insert one atom from molecular oxygen into an exceptionally broad range of substrates while reducing the other atom to water. However, some substrates including many organohalide and nitro compounds present little or no opportunity for oxidation. Under hypoxic conditions P450s can perform reductive reactions, contributing electrons to drive reductive elimination reactions. P450s can catalyse dehalogenation and denitration of a range of environmentally persistent pollutants including halogenated hydrocarbons and nitroamine explosives. P450-mediated reductive dehalogenations were first discovered in the context of human pharmacology but have since been observed in a variety of organisms. Additionally, P450-mediated reductive denitration of synthetic explosives has been discovered in bacteria that inhabit contaminated soils. This review will examine the distribution of P450-mediated reductive dehalogenations and denitrations in nature and discuss synthetic biology approaches to developing P450-based reagents for bioremediation.
Collapse
Affiliation(s)
- James B. Y. H. Behrendorff
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| |
Collapse
|
7
|
Kalsi A, Celin SM, Bhanot P, Sahai S, Sharma JG. A novel egg shell-based bio formulation for remediation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123346. [PMID: 32659577 DOI: 10.1016/j.jhazmat.2020.123346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Environmental contamination by secondary explosive has been posing threat to human health and the ecosystem. We investigated the potential of a novel bioformulation developed from poultry waste for the bioremediation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soils. Eggshells and additives immobilized with an indigenous explosive degrading microbe Janibacter cremeus were utilized for the development of the wettable powder bioformulation. Treatments carried out under unsaturated and saturated soil conditions resulted in 62 and 73 % removal of RDX respectively in 35 days meeting the soil clean up goals. The saturated treatment sets exhibited better microbial growth during the study in terms of live cell count and total enzyme activity. The bacteria, J. cremeus was observed to exhibit significant release of nitrite under both unsaturated as well as saturated conditions. Mass spectrometric studies showed that, both the conditions lead to the formation of nitroso-derivatives of RDX. But under saturated condition, an intermediate, 5-hydroxy-4-nitro-2,4-diazapentanal was observed which is a precursor to 4-nitro-2,4-diazabuatnal ultimately leading to mineralization. An accessible bio resource from poultry waste when used as a carrier for explosive degrading microbe has proven effective for in situ remediation of explosive contaminated soils.
Collapse
Affiliation(s)
- Anchita Kalsi
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India; Delhi Technological University, Delhi, India
| | - S Mary Celin
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India.
| | - Pallvi Bhanot
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India
| | - Sandeep Sahai
- Centre for Fire Explosives and Environment Safety (CFEES), DRDO, Delhi, India
| | | |
Collapse
|
8
|
Pal Y, Mayilraj S, Paul M, Schumann P, Krishnamurthi S. Indiicoccus explosivorum gen. nov., sp. nov., isolated from an explosives waste contaminated site. Int J Syst Evol Microbiol 2019; 69:2555-2564. [PMID: 31287396 DOI: 10.1099/ijsem.0.003541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A pink-pigmented, Gram-stain-positive, aerobic, coccoid-shaped bacterial strain, designated as S5-TSA-19T, was isolated from an explosives contaminated site in Panchkula, Haryana, India. The 16S rRNA gene sequencing blast analysis indicated that the strain is a member of the family Planococcaceae with the highest sequence similarity to Planomicrobium soli XN13T (96.1 %), followed by Planococcus maitriensis S1T (95.6 %), Planococcus plakortidis DSM 23997T (95.6 %), Planomicrobium flavidum ISL-41T (95.6 %), Planococcus rifietoensis M8T (95.5 %), Planococcus salinus LCB217T (95.5 %) and Planococcus maritimus DSM 17275T (95.5 %). Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences (based on a conserved set of 400 proteins) retrieved the strain in a distinct branch indicating a separate lineage within the family Planococcaceae. Strain S5-TSA-19T had a distinctive chemotaxonomic pattern comprising A4α type peptidoglycan based on l-Lys-d-Asp, iso-C15 : 0 as the major fatty acid, absence of phosphatidylethanolamine as a major lipid and MK-7 and MK-6 as the major menaquinones, differentiating it from the genera Planococcus and Planomicrobium, thus supporting the findings of molecular phylogeny. Further, strain S5-TSA-19T was able to biotransform hexahydro-1,3,5,-trinitro-1,2,5-triazine (RDX) into nitrite derivatives under aerobic conditions in 2-4 days, whereas the closest reference strains did not possess this property. On the basis of polyphasic taxonomic characterization and a phylogenomics approach, strain S5-TSA-19T is proposed as the type strain of a novel species in a novel genus for which the name Indiicoccus explosivorum gen. nov., sp. nov. is proposed (=JCM 31737T=KCTC 33871T=MTCC 12608T).
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A Chandigarh 160036, Chandigarh 160036, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A Chandigarh 160036, Chandigarh 160036, India.,Present address: Bentoli AgriNutrition India Pvt Ltd, Chennai, India
| | - Mohit Paul
- CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Peter Schumann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7b, D-38124 Braunschweig, Germany
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A Chandigarh 160036, Chandigarh 160036, India
| |
Collapse
|
9
|
Wang LC, Pan TM, Tsai TY. Lactic acid bacteria-fermented product of green tea and Houttuynia cordata leaves exerts anti-adipogenic and anti-obesity effects. J Food Drug Anal 2017; 26:973-984. [PMID: 29976415 PMCID: PMC9303034 DOI: 10.1016/j.jfda.2017.11.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/19/2017] [Accepted: 11/25/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with higher risks of developing diabetes and cardiovascular disease. Green tea, rich in polyphenolic compounds such as epigallocatechin gallate (EGCG) and epigallocatechin (EGC), has been shown to display anti-obesity effects. Houttuynia cordata leaves have also been shown to exhibit anti-obesity effects due to their chlorogenic acid content. Lactic acid bacteria are able to increase the production of polyphenolic compounds. This study aims to develop a novel anti-obesity fermentation product by combining H. cordata leaf tea with green tea, using Lactobacillus paracasei subsp. paracasei NTU 101 (NTU 101) for fermentation due to the advantages of bioconverting the poly-phenolic compounds. The regulation of adipogenesis factors and the anti-obesity effect of the NTU 101-fermented tea were evaluated in an in vitro 3T3-L1 pre-adipocyte model and an in vivo obese rat model, respectively. The results show that the NTU 101-fermented tea, which contained higher EGCG, EGC, and chlorogenic acid levels than unfermented tea, was able to inhibit the lipogenesis of mature 3T3-L1 adipocytes by the stimulation of lipolysis. Furthermore, the body weight gain, body fat pad, and feeding efficiency of obese rats, induced with a high fat diet, were decreased by the oral administration of NTU 101-fermented tea. The significant anti-obesity effect was probably due to lipolysis. However, NTU 101 bacteria cells and EGCG may also act as functional ingredients to contribute to the anti-obesity effects of NTU 101-fermented products.
Collapse
Affiliation(s)
- Li-Chun Wang
- Ph.D. Program of Nutrition and Food Sciences, Fu Jen Catholic University, Taipei, Taiwan; Continuing Education School, National Taitung Junior College, Taitung, Taiwan
| | - Tzu-Ming Pan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; R&D Division, Sunway Biotech Co., Ltd., Taipei, Taiwan.
| | - Tsung-Yu Tsai
- Ph.D. Program of Nutrition and Food Sciences, Fu Jen Catholic University, Taipei, Taiwan; Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan.
| |
Collapse
|
10
|
Abstract
3-Nitro-1,2,4-triazol-5-one (NTO) is a potential replacement for energetics in military munitions. It is a component of IMX-101, a munition designed to prevent unintentional detonation. This report summarizes the dermal, oral, and inhalation animal toxicity data, including the results of genotoxicity and limited reproductive and developmental studies. NTO has an acute LD50 in rats and mice of >5000 mg/kg, is a potential eye and skin irritant, but does not induce skin sensitization. Acute inhalation toxicity studies in rats were negative, but testicular hypoplasia was observed in a 14-day oral study in rats administered NTO at >500 mg/kg/day. Similar findings were noted in an oral 90-day study at dosages >315 mg/kg/day and in reproductive toxicity studies at >125 mg/kg/day. NTO did not cause any developmental defects. All genotoxicity studies were negative. ADME and pharmacokinetics data showed rapid uptake and elimination of NTO from both inhalation and oral intakes. Biotransformation by liver microsomes demonstrated two separate pathways, one aerobic and the other anaerobic. NTO is not considered an endocrine disruptor. There is very little human data regarding NTO or the IMX-101 mixtures. Using testicular changes in rats as the point of departure for deriving a Workplace Environmental Exposure Level (WEEL) for NTO, the resulting BMDL10 was 40 mg/kg/day, and the 8-hour time-weighted average was 2 mg/m2.
Collapse
|
11
|
Ballentine ML, Ariyarathna T, Smith RW, Cooper C, Vlahos P, Fallis S, Groshens TJ, Tobias C. Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coastal marine biota determined using a stable isotopic tracer, (15)N - [RDX]. CHEMOSPHERE 2016; 153:28-38. [PMID: 27010164 DOI: 10.1016/j.chemosphere.2016.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 05/06/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is globally one of the most commonly used military explosives and environmental contaminant. (15)N labeled RDX was added into a mesocosm containing 9 different coastal marine species in a time series experiment to quantify the uptake of RDX and assess the RDX derived (15)N retention into biota tissue. The (15)N attributed to munitions compounds reached steady state concentrations ranging from 0.04 to 0.67 μg (15)N g dw(-1), the bulk (15)N tissue concentration for all species was 1-2 orders of magnitude higher suggesting a common mechanism or pathway of RDX biotransformation and retention of (15)N. A toxicokinetic model was created that described the (15)N uptake, elimination, and transformation rates. While modeled uptake rates were within previous published values, elimination rates were several orders of magnitude smaller than previous studies ranging from 0.05 to 0.7 days(-1). These small elimination rates were offset by high rates of retention of (15)N previously not measured. Bioconcentration factors and related aqueous:organism ratios of compounds and tracer calculated using different tracer and non-tracer methods yielded a broad range of values (0.35-101.6 mL g(-1)) that were largely method dependent. Despite the method-derived variability, all values were generally low and consistent with little bioaccumulation potential. The use of (15)N labeled RDX in this study indicates four possible explanations for the observed distribution of compounds and tracer; each with unique potential implications for possible toxicological impacts in the coastal marine environment.
Collapse
Affiliation(s)
- Mark L Ballentine
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA.
| | - Thivanka Ariyarathna
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Richard W Smith
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Christopher Cooper
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Penny Vlahos
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Stephen Fallis
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Thomas J Groshens
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| | - Craig Tobias
- University of Connecticut, Department of Marine Sciences, 1084 Shennocossett Road, Groton, CT 06340, USA
| |
Collapse
|
12
|
Fuller ME, Heraty L, Condee CW, Vainberg S, Sturchio NC, Böhlke JK, Hatzinger PB. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures. Appl Environ Microbiol 2016; 82:3297-3309. [PMID: 27016566 PMCID: PMC4959238 DOI: 10.1128/aem.00073-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/19/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in (15)N were observed during biodegradation of RDX via anaerobic ring cleavage (ε(15)N = -12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε(15)N = -9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε(15)N = -2.4‰ ± 0.2‰). (13)C enrichment was negligible during aerobic RDX biodegradation (ε(13)C = -0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε(13)C = -4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε(13)C/ε(15)N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ(15)N value of +9‰, δ(15)N values of the NO2 (-) released from RDX ranged from -7‰ to +2‰ during aerobic biodegradation and from -42‰ to -24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2 (-) production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε(15)N-NO2 (-) values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2 (-) formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also provides data on the isotopic effects observed in the nitrite produced during RDX biodegradation. Both of these results could lead to better understanding of the fate of RDX in the environment and help improve monitoring and remediation technologies.
Collapse
Affiliation(s)
- Mark E Fuller
- CB&I Federal Services, Lawrenceville, New Jersey, USA
| | | | | | | | | | - J K Böhlke
- U.S. Geological Survey, Reston, Virginia, USA
| | | |
Collapse
|
13
|
Sviatenko LK, Gorb L, Hill FC, Leszczynska D, Okovytyy SI, Leszczynski J. Alkaline hydrolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine: M06-2X investigation. CHEMOSPHERE 2015; 134:31-38. [PMID: 25911044 DOI: 10.1016/j.chemosphere.2015.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/28/2015] [Accepted: 03/31/2015] [Indexed: 06/04/2023]
Abstract
Alkaline hydrolysis mechanism of possible environmental contaminant RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was investigated computationally at the PCM(Pauling)/M06-2X/6-311++G(d,p) level of theory. Results obtained show that the initial deprotonation of RDX by hydroxide leads to nitrite elimination and formation of a denitrated cyclohexene intermediate. Further nucleophilic attack by hydroxide onto cyclic CN double bond results in ring opening. It was shown that the presence of hydroxide is crucial for this stage of the reaction. The dominant decomposition pathway leading to a ring-opened intermediate was found to be formation of 4-nitro-2,4-diazabutanal. Hydrolytic transformation of its byproduct (methylene nitramine) leads to end products such as formaldehyde and nitrous oxide. Computational results are in a good agreement with experimental data on hydrolysis of RDX, suggesting that 4-nitro-2,4-diazabutanal, nitrite, formaldehyde, and nitrous oxide are main products for early stages of RDX decomposition under alkaline conditions.
Collapse
Affiliation(s)
- Liudmyla K Sviatenko
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA; Department of Organic Chemistry, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk 49000, Ukraine
| | | | | | - Danuta Leszczynska
- Interdisciplinary Nanotoxicity Center, Department of Civil and Environmental Engineering, Jackson State University, Jackson, MS 39217, USA
| | - Sergiy I Okovytyy
- Department of Organic Chemistry, Oles Honchar Dnipropetrovsk National University, Dnipropetrovsk 49000, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
14
|
Jayamani I, Cupples AM. Stable isotope probing reveals the importance of Comamonas and Pseudomonadaceae in RDX degradation in samples from a Navy detonation site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10340-10350. [PMID: 25721530 DOI: 10.1007/s11356-015-4256-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the microorganisms involved in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation from a detonation area at a Navy base. Using Illumina sequencing, microbial communities were compared between the initial sample, samples following RDX degradation, and controls not amended with RDX to determine which phylotypes increased in abundance following RDX degradation. The effect of glucose on these communities was also examined. In addition, stable isotope probing (SIP) using labeled ((13)C3, (15)N3-ring) RDX was performed. Illumina sequencing revealed that several phylotypes were more abundant following RDX degradation compared to the initial soil and the no-RDX controls. For the glucose-amended samples, this trend was strong for an unclassified Pseudomonadaceae phylotype and for Comamonas. Without glucose, Acinetobacter exhibited the greatest increase following RDX degradation compared to the initial soil and no-RDX controls. Rhodococcus, a known RDX degrader, also increased in abundance following RDX degradation. For the SIP study, unclassified Pseudomonadaceae was the most abundant phylotype in the heavy fractions in both the presence and absence of glucose. In the glucose-amended heavy fractions, the 16S ribosomal RNA (rRNA) genes of Comamonas and Anaeromxyobacter were also present. Without glucose, the heavy fractions also contained the 16S rRNA genes of Azohydromonas and Rhodococcus. However, all four phylotypes were present at a much lower level compared to unclassified Pseudomonadaceae. Overall, these data indicate that unclassified Pseudomonadaceae was primarily responsible for label uptake in both treatments. This study indicates, for the first time, the importance of Comamonas for RDX removal.
Collapse
Affiliation(s)
- Indumathy Jayamani
- A135 Research Engineering Complex, Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
15
|
Krzmarzick MJ, Khatiwada R, Olivares CI, Abrell L, Sierra-Alvarez R, Chorover J, Field JA. Biotransformation and Degradation of the Insensitive Munitions Compound, 3-Nitro-1,2,4-triazol-5-one, by Soil Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5681-5688. [PMID: 25839647 DOI: 10.1021/acs.est.5b00511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Insensitive munitions (IM) are a new class of explosives that are increasingly being adopted by the military. The ability of soil microbial communities to degrade IMs is relatively unknown. In this study, microbial communities from a wide range of soils were tested in microcosms for their ability to degrade the IM, 3-nitro-1,2,4-triazol-5-one (NTO). All seven soil inocula tested were able to readily reduce NTO to 3-amino-1,2,4-triazol-5-one (ATO) via 3-hydroxyamino-1,2,4-triazol-5-one (HTO), under anaerobic conditions with H2 as an electron donor. Numerous other electron donors were shown to be suitable for NTO-reducing bacteria. The addition of a small amount of yeast extract (10 mg/L) was critical to diminish lag times and increased the biotransformation rate of NTO in nearly all cases indicating yeast extract provided important nutrients for NTO-reducing bacteria. The main biotransformation product, ATO, was degradable only in aerobic conditions, as evidenced by a rise in the inorganic nitrogen species nitrite and nitrate, indicative of nitrogen-mineralization. NTO was nonbiodegradable in aerobic microcosms with all soil inocula.
Collapse
Affiliation(s)
- Mark J Krzmarzick
- †Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | | | - Christopher I Olivares
- †Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | | | - Reyes Sierra-Alvarez
- †Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | | | - James A Field
- †Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
16
|
Metagenomic insights into the RDX-degrading potential of the ovine rumen microbiome. PLoS One 2014; 9:e110505. [PMID: 25383623 PMCID: PMC4226467 DOI: 10.1371/journal.pone.0110505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
The manufacturing processes of royal demolition explosive (RDX), or hexahydro-1,3,5-trinitro-1,3,5-triazine, have resulted in serious water contamination. As a potential carcinogen, RDX can cause a broad range of harmful effects to humans and animals. The ovine rumen is capable of rapid degradation of nitroaromatic compounds, including RDX. While ruminal RDX-degrading bacteria have been identified, the genes and pathways responsible for RDX degradation in the rumen have yet to be characterized. In this study, we characterized the metabolic potential of the ovine rumen using metagenomic approaches. Sequences homologous to at least five RDX-degrading genes cloned from environmental samples (diaA, xenA, xenB, xplA, and xplB) were present in the ovine rumen microbiome. Among them, diaA was the most abundant, likely reflective of the predominance of the genus Clostridium in the ovine rumen. At least ten genera known to harbor RDX-degrading microorganisms were detectable. Metagenomic sequences were also annotated using public databases, such as Pfam, COG, and KEGG. Five of the six Pfam protein families known to be responsible for RDX degradation in environmental samples were identified in the ovine rumen. However, increased substrate availability did not appear to enhance the proliferation of RDX-degrading bacteria and alter the microbial composition of the ovine rumen. This implies that the RDX-degrading capacity of the ovine rumen microbiome is likely regulated at the transcription level. Our results provide metagenomic insights into the RDX-degrading potential of the ovine rumen, and they will facilitate the development of novel and economic bioremediation strategies.
Collapse
|
17
|
Giarrizzo J, Murty L, Tanaree D, Walker K, Craig A. Validation of a novel extraction method for studying hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) biodegradation by ruminal microbiota. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 925:70-5. [DOI: 10.1016/j.jchromb.2013.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 02/10/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
18
|
Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666. Appl Environ Microbiol 2013; 79:2263-72. [PMID: 23354711 DOI: 10.1128/aem.03445-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes.
Collapse
|
19
|
Bernstein A, Ronen Z, Gelman F. Insight on RDX degradation mechanism by Rhodococcus strains using 13C and 15N kinetic isotope effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:479-484. [PMID: 23215036 DOI: 10.1021/es302691g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The explosive Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is known to be degraded aerobically by various isolates of the Rhodococcus species, with denitration being the key step, mediated by Cytochrome P450. Our study aimed at gaining insight into the RDX degradation mechanism by Rhodococcus species and comparing isotope effects associated with RDX degradation by distinct Rhodococcus strains. For these purposes, enrichment in (13)C and (15)N isotopes throughout RDX denitration was studied for three distinct Rhodococcus strains, isolated from soil and groundwater in an RDX-contaminated site. The observable (15)N enrichment throughout the reaction, together with minor (13)C enrichment, suggests that N-N bond cleavage is likely to be the key rate-limiting step in the reaction. The similarity in the kinetic (15)N isotope effect between the three tested strains suggests that either isotope-masking effects are negligible, or are of a similar extent for all tested strains. The lack of variability in the kinetic (15)N isotope effect allows the interpretation of environmental studies with greater confidence.
Collapse
Affiliation(s)
- Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel
| | | | | |
Collapse
|
20
|
Anaerobic transformation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by ovine rumen microorganisms. Res Microbiol 2012; 163:567-75. [DOI: 10.1016/j.resmic.2012.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 07/15/2012] [Indexed: 11/22/2022]
|
21
|
Abstract
Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed.
Collapse
|
22
|
Sweeney LM, Okolica MR, Gut CP, Gargas ML. Cancer mode of action, weight of evidence, and proposed cancer reference value for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Regul Toxicol Pharmacol 2012; 64:205-24. [PMID: 22841928 DOI: 10.1016/j.yrtph.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 11/27/2022]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, CAS No. 121-82-4) is a component of munitions formulations, and has been detected in groundwater samples collected at various US military sites. Clean up target levels for RDX may be derived based on consideration of acceptable cumulative human exposure as expressed in toxicity reference values. Evaluations of the cancer weight of evidence and possible modes of action (MOA) for RDX-induced cancer were conducted. It was concluded that the available data provide suggestive evidence of human carcinogenic potential for RDX. While a mutagenic/genotoxic MOA for RDX is unlikely, no alterative MOA is strongly supported by the available data. A nonlinear (threshold) approach to the assessment of human cancer risk was recommended, and a recommended chronic cancer reference dose of 0.08mg/kg/day was derived. For comparison only, computations using a linear approach were also conducted, yielding a cancer risk specific dose of 0.000235mg/kg/day for 1 in 10(5) risk; this value is 2.6-fold higher the current US EPA risk specific dose for 1 in 10(5) risk. Thus, cleanup standards based on human health risk from RDX exposure could potentially depend on the willingness of risk managers to accept a nonlinear MOA and nonlinear toxicity risk value derivation.
Collapse
Affiliation(s)
- Lisa M Sweeney
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Naval Medical Research Unit-Dayton, Wright-Patterson Air Force Base, Ohio, United States.
| | | | | | | |
Collapse
|
23
|
Warner CM, Gust KA, Stanley JK, Habib T, Wilbanks MS, Garcia-Reyero N, Perkins EJ. A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7790-7798. [PMID: 22697906 DOI: 10.1021/es300495c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Interspecies uncertainty factors in ecological risk assessment provide conservative estimates of risk where limited or no toxicity data is available. We quantitatively examined the validity of interspecies uncertainty factors by comparing the responses of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) to the energetic compound 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), a known neurotoxicant. Relative toxicity was measured through transcriptional, morphological, and behavioral end points in zebrafish and fathead minnow fry exposed for 96 h to RDX concentrations ranging from 0.9 to 27.7 mg/L. Spinal deformities and lethality occurred at 1.8 and 3.5 mg/L RDX respectively for fathead minnow and at 13.8 and 27.7 mg/L for zebrafish, indicating that zebrafish have an 8-fold greater tolerance for RDX than fathead minnow fry. The number and magnitude of differentially expressed transcripts increased with increasing RDX concentration for both species. Differentially expressed genes were enriched in functions related to neurological disease, oxidative-stress, acute-phase response, vitamin/mineral metabolism and skeletal/muscular disorders. Decreased expression of collagen-coding transcripts were associated with spinal deformity and likely involved in sensitivity to RDX. Our work provides a mechanistic explanation for species-specific sensitivity to RDX where zebrafish responded at lower concentrations with greater numbers of functions related to RDX tolerance than fathead minnow. While the 10-fold interspecies uncertainty factor does provide a reasonable cross-species estimate of toxicity in the present study, the observation that the responses between ZF and FHM are markedly different does initiate a call for concern regarding establishment of broad ecotoxicological conclusions based on model species such as zebrafish.
Collapse
Affiliation(s)
- Christopher M Warner
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Halasz A, Manno D, Perreault NN, Sabbadin F, Bruce NC, Hawari J. Biodegradation of RDX nitroso products MNX and TNX by cytochrome P450 XplA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7245-7251. [PMID: 22694209 DOI: 10.1021/es3011964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Anaerobic transformation of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by microorganisms involves sequential reduction of N-NO(2) to the corresponding N-NO groups resulting in the initial formation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine). MNX is further reduced to the dinitroso (DNX) and trinitroso (TNX) derivatives. In this paper, we describe the degradation of MNX and TNX by the unusual cytochrome P450 XplA that mediates metabolism of RDX in Rhodococcus rhodochrous strain 11Y. XplA is known to degrade RDX under aerobic and anaerobic conditions, and, in the present study, was found able to degrade MNX to give similar products distribution including NO(2)(-), NO(3)(-), N(2)O, and HCHO but with varying stoichiometric ratio, that is, 2.06, 0.33, 0.33, 1.18, and 1.52, 0.15, 1.04, 2.06, respectively. In addition, the ring cleavage product 4-nitro-2,4,-diazabutanal (NDAB) and a trace amount of another intermediate with a [M-H](-) at 102 Da, identified as ONNHCH(2)NHCHO (NO-NDAB), were detected mostly under aerobic conditions. Interestingly, degradation of TNX was observed only under anaerobic conditions in the presence of RDX and/or MNX. When we incubated RDX and its nitroso derivatives with XplA, we found that successive replacement of N-NO(2) by N-NO slowed the removal rate of the chemicals with degradation rates in the order RDX > MNX > DNX, suggesting that denitration was mainly responsible for initiating cyclic nitroamines degradation by XplA. This study revealed that XplA preferentially cleaved the N-NO(2) over the N-NO linkages, but could nevertheless degrade all three nitroso derivatives, demonstrating the potential for complete RDX removal in explosives-contaminated sites.
Collapse
Affiliation(s)
- Annamaria Halasz
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Ave, Montreal, PQ, Canada H4P 2R2
| | | | | | | | | | | |
Collapse
|
25
|
Bui SH, McLean KJ, Cheesman MR, Bradley JM, Rigby SEJ, Levy CW, Leys D, Munro AW. Unusual spectroscopic and ligand binding properties of the cytochrome P450-flavodoxin fusion enzyme XplA. J Biol Chem 2012; 287:19699-714. [PMID: 22500029 PMCID: PMC3366004 DOI: 10.1074/jbc.m111.319202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 04/05/2012] [Indexed: 11/06/2022] Open
Abstract
The Rhodococcus rhodochrous strain 11Y XplA enzyme is an unusual cytochrome P450-flavodoxin fusion enzyme that catalyzes reductive denitration of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX). We show by light scattering that XplA is a monomeric enzyme. XplA has high affinity for imidazole (K(d) = 1.6 μM), explaining previous reports of a red-shifted XplA Soret band in pure enzyme. The true Soret maximum of XplA is at 417 nm. Similarly, unusually weak XplA flavodoxin FMN binding (K(d) = 1.09 μM) necessitates its purification in the presence of the cofactor to produce hallmark flavin contributions absent in previously reported spectra. Structural and ligand-binding data reveal a constricted active site able to accommodate RDX and small inhibitory ligands (e.g. 4-phenylimidazole and morpholine) while discriminating against larger azole drugs. The crystal structure also identifies a high affinity imidazole binding site, consistent with its low K(d), and shows active site penetration by PEG, perhaps indicative of an evolutionary lipid-metabolizing function for XplA. EPR studies indicate heterogeneity in binding mode for RDX and other ligands. The substrate analog trinitrobenzene does not induce a substrate-like type I optical shift but creates a unique low spin EPR spectrum due to influence on structure around the distal water heme ligand. The substrate-free heme iron potential (-268 mV versus NHE) is positive for a low spin P450, and the elevated potential of the FMN semiquinone/hydroquinone couple (-172 mV) is also an adaptation that may reflect (along with the absence of a key Thr/Ser residue conserved in oxygen-activating P450s) the evolution of XplA as a specialized RDX reductase catalyst.
Collapse
Affiliation(s)
- Soi H. Bui
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Kirsty J. McLean
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Myles R. Cheesman
- the School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Justin M. Bradley
- the School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Stephen E. J. Rigby
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Colin W. Levy
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - David Leys
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| | - Andrew W. Munro
- From the Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom and
| |
Collapse
|
26
|
Perumbakkam S, Craig AM. Biochemical and Microbial Analysis of Ovine Rumen Fluid Incubated with 1,3,5-Trinitro-1,3,5-triazacyclohexane (RDX). Curr Microbiol 2012; 65:195-201. [DOI: 10.1007/s00284-012-0144-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/28/2012] [Indexed: 11/24/2022]
|
27
|
Bernstein A, Ronen Z. Biodegradation of the Explosives TNT, RDX and HMX. ENVIRONMENTAL SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/978-3-642-23789-8_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
|
29
|
|
30
|
Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). PURE APPL CHEM 2011. [DOI: 10.1351/pac-rep-10-01-05] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An explosion occurs when a large amount of energy is suddenly released. This energy may come from an over-pressurized steam boiler, from the products of a chemical reaction involving explosive materials, or from a nuclear reaction that is uncontrolled. In order for an explosion to occur, there must be a local accumulation of energy at the site of the explosion, which is suddenly released. This release of energy can be dissipated as blast waves, propulsion of debris, or by the emission of thermal and ionizing radiation. Modern explosives or energetic materials are nitrogen-containing organic compounds with the potential for self-oxidation to small gaseous molecules (N2, H2O, and CO2). Explosives are classified as primary or secondary based on their susceptibility of initiation. Primary explosives are highly susceptible to initiation and are often used to ignite secondary explosives, such as TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitroperhydro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), and tetryl (N-methyl-N-2,4,6-tetranitro-aniline).
Collapse
|
31
|
Chokejaroenrat C, Comfort SD, Harris CE, Snow DD, Cassada D, Sakulthaew C, Satapanajaru T. Transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by permanganate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3643-3649. [PMID: 21452829 DOI: 10.1021/es104057v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The chemical oxidant permanganate (MnO(4)(-)) has been shown to effectively transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at both the laboratory and field scales. We treated RDX with MnO(4)(-) with the objective of quantifying the effects of pH and temperature on destruction kinetics and determining reaction rates. A nitrogen mass balance and the distribution of reaction products were used to provide insight into reaction mechanisms. Kinetic experiments (at pH ∼ 7, 25 °C) verified that RDX-MnO(4)(-) reaction was first-order with respect to MnO(4)(-) and initial RDX concentration (second-order rate: 4.2 × 10(-5) M(-1) s(-1)). Batch experiments showed that choice of quenching agents (MnSO(4), MnCO(3), and H(2)O(2)) influenced sample pH and product distribution. When MnCO(3) was used as a quenching agent, the pH of the RDX-MnO(4)(-) solution was relatively unchanged and N(2)O and NO(3)(-) constituted 94% of the N-containing products after 80% of the RDX was transformed. On the basis of the preponderance of N(2)O produced under neutral pH (molar ratio N(2)O/NO(3) ∼ 5:1), no strong pH effect on RDX-MnO(4)(-) reaction rates, a lower activation energy than the hydrolysis pathway, and previous literature on MnO(4)(-) oxidation of amines, we propose that RDX-MnO(4)(-) reaction involves direct oxidation of the methylene group (hydride abstraction), followed by hydrolysis of the resulting imides, and decarboxylation of the resulting carboxylic acids to form N(2)O, CO(2), and H(2)O.
Collapse
Affiliation(s)
- Chanat Chokejaroenrat
- Department of Civil Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0531, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 2011; 22:997-1005. [DOI: 10.1007/s10532-011-9458-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
33
|
The explosive-degrading cytochrome P450 XplA: Biochemistry, structural features and prospects for bioremediation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:230-6. [DOI: 10.1016/j.bbapap.2010.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/22/2022]
|
34
|
Annamaria H, Manno D, Strand SE, Bruce NC, Hawari J. Biodegradation of RDX and MNX with Rhodococcus sp. strain DN22: new insights into the degradation pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9330-9336. [PMID: 21105645 DOI: 10.1021/es1023724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Previously we demonstrated that Rhodococcus sp. strain DN22 can degrade RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) aerobically via initial denitration. The present study describes the role of oxygen and water in the key denitration step leading to RDX decomposition using (18)O(2) and H(2)(18)O labeling experiments. We also investigated degradation of MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine) with DN22 under similar conditions. DN22 degraded RDX and MNX giving NO(2)(-), NO(3)(-), NDAB (4-nitro-diazabutanal), NH(3), N(2)O, and HCHO with NO(2)(-)/NO(3)(-) molar ratio reaching 17 and ca. 2, respectively. In the presence of (18)O(2), DN22 degraded RDX and produced NO(2)(-) with m/z at 46 Da that subsequently oxidized to NO(3)(-) containing one (18)O atom, but in the presence of H(2)(18)O we detected NO(3)(-) without (18)O. A control containing NO(2)(-), DN22, and (18)O(2) gave NO(3)(-) with one (18)O, confirming biotic oxidation of NO(2)(-) to NO(3)(-). Treatment of MNX with DN22 and (18)O(2) produced NO(3)(-) with two mass ions, one (66 Da) incorporating two (18)O atoms and another (64 Da) incorporating only one (18)O atom and we attributed their formation to bio-oxidation of the initially formed NO and NO(2)(-), respectively. In the presence of H(2)(18)O we detected NO(2)(-) with two different masses, one representing NO(2)(-) (46 Da) and another representing NO(2)(-) (48 Da) with the inclusion of one (18)O atom suggesting auto-oxidation of NO to NO(2)(-). Results indicated that denitration of either RDX or MNX and denitrosation of MNX by DN22 did not involve direct participation of either oxygen or water, but both played major roles in subsequent secondary chemical and biochemical reactions of NO and NO(2)(-).
Collapse
Affiliation(s)
- Halasz Annamaria
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Ave. Montreal (PQ), Canada, H4P 2R2
| | | | | | | | | |
Collapse
|
35
|
Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 2010; 76:6329-37. [PMID: 20709853 DOI: 10.1128/aem.01217-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several microorganisms have been isolated that can transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a cyclic nitramine explosive. To better characterize the microbial genes that facilitate this transformation, we sequenced and annotated a 182-kb plasmid, pGKT2, from the RDX-degrading strain Gordonia sp. KTR9. This plasmid carries xplA, encoding a protein sharing up to 99% amino acid sequence identity with characterized RDX-degrading cytochromes P450. Other genes that cluster with xplA are predicted to encode a glutamine synthase-XplB fusion protein, a second cytochrome P450, Cyp151C, and XplR, a GntR-type regulator. Rhodococcus jostii RHA1 expressing xplA from KTR9 degraded RDX but did not utilize RDX as a nitrogen source. Moreover, an Escherichia coli strain producing XplA degraded RDX but a strain producing Cyp151C did not. KTR9 strains cured of pGKT2 did not transform RDX. Physiological studies examining the effects of exogenous nitrogen sources on RDX degradation in strain KTR9 revealed that ammonium, nitrite, and nitrate each inhibited RDX degradation by up to 79%. Quantitative real-time PCR analysis of glnA-xplB, xplA, and xplR showed that transcript levels were 3.7-fold higher during growth on RDX than during growth on ammonium and that this upregulation was repressed in the presence of various inorganic nitrogen sources. Overall, the results indicate that RDX degradation by KTR9 is integrated with central nitrogen metabolism and that the uptake of RDX by bacterial cells does not require a dedicated transporter.
Collapse
|
36
|
Fuller ME, Perreault N, Hawari J. Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett Appl Microbiol 2010; 51:313-8. [PMID: 20666987 DOI: 10.1111/j.1472-765x.2010.02897.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The goal of this study was to compare the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0.04 mg l(-1) dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l(-1)) conditions. METHODS AND RESULTS Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60-fold slower than under fully aerobic conditions. Only the breakdown product, 4-nitro-2,4-diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l(-1)) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. CONCLUSIONS The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. IMPACT AND SIGNIFICANCE OF THE STUDY: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.
Collapse
Affiliation(s)
- M E Fuller
- Shaw Environmental, Inc., Lawrenceville, NJ 08648, USA.
| | | | | |
Collapse
|
37
|
Electron shuttle-stimulated RDX mineralization and biological production of 4-nitro-2,4-diazabutanal (NDAB) in RDX-contaminated aquifer material. Biodegradation 2010; 21:923-37. [DOI: 10.1007/s10532-010-9352-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
38
|
Zhao JS, Deng Y, Manno D, Hawari J. Shewanella spp. genomic evolution for a cold marine lifestyle and in-situ explosive biodegradation. PLoS One 2010; 5:e9109. [PMID: 20174598 PMCID: PMC2824531 DOI: 10.1371/journal.pone.0009109] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/05/2010] [Indexed: 11/18/2022] Open
Abstract
Shewanella halifaxensis and Shewanella sediminis were among a few aquatic gamma-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and gamma-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other gamma-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and gamma-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Biodegradation, Environmental
- Chromosome Mapping
- Cold Temperature
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Circular/chemistry
- DNA, Circular/genetics
- Evolution, Molecular
- Gammaproteobacteria/classification
- Gammaproteobacteria/genetics
- Genome, Bacterial/genetics
- Genomics
- Marine Biology
- Molecular Structure
- Phylogeny
- Proteomics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Shewanella/classification
- Shewanella/genetics
- Shewanella/metabolism
- Species Specificity
- Triazines/chemistry
- Triazines/metabolism
Collapse
Affiliation(s)
- Jian-Shen Zhao
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| | - Yinghai Deng
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Dominic Manno
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
| | - Jalal Hawari
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada
- * E-mail: (JSZ); (JH)
| |
Collapse
|
39
|
Bernstein A, Adar E, Ronen Z, Lowag H, Stichler W, Meckenstock RU. Quantifying RDX biodegradation in groundwater using delta15N isotope analysis. JOURNAL OF CONTAMINANT HYDROLOGY 2010; 111:25-35. [PMID: 19926161 DOI: 10.1016/j.jconhyd.2009.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 05/28/2023]
Abstract
Isotope analysis was used to examine the extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in groundwater along a ca. 1.35-km contamination plume. Biodegradation was proposed as a natural attenuating remediation method for the contaminated aquifer. By isotope analysis of RDX, the extent of biodegradation was found to reach up to 99.5% of the initial mass at a distance of 1.15-1.35km down gradient from the contamination sources. A range of first-order biodegradation rates was calculated based on the degradation extents, with average half-life values ranging between 4.4 and 12.8years for RDX biodegradation in the upper 15m of the aquifer, assuming purely aerobic biodegradation, and between 10.9 and 31.2years, assuming purely anaerobic biodegradation. Based on the geochemical data, an aerobic biodegradation pathway was suggested as the dominant attenuation process at the site. The calculated biodegradation rate was correlated with depth, showing decreasing degradation rates in deeper groundwater layers. Exceptionally low first-order kinetic constants were found in a borehole penetrating the bottom of the aquifer, with half life ranging between 85.0 to 161.5years, assuming purely aerobic biodegradation, and between 207.5 and 394.3years, assuming purely anaerobic biodegradation. The study showed that stable isotope fractionation analysis is a suitable tool to detect biodegradation of RDX in the environment. Our findings clearly indicated that RDX is naturally biodegraded in the contaminated aquifer. To the best of our knowledge, this is the first reported use of RDX isotope analysis to quantify its biodegradation in contaminated aquifers.
Collapse
Affiliation(s)
- Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | | | | | | | | | | |
Collapse
|
40
|
Sabbadin F, Jackson R, Haider K, Tampi G, Turkenburg JP, Hart S, Bruce NC, Grogan G. The 1.5-A structure of XplA-heme, an unusual cytochrome P450 heme domain that catalyzes reductive biotransformation of royal demolition explosive. J Biol Chem 2009; 284:28467-28475. [PMID: 19692330 PMCID: PMC2788895 DOI: 10.1074/jbc.m109.031559] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/10/2009] [Indexed: 11/06/2022] Open
Abstract
XplA is a cytochrome P450 of unique structural organization, consisting of a heme-domain that is C-terminally fused to its native flavodoxin redox partner. XplA, along with flavodoxin reductase XplB, has been shown to catalyze the breakdown of the nitramine explosive and pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine (royal demolition explosive) by reductive denitration. The structure of the heme domain of XplA (XplA-heme) has been solved in two crystal forms: as a dimer in space group P2(1) to a resolution of 1.9 A and as a monomer in space group P2(1)2(1)2 to a resolution of 1.5 A, with the ligand imidazole bound at the heme iron. Although it shares the overall fold of cytochromes P450 of known structure, XplA-heme is unusual in that the kinked I-helix that traverses the distal face of the heme is broken by Met-394 and Ala-395 in place of the well conserved Asp/Glu plus Thr/Ser, important in oxidative P450s for the scission of the dioxygen bond prior to substrate oxygenation. The heme environment of XplA-heme is hydrophobic, featuring a cluster of three methionines above the heme, including Met-394. Imidazole was observed bound to the heme iron and is in close proximity to the side chain of Gln-438, which is situated over the distal face of the heme. Imidazole is also hydrogen-bonded to a water molecule that sits in place of the threonine side-chain hydroxyl exemplified by Thr-252 in Cyt-P450cam. Both Gln-438 --> Ala and Ala-395 --> Thr mutants of XplA-heme displayed markedly reduced activity compared with the wild type for royal demolition explosive degradation when combined with surrogate electron donors.
Collapse
Affiliation(s)
- Federico Sabbadin
- York Structural Biology Laboratory, Department of Biology, University of York, York YO10 5YW, United Kingdom; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Rosamond Jackson
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Kamran Haider
- York Structural Biology Laboratory, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Girish Tampi
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Johan P Turkenburg
- York Structural Biology Laboratory, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Sam Hart
- York Structural Biology Laboratory, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Biology, University of York, York YO10 5YW, United Kingdom.
| |
Collapse
|
41
|
Krishnan K, Crouse LC, Bazar MA, Major MA, Reddy G. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. J Appl Toxicol 2009; 29:629-37. [DOI: 10.1002/jat.1455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 2009; 27:73-81. [DOI: 10.1016/j.tibtech.2008.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 11/20/2022]
|
43
|
Bernstein A, Ronen Z, Adar E, Nativ R, Lowag H, Stichler W, Meckenstock RU. Compound-specific isotope analysis of RDX and stable isotope fractionation during aerobic and anaerobic biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7772-7. [PMID: 19031859 DOI: 10.1021/es8005942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant at explosives production sites. Here, we report on the use of compound-specific isotope analysis of RDX to obtain delta(15)N and delta(18)O enrichment factors during biodegradation in batch cultures. A new preparation method has been developed based on RDX purification using thin-layer chromatography. RDX is then subjected to an elemental analyzer coupled with an isotope-ratio mass spectrometer (EA-IRMS). The precision of the method shows standard deviations of 0.13% per hundred and 1.18% per hundred for delta(15)N and delta(18)O, respectively, whereas the accuracy of the method has been checked routinely, adhering to external standards. The method was applied to RDX samples subjected to biodegradation under aerobic or anaerobic conditions. Enrichment factors under aerobic conditions were -2.1% per hundred and -1.7% per hundred for delta(15)N and delta(18)O, respectively, and under anaerobic conditions, -5.0% per hundred and -5.3% per hundred for delta(15)N and delta(18)O, respectively. The results of this study provide a tool for monitoring natural attenuation of RDX in a contaminated environment.
Collapse
Affiliation(s)
- Anat Bernstein
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | | | | | | | | | | | | |
Collapse
|
44
|
Ringelberg D, Richmond M, Foley K, Reynolds C. Utility of lipid biomarkers in support of bioremediation efforts at army sites. J Microbiol Methods 2008; 74:17-25. [PMID: 17714813 DOI: 10.1016/j.mimet.2007.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/16/2007] [Accepted: 07/16/2007] [Indexed: 11/22/2022]
Abstract
Lipid biomarker analysis has proven valuable in testing the hypothesis that attributes of the extant microbiota can directly reflect the occurrence of contaminant biodegradation. Two past research efforts have demonstrated this utility and are described here. A 4.5 m vertical core was obtained from a diesel fuel oil contamination plume. Core material was assayed for total petroleum hydrocarbons (TPH) and bacterial membrane phospholipids (PLFA) via a single solvent extraction. Microbial viable biomass and the relative abundance of Gram-negative bacterial PLFA biomarkers were found to be significantly correlated with TPH concentration. The core TPH profile also revealed two distinct areas where the average TPH level of 3,000 microg g(-1) fell to near detection limits. Both areas were characterized by a three-fold decrease in the hexadecane/pristane ratio, indicating alkane biodegradation, and a distinct PLFA profile that showed a close similarity to the uncontaminated surface soil. Low-order, incomplete detonations can deposit hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) into training range surface soils. Since surface soils are exposed to temporal and diurnal moisture cycles, we investigated the effect two very different soil moisture tensions had on the in situ microbiota and RDX biodegradation. Saturated soils were characterized by rapid RDX biodegradation, 4 day half-life, a decrease in number of species detected and increase in PLFA biomarkers for Gram-negative proteobacteria (n16:1omega7c, n18:1omega9c, and n18:1omega7c) and Gram-positive firmicutes (i15:0 and a15:0). Terminal restriction fragment length polymorphism (T-RFLP) profiles of endpoint microbial communities indicated a shift from 18 to 36% firmicutes, the loss of gamma-proteobacteria and the emergence of alpha-proteobacteria. These two past research efforts demonstrated the utility of the lipid biomarker analysis in identifying microbial community characteristics that were associated with two very different soil contaminants. Lipid biomarkers defined areas of TPH biodegradation and identified community shifts as a result of soil conditions that affected explosives fate. Information like this can be used to enhance the predictive power of ecological models such as the Army Training and Testing Area Carrying Capacity for munitions model [ATTACC].
Collapse
Affiliation(s)
- D Ringelberg
- U.S. Army ERDC-CRREL, 72 Lyme Rd., Hanover, NH 03755, United States.
| | | | | | | |
Collapse
|
45
|
Zhao JS, Manno D, Hawari J. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology (Reading) 2008; 154:1026-1037. [DOI: 10.1099/mic.0.2007/013409-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jian-Shen Zhao
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Dominic Manno
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Jalal Hawari
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
46
|
Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 2007; 104:16822-7. [PMID: 17940033 DOI: 10.1073/pnas.0705110104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Widespread contamination of land and groundwater has resulted from the use, manufacture, and storage of the military explosive hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX). This contamination has led to a requirement for a sustainable, low-cost method to remediate this problem. Here, we present the characterization of an unusual microbial P450 system able to degrade RDX, consisting of flavodoxin reductase XplB and fused flavodoxin-cytochrome P450 XplA. The affinity of XplA for the xenobiotic compound RDX is high (K(d) = 58 muM) and comparable with the K(m) of other P450s toward their natural substrates (ranging from 1 to 500 muM). The maximum turnover (k(cat)) is 4.44 per s, only 10-fold less than the fastest self-sufficient P450 reported, BM3. Interestingly, the presence of oxygen determines the final products of RDX degradation, demonstrating that the degradation chemistry is flexible, but both pathways result in ring cleavage and release of nitrite. Carbon monoxide inhibition is weak and yet the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a potent inhibitor. To test the efficacy of this system for the remediation of groundwater, transgenic Arabidopsis plants expressing both xplA and xplB were generated. They are able to remove saturating levels of RDX from liquid culture and soil leachate at rates significantly faster than those of untransformed plants and xplA-only transgenic lines, demonstrating the applicability of this system for the phytoremediation of RDX-contaminated sites.
Collapse
|
47
|
Berne C, Pignol D, Lavergne J, Garcia D. CYP201A2, a cytochrome P450 from Rhodopseudomonas palustris, plays a key role in the biodegradation of tributyl phosphate. Appl Microbiol Biotechnol 2007; 77:135-44. [PMID: 17786430 DOI: 10.1007/s00253-007-1140-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/26/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in nuclear fuel processing and chemical industries. Rhodopseudomonas palustris, one of the most metabolically versatile photosynthetic bacteria, is shown here to degrade TBP efficiently under photosynthetic conditions. This study shows that this O(2)- and NADPH/FMNH(2)-dependent process was also catalyzed when TBP was incubated with membrane-associated proteins extracted from this strain. The effects of several regulators of cytochrome P450 activity on the TBP consumption suggest a key role for a cytochrome P450 in this process. Disruption of the rpa0241 gene encoding a putative cytochrome P450 led to a 60% decrease of the TBP catabolism, whereas reintroducing the gene in the mutant restored the wild-type phenotype. The rpa0241 gene was expressed and purified in Escherichia coli. Characterization by UV-visible spectroscopy of the purified recombinant membrane-bound protein (CYP201A2) encoded by the rpa0241 gene revealed typical spectral characteristics of cytochrome P450 with a large spin state change of the heme iron associated with binding of TBP (K (d) approximately 65 microM). It is proposed that CYP201A2 catalyzes the initial step of the biodegradation process of TBP.
Collapse
Affiliation(s)
- Cécile Berne
- DSV/IBEB/SBVME/LBC, Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique/CEA/Univ. Aix-Marseille, CEA Cadarache, Saint Paul lez Durance, France
| | | | | | | |
Collapse
|
48
|
Nejidat A, Kafka L, Tekoah Y, Ronen Z. Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 2007; 19:313-20. [PMID: 17611801 DOI: 10.1007/s10532-007-9137-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
We hypothesized that biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)--a widely used explosive contaminating soil and groundwater--by Rhodococcus strain YH1 is controlled by the presence of external nitrogen sources. This strain is capable of degrading RDX while using it as sole nitrogen source under aerobic conditions. Both inorganic and organic nitrogen sources were found to have a profound impact on RDX-biodegradation activity. This effect was tested in growing and resting cells of strain YH1. Nitrate and nitrite delayed the onset of RDX degradation by strain YH1, while ammonium inhibited it almost completely. In addition, 2,4,6-trinitrotoluene (TNT) inhibited RDX degradation and growth of strain YH1. On the other hand, tetrahydrophthalamide did not influence biodegradation or growth. Growth on RDX induced the expression of a cytochrome P-450 enzyme that is suggested to be involved in the first step in the aerobic pathway of RDX degradation, as identified by SDS-PAGE analysis. Ammonium and nitrite strongly repressed cytochrome P-450 expression. Our findings suggest that effective RDX bioremediation by strain YH1 requires the design of a treatment scheme that includes initial removal of ammonium, nitrite, nitrate and TNT before RDX degradation can take place.
Collapse
Affiliation(s)
- Ali Nejidat
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel
| | | | | | | |
Collapse
|
49
|
Juhasz AL, Naidu R. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 191:163-215. [PMID: 17708075 DOI: 10.1007/978-0-387-69163-3_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An explosive or energetic compound is a chemical material that, under the influence of thermal or chemical shock, decomposes rapidly with the evolution of large amounts of heat and gas. Numerous compounds and compositions may be classified as energetic compounds; however, secondary explosives, such as TNT, RDX, and HMX pose the largest potential concern to the environment because they are produced and used in defense in the greatest quantities. The environmental fate and potential hazard of energetic compounds in the environment is affected by a number of physical, chemical, and biological processes. Energetic compounds may undergo transformation through biotic or abiotic degradation. Numerous organisms have been isolated with the ability to degrade/transform energetic compounds as a sole carbon source, sole nitrogen source, or through cometabolic processes under aerobic or anaerobic conditions. Abiotic processes that lead to the transformation of energetic compounds include photolysis, hydrolysis, and reduction. The products of these reactions may be further transformed by microorganisms or may bind to soil/sediment surfaces through covalent binding or polymerization and oligomerization reactions. Although considerable research has been performed on the fate and dynamics of energetic compounds in the environment, data are still gathering on the impact of TNT, RDX, and HMX on ecological receptors. There is an urgent need to address this issue and to direct future research on expanding our knowledge on the ecological impact of energetic transformation products. In addition, it is important that energetic research considers the concept of bioavailability, including factors influencing soil/sediment aging, desorption of energetic compounds from varying soil and sediment types, methods for modeling/predicting energetic bioavailability, development of biomarkers of energetic exposure or effect, and the impact of bioavailability on ecological risk assessment.
Collapse
Affiliation(s)
- Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, Australia, 5095
| | | |
Collapse
|
50
|
Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Yoon JM, Van Aken B. Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:15-30. [PMID: 18246712 DOI: 10.1080/15226510601139375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Poplar plants (Populus deltoides x nigra, DN34) growing under hydroponic conditions were exposed to 50 mg L(-1) of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) for 24 h. The expression of genes potentially involved in the metabolism of toxic explosives was analyzed by reverse-transcriptase (RT) real-time PCR. Genes under study were selected by reference to corresponding genes that were previously shown to be upregulated in the model plant Arabidopsis thaliana by exposure to 2,4,6-trinitrotoluene (TNT) (Ekman et al., 2003. Plant Physiol., 133, 1397-1406). The target genes investigated include several genes encoding for enzymes known to be involved in the detoxification of xenobiotic pollutants, such as glutathione S-transferases (GSTs), cytochrome P-450s (CYPs), NADPH-dependent reductases, and peroxidases. Starting from A. thaliana TNT-inducible genes, corresponding Populus sequences were retrieved from the JGI Poplar Genome Project database and were used to design gene-specific primers. 18S ribosomal DNA (rDNA) was used as an internal standard and recorded gene expression levels were normalized by reference to nonexposed plants. In three separate experiments, five genes were found to be significantly amplified in leaf tissues by exposure to RDX, including GST (9.7 fold), CYP (1.6 fold), reductases (1.6-1.7 fold), and peroxidase (1.7 fold). In root tissues, only a single GST gene was found to be significantly amplified by exposure to RDX (2.0 fold). These results show, for the first time, that the exposure of poplar plants to RDX results in the induction of several genes that are potentially involved in explosive detoxification.
Collapse
Affiliation(s)
- Sachiyo Tanaka
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|