1
|
Guillén S, Nadal L, Halaihel N, Mañas P, Cebrián G. Isolation and characterization of Salmonella Typhimurium SL1344 variants with increased resistance to different stressing agents and food processing technologies. Food Microbiol 2025; 128:104714. [PMID: 39952745 DOI: 10.1016/j.fm.2024.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 02/17/2025]
Abstract
In this study, resistant variants of Salmonella enterica serovar Typhimurium SL1344 to different stressors were selected. In addition, a genetic and phenotypic study was performed to explore the mechanisms underlying the acquisition of resistance. We isolated 4 variants with increased stable resistance to acid, osmotic stress, high hydrostatic pressure (HHP) and Ultraviolet-C light (UV-C) after repeated rounds of exposure to these agents and outgrowth of survivors. A PEF-resistant variant (SL1344-RS), previously isolated by Sagarzazu et al. (2013), was also included in the analysis. The results indicated that the isolated variants showed resistance to at least one other agent. This increased resistance, in general terms, had a fitness cost in growth, and exerted a variable impact on virulence (mainly in cell adhesion capacity), increased antibiotic resistance but did not influence in biofilm formation capacity. Whole Genome Sequencing (WGS) analysis allowed us to identify the genetic changes responsible for these phenotypic differences, and revealed that in 3 out of the 5 variants (including SL1344-RS) a mutation was found in hnr gene, an anti-sigma factor that promotes RpoS proteolysis. Hence the expression of several rpoS-regulated genes was quantified and found higher in these variants. This increase in RpoS activity would explain the lower growth rates observed in these 3 variants, as it would lead to increased transcription of genes involved in growth arrest and resistance to various types of stress. However, further analysis of a set of 22 additional Salmonella strains obtained from different culture collections indicated that a direct relationship between RpoS activity and stress resistance might not exist within Salmonella.
Collapse
Affiliation(s)
- S Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - L Nadal
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - N Halaihel
- Departamento I+D+i, Alquizvetek S.L, Zaragoza, 50013, Zaragoza, Spain
| | - P Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain
| | - G Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón- IA2, Universidad de Zaragoza-CITA, 50013, Zaragoza, Spain.
| |
Collapse
|
2
|
Getahun Strobel A, Hayes AJ, Wirth W, Mua M, Saumalua T, Cabenatabua O, Soqo V, Rosa V, Wang N, Lacey JA, Hocking D, Valcanis M, Jenney A, Howden BP, Duchene S, Mulholland K, Strugnell RA, Davies MR. Genetic heterogeneity in the Salmonella Typhi Vi capsule locus: a population genomic study from Fiji. Microb Genom 2024; 10:001288. [PMID: 39254668 PMCID: PMC11385387 DOI: 10.1099/mgen.0.001288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024] Open
Abstract
Typhoid fever is endemic in many parts of the world and remains a major public health concern in tropical and sub-tropical developing nations, including Fiji. To address high rates of typhoid fever, the Northern Division of Fiji implemented a mass vaccination with typhoid conjugate vaccine (Vi-polysaccharide conjugated to tetanus toxoid) as a public health control measure in 2023. In this study we define the genomic epidemiology of Salmonella Typhi in the Northern Division prior to island-wide vaccination, sequencing 85% (n=419) of the total cases from the Northern and Central Divisions of Fiji that occurred in the period 2017-2019. We found elevated rates of nucleotide polymorphisms in the tviD and tviE genes (responsible for Vi-polysaccharide synthesis) relative to core genome levels within the Fiji endemic S. Typhi genotype 4.2. Expansion of these findings within a globally representative database of 12 382 S. Typhi (86 genotyphi clusters) showed evidence of convergent evolution of the same tviE mutations across the S. Typhi population, indicating that tvi selection has occurred both independently and globally. The functional impact of tvi mutations on the Vi-capsular structure and other phenotypic characteristics are not fully elucidated, yet commonly occurring tviE polymorphisms localize adjacent to predicted active site residues when overlayed against the predicted TviE protein structure. Given the central role of the Vi-polysaccharide in S. Typhi biology and vaccination, further integrated epidemiological, genomic and phenotypic surveillance is required to determine the spread and functional implications of these mutations.
Collapse
Affiliation(s)
- Aneley Getahun Strobel
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- College of Medicine and Health Sciences, Fiji National University, Suva, Fiji
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Wytamma Wirth
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mikaele Mua
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Tiko Saumalua
- Northern Health, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Orisi Cabenatabua
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Vika Soqo
- Labasa Divisional Hospital, Fiji Ministry of Health, and Medical Services, Labasa, Fiji
| | - Varanisese Rosa
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jake A. Lacey
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Dianna Hocking
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Adam Jenney
- College of Medicine and Health Sciences, Fiji National University, Suva, Fiji
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kim Mulholland
- New Vaccines Group, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Computational Biology, Institut Pasteur, Paris, France
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Lories B, Belpaire TER, Smeets B, Steenackers HP. Competition quenching strategies reduce antibiotic tolerance in polymicrobial biofilms. NPJ Biofilms Microbiomes 2024; 10:23. [PMID: 38503782 PMCID: PMC10951329 DOI: 10.1038/s41522-024-00489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Bacteria typically live in dense communities where they are surrounded by other species and compete for a limited amount of resources. These competitive interactions can induce defensive responses that also protect against antimicrobials, potentially complicating the antimicrobial treatment of pathogens residing in polymicrobial consortia. Therefore, we evaluate the potential of alternative antivirulence strategies that quench this response to competition. We test three competition quenching approaches: (i) interference with the attack mechanism of surrounding competitors, (ii) inhibition of the stress response systems that detect competition, and (iii) reduction of the overall level of competition in the community by lowering the population density. We show that either strategy can prevent the induction of antimicrobial tolerance of Salmonella Typhimurium in response to competitors. Competition quenching strategies can thus reduce tolerance of pathogens residing in polymicrobial communities and could contribute to the improved eradication of these pathogens via traditional methods.
Collapse
Affiliation(s)
- Bram Lories
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Tom E R Belpaire
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors (MeBioS), Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hans P Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Buddhasiri S, Sukjoi C, Tantibhadrasapa A, Mongkolkarvin P, Boonpan P, Pattanadecha T, Onton N, Laisiriroengrai T, Coratat S, Khantawa B, Tepaamorndech S, Duangsonk K, Thiennimitr P. Clinical Characteristics, Antimicrobial Resistance, Virulence Genes and Multi-Locus Sequence Typing of Non-Typhoidal Salmonella Serovar Typhimurium and Enteritidis Strains Isolated from Patients in Chiang Mai, Thailand. Microorganisms 2023; 11:2425. [PMID: 37894083 PMCID: PMC10609586 DOI: 10.3390/microorganisms11102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-typhoidal salmonellosis (NTS) caused by ingesting Salmonella enterica contaminated food or drink remains a major bacterial foodborne disease. Clinical outcomes of NTS range from self-limited gastroenteritis to life-threatening invasive NTS (iNTS). In this study, we isolated Salmonella spp. from the stool and blood of patients hospitalized at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, between 2016-2021 (a total of 395 cases). Then, serovar Typhimurium and Enteritidis were identified and further characterized by multiplex PCR, and multi-locus sequence typing. Our data show that multidrug resistance (MDR) sequence type 34 (ST34) and ST11 are the predominant sequence types for serovars Typhimurium and Enteritidis, respectively. Most S. Typhimurium ST34 lacks spvB, and most S. Enteritidis ST11 harbor sseI, sodCI, rpoS and spvB genes. NTS can be found in a wide range of ages, and anemia could be a significant factor for S. Typhimurium infection (86.3%). Both S. Typhimurium (6.7%) and S. Enteritidis (25.0%) can cause iNTS in immunocompromised patients. S. Typhimurium conferred MDR phenotype higher than S. Enteritidis with multiple antibiotic resistance indexes of 0.22 and 0.04, respectively. Here, we characterized the important S. Typhimurium, S. Enteritidis, and human clinical factors of NTS within the region.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanakorn Pattanadecha
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattamon Onton
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touch Laisiriroengrai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunatcha Coratat
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Gibbons E, Tamanna M, Cherayil BJ. The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi. PLoS One 2022; 17:e0279372. [PMID: 36525423 PMCID: PMC9757558 DOI: 10.1371/journal.pone.0279372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Salmonella enterica serovars Typhimurium and Typhi are enteropathogens that differ in host range and the diseases that they cause. We found that exposure to a combination of hypotonicity and the detergent Triton X-100 significantly reduced the viability of the S. Typhi strain Ty2 but had no effect on the S. Typhimurium strain SL1344. Further analysis revealed that hypotonicity was the critical factor: incubation in distilled water alone was sufficient to kill Ty2, while the addition of sodium chloride inhibited killing in a dose-dependent manner. Ty2's loss of viability in water was modified by culture conditions: bacteria grown in well-aerated shaking cultures were more susceptible than bacteria grown under less aerated static conditions. Ty2, like many S. Typhi clinical isolates, has an inactivating mutation in the rpoS gene, a transcriptional regulator of stress responses, whereas most S. Typhimurium strains, including SL1344, have the wild-type gene. Transformation of Ty2 with a plasmid expressing wild-type rpoS, but not the empty vector, significantly increased survival in distilled water. Moreover, an S. Typhi strain with wild-type rpoS had unimpaired survival in water. Inactivation of the wild-type gene in this strain significantly reduced survival, while replacement with an arabinose-inducible allele of rpoS restored viability in water under inducing conditions. Our observations on rpoS-dependent differences in susceptibility to hypotonic conditions may be relevant to the ability of S. Typhi and S. Typhimurium to tolerate the various environments they encounter during the infectious cycle. They also have implications for the handling of these organisms during experimental manipulations.
Collapse
Affiliation(s)
- Eamon Gibbons
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Mehbooba Tamanna
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Medical Sciences Program, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Bobby J. Cherayil
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Lovelace AH, Chen HC, Lee S, Soufi Z, Bota P, Preston GM, Kvitko BH. RpoS contributes in a host-dependent manner to Salmonella colonization of the leaf apoplast during plant disease. Front Microbiol 2022; 13:999183. [PMID: 36425046 PMCID: PMC9679226 DOI: 10.3389/fmicb.2022.999183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2023] Open
Abstract
Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana. Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS-dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS-mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen.
Collapse
Affiliation(s)
- Amelia H. Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Sangwook Lee
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Valencia EY, Barros JP, Ferenci T, Spira B. A Broad Continuum of E. coli Traits in Nature Associated with the Trade-off Between Self-preservation and Nutritional Competence. MICROBIAL ECOLOGY 2022; 83:68-82. [PMID: 33846820 DOI: 10.1007/s00248-021-01751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A trade-off between reproduction and survival is a characteristic of many organisms. In bacteria, growth is constrained when cellular resources are channelled towards environmental stress protection. At the core of this trade-off in Escherichia coli is RpoS, a sigma factor that diverts transcriptional resources towards general stress resistance. The constancy of RpoS levels in natural isolates is unknown. A uniform RpoS content in E. coli would impart a narrow range of resistance properties to the species, whereas a diverse set of RpoS levels in nature should result in a diverse range of stress susceptibilities. We explore the diversity of trade-off settings and phenotypes by measuring the level of RpoS protein in strains of E. coli cohabiting in a natural environment. Strains from a stream polluted with domestic waste were investigated in monthly samples. Analyses included E. coli phylogroup classification, RpoS protein level, RpoS-dependent stress phenotypes and the sequencing of rpoS mutations. The most striking finding was the continuum of RpoS levels, with a 100-fold range of RpoS amounts consistently found in individuals in the stream. Approximately 1.8% of the sampled strains carried null or non-synonymous mutations in rpoS. The natural isolates also exhibited a broad (>100-fold) range of stress resistance responses. Our results are consistent with the view that a multiplicity of survival-multiplication trade-off settings is a feature of the species E. coli. The phenotypic diversity resulting from the trade-off permits bet-hedging and the adaptation of E. coli strains to a very broad range of environments.
Collapse
Affiliation(s)
- Estela Ynes Valencia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jackeline Pinheiro Barros
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, 6/403 Pacific Highway, Sydney, New South Wales, 2070, Australia
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Hahn MM, González JF, Gunn JS. Salmonella Biofilms Tolerate Hydrogen Peroxide by a Combination of Extracellular Polymeric Substance Barrier Function and Catalase Enzymes. Front Cell Infect Microbiol 2021; 11:683081. [PMID: 34095002 PMCID: PMC8171120 DOI: 10.3389/fcimb.2021.683081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The ability of Salmonella enterica subspecies enterica serovar Typhi (S. Typhi) to cause chronic gallbladder infections is dependent on biofilm growth on cholesterol gallstones. Non-typhoidal Salmonella (e.g. S. Typhimurium) also utilize the biofilm state to persist in the host and the environment. How the pathogen maintains recalcitrance to the host response, and oxidative stress in particular, during chronic infection is poorly understood. Previous experiments demonstrated that S. Typhi and S. Typhimurium biofilms are tolerant to hydrogen peroxide (H2O2), but that mutations in the biofilm extracellular polymeric substances (EPSs) O antigen capsule, colanic acid, or Vi antigen reduce tolerance. Here, biofilm-mediated tolerance to oxidative stress was investigated using a combination of EPS and catalase mutants, as catalases are important detoxifiers of H2O2. Using co-cultured biofilms of wild-type (WT) bacteria with EPS mutants, it was demonstrated that colanic acid in S. Typhimurium and Vi antigen in S. Typhi have a community function and protect all biofilm-resident bacteria rather than to only protect the individual cells producing the EPSs. However, the H2O2 tolerance deficiency of a O antigen capsule mutant was unable to be compensated for by co-culture with WT bacteria. For curli fimbriae, both WT and mutant strains are tolerant to H2O2 though unexpectedly, co-cultured WT/mutant biofilms challenged with H2O2 resulted in sensitization of both strains, suggesting a more nuanced oxidative resistance alteration in these co-cultures. Three catalase mutant (katE, katG and a putative catalase) biofilms were also examined, demonstrating significant reductions in biofilm H2O2 tolerance for the katE and katG mutants. Biofilm co-culture experiments demonstrated that catalases exhibit a community function. We further hypothesized that biofilms are tolerant to H2O2 because the physical barrier formed by EPSs slows penetration of H2O2 into the biofilm to a rate that can be mitigated by intra-biofilm catalases. Compared to WT, EPS-deficient biofilms have a heighted response even to low-dose (2.5 mM) H2O2 challenge, confirming that resident bacteria of EPS-deficient biofilms are under greater stress and have limited protection from H2O2. Thus, these data provide an explanation for how Salmonella achieves tolerance to H2O2 by a combination of an EPS-mediated barrier and enzymatic detoxification.
Collapse
Affiliation(s)
- Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Juan F González
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
9
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
10
|
Escherichia coli Genomic Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. mSphere 2021; 6:6/1/e01176-20. [PMID: 33408235 PMCID: PMC7845604 DOI: 10.1128/msphere.01176-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. Adaptive processes in chronic bacterial infections are well described, but much less is known about the processes at play during acute infections. Here, by sequencing seven randomly selected isolates per patient, we analyzed Escherichia coli populations from three acute extraintestinal infections in adults (meningitis, pyelonephritis, and peritonitis), in which a high-mutation-rate isolate or mutator isolate was found. The isolates of single patients displayed between a few dozen and more than 200 independent mutations, with up to half being specific to the mutator isolate. Multiple signs of positive selection were evidenced: a high ratio of nonsynonymous to synonymous mutations (Ka/Ks ratio) and strong mutational convergence within and between patients, some of them at loci well known for their adaptive potential, such as rpoS, rbsR, fimH, and fliC. For all patients, the mutator isolate was likely due to a large deletion of a methyl-directed mismatch repair gene, and in two instances, the deletion extended to genes involved in some genetic convergence, suggesting potential coselection. Intrinsic extraintestinal virulence assessed in a mouse model of sepsis showed variable patterns of virulence ranging from non-mouse killer to mouse killer for the isolates from single patients. However, genomic signature and gene inactivation experiments did not establish a link between a single gene and the capacity to kill mice, highlighting the complex and multifactorial nature of the virulence. Altogether, these data indicate that E. coli isolates are adapting under strong selective pressure when colonizing an extraintestinal site. IMPORTANCE Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. High genomic diversity was observed in the patient isolates, with an excess of nonsynonymous mutations, and the comparison within and between different infections showed patterns of convergence at the gene level, both constituting strong signs of adaptation. The genes targeted were coding mostly for proteins involved in global regulation, metabolism, and adhesion/motility. Moreover, virulence assessed in a mouse model of sepsis was variable among the isolates of single patients, but this difference was left unexplained at the molecular level. This work gives us clues about the E. coli lifestyle transition between commensalism and pathogenicity.
Collapse
|
11
|
Campioni F, Gomes CN, Rodrigues DDP, Bergamini AMM, Falcão JP. Phenotypic analyses of Salmonella enterica serovar Enteritidis strains isolated in the pre- and post-epidemic period in Brazil. Braz J Microbiol 2020; 52:173-183. [PMID: 33107010 DOI: 10.1007/s42770-020-00392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022] Open
Abstract
Salmonella Enteritidis has caused, since the 1980s, a sustained epidemic of human infections in many countries. This study analyzed S. Enteritidis strains isolated before and after the epidemic period in Brazil regarding their capacities to survive to acid, oxidative, and high-temperature stresses, and capacity to grow in egg albumen. Moreover, the ability to invade human epithelial cells (Caco-2) and to survive inside human (U937) and chicken (HD11) macrophages was checked. Post-epidemic strains showed a better ability to survive after 10 min under acid stress at 37 °C (P ≤ 0.05). However, both groups of strains showed similar ability to survive after 1 h under acid stress at 37 °C and at 42 °C independently of the time of exposure. Similar ability was verified in both groups of strains regarding oxidative stress, growth in egg albumen, high-temperature stress, invasion to Caco-2 cells, and invasion and survival in macrophages. In conclusion, post-epidemic S. Enteritidis strains showed a better ability to survive under the acid stress found in the stomach, which might be an advantage to reach the intestine and colonize chickens and humans. However, both groups of strains did not differ significantly in the majority of the phenotypic tests analyzed in this study.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365, Pavilhão Rocha Lima, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Alzira Maria Morato Bergamini
- Laboratório de Microbiologia de Alimentos, Instituto Adolfo Lutz - Centro de Laboratórios Regionais - Ribeirão Preto VI, Rua Minas 877, Ribeirão Preto, SP, 14085-410, Brazil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
12
|
The role of the general stress response regulator RpoS in Cronobacter sakazakii biofilm formation. Food Res Int 2020; 136:109508. [DOI: 10.1016/j.foodres.2020.109508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022]
|
13
|
Guillén S, Marcén M, Mañas P, Cebrián G. Differences in resistance to different environmental stresses and non-thermal food preservation technologies among Salmonella enterica subsp. enterica strains. Food Res Int 2020; 132:109042. [DOI: 10.1016/j.foodres.2020.109042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/09/2023]
|
14
|
Cooperation and Cheating through a Secreted Aminopeptidase in the Pseudomonas aeruginosa RpoS Response. mBio 2020; 11:mBio.03090-19. [PMID: 32184248 PMCID: PMC7078477 DOI: 10.1128/mbio.03090-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Bacterial stress responses are generally considered protective measures taken by individual cells. Enabled by an experimental evolution approach, we describe a contrasting property, collective nutrient acquisition, in the RpoS-dependent stress response of the opportunistic human pathogen P. aeruginosa. Specifically, we identify the secreted P. aeruginosa aminopeptidase (PaAP) as an essential RpoS-controlled function in extracellular proteolysis. As a secreted “public good,” PaAP permits cheating by rpoS mutants that save the metabolic costs of expressing RpoS-controlled genes dispensable under the given growth conditions. Proteolytic enzymes are important virulence factors in P. aeruginosa pathogenesis and constitute a potential target for antimicrobial therapy. More broadly, our work contributes to recent findings in higher organisms that stress affects not only individual fitness and competitiveness but also cooperative behavior. The global stress response controlled by the alternative sigma factor RpoS protects enteric bacteria from a variety of environmental stressors. The role of RpoS in other, nonenteric bacteria, such as the opportunistic pathogen Pseudomonas aeruginosa, is less well understood. Here, we employed experimental social evolution to reveal that cooperative behavior via secreted public goods is an important function in the RpoS response of P. aeruginosa. Using whole-genome sequencing, we identified rpoS loss-of-function mutants among isolates evolved in a protein growth medium that requires extracellular proteolysis. We found that rpoS mutants comprise up to 25% of the evolved population and that they behave as social cheaters, with low fitness in isolation but high fitness in mixed culture with the cooperating wild type. We conclude that rpoS mutants cheat because they exploit an RpoS-controlled public good produced by the wild type, the secreted aminopeptidase PaAP, and because they do not carry the metabolic costs of expressing PaAP and many other gene products in the large RpoS regulon. Our results suggest that PaAP is an integral part of a proteolytic sequence in P. aeruginosa that permits the utilization of protein as a nutrient source. Our work broadens the scope of stress response functions in bacteria.
Collapse
|
15
|
Abstract
Bacterial genes are sometimes found to be inactivated by mutation. This inactivation may be observable simply because selection for function is intermittent or too weak to eliminate inactive alleles quickly. Here, I investigate cases in Salmonella enterica where inactivation is instead positively selected. These are identified by a rate of introduction of premature stop codons to a gene that is higher than expected under selective neutrality, as assessed by comparison to the rate of synonymous changes. I identify 84 genes that meet this criterion at a 10% false discovery rate. Many of these genes are involved in virulence, motility and chemotaxis, biofilm formation, and resistance to antibiotics or other toxic substances. It is hypothesized that most of these genes are subject to an ongoing process in which inactivation is favored under rare conditions, but the inactivated allele is deleterious under most other conditions and is subsequently driven to extinction by purifying selection.
Collapse
Affiliation(s)
- Joshua L Cherry
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Lories B, Roberfroid S, Dieltjens L, De Coster D, Foster KR, Steenackers HP. Biofilm Bacteria Use Stress Responses to Detect and Respond to Competitors. Curr Biol 2020; 30:1231-1244.e4. [PMID: 32084407 PMCID: PMC7322538 DOI: 10.1016/j.cub.2020.01.065] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Bacteria use complex regulatory networks to cope with stress, but the function of these networks in natural habitats is poorly understood. The competition sensing hypothesis states that bacterial stress response systems can serve to detect ecological competition, but studying regulatory responses in diverse communities is challenging. Here, we solve this problem by using differential fluorescence induction to screen the Salmonella Typhimurium genome for loci that respond, at the single-cell level, to life in biofilms with competing strains of S. Typhimurium and Escherichia coli. This screening reveals the presence of competing strains drives up the expression of genes associated with biofilm matrix production (CsgD pathway), epithelial invasion (SPI1 invasion system), and, finally, chemical efflux and antibiotic tolerance (TolC efflux pump and AadA aminoglycoside 3-adenyltransferase). We validate that these regulatory changes result in the predicted phenotypic changes in biofilm, mammalian cell invasion, and antibiotic tolerance. We further show that these responses arise via activation of major stress responses, providing direct support for the competition sensing hypothesis. Moreover, inactivation of the type VI secretion system (T6SS) of a competitor annuls the responses to competition, indicating that T6SS-derived cell damage activates these stress response systems. Our work shows that bacteria use stress responses to detect and respond to competition in a manner important for major phenotypes, including biofilm formation, virulence, and antibiotic tolerance.
Collapse
Affiliation(s)
- Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Stefanie Roberfroid
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Lise Dieltjens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - David De Coster
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
17
|
Gómez-Baltazar A, Vázquez-Garcidueñas MS, Larsen J, Kuk-Soberanis ME, Vázquez-Marrufo G. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype Typhimurium. Food Microbiol 2019; 82:303-315. [PMID: 31027788 DOI: 10.1016/j.fm.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/27/2022]
Abstract
The replacement of the most prevalent Salmonella enterica genotypes has been documented worldwide. Here we tested the hypothesis that the current prevalent sequence type ST213 of serotype Typhimurium in Mexico has a higher resistance to stressful food preservation conditions than the displaced sequence ST19. ST19 showed higher cell viability percentages than ST213 in osmotic (685 mM NaCl) and acidic (pH 3.5) stress conditions and in combination with refrigeration (4 °C) and ambient (≈22 °C) temperatures. Both genotypes showed the same poststress recovery growth. ST213 formed biofilm and filamentous cells (FCs) under stress, whereas ST19 did not. ST213 cells also showed higher motility. The capacity of ST213 to form FCs may explain its lower viability percentages when compared with ST19, i.e., ST213 cells divided less under stress conditions, but FCs had the same recovery capacity of ST19 cells. ST213 presented a higher unsaturated/saturated fatty acids ratio (0.5-0.6) than ST19 (0.2-0.5), which indicates higher membrane fluidity. The transcript levels of the rpoS gene were similar between genotypes under the experimental conditions employed. Biofilm formation, the generation of FCs, cell motility and membrane modification seem to make ST213 more resistant than ST19 to food preservation environments.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58893, Mexico.
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58020, Mexico.
| | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México, Morelia, Michoacá, CP 58190, Mexico.
| | - Mariana Esther Kuk-Soberanis
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58020, Mexico.
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, CP 58893, Mexico.
| |
Collapse
|
18
|
den Besten HM, Amézquita A, Bover-Cid S, Dagnas S, Ellouze M, Guillou S, Nychas G, O'Mahony C, Pérez-Rodriguez F, Membré JM. Next generation of microbiological risk assessment: Potential of omics data for exposure assessment. Int J Food Microbiol 2018; 287:18-27. [DOI: 10.1016/j.ijfoodmicro.2017.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
|
19
|
Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A, Maufrais C, Matondo M, Norel F. Proteome remodelling by the stress sigma factor RpoS/σ S in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127. [PMID: 28522802 PMCID: PMC5437024 DOI: 10.1038/s41598-017-02362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase is the master regulator of the general stress response in many Gram-negative bacteria. Extensive studies have been conducted on σS-regulated gene expression at the transcriptional level. In contrast, very limited information regarding the impact of σS on global protein production is available. In this study, we used a mass spectrometry-based proteomics approach to explore the wide σS-dependent proteome of the human pathogen Salmonella enterica serovar Typhimurium. Our present goals were twofold: (1) to survey the protein changes associated with the ΔrpoS mutation and (2) to assess the coding capacity of σS-dependent small RNAs. Our proteomics data, and complementary assays, unravelled the large impact of σS on the Salmonella proteome, and validated expression and σS regulation of twenty uncharacterized small proteins of 27 to 96 amino acids. Furthermore, a large number of genes regulated at the protein level only were identified, suggesting that post-transcriptional regulation is an important component of the σS response. Novel aspects of σS in the control of important catabolic pathways such as myo-inositol, L-fucose, propanediol, and ethanolamine were illuminated by this work, providing new insights into the physiological remodelling involved in bacterial adaptation to a non-actively growing state.
Collapse
Affiliation(s)
- Magali Lago
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, rue du Dr. Roux, 75015, Paris, France
| | - Véronique Monteil
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France
| | - Thibaut Douche
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Julien Guglielmini
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, rue du Dr. Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Unité de Spectrométrie de Masse Structurale et Protéomique, Département de Biologie Structurale et Chimie, UMR3528, rue du Dr. Roux, 75015, Paris, France
| | - Françoise Norel
- Institut Pasteur, Laboratoire Systèmes Macromoléculaires et Signalisation, Département de Microbiologie, rue du Dr. Roux, 75015, Paris, France.
- CNRS ERL6002, rue du Docteur Roux, 75015, Paris, France.
- Institut Pasteur, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie structurale et Chimie, rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
20
|
Cavaliere P, Norel F. Recent advances in the characterization of Crl, the unconventional activator of the stress sigma factor σS/RpoS. Biomol Concepts 2017; 7:197-204. [PMID: 27180360 DOI: 10.1515/bmc-2016-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/29/2016] [Indexed: 11/15/2022] Open
Abstract
The bacterial RNA polymerase (RNAP) holoenzyme is a multisubunit core enzyme associated with a σ factor that is required for promoter-specific transcription initiation. Besides a primary σ responsible for most of the gene expression during active growth, bacteria contain alternative σ factors that control adaptive responses. A recurring strategy in the control of σ factor activity is their sequestration by anti-sigma factors that occlude the RNAP binding determinants, reducing their activity. In contrast, the unconventional transcription factor Crl binds specifically to the alternative σ factor σS/RpoS, and favors its association with the core RNAP, thereby increasing its activity. σS is the master regulator of the general stress response that protects many Gram-negative bacteria from several harmful environmental conditions. It is also required for biofilm formation and virulence of Salmonella enterica serovar Typhimurium. In this report, we discuss current knowledge on the regulation and function of Crl in Salmonella and Escherichia coli, two bacterial species in which Crl has been studied. We review recent advances in the structural characterization of the Crl-σS interaction that have led to a better understanding of this unusual mechanism of σ regulation.
Collapse
|
21
|
Galen JE, Buskirk AD, Tennant SM, Pasetti MF. Live Attenuated Human Salmonella Vaccine Candidates: Tracking the Pathogen in Natural Infection and Stimulation of Host Immunity. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0010-2016. [PMID: 27809955 PMCID: PMC5119766 DOI: 10.1128/ecosalplus.esp-0010-2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 04/08/2023]
Abstract
Salmonellosis, caused by members of the genus Salmonella, is responsible for considerable global morbidity and mortality in both animals and humans. In this review, we will discuss the pathogenesis of Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium, focusing on human Salmonella infections. We will trace the path of Salmonella through the body, including host entry sites, tissues and organs affected, and mechanisms involved in both pathogenesis and stimulation of host immunity. Careful consideration of the natural progression of disease provides an important context in which attenuated live oral vaccines can be rationally designed and developed. With this in mind, we will describe a series of attenuated live oral vaccines that have been successfully tested in clinical trials and demonstrated to be both safe and highly immunogenic. The attenuation strategies summarized in this review offer important insights into further development of attenuated vaccines against other Salmonella for which live oral candidates are currently unavailable.
Collapse
Affiliation(s)
- James E Galen
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Amanda D Buskirk
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| | - Sharon M Tennant
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| | - Marcela F Pasetti
- Center for Vaccine Development, Institute for Global Health, University of Maryland School of Medicine, Baltimore MD 21201
| |
Collapse
|
22
|
Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. Discrimination and Integration of Stress Signals by Pathogenic Bacteria. Cell Host Microbe 2016; 20:144-153. [PMID: 27512902 PMCID: PMC5111874 DOI: 10.1016/j.chom.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/23/2016] [Accepted: 07/26/2016] [Indexed: 02/08/2023]
Abstract
For pathogenic bacteria, the ability to sense and respond to environmental stresses encountered within the host is critically important, allowing them to adapt to changing conditions and express virulence genes appropriately. This review considers the diverse molecular mechanisms by which stress conditions are sensed by bacteria, how related signals are discriminated, and how stress responses are integrated, highlighting recent studies in selected bacterial pathogens of clinical relevance.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elaine R Frawley
- Department Laboratory Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Veterans Affairs Eastern Colorado Health Care System, 1055 Clermont Street, Denver, CO 80220, USA
| |
Collapse
|
23
|
The General Stress Response Is Conserved in Long-Term Soil-Persistent Strains of Escherichia coli. Appl Environ Microbiol 2016; 82:4628-4640. [PMID: 27235429 DOI: 10.1128/aem.01175-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Although Escherichia coli is generally considered to be predominantly a commensal of the gastrointestinal tract, a number of recent studies suggest that it is also capable of long-term survival and growth in environments outside the host. As the extraintestinal physical and chemical conditions are often different from those within the host, it is possible that distinct genetic adaptations may be required to enable this transition. Several studies have shown a trade-off between growth and stress resistance in nutrient-poor environments, with lesions in the rpoS locus, which encodes the stress sigma factor RpoS (σ(S)). In this study, we investigated a unique collection of long-term soil-persistent E. coli isolates to determine whether the RpoS-controlled general stress response is altered during adaptation to a nutrient-poor extraintestinal environment. The sequence of the rpoS locus was found to be highly conserved in these isolates, and no nonsense or frameshift mutations were detected. Known RpoS-dependent phenotypes, including glycogen synthesis and γ-aminobutyrate production, were found to be conserved in all strains. All strains expressed the full-length RpoS protein, which was fully functional using the RpoS-dependent promoter reporter fusion PgadX::gfp RpoS was shown to be essential for long-term soil survival of E. coli, since mutants lacking rpoS lost viability rapidly in soil survival assays. Thus, despite some phenotypic heterogeneity, the soil-persistent strains all retained a fully functional RpoS-regulated general stress response, which we interpret to indicate that the stresses encountered in soil provide a strong selective pressure for maintaining stress resistance, despite limited nutrient availability. IMPORTANCE Escherichia coli has been, and continues to be, used as an important indicator species reflecting potential fecal contamination events in the environment. However, recent studies have questioned the validity of this, since E. coli has been found to be capable of long-term colonization of soils. This study investigated whether long-term soil-persistent E. coli strains have evolved altered stress resistance characteristics. In particular, the study investigated whether the main regulator of genes involved in stress protection, the sigma factor RpoS, has been altered in the soil-persistent strains. The results show that RpoS stress protection is fully conserved in soil-persistent strains of E. coli They also show that loss of the rpoS gene dramatically reduces the ability of this organism to survive in a soil environment. Overall, the results indicate that soil represents a stressful environment for E. coli, and their survival in it requires that they deploy a full stress protection response.
Collapse
|
24
|
Alvarez-Ordóñez A, Hill C. RpoS loss in Cronobacter sakazakii by propagation in the presence of non-preferred carbon sources. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Genomic Analysis of Salmonella enterica Serovar Typhimurium Characterizes Strain Diversity for Recent U.S. Salmonellosis Cases and Identifies Mutations Linked to Loss of Fitness under Nitrosative and Oxidative Stress. mBio 2016; 7:e00154. [PMID: 26956590 PMCID: PMC4810482 DOI: 10.1128/mbio.00154-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common S. enterica serovars associated with U.S. foodborne outbreaks. S. Typhimurium bacteria isolated from humans exhibit wide-ranging virulence phenotypes in inbred mice, leading to speculation that some strains are more virulent in nature. However, it is unclear whether increased virulence in humans is related to organism characteristics or initial treatment failure due to antibiotic resistance. Strain diversity and genetic factors contributing to differential human pathogenicity remain poorly understood. We reconstructed phylogeny, resolved genetic population structure, determined gene content and nucleotide variants, and conducted targeted phenotyping assays for S. Typhimurium strains collected between 1946 and 2012 from humans and animals in the United States and abroad. Strains from recent U.S. salmonellosis cases were associated with five S. Typhimurium lineages distributed within three phylogenetic clades, which are not restricted by geography, year of acquisition, or host. Notably, two U.S. strains and four Mexican strains are more closely related to strains associated with human immunodeficiency virus (HIV)-infected individuals in sub-Saharan Africa than to other North American strains. Phenotyping studies linked variants specific to these strains in hmpA and katE to loss of fitness under nitrosative and oxidative stress, respectively. These results suggest that U.S. salmonellosis is caused by diverse S. Typhimurium strains circulating worldwide. One lineage has mutations in genes affecting fitness related to innate immune system strategies for fighting pathogens and may be adapting to immunocompromised humans by a reduction in virulence capability, possibly due to a lack of selection for its maintenance as a result of the worldwide HIV epidemic. Nontyphoidal Salmonella bacteria cause an estimated 1.2 million illnesses annually in the United States, 80 million globally, due to ingestion of contaminated food or water. Salmonella Typhimurium is one of the most common serovars associated with foodborne illness, causing self-limiting gastroenteritis and, in approximately 5% of infected patients, systemic infection. Although some S. Typhimurium strains are speculated to be more virulent than others, it is unknown how strain diversity and genetic factors contribute to differential human pathogenicity. Ours is the first study to examine the diversity of S. Typhimurium associated with recent cases of U.S. salmonellosis and to provide some initial correlation between observed genotypes and phenotypes. Definition of specific S. Typhimurium lineages based on such phenotype/genotype correlations may identify strains with greater capability of associating with specific food sources, allowing outbreaks to be more quickly identified. Additionally, defining simple correlates of pathogenesis may have predictive value for patient outcome.
Collapse
|
26
|
Loss of Multicellular Behavior in Epidemic African Nontyphoidal Salmonella enterica Serovar Typhimurium ST313 Strain D23580. mBio 2016; 7:e02265. [PMID: 26933058 PMCID: PMC4810497 DOI: 10.1128/mbio.02265-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Nontyphoidal Salmonella enterica serovar Typhimurium is a frequent cause of bloodstream infections in children and HIV-infected adults in sub-Saharan Africa. Most isolates from African patients with bacteremia belong to a single sequence type, ST313, which is genetically distinct from gastroenteritis-associated ST19 strains, such as 14028s and SL1344. Some studies suggest that the rapid spread of ST313 across sub-Saharan Africa has been facilitated by anthroponotic (person-to-person) transmission, eliminating the need for Salmonella survival outside the host. While these studies have not ruled out zoonotic or other means of transmission, the anthroponotic hypothesis is supported by evidence of extensive genomic decay, a hallmark of host adaptation, in the sequenced ST313 strain D23580. We have identified and demonstrated 2 loss-of-function mutations in D23580, not present in the ST19 strain 14028s, that impair multicellular stress resistance associated with survival outside the host. These mutations result in inactivation of the KatE stationary-phase catalase that protects high-density bacterial communities from oxidative stress and the BcsG cellulose biosynthetic enzyme required for the RDAR (red, dry, and rough) colonial phenotype. However, we found that like 14028s, D23580 is able to elicit an acute inflammatory response and cause enteritis in mice and rhesus macaque monkeys. Collectively, these observations suggest that African S. Typhimurium ST313 strain D23580 is becoming adapted to an anthroponotic mode of transmission while retaining the ability to infect and cause enteritis in multiple host species. IMPORTANCE The last 3 decades have witnessed an epidemic of invasive nontyphoidal Salmonella infections in sub-Saharan Africa. Genomic analysis and clinical observations suggest that the Salmonella strains responsible for these infections are evolving to become more typhoid-like with regard to patterns of transmission and virulence. This study shows that a prototypical African nontyphoidal Salmonella strain has lost traits required for environmental stress resistance, consistent with an adaptation to a human-to-human mode of transmission. However, in contrast to predictions, the strain remains capable of causing acute inflammation in the mammalian intestine. This suggests that the systemic clinical presentation of invasive nontyphoidal Salmonella infections in Africa reflects the immune status of infected hosts rather than intrinsic differences in the virulence of African Salmonella strains. Our study provides important new insights into the evolution of host adaptation in bacterial pathogens.
Collapse
|
27
|
The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int J Food Microbiol 2015; 213:99-109. [DOI: 10.1016/j.ijfoodmicro.2015.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022]
|
28
|
Yamaguchi T, Iida KI, Shiota S, Nakayama H, Yoshida SI. Filament formation of Salmonella Paratyphi A accompanied by FtsZ assembly impairment and low level ppGpp. Can J Microbiol 2015; 61:955-64. [PMID: 26549184 DOI: 10.1139/cjm-2015-0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously, we reported that Salmonella enterica serovar Paratyphi A strain S602 grew into multinuclear, nonseptate, and nonlethal filaments on agar plates containing nitrogenous salts. Strain S602 was more sensitive to osmotic and oxidative stress than the reference strain 3P243 of nonfilamentous Salmonella Paratyphi A. Strain S602 had an amber mutation (C154T) in rpoS. The revertant of this mutant, SR603, was repressed to form filaments under conditions with abundant nitrogenous salts. However, 3PR244, an rpoS mutant of 3P243 (C154T), did not form filaments, which implies that the rpoS mutation is not the sole cause of filamentation in strain S602. Next, we examined whether the level of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in S602 strain is involved in filament formation. The intracellular ppGpp level in filamentous cells was lower than that in nonfilamentous cells. Furthermore, cells belonging to strain RE606, a derivative of S602 where the intracellular concentration of ppGpp was increased by overexpression of the relA gene, exhibited normal Z-ring formation and cell division. In the S602 strain, the decrease in the ppGpp level induced by the presence of nitrogenous salt and the rpoS mutation led to the inhibition of Z-ring formation and the subsequent filamentation of cells.
Collapse
Affiliation(s)
- Takayoshi Yamaguchi
- a Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichiro Iida
- a Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Susumu Shiota
- b Department of Oral Health, Growth, and Development, Division of Oral Infectious Diseases and Immunology, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroaki Nakayama
- a Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shin-Ichi Yoshida
- a Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Rice CJ, Ramachandran VK, Shearer N, Thompson A. Transcriptional and Post-Transcriptional Modulation of SPI1 and SPI2 Expression by ppGpp, RpoS and DksA in Salmonella enterica sv Typhimurium. PLoS One 2015; 10:e0127523. [PMID: 26039089 PMCID: PMC4454661 DOI: 10.1371/journal.pone.0127523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022] Open
Abstract
The expression of genes within Salmonella Pathogenicity Islands 1 and 2 (SPI1, SPI2) is required to facilitate invasion and intracellular replication respectively of S. Typhimurium in host cell lines. Control of their expression is complex and occurs via a variety of factors operating at transcriptional and post-transcriptional levels in response to the environmental stimuli found within the host. Several of the factors that modulate SPI1 and SPI2 expression are involved in the redistribution or modification of RNA polymerase (RNAP) specificity. These factors include the bacterial alarmone, ppGpp, the alternative sigma factor, RpoS, and the RNAP accessory protein, DksA. In this report we show not only how these three factors modulate SPI1 and SPI2 expression but also how they contribute to the 'phased' expression of SPI1 and SPI2 during progress through late-log and stationary phase in aerobic rich broth culture conditions. In addition, we demonstrate that the expression of at least one SPI1-encoded protein, SipC is subject to DksA-dependent post-transcriptional control.
Collapse
Affiliation(s)
| | | | - Neil Shearer
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| | - Arthur Thompson
- Institute of Food Research, Norwich, NR4 7UA, United Kingdom
| |
Collapse
|
30
|
Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-0862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
Cho Y, Park YM, Barate AK, Park SY, Park HJ, Lee MR, Truong QL, Yoon JW, Bang IS, Hahn TW. The role of rpoS, hmp, and ssrAB in Salmonella enterica Gallinarum and evaluation of a triple-deletion mutant as a live vaccine candidate in Lohmann layer chickens. J Vet Sci 2014; 16:187-94. [PMID: 25549217 PMCID: PMC4483502 DOI: 10.4142/jvs.2015.16.2.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/05/2014] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica Gallinarum (SG) causes fowl typhoid (FT), a septicemic disease in avian species. We constructed deletion mutants lacking the stress sigma factor RpoS, the nitric oxide (NO)-detoxifying flavohemoglobin Hmp, and the SsrA/SsrB regulator to confirm the functions of these factors in SG. All gene products were fully functional in wild-type (WT) SG whereas mutants harboring single mutations or a combination of rpoS, hmp, and ssrAB mutations showed hypersusceptibility to H2O2, loss of NO metabolism, and absence of Salmonella pathogenicity island (SPI)-2 expression, respectively. A triple-deletion mutant, SGΔ3 (SGΔrpoSΔhmpΔssrAB), was evaluated for attenuated virulence and protection efficacy in two-week-old Lohmann layer chickens. The SGΔ3 mutant did not cause any mortality after inoculation with either 1 × 106 or 1 × 108 colony-forming units (CFUs) of bacteria. Significantly lower numbers of salmonellae were recovered from the liver and spleen of chickens inoculated with the SGΔ3 mutant compared to chickens inoculated with WT SG. Vaccination with the SGΔ3 mutant conferred complete protection against challenge with virulent SG on the chickens comparable to the group vaccinated with a conventional vaccine strain, SG9R. Overall, these results indicate that SGΔ3 could be a promising candidate for a live Salmonella vaccine against FT.
Collapse
Affiliation(s)
- Youngjae Cho
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The rpoS gene is predominantly inactivated during laboratory storage and undergoes source-sink evolution in Escherichia coli species. J Bacteriol 2014; 196:4276-84. [PMID: 25266386 DOI: 10.1128/jb.01972-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rpoS gene codes for an alternative RNA polymerase sigma factor, which acts as a general regulator of the stress response. Inactivating alleles of rpoS in collections of natural Escherichia coli isolates have been observed at very variable frequencies, from less than 1% to more than 70% of strains. rpoS is easily inactivated in nutrient-deprived environments such as stab storage, which makes it difficult to determine the true frequency of rpoS inactivation in nature. We studied the evolutionary history of rpoS and compared it to the phylogenetic history of bacteria in two collections of 82 human commensal and extraintestinal E. coli strains. These strains were representative of the phylogenetic diversity of the species and differed only by their storage conditions. In both collections, the phylogenetic histories of rpoS and of the strains were congruent, indicating that horizontal gene transfer had not occurred at the rpoS locus, and rpoS was under strong purifying selection, with a ratio of the nonsynonymous mutation rate (Ka) to the synonymous substitution rate (Ks) substantially smaller than 1. Stab storage was associated with a high frequency of inactivating alleles, whereas almost no amino acid sequence variation was observed in RpoS in the collection studied directly after isolation of the strains from the host. Furthermore, the accumulation of variations in rpoS was typical of source-sink dynamics. In conclusion, rpoS is rarely inactivated in natural E. coli isolates within their mammalian hosts, probably because such strains rapidly become evolutionary dead ends. Our data should encourage bacteriologists to freeze isolates immediately and to avoid the use of stab storage.
Collapse
|
33
|
Carter MQ, Louie JW, Huynh S, Parker CT. Natural rpoS mutations contribute to population heterogeneity in Escherichia coli O157:H7 strains linked to the 2006 US spinach-associated outbreak. Food Microbiol 2014; 44:108-18. [PMID: 25084652 DOI: 10.1016/j.fm.2014.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/14/2023]
Abstract
We previously reported significantly different acid resistance between curli variants derived from the same Escherichia coli O157:H7 strain, although the curli fimbriae were not associated with this phenotypic divergence. Here we investigated the underlying molecular mechanism by examining the genes encoding the common transcriptional regulators of curli biogenesis and acid resistance. rpoS null mutations were detected in all curli-expressing variants of the 2006 spinach-associated outbreak strains, whereas a wild-type rpoS was present in all curli-deficient variants. Consequently curli-expressing variants were much more sensitive to various stress challenges than curli-deficient variants. This loss of general stress fitness appeared solely to be the result of rpoS mutation since the stress resistances could be restored in curli-expressing variants by a functional rpoS. Comparative transcriptomic analyses between the curli variants revealed a large number of differentially expressed genes, characterized by the enhanced expression of metabolic genes in curli-expressing variants, but a marked decrease in transcription of genes related to stress resistances. Unlike the curli-expressing variants of the 1993 US hamburger-associated outbreak strains (Applied Environmental Microbiology 78: 7706-7719), all curli-expressing variants of the 2006 spinach-associated outbreak strains carry a functional rcsB gene, suggesting an alternative mechanism governing intra-strain phenotypic divergence in E. coli O157:H7.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA.
| | - Jacqueline W Louie
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Craig T Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| |
Collapse
|
34
|
Lévi-Meyrueis C, Monteil V, Sismeiro O, Dillies MA, Monot M, Jagla B, Coppée JY, Dupuy B, Norel F. Expanding the RpoS/σS-network by RNA sequencing and identification of σS-controlled small RNAs in Salmonella. PLoS One 2014; 9:e96918. [PMID: 24810289 PMCID: PMC4014581 DOI: 10.1371/journal.pone.0096918] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/13/2014] [Indexed: 12/31/2022] Open
Abstract
The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS.
Collapse
Affiliation(s)
- Corinne Lévi-Meyrueis
- Institut Pasteur, Unité de Génétique Moléculaire, Département de Microbiologie, Paris, France
- CNRS, ERL3526, Paris, France
- Université Paris Sud XI, Orsay, France
| | - Véronique Monteil
- Institut Pasteur, Unité de Génétique Moléculaire, Département de Microbiologie, Paris, France
- CNRS, ERL3526, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, Paris, France
| | - Marie-Agnès Dillies
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, Paris, France
| | - Marc Monot
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, Paris, France
| | - Bernd Jagla
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et Epigénome, Département Génomes et génétique, Paris, France
| | - Bruno Dupuy
- Institut Pasteur, Laboratoire Pathogenèse des bactéries anaérobies, Département de Microbiologie, Paris, France
| | - Françoise Norel
- Institut Pasteur, Unité de Génétique Moléculaire, Département de Microbiologie, Paris, France
- CNRS, ERL3526, Paris, France
- * E-mail:
| |
Collapse
|
35
|
Escherichia coli lacking RpoS are rare in natural populations of non-pathogens. G3-GENES GENOMES GENETICS 2012; 2:1341-4. [PMID: 23173085 PMCID: PMC3484664 DOI: 10.1534/g3.112.003855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/31/2012] [Indexed: 11/18/2022]
Abstract
The alternative sigma factor RpoS controls a large regulon that allows E. coli to respond to a variety of stresses. Mutations in rpoS can increase rates of nutrient acquisition at the cost of a decrease in stress resistance. These kinds of mutations evolve rapidly under certain laboratory conditions where nutrient acquisition is especially challenging. The frequency of strains lacking RpoS in natural populations of E. coli is less clear. Such strains have been found at frequencies over 20% in some collections of wild isolates. However, laboratory handling can select for RpoS-null strains and may have affected some of these strain collections. Other studies have included an unknown diversity of strains or only used a phenotypic proxy as a measure of RpoS levels. We directly measured RpoS levels in a collection of E. coli that includes the full diversity of the species and that was handled in a manner to minimize the potential for laboratory evolution. We found that only 2% of strains produce no functional RpoS. Comparison of these strains in multiple labs shows that these rpoS mutations occurred in the laboratory. Earlier studies reporting much higher levels of RpoS polymorphism may reflect the storage history of the strains in laboratories rather than true frequency of such strains in natural populations.
Collapse
|
36
|
Ricciardi A, Parente E, Guidone A, Ianniello RG, Zotta T, Abu Sayem SM, Varcamonti M. Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus. Int J Food Microbiol 2012; 157:278-85. [PMID: 22704047 DOI: 10.1016/j.ijfoodmicro.2012.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 05/16/2012] [Accepted: 05/19/2012] [Indexed: 10/28/2022]
Abstract
Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L. plantarum strains from the other species but there was no correlation between genotypic grouping and grouping obtained on the basis of the stress response pattern, nor with the phylograms obtained from hrcA and ctsR sequences. Differences in sequence in L. plantarum strains were mostly due to single nucleotide polymorphisms with a high frequency of synonymous nucleotide changes and, while hrcA was characterized by an excess of low frequency polymorphism, very low diversity was found in ctsR sequences. Sequence alignment of hrcA allowed a correct discrimination of the strains at the species level, thus confirming the relevance of stress response genes for taxonomy.
Collapse
Affiliation(s)
- Annamaria Ricciardi
- Dipartimento di Biologia, Difesa e Biotecnologie Agro-Forestali, Università degli Studi della Basilicata, Potenza, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii. Appl Environ Microbiol 2012; 78:3975-84. [PMID: 22447602 DOI: 10.1128/aem.07835-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Significant phenotypic diversity was observed when we examined the abilities of a number of Cronobacter sakazakii natural isolates to cope with various sublethal stress conditions (acid, alkaline, osmotic, oxidative, or heat stress). Levels of catalase activity and use of acetate as a carbon source, phenotypes commonly used as indirect assays to predict RpoS function, revealed a high correlation between predicted RpoS activity and tolerance to acid, alkaline, osmotic, and oxidative treatments. The rpoS genes were sequenced and analyzed for polymorphisms. Loss-of-function mutations were found in two strains; C. sakazakii DPC 6523 and the genome-sequenced strain C. sakazakii ATCC BAA-894. The complementation of these strains with a functional rpoS gene resulted in an increase in bacterial tolerance to acid, osmotic, and oxidative stresses. The pigmentation status of strains was also assessed, and a high variability in carotenoid content was observed, with a functional rpoS gene being essential for the production of the characteristic yellow pigment. In conclusion, the evidence presented in this study demonstrates that rpoS is a highly polymorphic gene in C. sakazakii, and it supports the importance of RpoS for the tolerance under stress conditions that C. sakazakii may encounter in the food chain and in the host during infection.
Collapse
|
38
|
Shah DH, Casavant C, Hawley Q, Addwebi T, Call DR, Guard J. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen. Foodborne Pathog Dis 2012; 9:258-64. [PMID: 22304629 DOI: 10.1089/fpd.2011.1009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella Enteritidis is the major foodborne pathogen that is primarily transmitted by contaminated chicken meat and eggs. We recently demonstrated that Salmonella Enteritidis strains from poultry differ in their ability to invade human intestinal cells and cause disease in orally challenged mice. Here we hypothesized that the differential virulence of Salmonella Enteritidis strains is due to the differential fitness in the adverse environments that may be encountered during infection in the host. The responses of a panel of six Salmonella Enteritidis strains to acid stress, oxidative stress, survival in egg albumen, and the ability to cause infection in chickens were analyzed. This analysis allowed classification of strains into two categories, stress-sensitive and stress-resistant, with the former showing significantly (p<0.05) reduced survival in acidic (gastric phase of infection) and oxidative (intestinal and systemic phase of infection) stress. Stress-sensitive strains also showed impaired intestinal colonization and systemic dissemination in orally inoculated chickens and failed to survive/grow in egg albumen. Comparative genomic hybridization microarray analysis revealed no differences at the discriminatory level of the whole gene content between stress-sensitive and stress-resistant strains. However, sequencing of rpoS, a stress-regulatory gene, revealed that one of the three stress-sensitive strains carried an insertion mutation in the rpoS resulting in truncation of σ(S). Finding that one of the stress-sensitive strains carried an easily identifiable small polymorphism within a stress-response gene suggests that the other strains may also have small polymorphisms elsewhere in the genome, which likely impact regulation of stress or virulence associated genes in some manner.
Collapse
Affiliation(s)
- Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
40
|
Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 2011; 77:4136-46. [PMID: 21515723 DOI: 10.1128/aem.02418-10] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques.
Collapse
|
41
|
Crl binds to domain 2 of σ(S) and confers a competitive advantage on a natural rpoS mutant of Salmonella enterica serovar Typhi. J Bacteriol 2010; 192:6401-10. [PMID: 20935100 DOI: 10.1128/jb.00801-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RpoS sigma factor (σ(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a σ(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in σ(S) domain 4, which was much more dependent than the wild-type σ(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of σ(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of σ(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of σ(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the Eσ(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between σ(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in Δcrl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.
Collapse
|
42
|
Identification of conserved amino acid residues of the Salmonella sigmaS chaperone Crl involved in Crl-sigmaS interactions. J Bacteriol 2009; 192:1075-87. [PMID: 20008066 DOI: 10.1128/jb.01197-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins that bind sigma factors typically attenuate the function of the sigma factor by restricting its access to the RNA polymerase (RNAP) core enzyme. An exception to this general rule is the Crl protein that binds the stationary-phase sigma factor sigma(S) (RpoS) and enhances its affinity for the RNAP core enzyme, thereby increasing expression of sigma(S)-dependent genes. Analyses of sequenced bacterial genomes revealed that crl is less widespread and less conserved at the sequence level than rpoS. Seventeen residues are conserved in all members of the Crl family. Site-directed mutagenesis of the crl gene from Salmonella enterica serovar Typhimurium and complementation of a Deltacrl mutant of Salmonella indicated that substitution of the conserved residues Y22, F53, W56, and W82 decreased Crl activity. This conclusion was further confirmed by promoter binding and abortive transcription assays. We also used a bacterial two-hybrid system (BACTH) to show that the four substitutions in Crl abolish Crl-sigma(S) interaction and that residues 1 to 71 in sigma(S) are dispensable for Crl binding. In Escherichia coli, it has been reported that Crl also interacts with the ferric uptake regulator Fur and that Fur represses crl transcription. However, the Salmonella Crl and Fur proteins did not interact in the BACTH system. In addition, a fur mutation did not have any significant effect on the expression level of Crl in Salmonella. These results suggest that the relationship between Crl and Fur is different in Salmonella and E. coli.
Collapse
|
43
|
Lucchini S, McDermott P, Thompson A, Hinton JCD. The H-NS-like protein StpA represses the RpoS (sigma 38) regulon during exponential growth of Salmonella Typhimurium. Mol Microbiol 2009; 74:1169-86. [PMID: 19843227 DOI: 10.1111/j.1365-2958.2009.06929.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
StpA is a paralogue of the nucleoid-associated protein H-NS that is conserved in a range of enteric bacteria and had no known function in Salmonella Typhimurium. We show that 5% of the Salmonella genome is regulated by StpA, which contrasts with the situation in Escherichia coli where deletion of stpA only had minor effects on gene expression. The StpA-dependent genes of S. Typhimurium are a specific subset of the H-NS regulon that are predominantly under the positive control of sigma(38) (RpoS), CRP-cAMP and PhoP. Regulation by StpA varied with growth phase; StpA controlled sigma(38) levels at mid-exponential phase by preventing inappropriate activation of sigma(38) during rapid bacterial growth. In contrast, StpA only activated the CRP-cAMP regulon during late exponential phase. ChIP-chip analysis revealed that StpA binds to PhoP-dependent genes but not to most genes of the CRP-cAMP and sigma(38) regulons. In fact, StpA indirectly regulates sigma(38)-dependent genes by enhancing sigma(38) turnover by repressing the anti-adaptor protein rssC. We discovered that StpA is essential for the dynamic regulation of sigma(38) in response to increased glucose levels. Our findings identify StpA as a novel growth phase-specific regulator that plays an important physiological role by linking sigma(38) levels to nutrient availability.
Collapse
Affiliation(s)
- Sacha Lucchini
- Institute of Food Research, Colney Lane, Norwich, NR4 7UA, UK.
| | | | | | | |
Collapse
|
44
|
Betancor L, Yim L, Fookes M, Martinez A, Thomson NR, Ivens A, Peters S, Bryant C, Algorta G, Kariuki S, Schelotto F, Maskell D, Dougan G, Chabalgoity JA. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol 2009; 9:237. [PMID: 19922635 PMCID: PMC2784474 DOI: 10.1186/1471-2180-9-237] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. RESULTS 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators.Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. CONCLUSION The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.
Collapse
Affiliation(s)
- Laura Betancor
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Lucia Yim
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Maria Fookes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Araci Martinez
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Nicholas R Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alasdair Ivens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Sarah Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gabriela Algorta
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Reserch Institute, Nairobi, Kenya
| | - Felipe Schelotto
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jose A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. A, Navarro 3051, CP 11600, Montevideo, Uruguay
| |
Collapse
|
45
|
Stoebel DM, Hokamp K, Last MS, Dorman CJ. Compensatory evolution of gene regulation in response to stress by Escherichia coli lacking RpoS. PLoS Genet 2009; 5:e1000671. [PMID: 19798444 PMCID: PMC2744996 DOI: 10.1371/journal.pgen.1000671] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022] Open
Abstract
The RpoS sigma factor protein of Escherichia coli RNA polymerase is the master transcriptional regulator of physiological responses to a variety of stresses. This stress response comes at the expense of scavenging for scarce resources, causing a trade-off between stress tolerance and nutrient acquisition. This trade-off favors non-functional rpoS alleles in nutrient-poor environments. We used experimental evolution to explore how natural selection modifies the regulatory network of strains lacking RpoS when they evolve in an osmotically stressful environment. We found that strains lacking RpoS adapt less variably, in terms of both fitness increase and changes in patterns of transcription, than strains with functional RpoS. This phenotypic uniformity was caused by the same adaptive mutation in every independent population: the insertion of IS10 into the promoter of the otsBA operon. OtsA and OtsB are required to synthesize the osmoprotectant trehalose, and transcription of otsBA requires RpoS in the wild-type genetic background. The evolved IS10 insertion rewires expression of otsBA from RpoS-dependent to RpoS-independent, allowing for partial restoration of wild-type response to osmotic stress. Our results show that the regulatory networks of bacteria can evolve new structures in ways that are both rapid and repeatable. Escherichia coli, like all bacteria, expresses distinct sets of genes in response to different environmental challenges. One protein, RpoS, is a central part of the cellular response that brings about these changes in gene expression. Despite the importance of this protein in response to some kinds of stresses, strains that lack a functional RpoS protein are found at appreciable frequency in nature. We sought to understand how these strains evolve to compensate for the lack of RpoS function. We evolved E. coli with and without RpoS in a stressful environment in the lab, and found that strains without RpoS evolved in a uniform and repeatable manner. This was true in terms of how much their fitness increased or in terms of how genes were expressed to compensate for the lack of RpoS. These patterns had a simple cause. A mobile genetic element moved position in the genome, allowing for the transcription of a pair of key genes. The same element moved to the same place in each of our replicate experiments, causing the repeatable change in fitness and gene expression. We conclude that E. coli can rapidly compensate for the lack of RpoS by evolving novel mechanisms to control patterns of gene expression.
Collapse
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology and Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Michael S. Last
- UC Toxic Substance Research and Teaching Program, University of California Davis, Davis, California, United States of America
| | - Charles J. Dorman
- Department of Microbiology and Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
- * E-mail:
| |
Collapse
|
46
|
Carranza P, Hartmann I, Lehner A, Stephan R, Gehrig P, Grossmann J, Barkow-Oesterreicher S, Roschitzki B, Eberl L, Riedel K. Proteomic profiling of Cronobacter turicensis
3032, a food-borne opportunistic pathogen. Proteomics 2009; 9:3564-79. [DOI: 10.1002/pmic.200900016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Hagen MJ, Stockwell VO, Whistler CA, Johnson KB, Loper JE. Stress tolerance and environmental fitness of Pseudomonas fluorescens A506, which has a mutation in RpoS. PHYTOPATHOLOGY 2009; 99:679-688. [PMID: 19453226 DOI: 10.1094/phyto-99-6-0679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Establishment of suppressive populations of bacterial biological control agents on aerial plant surfaces is a critical phase in biologically based management of floral diseases. Periodically, biocontrol agents encounter inhospitable conditions for growth on plants; consequently, tolerance of environmental stresses may contribute to their fitness. In many gram-negative bacteria, including strains of Pseudomonas spp., the capacity to survive environmental stresses is influenced by the stationary phase sigma factor RpoS. This study focused on the role of RpoS in stress response and epiphytic fitness of Pseudomonas fluorescens A506, a well-studied bacterial biological control agent. We detected a frameshift mutation in the rpoS of A506 and demonstrated that the mutation resulted in a truncated, nonfunctional RpoS. Using site-directed mutagenesis, we deleted a nucleotide from rpoS, which then encoded a full-length, functional RpoS. We compared the stress response and epiphytic fitness of A506 with derivative strains having the functional full-length RpoS or a disrupted, nonfunctional RpoS. RpoS had little effect on stress response of A506 and no consistent influence on epiphytic population size of A506 on pear or apple leaves or flowers. Although the capacity of strain A506 to withstand exposure to environmental stresses was similar to that of other fluorescent pseudomonads, this capacity was largely independent of rpoS.
Collapse
Affiliation(s)
- Mary J Hagen
- Department of Botany, Oregon State University, Corvallis 97331, USA
| | | | | | | | | |
Collapse
|
48
|
Santander J, Roland KL, Curtiss R. Regulation of Vi capsular polysaccharide synthesis in Salmonella enterica serotype Typhi. J Infect Dev Ctries 2008; 2:412-20. [PMID: 19745516 PMCID: PMC4100779 DOI: 10.3855/jidc.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 12/22/2022] Open
Abstract
The synthesis of Vi polysaccharide, a major virulence determinant in Salmonella enterica serotype Typhi (S. Typhi), is under the control of two regulatory systems, ompR-envZ and rscB-rscC, which respond to changes in osmolarity. Some S. Typhi isolates exhibit over-expression of Vi polysaccharide, which masks clinical detection of LPS O-antigen. This variation in Vi polysaccharide and O-antigen display (VW variation) has been observed since the initial studies of S. Typhi. We have reported that the status of the rpoS gene is responsible for this phenomenon. We review the regulatory network of the Vi polysaccharide, linking osmolarity and RpoS expression. Also, we discuss how this may impact live attenuated Salmonella vaccine development.
Collapse
Affiliation(s)
- Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5401, United States of America
| | | | | |
Collapse
|
49
|
Overproduction of exopolysaccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress. Appl Environ Microbiol 2008; 75:483-92. [PMID: 18997023 DOI: 10.1128/aem.01616-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yjbEFGH operon is implicated in the production of an exopolysaccharide of an unknown function and is induced by osmotic stress and negatively regulated by the general stress response sigma factor RpoS. Despite the obvious importance of RpoS, negative selection for rpoS has been reported to take place in starved cultures, suggesting an adaptive occurrence allowing the overexpression of RpoD-dependent uptake and nutrient-scavenging systems. The trade-off of the RpoS-dependent functions for improved nutrient utilization abilities makes the bacterium more sensitive to environmental stressors, e.g., osmotic stress. In this work, we addressed the hypothesis that overinduction of genes in rpoS-deficient strains indicates their essentiality. Using DNA microarrays, real-time PCR, and transcriptional fusions, we show that genes of the wca operon, implicated in the production of the colanic acid exopolysaccharide, previously shown to be induced by osmotic stress, are also negatively controlled by RpoS. Both exopolysaccharides in the synthesis of which yjb and wca are involved are overproduced in an rpoS mutant during osmotic stress. We also show that both operons are essential in an rpoS-deficient strain but not in the wild type; promoters of both operons are constitutively active in yjb rpoS mutants; this strain produces extremely mucoid colonies, forms long filaments, and exhibits a reduced growth capability. In addition, the wca rpoS mutant's growth is inhibited by osmotic stress. These results indicate that although induced in the wild type, both operons are much more valuable for an rpoS-deficient strain, suggesting that the overproduction of both exopolysaccharides is an adaptive action.
Collapse
|
50
|
Abstract
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium. Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli, exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H(2)O(2) and positively regulated the expression of catalase KatE (HPII). The development of the RDAR (red dry and rough) morphotype, an important virulence trait in E. coli, was also mediated by RpoS in C. rodentium. Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium.
Collapse
|