1
|
Li Y, Peng C, Chi F, Huang Z, Yuan M, Zhou X, Jiang C. The iPhylo suite: an interactive platform for building and annotating biological and chemical taxonomic trees. Brief Bioinform 2024; 26:bbae679. [PMID: 39737565 DOI: 10.1093/bib/bbae679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.iphylo.net/), a comprehensive, automated, and interactive platform for biological and chemical taxonomic analysis. The iPhylo suite features web-based modules for the interactive construction and annotation of taxonomic trees and a stand-alone command-line interface (CLI) for local operation or deployment on high-performance computing (HPC) clusters. iPhylo supports National Center for Biotechnology Information (NCBI) taxonomy for biologicals and ChemOnt and NPClassifier for chemical classifications. The iPhylo visualization module, fully implemented in R, allows users to save progress locally and customize the underlying R code. Finally, the CLI module facilitates analysis across all hierarchical relational databases. We showcase the iPhylo suite's capabilities for visualizing environmental microbiomes, analyzing gut microbial metabolite synthesis preferences, and discovering novel correlations between microbiome and metabolome in humans and environment. Overall, the iPhylo suite is distinguished by its unified and interactive framework for in-depth taxonomic and integrative analyses of biological and chemical features and beyond.
Collapse
Affiliation(s)
- Yueer Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Fei Chi
- Innovation Center of Yangtze River Delta, Zhejiang University, 828 Zhongxing Road, Jiashan County, Jiaxing, Zhejiang 314103, China
| | - Zinuo Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Mengyi Yuan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Xin Zhou
- Department of Genetics, Stanford University, Stanford, 291 Campus Drive, Santa Clara County, CA 94305, United States
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 8 Nanbin East Road, Shangyu District, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
2
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
3
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
4
|
Wells M, Kim M, Akob DM, Basu P, Stolz JF. Impact of the Dimethyl Sulfoxide Reductase Superfamily on the Evolution of Biogeochemical Cycles. Microbiol Spectr 2023; 11:e0414522. [PMID: 36951557 PMCID: PMC10100899 DOI: 10.1128/spectrum.04145-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
The dimethyl sulfoxide reductase (or MopB) family is a diverse assemblage of enzymes found throughout Bacteria and Archaea. Many of these enzymes are believed to have been present in the last universal common ancestor (LUCA) of all cellular lineages. However, gaps in knowledge remain about how MopB enzymes evolved and how this diversification of functions impacted global biogeochemical cycles through geologic time. In this study, we perform maximum likelihood phylogenetic analyses on manually curated comparative genomic and metagenomic data sets containing over 47,000 distinct MopB homologs. We demonstrate that these enzymes constitute a catalytically and mechanistically diverse superfamily defined not by the molybdopterin- or tungstopterin-containing [molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)] cofactor but rather by the structural fold that binds it in the protein. Our results suggest that major metabolic innovations were the result of the loss of the metal cofactor or the gain or loss of protein domains. Phylogenetic analyses also demonstrated that formate oxidation and CO2 reduction were the ancestral functions of the superfamily, traits that have been vertically inherited from the LUCA. Nearly all of the other families, which drive all other biogeochemical cycles mediated by this superfamily, originated in the bacterial domain. Thus, organisms from Bacteria have been the key drivers of catalytic and biogeochemical innovations within the superfamily. The relative ordination of MopB families and their associated catalytic activities emphasize fundamental mechanisms of evolution in this superfamily. Furthermore, it underscores the importance of prokaryotic adaptability in response to the transition from an anoxic to an oxidized atmosphere. IMPORTANCE The MopB superfamily constitutes a repertoire of metalloenzymes that are central to enduring mysteries in microbiology, from the origin of life and how microorganisms and biogeochemical cycles have coevolved over deep time to how anaerobic life adapted to increasing concentrations of O2 during the transition from an anoxic to an oxic world. Our work emphasizes that phylogenetic analyses can reveal how domain gain or loss events, the acquisition of novel partner subunits, and the loss of metal cofactors can stimulate novel radiations of enzymes that dramatically increase the catalytic versatility of superfamilies. We also contend that the superfamily concept in protein evolution can uncover surprising kinships between enzymes that have remarkably different catalytic and physiological functions.
Collapse
Affiliation(s)
- Michael Wells
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Minjae Kim
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Denise M. Akob
- United States Geological Survey, Geology, Energy, and Minerals Science Center, Reston, Virginia, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - John F. Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Ideonella alba sp. nov. and Ideonella aquatica sp. nov. isolated from an aquaculture farm. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three novel bacterial strains designated as 3Y2T, 4Y16 and 4Y11T were isolated from an aquaculture farm and characterized using a polyphasic taxonomic approach. These strains were determined to be catalase- and oxidase-positive and to hydrolyze gelatin and aesculin. The results of 16S rRNA gene-based phylogenetic analysis indicated that the three strains were related to members of the genus
Ideonella
. The phylogenomic results further indicated that the three strains formed two independent branches distinct from reference type strains within this genus. The digital DNA–DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) values between the three strains and their relatives were far below the thresholds of 70 % dDDH, 95–96 % ANI and 95 % AAI for species definition, respectively, indicating that the three strains represent two novel genospecies. The results of chemotaxonomic characterization indicated that the major cellular fatty acids of the three strains were summed feature 3 (C16 : 1ω6c and/or C16 : 1
ω7c) and C16 : 0; the common main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; the respiratory quinone was ubiquinone-8. The genomic DNA G+C contents of the three strains were 70.2, 70.1 and 69.7%, respectively. On the basis of the different genotypes and distinctive phenotypes such as the phosphatidylcholine and glycolipid only in 3Y2T and the utilization of malic acid and trisodium citrate only in 4Y11T, strains 3Y2T and 4Y11T are concluded to represent two novel species of the genus
Ideonella
, for which the names Ideonella alba sp. nov. (type strain 3Y2T = GDMCC 1.2584T = KCTC 82813T) and Ideonella aquatica sp. nov. (type strain 4Y11T = GDMCC 1.1935T = JCM 34285T) are proposed.
Collapse
|
6
|
Wang Y, Fan J, Shen Y, Ye F, Feng Z, Yang Q, Wang D, Cai X, Mao Y. Bromate reduction by Shewanella oneidensis MR-1 is mediated by dimethylsulfoxide reductase. Front Microbiol 2022; 13:955249. [PMID: 36110297 PMCID: PMC9468665 DOI: 10.3389/fmicb.2022.955249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial bromate reduction plays an important role in remediating bromate-contaminated waters as well as biogeochemical cycling of bromine. However, little is known about the molecular mechanism of microbial bromate reduction so far. Since the model strain Shewanella oneidensis MR-1 is capable of reducing a variety of oxyanions such as iodate, which has a high similarity to bromate, we hypothesize that S. oneidensis MR-1 can reduce bromate. Here, we conducted an experiment to investigate whether S. oneidensis MR-1 can reduce bromate, and report bromate reduction mediated by a dimethylsulfoxide reductase encoded with dmsA. S. oneidensis MR-1 is not a bromate-respiring bacterium but can reduce bromate to bromide under microaerobic conditions. When exposed to 0.15, 0.2, 0.25, 0.5, and 1 mM bromate, S. oneidensis MR-1 reduced bromate by around 100, 75, 64, 48, and 23%, respectively, within 12 h. In vivo evidence from gene deletion mutants and complemented strains of S. oneidensis MR-1 indicates that MtrB, MtrC, CymA, GspD, and DmsA are involved in bromate reduction, but not NapA, FccA, or SYE4. Based on our results as well as previous findings, a proposed molecular mechanism for bromate reduction is presented in this study. Moreover, a genomic survey indicates that 9 of the other 56 reported Shewanella species encode proteins highly homologous to CymA, GspD, and DmsA of S. oneidensis MR-1 by sequence alignment. The results of this study contribute to understanding a pathway for microbial bromate reduction.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jiale Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yonglin Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Fan Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Zhiying Feng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qianning Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Wang Y, Cai X, Fan J, Wang D, Mao Y. Transcriptome analysis provides new insights into the tolerance and aerobic reduction of Shewanella decolorationis Ni1-3 to bromate. Appl Microbiol Biotechnol 2022; 106:4749-4761. [PMID: 35708750 DOI: 10.1007/s00253-022-12006-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
As a possible human carcinogen, bromate is easily formed in drinking water and wastewater treatments using advanced oxidation technology. Microbial reduction is a promising method to remove bromate, but little is known about aerobic bromate reduction as well as the molecular mechanism of tolerance and reduction to bromate in bacteria. Herein, bromate reduction by isolate under aerobic conditions was reported for the first time. Shewanella decolorationis Ni1-3, isolated from an activated sludge recently, was identified to reduce bromate to bromide under both aerobic and anaerobic conditions. RNA-Seq together with differential gene expression analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to identify that bromate triggered the expression of genes for oxidative stress protection (e.g., ohr, msrQ, dsbC, gpo, gorA, and gst), DNA damage repair (e.g., dprA, parA, and recJ), and sulfur metabolism (e.g., cysH, cysK, and cysP). However, the genes for lactate utilization (e.g., lldF and dld), nitrate reduction (e.g., napA and narG), and dissimilatory metal reduction (e.g., mtrC and omcA) were down-regulated in the presence of bromate. The results contribute to revealing the molecular mechanism of resistance and reduction in S. decolorationis Ni1-3 to bromate under aerobic conditions and clarifying the biogeochemical cycle of bromine. KEY POINTS: • Aerobic bromate reduction by pure culture was observed for the first time • Strain Ni1-3 effectively reduced bromate under both aerobic and anaerobic conditions • ROS and SOS response genes were strongly induced in the presence of bromate.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Xunchao Cai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Jiale Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Dan Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, People's Republic of China.
| |
Collapse
|
8
|
Williams TJ, Allen MA, Panwar P, Cavicchioli R. Into the darkness: the ecologies of novel 'microbial dark matter' phyla in an Antarctic lake. Environ Microbiol 2022; 24:2576-2603. [PMID: 35466505 PMCID: PMC9324843 DOI: 10.1111/1462-2920.16026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Uncultivated microbial clades ('microbial dark matter') are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%-100% complete) were generated for four 'dark matter' phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%-100% identity) suggests these 'dark matter' phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.
Collapse
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Michelle A. Allen
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Pratibha Panwar
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSW2052Australia
| |
Collapse
|
9
|
Jing X, Liu X, Zhang Z, Wang X, Rensing C, Zhou S. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. WATER RESEARCH 2022; 208:117860. [PMID: 34798422 DOI: 10.1016/j.watres.2021.117860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The present nitrogen fixation industry is usually energy-intensive and environmentally detrimental. Therefore, it is appealing to find alternatives. Here, we achieved both a synchronized biological nitrogen fixation and electric energy production by using Geobacter sulfurreducens in a microbial electrochemical system. The results showed that G. sulfurreducens was able to fix nitrogen depending on anode respiration, producing a maximum current density of 0.17 ± 0.015 mA cm-2 and a nitrogen-fixing activity of ca. 0.78 μmol C2H4 mg protein-1 h-1, thereby achieving a net total nitrogen-fixing rate of ca. 5.6 mg L-1 day-1. Specifically, nitrogen fixation did not impair coulombic efficiency. Transcriptomic and metabolic analyses demonstrated that anode respiration provided sufficient energy to drive nitrogen fixation, and in turn nitrogen fixation promoted anode respiration of the cell by increasing acetate catabolism but reducing acetate anabolism. Furthermore, we showed that G. sulfurreducens could be supplied in a bioelectrochemical system for N-deficient wastewater treatment to relieve N-deficiency stress contributing to the formation of an electroactive biofilm, thereby simultaneously achieving nitrogen fixation, current generation and dissoluble organic carbon removal. Our study revealed a synergistic effect between biological nitrogen fixation and current generation by G. sulfurreducens, providing a green nitrogen fixation alternative through shifting the nitrogen fixation field from energy consumption to energy production and having implications for N-deficient wastewater treatment.
Collapse
Affiliation(s)
- Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
10
|
Wang B, Zhai Y, Li S, Li C, Zhu Y, Xu M. Catalytic enhancement of hydrogenation reduction and oxygen transfer reaction for perchlorate removal: A review. CHEMOSPHERE 2021; 284:131315. [PMID: 34323780 DOI: 10.1016/j.chemosphere.2021.131315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Perchlorate is the main contaminant in surface water and groundwater, and it is of current urgency to remove due to its high water solubility, mobility, and endocrine-disrupting properties. The conversion of perchlorate into harmless chloride ions by using appropriate catalysts is the most promising and effective route to overcome its high activation energy and kinetic stability. Perchlorate is usually reduced in two ways: (1) indirect reduction via oxygen atom transfer (OAT) reaction or (2) hydrodeoxygenation through highly active reducing H atoms. This paper discusses the mechanisms underlying both the OAT reaction catalyzed by homogenous rhenium-oxo complexes or biological Mo-based enzymes and the heterogeneous hydrogenation for perchlorate reduction. Particular emphasis is placed on the factors affecting the catalytic process and the synergy between the (1) and (2) reactions. For completeness, the applicability of different electrolysis devices, electrodes, and bioreactors is also illustrated. Finally, this article gives prospects for the synthesis and application of catalysts in different pathways.
Collapse
Affiliation(s)
- Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yun Zhu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
| | - Min Xu
- Chinese Academy for Environmental Planning, Beijing, 100012, China.
| |
Collapse
|
11
|
Hagel C, Blaum B, Friedrich T, Heider J. Characterisation of the redox centers of ethylbenzene dehydrogenase. J Biol Inorg Chem 2021; 27:143-154. [PMID: 34843002 PMCID: PMC8840923 DOI: 10.1007/s00775-021-01917-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 01/18/2023]
Abstract
Ethylbenzene dehydrogenase (EbDH), the initial enzyme of anaerobic ethylbenzene degradation from the beta-proteobacterium Aromatoleum aromaticum, is a soluble periplasmic molybdenum enzyme consisting of three subunits. It contains a Mo-bis-molybdopterin guanine dinucleotide (Mo-bis-MGD) cofactor and an 4Fe-4S cluster (FS0) in the α-subunit, three 4Fe-4S clusters (FS1 to FS3) and a 3Fe-4S cluster (FS4) in the β-subunit and a heme b cofactor in the γ-subunit. Ethylbenzene is hydroxylated by a water molecule in an oxygen-independent manner at the Mo-bis-MGD cofactor, which is reduced from the MoVI to the MoIV state in two subsequent one-electron steps. The electrons are then transferred via the Fe-S clusters to the heme b cofactor. In this report, we determine the midpoint redox potentials of the Mo-bis-MGD cofactor and FS1-FS4 by EPR spectroscopy, and that of the heme b cofactor by electrochemically induced redox difference spectroscopy. We obtained relatively high values of > 250 mV both for the MoVI-MoV redox couple and the heme b cofactor, whereas FS2 is only reduced at a very low redox potential, causing magnetic coupling with the neighboring FS1 and FS3. We compare the results with the data on related enzymes and interpret their significance for the function of EbDH.
Collapse
Affiliation(s)
- Corina Hagel
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany
| | - Bärbel Blaum
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs Universität, Albertstr. 21, 79104, Freiburg im Breisgau, Germany.
| | - Johann Heider
- Labor für Mikrobielle Biochemie and Synmikro Zentrum für Synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg, Germany.
| |
Collapse
|
12
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
13
|
Methane, arsenic, selenium and the origins of the DMSO reductase family. Sci Rep 2020; 10:10946. [PMID: 32616801 PMCID: PMC7331816 DOI: 10.1038/s41598-020-67892-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Mononuclear molybdoenzymes of the dimethyl sulfoxide reductase (DMSOR) family catalyze a number of reactions essential to the carbon, nitrogen, sulfur, arsenic, and selenium biogeochemical cycles. These enzymes are also ancient, with many lineages likely predating the divergence of the last universal common ancestor into the Bacteria and Archaea domains. We have constructed rooted phylogenies for over 1,550 representatives of the DMSOR family using maximum likelihood methods to investigate the evolution of the arsenic biogeochemical cycle. The phylogenetic analysis provides compelling evidence that formylmethanofuran dehydrogenase B subunits, which catalyze the reduction of CO2 to formate during hydrogenotrophic methanogenesis, constitutes the most ancient lineage. Our analysis also provides robust support for selenocysteine as the ancestral ligand for the Mo/W atom. Finally, we demonstrate that anaerobic arsenite oxidase and respiratory arsenate reductase catalytic subunits represent a more ancient lineage of DMSORs compared to aerobic arsenite oxidase catalytic subunits, which evolved from the assimilatory nitrate reductase lineage. This provides substantial support for an active arsenic biogeochemical cycle on the anoxic Archean Earth. Our work emphasizes that the use of chalcophilic elements as substrates as well as the Mo/W ligand in DMSORs has indelibly shaped the diversification of these enzymes through deep time.
Collapse
|
14
|
Rova M, Hellberg Lindqvist M, Goetelen T, Blomqvist S, Nilsson T. Heterologous expression of the gene for chlorite dismutase from Ideonella dechloratans is induced by an FNR-type transcription factor. Microbiologyopen 2020; 9:e1049. [PMID: 32319739 PMCID: PMC7349173 DOI: 10.1002/mbo3.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Regulation of the expression of the gene for chlorite dismutase (cld), located on the chlorate reduction composite transposon of the chlorate reducer Ideonella dechloratans, was studied. A 200 bp upstream sequence of the cld gene, and mutated and truncated versions thereof, was used in a reporter system in Escherichia coli. It was found that a sequence within this upstream region, which is nearly identical to the canonical FNR-binding sequence of E. coli, is necessary for anaerobic induction of the reporter gene. Anaerobic induction was regained in an FNR-deficient strain of E. coli when supplemented either with the fnr gene from E. coli or with a candidate fnr gene cloned from I. dechloratans. In vivo transcription of the suggested fnr gene of I. dechloratans was demonstrated by qRT-PCR. Based on these results, the cld promoter of I. dechloratans is suggested to be a class II-activated promoter regulated by an FNR-type protein of I. dechloratans. No fnr-type genes have been found on the chlorate reduction composite transposon of I. dechloratans, making anaerobic upregulation of the cld gene after a gene transfer event dependent on the presence of an fnr-type gene in the recipient.
Collapse
Affiliation(s)
- Maria Rova
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | | | - Thijs Goetelen
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Shady Blomqvist
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Thomas Nilsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
15
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
16
|
Solís-González CJ, Loza-Tavera H. Alicycliphilus: current knowledge and potential for bioremediation of xenobiotics. J Appl Microbiol 2019; 126:1643-1656. [PMID: 30661281 DOI: 10.1111/jam.14207] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/31/2023]
Abstract
Alicycliphilus is a promising candidate for participating in the development of novel xenobiotics bioremediation processes. Members of the Alicycliphilus genus are environmental bacteria mostly found in polluted sites such as landfills and contaminated watercourses, and in sewage sludges from wastewater treatment plants. They exhibit a versatile metabolism and the ability to use oxygen, nitrate and chlorate as terminal electron acceptors, which allow them to biodegrade xenobiotics under oxic or anoxic conditions. Pure cultures of Alicycliphilus strains are able to biodegrade some pollutants such as industrial solvents (acetone, cyclohexanol and N-methylpyrrolidone), aromatic hydrocarbons (benzene, toluene and anthracene), as well as polyurethane varnishes and foams, and they can even transform Cr(VI) to Cr(III). In addition, Alicycliphilus has also been identified in bacterial communities involved in wastewater treatment plants for denitrification, and the degradation of emerging pollutants such as triclosan, nonylphenol, N-heterocyclic aromatic compounds (indole and quinoline), and antibiotics (tetracycline and oxytetracycline). This work summarizes the current knowledge on the Alicycliphilus genus, describing its different metabolic characteristics, focusing on its xenobiotic biodegradation abilities and examining the distinct pathways and molecular bases that sustain them. We also discuss the progress made in genetic manipulation and 'omics' analyses, as well as Alicycliphilus participation in novel bioremediation strategies.
Collapse
Affiliation(s)
- C J Solís-González
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - H Loza-Tavera
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
17
|
Sun SQ, Chen SL. How does Mo-dependent perchlorate reductase work in the decomposition of oxyanions? Dalton Trans 2019; 48:5683-5691. [DOI: 10.1039/c9dt00863b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanisms of Mo-dependent perchlorate reductase (PcrAB)-catalyzed decomposition of perchlorate, bromate, iodate, and nitrate were revealed by density functional calculations.
Collapse
Affiliation(s)
- Shuo-Qi Sun
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|
18
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms 2017; 5:microorganisms5040076. [PMID: 29186812 PMCID: PMC5748585 DOI: 10.3390/microorganisms5040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/31/2023] Open
Abstract
While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.
Collapse
|
20
|
|
21
|
Abstract
Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.
Collapse
Affiliation(s)
- Matthew D Youngblut
- Energy Biosciences Institute, University of California, Berkeley, California 94704;
| | - Ouwei Wang
- Energy Biosciences Institute, University of California, Berkeley, California 94704; .,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Tyler P Barnum
- Energy Biosciences Institute, University of California, Berkeley, California 94704; .,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - John D Coates
- Energy Biosciences Institute, University of California, Berkeley, California 94704; .,Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
22
|
Heider J, Szaleniec M, Sünwoldt K, Boll M. Ethylbenzene Dehydrogenase and Related Molybdenum Enzymes Involved in Oxygen-Independent Alkyl Chain Hydroxylation. J Mol Microbiol Biotechnol 2016; 26:45-62. [PMID: 26960184 DOI: 10.1159/000441357] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ethylbenzene dehydrogenase initiates the anaerobic bacterial degradation of ethylbenzene and propylbenzene. Although the enzyme is currently only known from a few closely related denitrifying bacterial strains affiliated to the Rhodocyclaceae, it clearly marks a universally occurring mechanism used for attacking recalcitrant substrates in the absence of oxygen. Ethylbenzene dehydrogenase belongs to subfamily 2 of the DMSO reductase-type molybdenum enzymes together with paralogous enzymes involved in the oxygen-independent hydroxylation of p-cymene, the isoprenoid side chains of sterols and even possibly n-alkanes; the subfamily also extends to dimethylsulfide dehydrogenases, selenite, chlorate and perchlorate reductases and, most significantly, dissimilatory nitrate reductases. The biochemical, spectroscopic and structural properties of the oxygen-independent hydroxylases among these enzymes are summarized and compared. All of them consist of three subunits, contain a molybdenum-bis-molybdopterin guanine dinucleotide cofactor, five Fe-S clusters and a heme b cofactor of unusual ligation, and are localized in the periplasmic space as soluble enzymes. In the case of ethylbenzene dehydrogenase, it has been determined that the heme b cofactor has a rather high redox potential, which may also be inferred for the paralogous hydroxylases. The known structure of ethylbenzene dehydrogenase allowed the calculation of detailed models of the reaction mechanism based on the density function theory as well as QM-MM (quantum mechanics - molecular mechanics) methods, which yield predictions of mechanistic properties such as kinetic isotope effects that appeared consistent with experimental data.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L, Coates JD. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ Microbiol 2015; 18:3342-3354. [PMID: 26411776 DOI: 10.1111/1462-2920.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matt Youngblut
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Gillian Jacobsen
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Lucas
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Liebensteiner MG, Pinkse MWH, Nijsse B, Verhaert PDEM, Tsesmetzis N, Stams AJM, Lomans BP. Perchlorate and chlorate reduction by the Crenarchaeon Aeropyrum pernix and two thermophilic Firmicutes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:936-945. [PMID: 26332065 DOI: 10.1111/1758-2229.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
This study reports the ability of one hyperthermophilic and two thermophilic microorganisms to grow anaerobically by the reduction of chlorate and perchlorate. Physiological, genomic and proteome analyses suggest that the Crenarchaeon Aeropyrum pernix reduces perchlorate with a periplasmic enzyme related to nitrate reductases, but that it lacks a functional chlorite-disproportionating enzyme (Cld) to complete the pathway. Aeropyrum pernix, previously described as a strictly aerobic microorganism, seems to rely on the chemical reactivity of reduced sulfur compounds with chlorite, a mechanism previously reported for perchlorate-reducing Archaeoglobus fulgidus. The chemical oxidation of thiosulfate (in excessive amounts present in the medium) and the reduction of chlorite result in the release of sulfate and chloride, which are the products of a biotic-abiotic perchlorate reduction pathway in Ae. pernix. The apparent absence of Cld in two other perchlorate-reducing microorganisms, Carboxydothermus hydrogenoformans and Moorella glycerini strain NMP, and their dependence on sulfide for perchlorate reduction is consistent with the observations made on Ar. fulgidus. Our findings suggest that microbial perchlorate reduction at high temperature differs notably from the physiology of perchlorate- and chlorate-reducing mesophiles and that it is characterized by the lack of a chlorite dismutase and is enabled by a combination of biotic and abiotic reactions.
Collapse
Affiliation(s)
- Martin G Liebensteiner
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Martijn W H Pinkse
- Analytical Biotechnology Section, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
- Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Peter D E M Verhaert
- Analytical Biotechnology Section, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
- Netherlands Proteomics Centre, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Nicolas Tsesmetzis
- Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston, TX, 77082, USA
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Bart P Lomans
- Shell Global Solutions International B.V., Kessler Park 1, 2288 GS, Rijswijk, The Netherlands
| |
Collapse
|
25
|
Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 2015; 40:1-18. [PMID: 26468212 DOI: 10.1093/femsre/fuv043] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 02/06/2023] Open
Abstract
Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.
Collapse
Affiliation(s)
- Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Chantal Iobbi-Nivol
- The Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS, Aix Marseille Université, 13402 Marseille cedex 20, France
| |
Collapse
|
26
|
Liebensteiner MG, Oosterkamp MJ, Stams AJM. Microbial respiration with chlorine oxyanions: diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Ann N Y Acad Sci 2015; 1365:59-72. [PMID: 26104311 DOI: 10.1111/nyas.12806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chlorine oxyanions are valuable electron acceptors for microorganisms. Recent findings have shed light on the natural formation of chlorine oxyanions in the environment. These suggest a permanent introduction of respective compounds on Earth, long before their anthropogenic manufacture. Microorganisms that are able to grow by the reduction of chlorate and perchlorate are affiliated with phylogenetically diverse lineages, spanning from the Proteobacteria to the Firmicutes and archaeal microorganisms. Microbial reduction of chlorine oxyanions can be found in diverse environments and different environmental conditions (temperature, salinities, pH). It commonly involves the enzymes perchlorate reductase (Pcr) or chlorate reductase (Clr) and chlorite dismutase (Cld). Horizontal gene transfer seems to play an important role for the acquisition of functional genes. Novel and efficient Clds were isolated from microorganisms incapable of growing on chlorine oxyanions. Archaea seem to use a periplasmic Nar-type reductase (pNar) for perchlorate reduction and lack a functional Cld. Chlorite is possibly eliminated by alternative (abiotic) reactions. This was already demonstrated for Archaeoglobus fulgidus, which uses reduced sulfur compounds to detoxify chlorite. A broad biochemical diversity of the trait, its environmental dispersal, and the occurrence of relevant enzymes in diverse lineages may indicate early adaptations of life toward chlorine oxyanions on Earth.
Collapse
Affiliation(s)
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Energy Biosciences Institute, University of Illinois, Urbana, Illinois
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands.,Department of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
27
|
Mehboob F, Oosterkamp MJ, Koehorst JJ, Farrakh S, Veuskens T, Plugge CM, Boeren S, de Vos WM, Schraa G, Stams AJM, Schaap PJ. Genome and proteome analysis of Pseudomonas chloritidismutans AW-1 T that grows on n-decane with chlorate or oxygen as electron acceptor. Environ Microbiol 2015; 18:3247-3257. [PMID: 25900248 DOI: 10.1111/1462-2920.12880] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
Growth of Pseudomonas chloritidismutans AW-1T on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G + C content of 62.5%. The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted proteins. The distinct phylogenetic position of P. chloritidismutans AW-1T within the Pseudomonas stutzeri cluster became clear by comparison of average nucleotide identity values of sequenced genomes. Analysis of the proteome of P. chloritidismutans AW-1T showed the versatility of this bacterium to adapt to aerobic and anaerobic growth conditions with acetate or n-decane as substrates. All enzymes involved in the alkane oxidation pathway were identified. An alkane monooxygenase was detected in n-decane-grown cells, but not in acetate-grown cells. The enzyme was found when grown in the presence of oxygen or chlorate, indicating that under both conditions an oxygenase-mediated pathway is employed for alkane degradation. Proteomic and biochemical data also showed that both chlorate reductase and chlorite dismutase are constitutively present, but most abundant under chlorate-reducing conditions.
Collapse
Affiliation(s)
- Farrakh Mehboob
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Margreet J Oosterkamp
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sumaira Farrakh
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.,Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Wageningen, 6703 HB, The Netherlands.
| |
Collapse
|
28
|
Abstract
Despite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth. The ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism.
Collapse
|
29
|
Celis AI, DuBois JL. Substrate, product, and cofactor: The extraordinarily flexible relationship between the CDE superfamily and heme. Arch Biochem Biophys 2015; 574:3-17. [PMID: 25778630 PMCID: PMC4414885 DOI: 10.1016/j.abb.2015.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/06/2015] [Accepted: 03/08/2015] [Indexed: 12/21/2022]
Abstract
PFam Clan 0032, also known as the CDE superfamily, is a diverse group of at least 20 protein families sharing a common α,β-barrel domain. Of these, six different groups bind heme inside the barrel's interior, using it alternately as a cofactor, substrate, or product. Focusing on these six, an integrated picture of structure, sequence, taxonomy, and mechanism is presented here, detailing how a single structural motif might be able to mediate such an array of functions with one of nature's most important small molecules.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
30
|
Hellberg Lindqvist M, Nilsson T, Sundin P, Rova M. Chlorate reductase is cotranscribed with cytochrome c and other downstream genes in the gene cluster for chlorate respiration of Ideonella dechloratans. FEMS Microbiol Lett 2015; 362:fnv019. [PMID: 25673284 DOI: 10.1093/femsle/fnv019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chlorate-respiring bacterium Ideonella dechloratans is a facultative anaerobe that can use both oxygen and chlorate as terminal electron acceptors. The genes for the enzymes chlorate reductase (clrABDC) and chlorite dismutase, necessary for chlorate metabolism and probably acquired by lateral gene transfer, are located in a gene cluster that also includes other genes potentially important for chlorate metabolism. Among those are a gene for cytochrome c (cyc) whose gene product may serve as an electron carrier during chlorate reduction, a cofactor biosynthesis gene (mobB) and a predicted transcriptional regulator (arsR). Only chlorate reductase and chlorite dismutase have been shown to be expressed in vivo. Here, we report the in vivo production of a single polycistronic transcript covering eight open reading frames including clrABDC, cyc, mobB and arsR. Transcription levels of the cyc and clrA genes were compared to each other by the use of qRT-PCR in RNA preparations from cells grown under aerobic or chlorate reducing anaerobic conditions. The two genes showed the same mRNA levels under both growth regimes, indicating that no transcription termination occurs between them. Higher transcription levels were observed at growth without external oxygen supply. Implications for electron pathway integration following lateral gene transfer are discussed.
Collapse
Affiliation(s)
| | - Thomas Nilsson
- Department of Engineering and Chemical Sciences, Karlstad University, SE 651 88 Karlstad, Sweden
| | - Pontus Sundin
- Department of Engineering and Chemical Sciences, Karlstad University, SE 651 88 Karlstad, Sweden
| | - Maria Rova
- Department of Engineering and Chemical Sciences, Karlstad University, SE 651 88 Karlstad, Sweden
| |
Collapse
|
31
|
Abstract
O₂-generating reactions are exceedingly rare in biology and difficult to mimic synthetically. Perchlorate-respiring bacteria enzymatically detoxify chlorite (ClO₂(-) ), the end product of the perchlorate (ClO(4)(-) ) respiratory pathway, by rapidly converting it to dioxygen (O₂) and chloride (Cl(-)). This reaction is catalyzed by a heme-containing protein, called chlorite dismutase (Cld), which bears no structural or sequence relationships with known peroxidases or other heme proteins and is part of a large family of proteins with more than one biochemical function. The original assumptions from the 1990s that perchlorate is not a natural product and that perchlorate respiration might be confined to a taxonomically narrow group of species have been called into question, as have the roles of perchlorate respiration and Cld-mediated reactions in the global biogeochemical cycle of chlorine. In this chapter, the chemistry and biochemistry of Cld-mediated O₂generation, as well as the biological and geochemical context of this extraordinary reaction, are described.
Collapse
Affiliation(s)
- Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA,
| | | |
Collapse
|
32
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
33
|
Reimann J, Jetten MSM, Keltjens JT. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane. Met Ions Life Sci 2015; 15:257-313. [PMID: 25707470 DOI: 10.1007/978-3-319-12415-5_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world.
Collapse
Affiliation(s)
- Joachim Reimann
- Department of Microbiology, Institute of Wetland and Water Research (IWWR), Radboud University of Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands,
| | | | | |
Collapse
|
34
|
Carlson HK, Kuehl JV, Hazra AB, Justice NB, Stoeva MK, Sczesnak A, Mullan MR, Iavarone AT, Engelbrektson A, Price MN, Deutschbauer AM, Arkin AP, Coates JD. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME JOURNAL 2014; 9:1295-305. [PMID: 25405978 DOI: 10.1038/ismej.2014.216] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 12/26/2022]
Abstract
We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.
Collapse
Affiliation(s)
- Hans K Carlson
- Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA
| | - Jennifer V Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Amrita B Hazra
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Nicholas B Justice
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Magdalena K Stoeva
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Andrew Sczesnak
- Department of Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - Mark R Mullan
- Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, UC Berkeley, Berkeley, CA, USA
| | - Anna Engelbrektson
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Morgan N Price
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Adam P Arkin
- 1] Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA [2] Department of Bioengineering, UC Berkeley, Berkeley, CA, USA
| | - John D Coates
- 1] Energy Biosciences Institute, UC Berkeley, Berkeley, CA, USA [2] Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| |
Collapse
|
35
|
Liebensteiner MG, Tsesmetzis N, Stams AJM, Lomans BP. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Front Microbiol 2014; 5:428. [PMID: 25225493 PMCID: PMC4150442 DOI: 10.3389/fmicb.2014.00428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022] Open
Abstract
The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed.
Collapse
Affiliation(s)
| | | | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands ; Center of Biological Engineering, University of Minho Braga, Portugal
| | | |
Collapse
|
36
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
37
|
Hicks SD, Kim D, Xiong S, Medvedev GA, Caruthers J, Hong S, Nam W, Abu-Omar MM. Non-heme manganese catalysts for on-demand production of chlorine dioxide in water and under mild conditions. J Am Chem Soc 2014; 136:3680-6. [PMID: 24498903 DOI: 10.1021/ja5001642] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two non-heme manganese complexes are used in the catalytic formation of chlorine dioxide from chlorite under ambient temperature at pH 5.00. The catalysts afford up to 1000 turnovers per hour and remain highly active in subsequent additions of chlorite. Kinetic and spectroscopic studies revealed a Mn(III)(OH) species as the dominant form under catalytic conditions. A Mn(III)(μ-O)Mn(IV) dinuclear species was observed by EPR spectroscopy, supporting the involvement of a putative Mn(IV)(O) species. First-order kinetic dependence on the manganese catalyst precludes the dinuclear species as the active form of the catalyst. Quantitative kinetic modeling enabled the deduction of a mechanism that accounts for all experimental observations. The chlorine dioxide producing cycle involves formation of a putative Mn(IV)(O), which undergoes PCET (proton coupled electron-transfer) reaction with chlorite to afford chlorine dioxide. The ClO2 product can be efficiently removed from the aqueous reaction mixture via purging with an inert gas, allowing for the preparation of pure chlorine dioxide for on-site use and further production of chlorine dioxide.
Collapse
Affiliation(s)
- Scott D Hicks
- Brown Laboratory, Negishi Brown Institute, and Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun S, Li ZS, Chen SL. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase. Dalton Trans 2013; 43:973-81. [PMID: 24162174 DOI: 10.1039/c3dt52171k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorite dismutase (Cld) is a heme-dependent enzyme that catalyzes the decomposition of toxic chlorite (ClO2(-)) into innocuous chloride and O2. In this paper, using the hybrid B3LYP density functional theory (DFT) method including dispersion interactions, the Cld reaction mechanism has been studied with a chemical model constructed on the X-ray crystal structure. The calculations indicate that the reaction proceeds along a stepwise pathway in the doublet state, i.e. a homolytic O-Cl bond cleavage of the substrate leading to an O-Fe(heme) species and a ClO˙ radical, followed by a rebinding O-O bond formation between them. The O-Fe(heme) species is demonstrated to be a low-spin triplet-state Fe(IV)=O diradicaloid. A low-spin singlet-state Fe(IV)=O is much less stable than the former, with an energy difference of 9.2 kcal mol(-1). The O-Cl bond cleavage is rate-limiting with a barrier of 10.6 kcal mol(-1), in good agreement with the experimental reaction rate of 2.0 × 10(5) s(-1). Furthermore, a heterolytic O-Cl bond dissociation in the initial step is shown to be unreachable, which ensures the high efficiency of the Cld enzyme by avoiding the generation of chlorate byproduct observed in the reactions of synthetic Fe porphyrins. Also, the pathways in the quartet and sextet states are unfavorable for the Cld reaction. The present results reveal a detailed mechanism III (defined in the text) including an interesting di-radical intermediate composed of a low-spin triplet-state Fe(IV)=O and a ClO˙ radical. Compared to a competitive heterolytic Cl-O cleavage in synthetic Fe porphyrins, the revelation of the domination of homolysis in Cld indicates not only the high efficiency of enzyme, but also the sensitivity of a heme and the significance of the enzymatic active-site surroundings (the His170 and Arg183 residues in the present case), which gives more insights into heme chemistry.
Collapse
Affiliation(s)
- Shuo Sun
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China.
| | | | | |
Collapse
|
39
|
Identification of a possible respiratory arsenate reductase in Denitrovibrio acetiphilus, a member of the phylum Deferribacteres. Arch Microbiol 2013; 195:661-70. [DOI: 10.1007/s00203-013-0915-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/09/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
|
40
|
Abstract
UNLABELLED The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration. IMPORTANCE Genome sequencing has identified, for the first time, chlorate reduction composite transposons. These transposons are constructed with flanking insertion sequences that differ in type and orientation between organisms, indicating that this mobile element has formed multiple times and is important for dissemination. Apart from core metabolic enzymes, very little is known about the genetic factors involved in chlorate reduction. Comparative analysis has identified several genes that may also be important, but the relative absence of accessory genes suggests that this mobile metabolism relies on host systems for electron transport, regulation, and cofactor synthesis. Phylogenetic analysis of Cld and ClrA provides support for the hypothesis that chlorate reduction was built multiple times from type II dimethyl sulfoxide (DMSO) reductases and cld. In at least one case, cld has been coopted from a perchlorate reduction island for this purpose. This work is a significant step toward understanding the genetics and evolution of chlorate reduction.
Collapse
|
41
|
Oosterkamp MJ, Veuskens T, Talarico Saia F, Weelink SAB, Goodwin LA, Daligault HE, Bruce DC, Detter JC, Tapia R, Han CS, Land ML, Hauser LJ, Langenhoff AAM, Gerritse J, van Berkel WJH, Pieper DH, Junca H, Smidt H, Schraa G, Davids M, Schaap PJ, Plugge CM, Stams AJM. Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601(T.). PLoS One 2013; 8:e66971. [PMID: 23825601 PMCID: PMC3692508 DOI: 10.1371/journal.pone.0066971] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/14/2013] [Indexed: 12/04/2022] Open
Abstract
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.
Collapse
Affiliation(s)
| | - Teun Veuskens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Lynne A. Goodwin
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Hajnalka E. Daligault
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - David C. Bruce
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - John C. Detter
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Roxanne Tapia
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Cliff S. Han
- Los Alamos National Laboratory, Joint Genome Institute, Los Alamos, New Mexico, United States of America
| | - Miriam L. Land
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Loren J. Hauser
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | | | | | - Dietmar H. Pieper
- Microbial Interactions and Processes Research Group, Helmholz Centre for Infection Research, Braunschweig, Germany
| | - Howard Junca
- Research Group Microbial Ecology: Metabolism, Genomics and Evolution of Communities of Environmental Microorganisms, CorpoGen, Bogotá, Colombia
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Gosse Schraa
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Mark Davids
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands
| | - Caroline M. Plugge
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- * E-mail:
| |
Collapse
|
42
|
Li YH, Zhu JN, Liu QF, Liu Y, Liu M, Liu L, Zhang Q. Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands. World J Microbiol Biotechnol 2013; 29:1499-508. [DOI: 10.1007/s11274-013-1316-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
43
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
44
|
van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:176-88. [PMID: 22982475 DOI: 10.1016/j.bbabio.2012.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 01/24/2023]
Abstract
Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Robert van Lis
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
45
|
Nilsson T, Rova M, Smedja Bäcklund A. Microbial metabolism of oxochlorates: a bioenergetic perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:189-97. [PMID: 22735192 DOI: 10.1016/j.bbabio.2012.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/05/2012] [Accepted: 06/15/2012] [Indexed: 11/28/2022]
Abstract
The microbial metabolism of oxochlorates is part of the biogeochemical cycle of chlorine. Organisms capable of growth using perchlorate or chlorate as respiratory electron acceptors are also interesting for applications in biotreatment of oxochlorate-containing effluents or bioremediation of contaminated areas. In this review, we discuss the reactions of oxochlorate respiration, the corresponding enzymes, and the relation to respiratory electron transport that can contribute to a proton gradient across the cell membrane. Enzymes specific for oxochlorate respiration are oxochlorate reductases and chlorite dismutase. The former belong to DMSO reductase family of molybdenum-containing enzymes. The heme protein chlorite dismutase, which decomposes chlorite into chloride and molecular oxygen, is only distantly related to other proteins with known functions. Pathways for electron transport may be different in perchlorate and chlorate reducers, but appear in both cases to be similar to pathways found in other respiratory systems. This article is part of a Special Issue entitled: Evolutionary aspects bioenergetic systems.
Collapse
Affiliation(s)
- Thomas Nilsson
- Karlstad University, Dept. Chemistry and Biomedical Sciences, SE-651 88 Karlstad, Sweden.
| | | | | |
Collapse
|
46
|
Schwarz AO, Urrutia H, Vidal JM, Pérez N. Chlorate reduction capacity and characterisation of chlorate reducing bacteria communities in sediments of the rio Cruces wetland in southern Chile. WATER RESEARCH 2012; 46:3283-3292. [PMID: 22516175 DOI: 10.1016/j.watres.2012.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 05/31/2023]
Abstract
This study investigated chlorate reduction kinetics in multiple samples of sediments from a longitudinal profile of a wetland located downstream of the effluent discharge of a cellulose plant, including characterisation of the bacterial communities involved. The sediments were exposed to different initial chlorate concentrations in microcosm tests, with and without the addition of acetate as an external electron donor, and in a matrix of natural water or a defined medium. At a high initial chlorate concentration of 100 mg/L, in the absence of an external electron source, the degradation curves presented first-order kinetics, influenced by electron donor availability. The first-order kinetic constant varied between 0.05 and 0.17 day(-1). Subsequently, when the initial chlorate concentration was reduced to 7 mg/L, a zero-order kinetic was obtained, with the kinetic constant presenting values between 1.1 and 1.3 mg/L-day. No correlation was observed between chlorate degradation kinetics and the location of the sampling points or the previous history of exposure to chlorate. Other factors evaluated, such as the availability of organic matter or the chlorate reducing bacteria count, also proved not to have any incidence on the results. The richness of chlorate reducing bacteria species in the different samples analysed were also similar, with the greatest similarity being found between cld genes in the samples from the upstream or downstream sampling points. Additionally, cld genes most similar to those present in PCRB like Dechlorospirillum sp., Alicycliphilus denitrificans, Dechloromonas agitata, Dechloromonas sp. LT1 and Ideonella dechloratans were detected. This study showed that the anaerobic sediments of the Cruces river wetland present a high potential for chlorate natural attenuation, regardless of the previous history of exposure to chlorate. This capacity is associated with the presence of a diverse community of chlorate reducing bacteria.
Collapse
Affiliation(s)
- Alex O Schwarz
- Department of Civil Engineering, Universidad de Concepción, Ciudad Universitaria, Concepción, Chile.
| | | | | | | |
Collapse
|
47
|
Expression of chlorite dismutase and chlorate reductase in the presence of oxygen and/or chlorate as the terminal electron acceptor in Ideonella dechloratans. Appl Environ Microbiol 2012; 78:4380-5. [PMID: 22492460 DOI: 10.1128/aem.07303-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of microorganisms to perform dissimilatory (per)chlorate reduction is, for most species, known to be oxygen sensitive. Consequently, bioremediation processes for the removal of oxochlorates will be disturbed if oxygen is present. We measured the expression of chlorite dismutase and chlorate reductase in the presence of different terminal electron acceptors in the chlorate reducer Ideonella dechloratans. Enzyme activity assays and mRNA analyses by real-time quantitative reverse transcription (qRT)-PCR were performed on cell extracts from cells grown aerobically with and without chlorate and on cells grown anaerobically in the presence of chlorate. Our results showed that both chlorite dismutase and chlorate reductase are expressed during aerobic growth. However, transfer to anaerobic conditions with chlorate resulted in significantly enhanced enzyme activities and mRNA levels for both enzymes. Absence of oxygen was necessary for the induction to occur, since chlorate addition under aerobic conditions produced neither increased enzyme activities nor higher relative levels of mRNA. For chlorite dismutase, the observed increase in activity was on the same order of magnitude as the increase in the relative mRNA level, indicating gene regulation at the transcriptional level. However, chlorate reductase showed about 200 times higher enzyme activity in anaerobically induced cells, whereas the increase in mRNA was only about 10-fold, suggesting additional mechanisms influence the enzyme activity.
Collapse
|
48
|
Bäcklund AS, Nilsson T. Purification and characterization of a soluble cytochrome c capable of delivering electrons to chlorate reductase in Ideonella dechloratans. FEMS Microbiol Lett 2011; 321:115-20. [DOI: 10.1111/j.1574-6968.2011.02321.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
50
|
Son A, Schmidt CJ, Shin H, Cha DK. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2011; 185:669-676. [PMID: 20961683 DOI: 10.1016/j.jhazmat.2010.09.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/01/2010] [Accepted: 09/20/2010] [Indexed: 05/30/2023]
Abstract
Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.
Collapse
Affiliation(s)
- Ahjeong Son
- Department of Civil Engineering, Auburn University, Auburn, AL 36849, United States.
| | | | | | | |
Collapse
|