1
|
Svetlova AO, Karaseva MA, Berdyshev IM, Chukhontseva KN, Pobeguts OV, Galyamina MA, Smirnov IP, Polyakov NB, Zavialova MG, Kostrov SV, Demidyuk IV. Protease S of entomopathogenic bacterium Photorhabdus laumondii: expression, purification and effect on greater wax moth Galleria mellonella. Mol Biol Rep 2024; 51:713. [PMID: 38824247 DOI: 10.1007/s11033-024-09654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | - Olga V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Igor P Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Nikita B Polyakov
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria G Zavialova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Ilya V Demidyuk
- National Research Centre "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
2
|
Berdyshev IM, Svetlova AO, Chukhontseva KN, Karaseva MA, Varizhuk AM, Filatov VV, Kleymenov SY, Kostrov SV, Demidyuk IV. Production and Characterization of Photorin, a Novel Proteinaceous Protease Inhibitor from the Entomopathogenic Bacteria Photorhabdus laumondii. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1356-1367. [PMID: 37770402 DOI: 10.1134/s0006297923090158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 09/30/2023]
Abstract
Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.
Collapse
Affiliation(s)
- Igor M Berdyshev
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | | | | | - Maria A Karaseva
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Anna M Varizhuk
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Vasily V Filatov
- Semenov Federal Research Center for Chemical Physics, Chernogolovka Branch, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Kostrov
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ilya V Demidyuk
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
3
|
Abd El-Raheem AM, Abdelazeem Elmasry AM, Elbrense H, Vergara-Pineda S. Photorhabdus and Xenorhabdus as Symbiotic Bacteria for Bio-Control Housefly ( Musca domestica L.). Pak J Biol Sci 2022; 25:586-601. [PMID: 36098165 DOI: 10.3923/pjbs.2022.586.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> The housefly poses a threat to the public health of humans and domestic animals since it can carry and transmit pathogens. Despite there are many attempts to control this insect, most of them depend on conventional pesticides. Thus, the current study aimed to evaluate the efficacy of whole-cell suspension, cell-free supernatant and crude cells of the symbiotic bacteria <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., as bio-control agents for housefly stages. <b>Materials and Methods:</b> The <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., were isolated from the entomopathogenic nematodes, <i>Heterorhabditis indica</i> and <i>Steinernema feltiae</i>, respectively. The phenotypic, as well as the enzymatic characterizations of both bacteria, were determined. In addition, histopathological changes of the alimentary canal of <i>M. domestica</i> adults treated with whole-cell suspensions (at 3×10<sup>8 </sup>cells mL<sup></sup><sup>1</sup>) of both bacteria were carefully examined using transmission electron microscopy. <b>Results:</b> The results showed that both symbiotic bacteria significantly suppressed larvae, pupae and adults of <i>M. domestica</i>, particularly when they were applied as whole-cell suspensions. For example, the highest concentration of whole-cell suspension, cell-free supernatant and crude cells of <i>Photorhabdus</i> sp., induced larval mortalities by 94.7, 64.0 and 45.3%, while those of <i>Xenorhabdus</i> sp., induced larval mortalities by 58.7, 46.7 and 30.7% at 96 hrs, respectively. The results also showed that whole-cell suspensions of both symbiotic bacteria caused severe histopathological changes in the ultrastructure of the treated adults' alimentary canal. <b>Conclusion:</b> Both symbiotic bacteria can be effectively used, particularly the whole-cell suspension, as bio-control agents against the housefly either in the larval or adult stage.
Collapse
|
4
|
Saranya M, Kennedy JS, Anandham R. Functional characterization of cultivable gut bacterial communities associated with rugose spiralling whitefly, Aleurodicus rugioperculatus Martin. 3 Biotech 2022; 12:14. [PMID: 34966637 PMCID: PMC8665909 DOI: 10.1007/s13205-021-03081-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 01/03/2023] Open
Abstract
Gut symbiotic bacteria provide protection and nutrition to the host insect. A high reproductive rate and dispersal ability of the rugose spiralling whitefly help this polyphagous species to develop and thrive on many horticultural crops. In this study, we isolated the cultivable gut bacteria associated with rugose spiralling whitefly and demonstrated their role in the host insect. We also studied the influence of antibiotics on the rugose spiralling whitefly oviposition. A total of 70 gut bacteria were isolated from the second nymphal stage of rugose spiralling whitefly reared on coconut, banana, and sapota using seven growth media. From the 70 isolates, chitinase, siderophore (51), protease (44), and Glutathione-S-Transferase producers (16) were recorded. The activities of chitinase, siderophore, protease, and Glutathione-S-Transferase in the gut bacterial isolates of rugose spiralling whitefly ranged from 0.07 to 3.96 µmol-1 min-1 mL-1, 10.01 to 76.93%, 2.10 to 83.40%, and 5.21 to 24.48 nmol-1 min-1 mL-1 μg-1 protein, respectively. The16S rRNA gene sequence analysis revealed that bacterial genera associated with the gut of rugose spiralling whitefly included Bacillus, Exiguobacterium, Acinetobacter, Lysinibacillus, Arthrobacter, and Pseudomonas. Based on the susceptibility of the gut bacteria to antibiotics, 11antibiotic treatments were administered to the host plant leaves infested with the nymphal stages. The antibiotics were evaluated for their effect on rugose spiralling whitefly oviposition. Among the antibiotic treatments, carbenicillin (100 µg mL-1) + ciprofloxacin (5 µg mL-1) significantly reduced the oviposition (13 eggs spiral-1) and egg hatchability (61.54%) of rugose spiralling whitefly. Disruption of chitinase, siderophore, protease, and detoxification enzyme producers and elimination of these symbionts through antibiotics altered the host insect physiology and indirectly affected whitefly oviposition. In conclusion, gut bacteria-based management strategies might be used as insecticides for the effective control of whiteflies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03081-3.
Collapse
Affiliation(s)
- M. Saranya
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - J. S. Kennedy
- grid.412906.80000 0001 2155 9899Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| | - R. Anandham
- grid.412906.80000 0001 2155 9899Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003 India
| |
Collapse
|
5
|
Brivio MF, Mastore M. When Appearance Misleads: The Role of the Entomopathogen Surface in the Relationship with Its Host. INSECTS 2020; 11:E387. [PMID: 32585858 PMCID: PMC7348879 DOI: 10.3390/insects11060387] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
Currently, potentially harmful insects are controlled mainly by chemical synthetic insecticides, but environmental emergencies strongly require less invasive control techniques. The use of biological insecticides in the form of entomopathogenic organisms is undoubtedly a fundamental resource for the biological control of insect pests in the future. These infectious agents and endogenous parasites generally act by profoundly altering the host's physiology to death, but their success is closely related to the neutralization of the target insect's immune response. In general, entomopathogen parasites, entomopathogenic bacteria, and fungi can counteract immune processes through the effects of secretion/excretion products that interfere with and damage the cells and molecules typical of innate immunity. However, these effects are observed in the later stages of infection, whereas the risk of being recognized and neutralized occurs very early after penetration and involves the pathogen surface components and molecular architecture; therefore, their role becomes crucial, particularly in the earliest pathogenesis. In this review, we analyze the evasion/interference strategies that entomopathogens such as the bacterium Bacillus thuringiensis, fungi, nematocomplexes, and wasps implement in the initial stages of infection, i.e., the phases during which body or cell surfaces play a key role in the interaction with the host receptors responsible for the immunological discrimination between self and non-self. In this regard, these organisms demonstrate evasive abilities ascribed to their body surface and cell wall; it appears that the key process of these mechanisms is the capability to modify the surface, converting it into an immunocompatible structure, or interaction that is more or less specific to host factors.
Collapse
Affiliation(s)
- Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | | |
Collapse
|
6
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection. PLoS One 2019; 14:e0212077. [PMID: 30763358 PMCID: PMC6375597 DOI: 10.1371/journal.pone.0212077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.
Collapse
|
8
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E. Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification. Methods Mol Biol 2017; 1626:189-198. [PMID: 28608211 DOI: 10.1007/978-1-4939-7111-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We provide an optimized protocol for a double staining technique to analyze superoxide dismutase enzymatic isoforms Cu-Zn SOD (Sod1) and Mn-SOD (Sod2) and catalase in the same polyacrylamide gel. The use of NaCN, which specifically inhibits yeast Sod1 isoform, allows the analysis of Sod2 isoform while the use of H2O2 allows the analysis of catalase. The identification of a different zymography profiling of SOD and catalase isoforms in different yeast species allowed us to propose this technique as a novel yeast identification and classification strategy.
Collapse
Affiliation(s)
- Esther Gamero-Sandemetrio
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Rocío Gómez-Pastor
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain
| | - Emilia Matallana
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Avda Agustín Escardino, 7, Paterna, 46980, Valencia, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat de València, Avda Dr Moliner, 50, Burjasot, 46100, Valencia, Spain.
| |
Collapse
|
10
|
Role in proinflammatory response of YghJ, a secreted metalloprotease from neonatal septicemic Escherichia coli. Int J Med Microbiol 2016; 306:554-565. [PMID: 27389679 DOI: 10.1016/j.ijmm.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 01/19/2023] Open
Abstract
Neonatal sepsis is the invasion of microbial pathogens into blood stream and is associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. The increased serum levels of cytokines were found to correlate with the severity and mortality in course of sepsis. There have been no reports on the role of microbial proteases in stimulation of proinflammatory response in neonatal sepsis. We have identified YghJ, a secreted metalloprotease from a neonatal septicemic Escherichia coli (NSEC) isolate. The protease was partially purified from culture supernatant by successive anion and gel filtration chromatography. MS/MS peptide sequencing of the protease showed homology with YghJ. YghJ was cloned, expressed and purified in pBAD TOPO expression vector. YghJ was found to be proteolytically active against Methoxysuccinyl Ala-Ala-Pro-Met-p-nitroanilide oligopeptide substrate, but not against casein and gelatin. YghJ showed optimal activity at pH 7-8 and at temperatures 37-40°C. YghJ showed clear changes in cellular morphologies of Int407, HT-29 and HEK293 cells. YghJ stimulated the secretion of cytokines IL-1α, IL-1β and TNF-α in murine macrophages (RAW 264.7) and IL-8 from human intestinal epithelial cells (HT-29). YghJ also down-regulated the production of anti-inflammatory cytokines such as IL-10. YghJ is present in both septicemic (78%) and fecal E. coli isolates (54%). However, expression and secretion of YghJ is significantly higher among the septicemic (89%) than the fecal isolates (33%). This is the first study to show the role of a microbial protease, YghJ in triggering proinflammatory response in NSEC.
Collapse
|
11
|
Abebe-Akele F, Tisa LS, Cooper VS, Hatcher PJ, Abebe E, Thomas WK. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics 2015; 16:531. [PMID: 26187596 PMCID: PMC4506600 DOI: 10.1186/s12864-015-1697-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 06/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. Results We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99 % sequence identity in rDNA sequence and orthology across 85.6 % of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8 %) were present in Serratia while 33 (84.6 %) and 35 (89 %) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. Conclusion The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result – killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1697-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feseha Abebe-Akele
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA. .,Hubbard Center for Genome Studies, 444 Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vaughn S Cooper
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Philip J Hatcher
- Department of Computer Science, University of New Hampshire, Durham, NH, USA
| | - Eyualem Abebe
- Department of Biology, Elizabeth City State University, 1704 Weeksville Road, Jenkins Science Center 421, Elizabeth City, NC, 27909, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, 444 Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| |
Collapse
|
12
|
Expression of prtA from Photorhabdus luminescens in Bacillus thuringiensis enhances mortality in lepidopteran larvae by sub-cutaneous but not oral infection. J Invertebr Pathol 2014; 121:85-8. [DOI: 10.1016/j.jip.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/30/2014] [Accepted: 07/07/2014] [Indexed: 11/17/2022]
|
13
|
Shinya R, Morisaka H, Kikuchi T, Takeuchi Y, Ueda M, Futai K. Secretome Analysis of the Pine Wood Nematode Bursaphelenchus xylophilus Reveals the Tangled Roots of Parasitism and Its Potential for Molecular Mimicry. PLoS One 2013; 8:e67377. [PMID: 23805310 PMCID: PMC3689755 DOI: 10.1371/journal.pone.0067377] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/16/2013] [Indexed: 01/12/2023] Open
Abstract
Since it was first introduced into Asia from North America in the early 20(th) century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine's proteins. These proteins could have been acquired by host-parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.
Collapse
Affiliation(s)
- Ryoji Shinya
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | | | - Taisei Kikuchi
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Yuko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kazuyoshi Futai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Kumar SN, Nambisan B, Mohandas C, Sundaresan A. In vitro synergistic activity of diketopiperazines alone and in combination with amphotericin B or clotrimazole against Candida albicans. Folia Microbiol (Praha) 2013; 58:475-82. [PMID: 23446490 DOI: 10.1007/s12223-013-0234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/14/2013] [Indexed: 01/20/2023]
Abstract
The synergistic anticandidal activity of three diketopiperazines [cyclo-(L-Pro-L-Leu) (1), cyclo-(D-Pro-L-Leu) (2), and cyclo-(D-Pro-L-Tyr) (3)] purified from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) in combination with amphotericin B and clotrimazole was investigated using the macrodilution method. The minimum inhibitory concentration and minimum fungicidal concentration of the diketopiperazines was compared with that of the standard antibiotics. The synergistic anticandidal activities of diketopiperazines with amphotericin B or clotrimazole were assessed using the checkerboard and time-kill methods. The results of the present study showed that the combined effects of diketopiperazines with amphotericin B or clotrimazole predominantly recorded synergistic (<0.5). Time-kill study showed that the growth of the Candida was completely attenuated after 12-24 h of treatment with 50:50 ratios of diketopiperazines and antibiotics. These results suggest that diketopiperazines combined with antibiotics may be microbiologically beneficial and not antagonistic. These findings have potential implications in delaying the development of resistance as the anticandidal effect is achieved with lower concentrations of both drugs (diketopiperazines and antibiotics). The cytotoxicity of diketopiperazines was also tested against two normal human cell lines (L231 lung epithelial and FS normal fibroblast) and no cytotoxicity was recorded for diketopiperazines up to 200 μg/mL. The in vitro synergistic activity of diketopiperazines with antibiotics against Candida albicans is reported here for the first time.
Collapse
Affiliation(s)
- S Nishanth Kumar
- Division of Crop Protection/Division of Crop Utilization, Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram, 695017, India,
| | | | | | | |
Collapse
|
15
|
Kumar SN, Siji JV, Nambisan B, Mohandas C. Activity and synergistic antimicrobial activity between diketopiperazines against bacteria in vitro. Appl Biochem Biotechnol 2012; 168:2285-96. [PMID: 23070715 DOI: 10.1007/s12010-012-9937-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to determine the synergistic effects of diketopiperazines [cyclo-(L-Pro-L-Leu) (1), cyclo-(D-Pro-L-Leu) (2), and cyclo-(D-Pro-L-Tyr) (3)] purified from a Bacillus sp. N strain associated with entomopathogenic nematode Rhabditis (Oscheius) sp. on the growth of bacteria. The minimum inhibitory concentration and minimum bactericidal concentration of the diketopiperazines was compared with that of the standard antibiotics. The synergistic antibacterial activities of the combination of diketopiperazines against pathogenic bacteria were assessed using the checkerboard assay and time-kill methods. The results of the present study showed that the combination effects of diketopiperazines were predominately synergistic (FIC index <0.5). Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 4-12 h of treatment with 50:50 ratios of diketopiperazines. These results suggest that the combination of diketopiperazines may be microbiologically beneficial. The three diketopiperazines are nontoxic to normal human cell line (L231 lung epithelial) up to 200 m μg/ml. The in vitro synergistic activity of cyclo-(L-Pro-L-Leu), cyclo-(D-Pro-L-Leu), and cyclo-(D-Pro-L-Tyr) against bacteria is reported here for the first time. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (diketopiperazines).
Collapse
Affiliation(s)
- S Nishanth Kumar
- Division of Crop Protection/Division of Crop Utilization, Central Tuber Crops Research Institute, Sreekariyam, Thiruvananthapuram 695017, India.
| | | | | | | |
Collapse
|
16
|
Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 2012; 28:3143-50. [DOI: 10.1007/s11274-012-1124-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
|
17
|
Purification and characterization of a new alkali-thermostable lipase from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.02.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Kumar S, Siji J, Rajasekharan K, Nambisan B, Mohandas C. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 2012; 54:410-7. [DOI: 10.1111/j.1472-765x.2012.03223.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Massaoud MK, Marokházi J, Venekei I. Enzymatic characterization of a serralysin-like metalloprotease from the entomopathogen bacterium, Xenorhabdus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1333-9. [PMID: 21635975 DOI: 10.1016/j.bbapap.2011.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/27/2011] [Accepted: 05/11/2011] [Indexed: 11/19/2022]
Abstract
We investigated the enzymatic properties of a serralysin-type metalloenzyme, provisionally named as protease B, which is secreted by Xenorhabdus bacterium, and probably is the ortholog of PrA peptidase of Photorhabdus bacterium. Testing the activity on twenty-two oligopeptide substrates we found that protease B requires at least three amino acids N-terminal to the scissile bond for detectable hydrolysis. On such substrate protease B was clearly specific for positively charged residues (Arg and Lys) at the P1 substrate position and was rather permissive in the others. Interestingly however, it preferred Ser at P1 in the oligopeptide substrate which contained amino acids also C-terminal to the scissile bond, and was cleaved with the highest k(cat)/K(M) value. The pH profile of activity, similarly to other serralysins, has a wide peak with high values between pH 6.5 and 8.0. The activity was slightly increased by Cu(2+) and Co(2+) ions, it was not sensitive for serine protease inhibitors, but it was inhibited by 1,10-phenanthroline, features shared by many Zn-metalloproteases. At the same time, EDTA inhibited the activity only partially even either after long incubation or in excess amount, and Zn(2+) was inhibitory (both are unusual among serralysins). The 1,10-phenanthroline inhibited activity could be restored with the addition of Mn(2+), Cu(2+) and Co(2+) up to 90-200% of its original value, while Zn(2+) was inefficient. We propose that both the Zn inhibition of protease B activity and its resistance to EDTA inhibition might be caused by an Asp in position 191 where most of the serralysins contain Asn.
Collapse
Affiliation(s)
- Mustafa K Massaoud
- Department of Biochemistry, Eotovos Lorand University, Budapest, Hungary.
| | | | | |
Collapse
|
20
|
Lanois A, Pages S, Bourot S, Canoy AS, Givaudan A, Gaudriault S. Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects. Appl Environ Microbiol 2011; 77:1009-20. [PMID: 21131515 PMCID: PMC3028736 DOI: 10.1128/aem.01696-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/20/2010] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H(2)O(2) and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects.
Collapse
Affiliation(s)
- A. Lanois
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Pages
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Bourot
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A.-S. Canoy
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A. Givaudan
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Gaudriault
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| |
Collapse
|
21
|
Massaoud MK, Marokházi J, Fodor A, Venekei I. Proteolytic enzyme production by strains of the insect pathogen xenorhabdus and characterization of an early-log-phase-secreted protease as a potential virulence factor. Appl Environ Microbiol 2010; 76:6901-9. [PMID: 20802071 PMCID: PMC2953030 DOI: 10.1128/aem.01567-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/18/2010] [Indexed: 11/20/2022] Open
Abstract
As a comparison to a similar study on Photorhabdus strains, 15 Xenorhabdus bacterial strains and secondary phenotypic variants of two strains were screened for proteolytic activity by five detection methods. Although the number and intensity of proteolytic activities were different, every strain was positive for proteolytic activity by several tests. Zymography following native PAGE detected two groups of activities with different substrate affinities and a higher and lower electrophoretic mobility that were distinguished as activity 1 and 2, respectively. Zymography following SDS-PAGE resolved three activities, which were provisionally named proteases A, B, and C. Only protease B, an ∼55-kDa enzyme, was produced by every strain. This enzyme exhibited higher affinity to the gelatin substrate than to the casein substrate. Of the chromogenic substrates used, three were hydrolyzed: furylacryloyl-Ala-Leu-Val-Tyr (Fua-ALVY), Fua-LGPA (LGPA is Leu-Gly-Pro-Ala) (a substrate for collagen peptidases), and succinyl-Ala-Ala-Pro-Phe-thiobenzyl (Succ-AAPF-SBzl). All but the Fua-LGPA-ase activity seemed to be from secreted enzymes. According to their substrate preference profiles and inhibitor sensitivities, at least six such proteolytic enzymes could be distinguished in the culture medium of Xenorhabdus strains. The proteolytic enzyme that was secreted the earliest, protease B and the Succ-AAPF-SBzl-hydrolyzing enzyme, appeared from the early logarithmic phase of growth. Protease B could also be detected in the hemolymph of Xenorhabdus-infected Galleria mellonella larvae from 15 h postinfection. The purified protease B hydrolyzed in vitro seven proteins in the hemolymph of Manduca sexta that were also cleaved by PrtA peptidase from Photorhabdus. The N-terminal sequence of protease B showed similarity to a 55-kDa serralysin type metalloprotease in Xenorhabdus nematophila, which had been identified as an orthologue of Photorhabdus PrtA peptidase.
Collapse
Affiliation(s)
| | - Judit Marokházi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - András Fodor
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - István Venekei
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
22
|
Identification of natural target proteins indicates functions of a serralysin-type metalloprotease, PrtA, in anti-immune mechanisms. Appl Environ Microbiol 2009; 75:3120-6. [PMID: 19304826 DOI: 10.1128/aem.02271-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serralysins are generally thought to function as pathogenicity factors of bacteria, but so far no hard evidence of this (e.g., specific substrate proteins that are sensitive to the cleavage by these proteases) has been found. We have looked for substrate proteins to a serralysin-type proteinase, PrtA, in a natural host-pathogen molecular interaction system involving Manduca sexta and Photorhabdus luminescens. The exposure in vitro of hemolymph to PrtA digestion resulted in selective cleavage of 16 proteins, provisionally termed PAT (PrtA target) proteins. We could obtain sequence information for nine of these PrtA sensitive proteins, and by searching databases, we could identify six of them. Each has immune-related function involving every aspect of the immune defense: beta-1,3 glucan recognition protein 2 (immune recognition), hemocyte aggregation inhibitor protein (HAIP), serine proteinase homolog 3, six serpin-1 variants, including serpin-1I (immune signaling and regulation), and scolexins A and B (coagulation cascade effector function). The functions of the identified PrtA substrate proteins shed new light on a possible participation of a serralysin in the virulence mechanism of a pathogen. Provided these proteins are targets of PrtA in vivo, this might represent, among others, a complex suppressive role on the innate immune response via interference with both the recognition and the elimination of the pathogen during the first, infective stage of the host-pathogen interaction. Our results also raise the possibility that the natural substrate proteins of serralysins of vertebrate pathogens might be found among the components of the innate immune system.
Collapse
|
23
|
A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 2007; 73:7622-8. [PMID: 17933944 DOI: 10.1128/aem.01000-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens is a gram-negative insect pathogen that enters the hemocoel of infected hosts and produces a number of secreted proteins that promote colonization and subsequent death of the insect. In initial studies to determine the exact role of individual secreted proteins in insect pathogenesis, concentrated culture supernatants from various P. luminescens strains were injected into the tobacco hornworm Manduca sexta. Culture supernatants from P. luminescens TT01, the genome-sequenced strain, stimulated a rapid melanization reaction in M. sexta. Comparison of the profiles of secreted proteins from the various Photorhabdus strains revealed a single protein of approximately 37 kDa that was significantly overrepresented in the TT01 culture supernatant. This protein was purified by DEAE ion-exchange and Superdex 75 gel filtration chromatography and identified by matrix-assisted laser desorption ionization-time of flight analysis as the product of the TT01 gene plu1382 (NCBI accession number NC_005126); we refer to it here as PrtS. PrtS is a member of the M4 metalloprotease family. Injection of PrtS into larvae of M. sexta and Galleria mellonella and into adult Drosophila melanogaster and D. melanogaster melanization mutants (Bc) confirmed that the purified protein induced the melanization reaction. The prtS gene was transcribed by P. luminescens injected into M. sexta before death of the insect, suggesting that the protein was produced during infection. The exact function of this protease during infection is not clear. The bacteria might survive inside the insect despite the melanization process, or it might be that the bacterium is specifically activating melanization in an attempt to circumvent this innate immune response.
Collapse
|
24
|
Marokházi J, Mihala N, Hudecz F, Fodor A, Gráf L, Venekei I. Cleavage site analysis of a serralysin-like protease, PrtA, from an insect pathogen Photorhabdus luminescens and development of a highly sensitive and specific substrate. FEBS J 2007; 274:1946-56. [PMID: 17355285 DOI: 10.1111/j.1742-4658.2007.05739.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was the development of a sensitive and specific substrate for protease A (PrtA), a serralysin-like metzincin from the entomopathogenic microorganism, Photorhabdus. First, cleavage of three biological peptides, the A and B chains of insulin and beta-lipotropin, and of 15 synthetic peptides, was investigated. In the biological peptides, a preference for the hydrophobic residues Ala, Leu and Val was observed at three substrate positions, P2, P1' and P2'. At these positions in the synthetic peptides the preferred residues were Val, Ala and Val, respectively. They contributed to the efficiency of hydrolysis in the order P1' > P2 > P2'. Six amino acids of the synthetic peptides were sufficient to reach the maximum rate of hydrolysis, in accordance with the ability of PrtA to cleave three amino acids from both the N- and the C-terminus of some fragments of biological peptides. Using the best synthetic peptide, a fluorescence-quenched substrate, N-(4-[4'(dimethylamino)phenylazo]benzoyl-EVYAVES-5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was prepared. The approximately 4 x 10(6) M(-1) x s(-1) specificity constant of PrtA (at K(m) approximately 5 x 10(-5) M and k(cat) approximately 2 x 10(2) s(-1)) on this substrate was the highest activity for a serralysin-type enzyme, allowing precise measurement of the effects of several inhibitors and pH on PrtA activity. These showed the characteristics of a metalloenzyme and a wide range of optimum pH, similar to other serralysins. PrtA activity could be measured in biological samples (Photorhabdus-infected insect larvae) without interference from other enzymes, which indicates that substrate selectivity is high towards PrtA. The substrate sensitivity allowed early (14 h post infection) detection of PrtA, which might indicate PrtA's participation in the establishment of infection and not only, as it has been supposed, in bioconversion.
Collapse
Affiliation(s)
- Judit Marokházi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|