1
|
Villanueva CD, Bohunická M, Johansen JR. We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy. JOURNAL OF PHYCOLOGY 2024; 60:1071-1089. [PMID: 39152777 DOI: 10.1111/jpy.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024]
Abstract
The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.
Collapse
Affiliation(s)
- Chelsea D Villanueva
- Department of Biological, Geological, & Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| | - Markéta Bohunická
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jeffrey R Johansen
- Department of Biology, John Carroll University, University Heights, Ohio, USA
| |
Collapse
|
2
|
Dixit S, Kumar S, Sharma R, Banakar PS, Singh M, Keshri A, Tyagi AK. Rumen multi-omics addressing diet-host-microbiome interplay in farm animals: a review. Anim Biotechnol 2023; 34:3187-3205. [PMID: 35713100 DOI: 10.1080/10495398.2022.2078979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Continuous improvement in the living standards of developing countries, calls for an urgent need of high quality meat and dairy products. The farm animals have a micro-ecosystem in gastro-intestinal tract, comprising of a wide variety of flora and fauna which converts roughages and agricultural byproducts as well as nutrient rich concentrate sources into the useful products such as volatile fatty acids and microbial crude proteins. The microbial diversity changes according to composition of the feed, host species/breed and host's individual genetic makeup. From culture methods to next-generation sequencing technologies, the knowledge has emerged a lot to know-how of microbial world viz. their identification, enzymatic activities and metabolites which are the keys of ruminant's successful existence. The structural composition of ruminal community revealed through metagenomics can be elaborated by metatranscriptomics and metabolomics through deciphering their functional role in metabolism and their responses to the external and internal stimuli. These highly sophisticated analytical tools have made possible to correlate the differences in the feed efficiency, nutrients utilization and methane emissions to their rumen microbiome. The comprehensively understood rumen microbiome will enhance the knowledge in the fields of animal nutrition, biotechnology and climatology through deciphering the significance of each and every domain of residing microbial entity. The present review undertakes the recent investigations regarding rumen multi-omics viz. taxonomic and functional potential of microbial populations, host-diet-microbiome interactions and correlation with metabolic dynamics.
Collapse
Affiliation(s)
- Sonam Dixit
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Sachin Kumar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Ritu Sharma
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - P S Banakar
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - Manvendra Singh
- Krishi Vigyan Kendra, Banda University of Agriculture and Technology, Banda, India
| | - Anchal Keshri
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
| | - A K Tyagi
- Rumen Biotechnology Laboratory, Department of Animal Nutrition, National Dairy Research Institute, Karnal, India
- Animal Nutrition and Physiology, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
3
|
Development and evaluation of a rapid, specific, and sensitive loop-mediated isothermal amplification assay to detect Tenacibaculum sp. strain pbs-1 associated with black-spot shell disease in Akoya pearl oysters. Arch Microbiol 2022; 205:43. [PMID: 36575332 DOI: 10.1007/s00203-022-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Black-spot shell disease decreases pearl quality and threatens pearl oyster survival. Establishment of a rapid, specific, and sensitive assay to detect Tenacibaculum sp. strain Pbs-1 associated with black-spot shell disease is of commercial importance. We developed a rapid, specific, and highly sensitive loop-mediated isothermal amplification (LAMP) assay to detect Tenacibaculum sp. Pbs-1 in Akoya pearl oysters Pinctada fucata. A set of five specific primers (two inner, two outer, and a loop) were designed based on the 16S-23S internal spacer region of strain Pbs-1. The optimum reaction temperature was 63 °C, and concentrations of the inner and loop primers were 1.4 and 1.0 µM, respectively. The LAMP product can be detected using agarose gel electrophoresis, and the color change in the reaction tube can be detected visually (by the naked eye) following the addition of malachite green. Our assay proved to be specific for strain Pbs-1, with no cross-reactivity with five other species of Tenacibaculum. The detection limit of the LAMP assay at 35 min is 50 pg, and at 60 min it is 5 fg. We evaluated the LAMP assay using diseased and healthy pearl oysters. The results demonstrate the suitability and simplicity of this test for rapid field diagnosis of strain Pbs-1.
Collapse
|
4
|
Lee MJ, Park J, Park K, Kim JF, Kim P. Reverse Engineering Targets for Recombinant Protein Production in Corynebacterium glutamicum Inspired by a Fast-Growing Evolved Descendant. Front Bioeng Biotechnol 2020; 8:588070. [PMID: 33363126 PMCID: PMC7755716 DOI: 10.3389/fbioe.2020.588070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
We previously reported a Corynebacterium glutamicum JH41 strain with a 58% faster growth rate through application of adaptive laboratory evolution. To verify that the fast-reproducing strain was useful as a host for recombinant protein expression, we introduced a plasmid responsible for the secretory production of a recombinant protein. The JH41 strain harboring the plasmid indeed produced the secretory recombinant protein at a 2.7-fold greater rate than its ancestral strain. To provide the reverse engineering targets responsible for boosting recombinant protein production and cell reproduction, we compared the genome sequence of the JH41 strain with its ancestral strain. Among the 15 genomic variations, a point mutation was confirmed in the 14 bases upstream of NCgl1959 (encoding a presumed siderophore-binding protein). This mutation allowed derepression of NCgl1959, thereby increasing iron consumption and ATP generation. A point mutation in the structural gene ramA (A239G), a LuxR-type global transcription regulator involved in central metabolism, allowed an increase in glucose consumption. Therefore, mutations to increase the iron and carbon consumption were concluded as being responsible for the enhanced production of recombinant protein and cell reproduction in the evolved host.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Kyunghoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| |
Collapse
|
5
|
Species-Specific Identification of Streptococcus based on DNA Marker in 16S-23S rDNA Internal Transcribed Spacer. Curr Microbiol 2020; 77:1569-1579. [PMID: 32253469 DOI: 10.1007/s00284-020-01975-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/27/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus is closely correspondent to human. The accurate species-specific identification method of Streptococcus is important for the bacteria clinical diagnosis, molecular epidemiological analysis, and microecological study. In the last decades, DNA markers are widely utilized for identification of prokaryotic species. However, 16S rDNA, the most popular bacterial DNA marker, cannot properly distinguish closely related Streptococcus species. In present study, we employed 16S-23S rRNA gene internal transcribed spacer (ITS) sequence to explore the species-specific DNA marker. We predicted the secondary structure of Streptococcus ITS sequence transcribed products. Then we identified that the specific and consensus sequences in the primary structure can be found occupying an individual subunit in the secondary structure, which explained the foundation of the mosaic-like structure of ITS. We evaluated the specificity of ITS in Streptococcus, and found that the specificity can be detected by a further analysis of a BLAST result. Then, we developed an identification procedure based on the ITS sequence. We verified the procedure by 500 ITS sequence. The accuracy rate of this procedure was 100% for Streptococcus at genus level, and 99.3% at species level. It suggested that ITS can be utilized to accurately identify Streptococcus at the species level. This work suggests that further exploration of ITS could be applied in other bacterial genera for identification and classification, which may be a useful topic for future microbiology studies.
Collapse
|
6
|
Yu J, Zhu B, Zhou T, Wei Y, Li X, Liu Y. Species-specific Identification of Vibrio sp. based on 16S-23S rRNA gene internal transcribed spacer. J Appl Microbiol 2020; 129:738-752. [PMID: 32155682 DOI: 10.1111/jam.14637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
AIMS To explore a prokaryotic species-specific DNA marker, 16S-23S rRNA gene internal transcribed spacer (ITS) sequence for identification and classification of Vibrio. METHODS AND RESULTS Five hundred and seventy four ITS sequences from 60 Vibrio strains were collected, then the primary and secondary structures of ITS sequence were analysed. The ITS was divided into several subunits, and the species-specificity of these subunits were evaluated by blast. The variable subunit of ITS showed high species-specificity. A protocol to identify a Vibrio species based on ITS analysis was developed and verified. Both the specificity and sensitivity were 100%. The phylogeny analysis of Vibrio based on ITS showed that ITS devised a better classification than 16S rDNA. Finally, an identification method of Vibrio based on ITS sequencing in food samples was developed and evaluated. The results of ITS sequencing were (100%) consistent with the results identified by ISO standard. CONCLUSIONS Vibrio could be accurately identified at the species level by using the ITS sequences. SIGNIFICANCE AND IMPACT OF THE STUDY The present study suggests that the ITS can be considered as a significant DNA marker for identification and classification of Vibrio species, and it posed a new path to screen the Vibrio in food sample.
Collapse
Affiliation(s)
- J Yu
- College of Life Sciences, Qingdao University, Qingdao, P.R. China
| | - B Zhu
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - T Zhou
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Y Wei
- College of Life Sciences, Qingdao University, Qingdao, P.R. China
| | - X Li
- School of Medicine, Nankai University, Tianjin, P.R. China
| | - Y Liu
- School of Medicine, Nankai University, Tianjin, P.R. China
| |
Collapse
|
7
|
Yu J, Peng X, Wei Y, Mi Y, Zhu B, Zhou T, Yang Z, Liu Y. Relationship of diversity and the secondary structure in 16S-23S rDNA internal transcribed spacer: a case in Vibrio parahaemolyticus. FEMS Microbiol Lett 2018; 365:5053806. [PMID: 30010854 DOI: 10.1093/femsle/fny177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 11/14/2022] Open
Abstract
The 16S-23S rDNA internal transcribed spacer (ITS) sequence, located in the rrn operon, has been analyzed and evaluated for use in phylogenetic analysis and the detection target of bacteria. The ITS region displays a high level of diversity, being present in multiple copies and displaying variability in both length and sequence, and it carries more phylogenetic information than 16S rDNA. However, appropriately identifying ITS regions to use in analyses is challenging. To solve this problem, we analyzed the ITS regions in Vibrio parahaemolyticus and predicted the secondary structure of each analogous rrn transcript. The genomic DNA of V. parahaemolyticus contains approximately 8-14 rrns, making it more complex than the sequences of most other bacterial species. We analyzed 216 ITSs, of which 206 ITSs come from 18 complete genomes, and 10 ITSs were identified in the present study. The subunits of each ITS were distinguished by their predicted secondary structures. We propose a refined backbone model of the V. parahaemolyticus ITS that can be applied to the sequences of other bacteria. The backbone includes C, V, tDNA and linker blocks. These blocks, which may represent true functional units, may be used as potential targets for phylogenetic analysis or molecular detection.
Collapse
Affiliation(s)
- Jia Yu
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P.R. China
| | - Xi Peng
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P.R. China
| | - Yue Mi
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Baojie Zhu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Ting Zhou
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Zhen Yang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yin Liu
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
8
|
Balado M, Benzekri H, Labella AM, Claros MG, Manchado M, Borrego JJ, Osorio CR, Lemos ML. Genomic analysis of the marine fish pathogen Photobacterium damselae subsp. piscicida: Insertion sequences proliferation is associated with chromosomal reorganisations and rampant gene decay. INFECTION GENETICS AND EVOLUTION 2017; 54:221-229. [PMID: 28688976 DOI: 10.1016/j.meegid.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 01/25/2023]
Abstract
Photobacterium damselae subsp. piscicida (Pdp) is an intracellular fish pathogen that causes photobacteriosis, a disease proven deadly in farmed fish worldwide. This work focuses on the analysis of genome sequences, chromosomes structure and gene contents of two strains from Sparus aurata (DI21) and Solea senegalensis (L091106-03H), isolated on the Spanish Atlantic coast. The comparative genomic analysis revealed that DI21 and L091106-03H share 98% of their genomes, including two virulence plasmids: pPHDP70 encoding siderophore piscibactin synthesis and pPHDP10 encoding the apoptotic toxin AIP56. Both genomes harbour a surprisingly large number of IS elements accounting for 12-17% of the total genome, representing an IS density of 0.15 elements per kb, one of the highest IS density values in a bacterial pathogen. This massive proliferation of ISs is responsible for the generation of a high number of pseudogenes that caused extensive loss of biological functions. Pseudogene formation is one of the main features of Pdp genome that explains most of the ecological and phenotypic differences with respect to its sibling subspecies P. damselae subsp. damselae and to other Vibrionaceae. Evidence was also found proving the existence of two chromosomal configurations depending on the origin of the strains: an European and an Asian/American types of genome organisation, reinforcing the idea of the existence of two geographically-linked clonal lineages in Pdp. In short, our study suggests that the host-dependent lifestyle of Pdp allowed massive IS proliferation and gene decay processes, which are major evolutionary forces in the shaping of the Pdp genome.
Collapse
Affiliation(s)
- Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Hicham Benzekri
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alejandro M Labella
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, El Puerto de Santa María, Cádiz, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carlos R Osorio
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Adesulu-Dahunsi A, Sanni A, Jeyaram K. Rapid differentiation among Lactobacillus, Pediococcus and Weissella species from some Nigerian indigenous fermented foods. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR. Food Microbiol 2016; 57:54-62. [DOI: 10.1016/j.fm.2016.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 11/20/2022]
|
11
|
Janezic S, Indra A, Rattei T, Weinmaier T, Rupnik M. Recombination drives evolution of the Clostridium difficile 16S-23S rRNA intergenic spacer region. PLoS One 2014; 9:e106545. [PMID: 25222120 PMCID: PMC4164361 DOI: 10.1371/journal.pone.0106545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022] Open
Abstract
PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Alexander Indra
- Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Thomas Rattei
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | | | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
12
|
Photobacteriosis: prevention and diagnosis. J Immunol Res 2014; 2014:793817. [PMID: 24982922 PMCID: PMC4058529 DOI: 10.1155/2014/793817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/09/2014] [Indexed: 01/17/2023] Open
Abstract
Photobacteriosis or fish pasteurellosis is a bacterial disease affecting wild and farm fish. Its etiological agent, the gram negative bacterium Photobacterium damselae subsp. piscicida, is responsible for important economic losses in cultured fish worldwide, in particular in Mediterranean countries and Japan. Efforts have been focused on gaining a better understanding of the biology of the pathogenic microorganism and its natural hosts with the aim of developing effective vaccination strategies and diagnostic tools to control the disease. Conventional vaccinology has thus far yielded unsatisfactory results, and recombinant technology has been applied to identify new antigen candidates for the development of subunit vaccines. Furthermore, molecular methods represent an improvement over classical microbiological techniques for the identification of P. damselae subsp. piscicida and the diagnosis of the disease. The complete sequencing, annotation, and analysis of the pathogen genome will provide insights into the pathogen laying the groundwork for the development of vaccines and diagnostic methods.
Collapse
|
13
|
Zhang H, Feng J, Xue R, Du XJ, Lu X, Wang S. Loop-mediated isothermal amplification assays for detecting Yersinia pseudotuberculosis in milk powders. J Food Sci 2014; 79:M967-71. [PMID: 24697660 DOI: 10.1111/1750-3841.12436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/26/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Yersinia pseudotuberculosis is a Gram-negative foodborne pathogen that causes several diseases, such as enteritis, septicemia, and reactive arthritis. Loop-mediated isothermal amplification (LAMP) assay targeting the 16S-23S rDNA internal transcribed spacer (ITS) region was developed to detect Y. pseudotuberculosis in milk powder. The DNA amplification could be completed in 1 h, and detected by produced white precipitate visible to naked eyes. The detection limit of LAMP assay was 10(0) fg/reaction for genomic DNA, and 10(0) CFU/100 g milk powder coupled with 12 h enrichment. LAMP assay is 100 times more sensitive than conventional polymerase chain reaction method for detecting Y. pseudotuberculosis, and correctly identified 18 cases of Y. pseudotuberculosis contaminations from 236 commercial milk powder products. In conclusion, the developed LAMP assay may facilitate rapid detection of Y. pseudotuberculosis contaminations in agricultural and food products. PRACTICAL APPLICATION Rapid and accurate detection of Yersinia pseudotuberculosis in milk products.
Collapse
Affiliation(s)
- Hongwei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin Univ. of Science and Technology, Tianjin, 300457, China; Food, Nutrition, and Health Program, Faculty of Land and Food Systems, Univ. of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Ettoumi B, Guesmi A, Brusetti L, Borin S, Najjari A, Boudabous A, Cherif A. Microdiversity of deep-sea Bacillales isolated from Tyrrhenian sea sediments as revealed by ARISA, 16S rRNA gene sequencing and BOX-PCR fingerprinting. Microbes Environ 2013; 28:361-9. [PMID: 24005887 PMCID: PMC4070960 DOI: 10.1264/jsme2.me13013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With respect to their terrestrial relatives, marine Bacillales have not been sufficiently investigated. In this report, the diversity of deep-sea Bacillales, isolated from seamount and non-seamount stations at 3,425 to 3,580 m depth in the Tyrrhenian Sea, was investigated using PCR fingerprinting and 16S rRNA sequence analysis. The isolate collection (n=120) was de-replicated by automated ribosomal intergenic spacer analysis (ARISA), and phylogenetic diversity was analyzed by 16S rRNA gene sequencing of representatives of each ARISA haplotype (n=37). Phylogenetic analysis of isolates showed their affiliation to six different genera of low G+C% content Gram-positive Bacillales: Bacillus, Staphylococcus, Exiguobacterium, Paenibacillus, Lysinibacillus and Terribacillus. Bacillus was the dominant genus represented by the species B. licheniformis, B. pumilus, B. subtilis, B. amyloliquefaciens and B. firmus, typically isolated from marine sediments. The most abundant species in the collection was B. licheniformis (n=85), which showed seven distinct ARISA haplotypes with haplotype H8 being the most dominant since it was identified by 63 isolates. The application of BOX-PCR fingerprinting to the B. licheniformis sub-collection allowed their separation into five distinct BOX genotypes, suggesting a high level of intraspecies diversity among marine B. licheniformis strains. This species also exhibited distinct strain distribution between seamount and non-seamount stations and was shown to be highly prevalent in non-seamount stations. This study revealed the great microdiversity of marine Bacillales and contributes to understanding the biogeographic distribution of marine bacteria in deep-sea sediments.
Collapse
Affiliation(s)
- Besma Ettoumi
- LR Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar
| | | | | | | | | | | | | |
Collapse
|
15
|
López JR, Hamman-Khalifa AM, Navas JI, de la Herran R. Characterization of ISR region and development of a PCR assay for rapid detection of the fish pathogen Tenacibaculum soleae. FEMS Microbiol Lett 2011; 324:181-8. [PMID: 22092820 DOI: 10.1111/j.1574-6968.2011.02404.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/21/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The aims of this work were to characterize the 16S-23S internal spacer region of the fish pathogen Tenacibaculum soleae and to develop a PCR assay for its identification and detection. All T. soleae strains tested displayed a single internal spacer region class, containing tRNA(I) (le) and tRNA(A) (la) genes; nevertheless, a considerable intraspecific heterogeneity was observed. However, this region proved to be useful for differentiation of T. soleae from related and non-related species. Species-specific primers were designed targeting the 16S rRNA gene and the internal spacer region region, yielding a 1555-bp fragment. Detection limit was of 1 pg DNA per reaction (< 30 bacterial cells) when using pure cultures. The detection level in the presence of DNA from fish or other bacteria was lower; however, 10 pg were detected at a target/background ratio of 1 : 10(5) . The PCR assay proved to be more sensitive than agar cultivation for the detection of T. soleae from naturally diseased fish, offering a useful tool for diagnosis and for understanding the epidemiology of this pathogen.
Collapse
|
16
|
Tokajian S, Haddad D, Andraos R, Hashwa F, Araj G. Toxins and Antibiotic Resistance in Staphylococcus aureus Isolated from a Major Hospital in Lebanon. ISRN MICROBIOLOGY 2011; 2011:812049. [PMID: 23724312 PMCID: PMC3658828 DOI: 10.5402/2011/812049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022]
Abstract
Molecular characterization of Staphylococcus aureus is of both clinical and infection control importance. Virulence determinants using PCR and multiple drug resistance profiles were studied in 130 S. aureus isolates. PCR-RFLP analysis of the 16S-23S DNA spacer region was done to investigate the level of 16S-23S ITS (internal transcribed spacer) polymorphism. Methicillin-resistant S. aureus (MRSA), which represented 72% of the studied isolates, showed multiple drug resistance with 18% being resistant to 10-18 of the drugs used compared to a maximum resistance to 9 antibiotics with the methicillin sensitive S. aureus (MSSA) isolates. Exfoliative toxin A (ETA) was more prevalent than B (ETB) with virulent determinants being additionally detected in multiple drug-resistant isolates. 16S-23S ITS PCR-RFLP combined with sequencing of the primary product was successful in generating molecular fingerprints of S. aureus and could be used for preliminary typing. This is the first study to demonstrate the incidence of virulent genes, ACME, and genetic diversity of S. aureus isolates in Lebanon. The data presented here epitomize a starting point defining the major genetic populations of both MRSA and MSSA in Lebanon and provide a basis for clinical epidemiological studies.
Collapse
Affiliation(s)
- Sima Tokajian
- Genomics and Proteomics Research Laboratory, Department of Biology, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Dominik Haddad
- Genomics and Proteomics Research Laboratory, Department of Biology, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Rana Andraos
- Genomics and Proteomics Research Laboratory, Department of Biology, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Fuad Hashwa
- Genomics and Proteomics Research Laboratory, Department of Biology, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - George Araj
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Centre, Beirut, Lebanon
| |
Collapse
|
17
|
Jeyaram K, Romi W, Singh TA, Adewumi GA, Basanti K, Oguntoyinbo FA. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance. J Microbiol Methods 2011; 87:161-4. [PMID: 21889958 DOI: 10.1016/j.mimet.2011.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species.
Collapse
Affiliation(s)
- Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat Institutional Area, Imphal-795001, Manipur, India.
| | | | | | | | | | | |
Collapse
|
18
|
Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. Syst Appl Microbiol 2010; 33:222-31. [PMID: 20413241 DOI: 10.1016/j.syapm.2010.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
Bacterial diversity in Tyrrhenian Sea sediments was assessed using cultivation-dependent and -independent approaches. Samples collected from the different sediment layers (up to 30cm) relative to four seamount and non-seamount stations, at depths from 3425 to 3580m, were subjected to DNA extraction and 16S rRNA amplification targeting the V3 region. Denaturing gradient gel electrophoresis (DGGE) showed several heterogeneous profiles and 27 single bands were excised and sequenced. Sequence analysis revealed the presence of Firmicutes, Actinobacteria and Chloroflexi in 26% of the DGGE bands and a predominance of sequences affiliated to cultivable and uncultivable clones of Gammaproteobacteria (55%). To corroborate these findings, cultivation attempts were performed that allowed the isolation of 87 strains assigned to the proteobacterial classes. Identification was achieved by means of automated ribosomal intergenic spacer analysis (ARISA) and by 16S rDNA sequencing. The isolates were related to the gamma, alpha and beta subclasses of Proteobacteria with respective percentages of 77, 17 and 6%. The most predominant Gammaproteobacteria isolates, assigned to the Psychrobacter marincola and P. submarinus clade (n=53) and to Halomonas aquamarina (n=14), showed a huge intraspecific diversity with 29 distinct ARISA haplotypes. The detection by both approaches of these psychrophilic and moderately halophilic species and their extensive microdiversity indicated their predominance in Tyrrhenian Sea sediments where they constituted the indigenous microflora.
Collapse
|
19
|
Deter J, Lozach S, Derrien A, Véron A, Chollet J, Hervio-Heath D. Chlorophyll a might structure a community of potentially pathogenic culturable Vibrionaceae. Insights from a one-year study of water and mussels surveyed on the French Atlantic coast. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:185-191. [PMID: 23766015 DOI: 10.1111/j.1758-2229.2010.00133.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study focused on the isolation of culturable bacteria from mussels and sea water to identify Vibrionaceae potentially pathogenic for humans. Three sites located on the French Atlantic coast were monitored monthly (twice each month during summer) for 1 year. Environmental parameters were surveyed (water temperature, salinity, turbidity, chlorophyll a) and bacteria were detected by culture and identified by API 20E(®) systems (BioMérieux) and PCR. A total of seven species were detected (Grimontia hollisae, Photobacterium damselae, Vibrio alginolyticus, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus) and species diversity was higher at the end of summer. Surprisingly, V. cholerae non-O1/non-O139 was detected in spring. No site effect was detected. Using Sørensen similarity indices and statistical analyses, we showed that chlorophyll a had a significant influence on the bacterial community detected in mussels and assemblages were more similar to one another when chlorophyll a values were above 20 µg l(-1) . No significant effect of any parameter was found on the community detected in water samples. Such surveys are essential for the understanding of sanitary crises and detection of emerging pathogens.
Collapse
Affiliation(s)
- J Deter
- Ifremer, centre de Brest, Département Environnement, Microbiologie et Phycotoxines (EMP), Laboratoire de Microbiologie, ZI de la pointe du diable, B.P. 70, 29280 Plouzané, France. Ifremer, centre de Nantes, EMP/Laboratoire National de Référence Microbiologie des Coquillages, BP 21105, 44311 Nantes Cedex 3, France. Ifremer, LERPC, centre de La Rochelle, place Gaby Coll, BP 7, 17137 L'Houmeau, France
| | | | | | | | | | | |
Collapse
|
20
|
Bonizzi I, Buffoni JN, Feligini M, Enne G. Investigating the relationship between raw milk bacterial composition, as described by intergenic transcribed spacer-PCR fingerprinting, and pasture altitude. J Appl Microbiol 2009; 107:1319-29. [PMID: 19486392 DOI: 10.1111/j.1365-2672.2009.04311.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To assess the bacterial biodiversity level in bovine raw milk used to produce Fontina, a Protected Designation of Origin cheese manufactured at high-altitude pastures and in valleys of Valle d'Aosta region (North-western Italian Alps) without any starters. To study the relation between microbial composition and pasture altitude, in order to distinguish high-altitude milk against valley and lowland milk. METHODS AND RESULTS The microflora from milks sampled at different alpine pasture, valley and lowland farms were fingerprinted by PCR of the 16S-23S intergenic transcribed spacers (ITS-PCR). The resulting band patterns were analysed by generalized multivariate statistical techniques to handle discrete (band presence-absence) and continuous (altitude) information. The fingerprints featured numerous bands and marked variability indicating complex, differentiated bacterial communities. Alpine pasture milks were distinguished from lowland ones by cluster analysis, while this technique less clearly discriminated alpine pasture and valley samples. Generalized principal component analysis and clustering-after-ordination enabled a more effective distinction of alpine pasture, valley and lowland samples. CONCLUSIONS Alpine raw milks for Fontina production contain highly diverse bacterial communities, the composition of which is related to the altitude of the pasture where milk was produced. SIGNIFICANCE AND IMPACT OF THE STUDY This research may provide analytical support to the important issue represented by the authentication of the geographical origin of alpine milk productions.
Collapse
Affiliation(s)
- I Bonizzi
- Laboratorio Qualità dei Prodotti, Istituto Sperimentale Italiano Lazzaro Spallanzani, via Einstein, Località Cascina Codazza, Lodi 26900, Italy.
| | | | | | | |
Collapse
|
21
|
16S-23S rDNA internal transcribed spacer regions in four Proteus species. J Microbiol Methods 2009; 77:109-18. [PMID: 19318046 DOI: 10.1016/j.mimet.2009.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/16/2009] [Accepted: 01/19/2009] [Indexed: 11/20/2022]
Abstract
Proteus is a Gram-negative, facultative anaerobic bacterium. In this study, 813 Proteus 16S-23S rDNA internal transcribed spacer (ITS) sequences were determined from 46 Proteus strains, including 388 ITS from 22 P. mirabilis strains, 211 ITS from 12 P. vulgaris strains, 169 ITS from 10 P. penneri strains, and 45 ITS from 2 P. myxofaciens strains. The Proteus strains carry mainly two types of ITS, ITS(Glu) (containing tRNA(Glu (UUC)) gene) and ITS(Ile+Ala) (containing tRNA(Ile (GAU)) and tRNA(Ala (UGC)) gene), and are in the forms of 28 variants with 25 genomic origins. The ITS sequences are a mosaic-like structure consisting of three conservative regions and two variable regions. The nucleotide identity of ITS subtypes in strains of the same species ranges from 96.2% to 100%. The divergence of Proteus ITS divergence was most likely due to intraspecies recombinations or horizontal transfers of sequence blocks. The phylogenetic relationship deduced from the second variable region of ITS sequences of the three facultative human pathogenic species P. mirabilis, P. vulgaris and P. penneri is similar with that based on 16S rDNA sequences, but has higher resolution to differentiate closely related P. vulgaris and P. penneri. This study is the first comprehensive study of ITS in four Proteus species and laid solid foundation for the development of high-throughput technology for quick and accurate identification of the important foodborne and nosocomial pathogens.
Collapse
|
22
|
Unusual intragenomic and interspecific variability of Geobacillus 16S-23S rRNA internal transcribed spacers. Open Life Sci 2008. [DOI: 10.2478/s11535-008-0043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of this study was to evaluate the inter-and intraspecific as well as intragenomic variability of Geobacillus 16S–23S rRNA internal transcribed spacers without tRNA genes and to compare these sequences with sequences bearing tRNA genes. In this study the structural analysis was performed in a unique way because the length and the sequence of the structural blocks were adjusted to fit the structure of 16S–23S rRNA internal transcribed spacers of five different Geobacillus species. Our study demonstrated the mosaic-like structure of 16S–23S rRNA internal transcribed spacers in Geobacillus. Some characteristics of these spacers of geobacilli were not previously reported for other bacteria: unusually short conserved sequence in the 5′ end region, some identical conserved blocks in both 5′ and 3′ regions of 16S–23S rRNA internal transcribed spacers, the same sequence blocks in both 16S–23S and 23S–5S rRNA intergenic spacers. Our study demonstrated quite uniform arrangement of the sequence blocks in Geobacillus thermodenitrificans. This species diverged early in the phylogenetic tree of the genus Geobacillus. For the phylogenetically recent species Geobacillus kaustophilus and Geobacillus lituanicus the low inter-and intraspecific, but high intragenomic variability, as a consequence of recent phylogenetic events, was established.
Collapse
|
23
|
Stewart FJ, Cavanaugh CM. Intragenomic variation and evolution of the internal transcribed spacer of the rRNA operon in bacteria. J Mol Evol 2007; 65:44-67. [PMID: 17568983 DOI: 10.1007/s00239-006-0235-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Variation in the internal transcribed spacer (ITS) of the rRNA (rrn) operon is increasingly used to infer population-level diversity in bacterial communities. However, intragenomic ITS variation may skew diversity estimates that do not correct for multiple rrn operons within a genome. This study characterizes variation in ITS length, tRNA composition, and intragenomic nucleotide divergence across 155 Bacteria genomes. On average, these genomes encode 4.8 rrn operons (range: 2-15) and contain 2.4 unique ITS length variants (range: 1-12) and 2.8 unique sequence variants (range: 1-12). ITS variation stems primarily from differences in tRNA gene composition, with ITS regions containing tRNA-Ala + tRNA-Ile (48% of sequences), tRNA-Ala or tRNA-Ile (10%), tRNA-Glu (11%), other tRNAs (3%), or no tRNA genes (27%). Intragenomic divergence among paralogous ITS sequences grouped by tRNA composition ranges from 0% to 12.11% (mean: 0.94%). Low divergence values indicate extensive homogenization among ITS copies. In 78% of alignments, divergence is <1%, with 54% showing zero variation and 81% containing at least two identical sequences. ITS homogenization occurs over relatively long sequence tracts, frequently spanning the entire ITS, and is largely independent of the distance (basepairs) between operons. This study underscores the potential contribution of interoperon ITS variation to bacterial microdiversity studies, as well as unequivocally demonstrates the pervasiveness of concerted evolution in the rrn gene family.
Collapse
Affiliation(s)
- Frank J Stewart
- Department of Organismic and Evolutionary Biology, Harvard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
24
|
González-Escalona N, Jaykus LA, DePaola A. Accurate identification of desired clones from 16S-23S rDNA spacer libraries using single PCR. Anal Biochem 2006; 360:146-7. [PMID: 17113024 DOI: 10.1016/j.ab.2006.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 10/17/2006] [Accepted: 10/18/2006] [Indexed: 12/20/2022]
|
25
|
Sadeghifard N, Gürtler V, Beer M, Seviour RJ. The mosaic nature of intergenic 16S-23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 2006; 72:7311-23. [PMID: 16980415 PMCID: PMC1636144 DOI: 10.1128/aem.01179-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/07/2006] [Indexed: 11/20/2022] Open
Abstract
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNA(Ala) gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.
Collapse
Affiliation(s)
- Nourkhoda Sadeghifard
- Biotechnology Research Centre, La Trobe University, Bendigo, Victoria 3552, Australia
| | | | | | | |
Collapse
|
26
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
27
|
Maslunka C, Carr E, Gürtler V, Kämpfer P, Seviour R. Estimation of ribosomal RNA operon (rrn) copy number in Acinetobacter isolates and potential of patterns of rrn operon-containing fragments for typing strains of members of this genus. Syst Appl Microbiol 2005; 29:216-28. [PMID: 16564958 DOI: 10.1016/j.syapm.2005.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Indexed: 11/23/2022]
Abstract
The copy number of the rrn operon in 70 strains of Acinetobacter including the type strains of almost all the genomic species with validated names was estimated after digestion of their genomic DNA by the restriction enzymes BglII and PstI, and Southern blotting. Copy number estimates varied between and among species, with between 3 and 7 rrn operon copies detected. Copy number estimates obtained from the same strain with the two enzymes sometimes varied. BglII generated RFLP patterns of the rrn containing fragments obtained from Southern blots after agarose gel electrophoresis were examined for their value in identifying Acinetobacter isolates. This method was very reproducible with the same fragment pattern always generated from the same isolate on repeated analysis. Often multiple strains of the same genomic species gave identical or very similar patterns (e.g. Acinetobacter baylyi), clustering closest together on the dendrogram generated after numerical analysis of these patterns. However, with some, like BG5 and BG8, the patterns derived from the different strains, some of which had been placed in this genomic species from DNA:DNA hybridization data, varied considerably to each other and to the type strain. Little similarity was seen when relationships between these strains based on these patterns were compared to those using DNA:DNA hybridization data. Often these patterns could be used to question earlier identification of strains using phenotypic characters. Thus, strain AB82 thought to belong to genomic species 5 gave an identical pattern to A. bouvetii(T) (DSM 14964). In some cases this pattern analysis suggested that novel species of Acinetobacter might exist among the strains examined.
Collapse
Affiliation(s)
- Christopher Maslunka
- Biotechnology Research Centre, La Trobe University, Bendigo Victoria 3552, Australia
| | | | | | | | | |
Collapse
|