1
|
Lossouarn J, Beurrier E, Bouteau A, Moncaut E, Sir Silmane M, Portalier H, Zouari A, Cattoir V, Serror P, Petit MA. The virtue of training: extending phage host spectra against vancomycin-resistant Enterococcus faecium strains using the Appelmans method. Antimicrob Agents Chemother 2024; 68:e0143923. [PMID: 38591854 PMCID: PMC11210271 DOI: 10.1128/aac.01439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.
Collapse
Affiliation(s)
- Julien Lossouarn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elsa Beurrier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Astrid Bouteau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Elisabeth Moncaut
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Maria Sir Silmane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Heïdi Portalier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Asma Zouari
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
| | - Vincent Cattoir
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière et CNR de la Résistance aux Antibiotiques (laboratoire associé "Entérocoques"), Rennes, France
- Université de Rennes, INSERM, UMR_S1230 BRM, Rennes, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
2
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wu M, Zhu Y, Yang Y, Gong Y, Chen Z, Liao B, Xiong Y, Zhou X, Li Y. SVep1, a temperate phage of human oral commensal Streptococcus vestibularis. Front Microbiol 2023; 14:1256669. [PMID: 37779698 PMCID: PMC10536254 DOI: 10.3389/fmicb.2023.1256669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Bacteriophages play a vital role in the human oral microbiome, yet their precise impact on bacterial physiology and microbial communities remains relatively understudied due to the limited isolation and characterization of oral phages. To address this gap, the current study aimed to isolate and characterize novel oral phages. Methods To achieve this, oral bacteria were isolated using a culture-omics method from 30 samples collected from healthy individuals. These bacteria were then cultured in three different types of media under both aerobic and anaerobic conditions. The samples were subsequently subjected to full-length 16S rRNA gene sequencing for analysis. Subsequently, we performed the isolation of lytic and lysogenic phages targeting all these bacteria. Results In the initial step, a total of 75 bacterial strains were successfully isolated, representing 30 species and 9 genera. Among these strains, Streptococcus was found to have the highest number of species. Using a full-length 16S rRNA gene similarity threshold of 98.65%, 14 potential novel bacterial species were identified. In the subsequent phase, a temperate phage, which specifically targets the human oral commensal bacterium S. vestibularis strain SVE8, was isolated. The genome of S. vestibularis SVE8 consists of a 1.96-megabase chromosome, along with a 43,492-base pair prophage designated as SVep1. Annotation of SVep1 revealed the presence of 62 open reading frames (ORFs), with the majority of them associated with phage functions. However, it is worth noting that no plaque formation was observed in S. vestibularis SVE8 following lytic induction using mitomycin C. Phage particles were successfully isolated from the supernatant of mitomycin C-treated cultures of S. vestibularis SVE8, and examination using transmission electron microscopy confirmed that SVep1 is a siphovirus. Notably, phylogenetic analysis suggested a common ancestral origin between phage SVep1 and the cos-type phages found in S. thermophilus. Discussion The presence of SVep1 may confer immunity to S. vestibularis against infection by related phages and holds potential for being engineered as a genetic tool to regulate oral microbiome homeostasis and oral diseases.
Collapse
Affiliation(s)
- Miaomiao Wu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanpeng Zhu
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhui Yang
- School of Nursing, Army Medical University, Chongqing, China
| | - Yali Gong
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
| | - Zongyue Chen
- School of Nursing, Army Medical University, Chongqing, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Xiong
- Department of Oral and Maxillofacial Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, China
- Department of Stomatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Functional Dissection of P1 Bacteriophage Holin-like Proteins Reveals the Biological Sense of P1 Lytic System Complexity. Int J Mol Sci 2022; 23:ijms23084231. [PMID: 35457047 PMCID: PMC9025707 DOI: 10.3390/ijms23084231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
P1 is a model temperate myovirus. It infects different Enterobacteriaceae and can develop lytically or form lysogens. Only some P1 adaptation strategies to propagate in different hosts are known. An atypical feature of P1 is the number and organization of cell lysis-associated genes. In addition to SAR-endolysin Lyz, holin LydA, and antiholin LydB, P1 encodes other predicted holins, LydC and LydD. LydD is encoded by the same operon as Lyz, LydA and LydB are encoded by an unlinked operon, and LydC is encoded by an operon preceding the lydA gene. By analyzing the phenotypes of P1 mutants in known or predicted holin genes, we show that all the products of these genes cooperate with the P1 SAR-endolysin in cell lysis and that LydD is a pinholin. The contributions of holins/pinholins to cell lysis by P1 appear to vary depending on the host of P1 and the bacterial growth conditions. The pattern of morphological transitions characteristic of SAR-endolysin–pinholin action dominates during lysis by wild-type P1, but in the case of lydC lydD mutant it changes to that characteristic of classical endolysin-pinholin action. We postulate that the complex lytic system facilitates P1 adaptation to various hosts and their growth conditions.
Collapse
|
5
|
Chandran C, Tham HY, Abdul Rahim R, Lim SHE, Yusoff K, Song AAL. Lactococcus lactis secreting phage lysins as a potential antimicrobial against multi-drug resistant Staphylococcus aureus. PeerJ 2022; 10:e12648. [PMID: 35251775 PMCID: PMC8896023 DOI: 10.7717/peerj.12648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic Gram-positive bacterium that can form biofilm and become resistant to many types of antibiotics. The treatment of multi-drug resistant Staphylococcus aureus (MDRSA) infection is difficult since it possesses multiple antibiotic-resistant mechanisms. Endolysin and virion-associated peptidoglycan hydrolases (VAPGH) enzymes from bacteriophage have been identified as potential alternative antimicrobial agents. This study aimed to assess the ability of Lactococcus lactis NZ9000 secreting endolysin and VAPGH from S. aureus bacteriophage 88 to inhibit the growth of S. aureus PS 88, a MDRSA. METHOD Endolysin and VAPGH genes were cloned and expressed in L. lactis NZ9000 after fusion with the SPK1 signal peptide for secretion. The recombinant proteins were expressed and purified, then analyzed for antimicrobial activity using plate assay and turbidity reduction assay. In addition, the spent media of the recombinant lactococcal culture was analyzed for its ability to inhibit the growth of the S. aureus PS 88. RESULTS Extracellular recombinant endolysin (Endo88) and VAPGH (VAH88) was successfully expressed and secreted from L. lactis which was able to inhibit S. aureus PS 88, as shown by halozone formation on plate assays as well as inhibition of growth in the turbidity reduction assay. Moreover, it was observed that the spent media from L. lactis NZ9000 expressing Endo88 and VAH88 reduced the viability of PS 88 by up to 3.5-log reduction with Endo88 being more efficacious than VAH88. In addition, Endo88 was able to lyse all MRSA strains tested and Staphylococcus epidermidis but not the other bacteria while VAH88 could only lyse S. aureus PS 88. CONCLUSION Recombinant L. lactisNZ9000 expressing phage 88 endolysin may be potentially developed into a new antimicrobial agent for the treatment of MDRSA infection.
Collapse
Affiliation(s)
- Carumathy Chandran
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hong Yun Tham
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women’s College, Abu Dhabi, United Arab Emirates
| | - Khatijah Yusoff
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Nale JY, Al-Tayawi TS, Heaphy S, Clokie MRJ. Impact of Phage CDHS-1 on the Transcription, Physiology and Pathogenicity of a Clostridioides difficile Ribotype 027 Strain, R20291. Viruses 2021; 13:v13112262. [PMID: 34835068 PMCID: PMC8619979 DOI: 10.3390/v13112262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
All known Clostridioides difficile phages encode integrases rendering them potentially able to lyse or lysogenise bacterial strains. Here, we observed the infection of the siphovirus, CDHS-1 on a ribotype 027 strain, R20291 and determined the phage and bacterial gene expression profiles, and impacts of phage infection on bacterial physiology and pathogenicity. Using RNA-seq and RT-qPCR we analysed transcriptomic changes during early, mid-log and late phases of phage replication at an MOI of 10. The phage has a 20 min latent period, takes 80 min to lyse cells and a burst size of ~37. All phage genes are highly expressed during at least one time point. The Cro/C1-transcriptional regulator, ssDNA binding protein and helicase are expressed early, the holin is expressed during the mid-log phase and structural proteins are expressed from mid-log to late phase. Most bacterial genes, particularly the metabolism and toxin production/regulatory genes, were downregulated from early phage replication. Phage-resistant strains and lysogens showed reduced virulence during Galleria mellonella colonization as ascertained by the larval survival and expression of growth (10), reproduction (2) and infection (2) marker genes. These data suggest that phage infection both reduces colonization and negatively impacts bacterial pathogenicity, providing encouraging data to support the development of this phage for therapy to treat C. difficile infection.
Collapse
|
7
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Adamczyk-Popławska M, Tracz-Gaszewska Z, Lasota P, Kwiatek A, Piekarowicz A. Haemophilus influenzae HP1 Bacteriophage Encodes a Lytic Cassette with a Pinholin and a Signal-Arrest-Release Endolysin. Int J Mol Sci 2020; 21:E4013. [PMID: 32512736 PMCID: PMC7312051 DOI: 10.3390/ijms21114013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
HP1 is a temperate bacteriophage, belonging to the Myoviridae family and infecting Haemophilus influenzae Rd. By in silico analysis and molecular cloning, we characterized lys and hol gene products, present in the previously proposed lytic module of HP1 phage. The amino acid sequence of the lys gene product revealed the presence of signal-arrest-release (SAR) and muraminidase domains, characteristic for some endolysins. HP1 endolysin was able to induce lysis on its own when cloned and expressed in Escherichia coli, but the new phage release from infected H. influenzae cells was suppressed by inhibition of the secretion (sec) pathway. Protein encoded by hol gene is a transmembrane protein, with unusual C-out and N-in topology, when overexpressed/activated. Its overexpression in E. coli did not allow the formation of large pores (lack of leakage of β-galactosidase), but caused cell death (decrease in viable cell count) without lysis (turbidity remained constant). These data suggest that lys gene encodes a SAR-endolysin and that the hol gene product is a pinholin. HP1 SAR-endolysin is responsible for cell lysis and HP1 pinholin seems to regulate the cell lysis and the phage progeny release from H. influenzae cells, as new phage release from the natural host was inhibited by deletion of the hol gene.
Collapse
Affiliation(s)
- Monika Adamczyk-Popławska
- Warsaw University, Faculty of Biology, Institute of Microbiology, Department of Molecular Virology, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.T.-G.); (P.L.); (A.K.); (A.P.)
| | | | | | | | | |
Collapse
|
9
|
Shi X, Zhao F, Sun H, Yu X, Zhang C, Liu W, Pan Q, Ren H. Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus. Curr Microbiol 2020; 77:2465-2474. [PMID: 32367280 DOI: 10.1007/s00284-020-02011-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a memberof the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Xiaoyan Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Lu N, Sun Y, Wang Q, Qiu Y, Chen Z, Wen Y, Wang S, Song Y. Cloning and characterization of endolysin and holin from Streptomyces avermitilis bacteriophage phiSASD1 as potential novel antibiotic candidates. Int J Biol Macromol 2020; 147:980-989. [DOI: 10.1016/j.ijbiomac.2019.10.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022]
|
11
|
Soto-Perez P, Bisanz JE, Berry JD, Lam KN, Bondy-Denomy J, Turnbaugh PJ. CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting against Phages in a Human Virome Catalog. Cell Host Microbe 2019; 26:325-335.e5. [PMID: 31492655 DOI: 10.1016/j.chom.2019.08.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
Bacteriophages are abundant within the human gastrointestinal tract, yet their interactions with gut bacteria remain poorly understood, particularly with respect to CRISPR-Cas immunity. Here, we show that the type I-C CRISPR-Cas system in the prevalent gut Actinobacterium Eggerthella lenta is transcribed and sufficient for specific targeting of foreign and chromosomal DNA. Comparative analyses of E. lenta CRISPR-Cas systems across (meta)genomes revealed 2 distinct clades according to cas sequence similarity and spacer content. We assembled a human virome database (HuVirDB), encompassing 1,831 samples enriched for viral DNA, to identify protospacers. This revealed matches for a majority of spacers, a marked increase over other databases, and uncovered "hyper-targeted" phage sequences containing multiple protospacers targeted by several E. lenta strains. Finally, we determined the positional mismatch tolerance of observed spacer-protospacer pairs. This work emphasizes the utility of merging computational and experimental approaches for determining the function and targets of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Paola Soto-Perez
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jordan E Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel D Berry
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathy N Lam
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
12
|
Steier L, de Oliveira SD, de Figueiredo JAP. Bacteriophages in Dentistry-State of the Art and Perspectives. Dent J (Basel) 2019; 7:E6. [PMID: 30634460 PMCID: PMC6473837 DOI: 10.3390/dj7010006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages, viruses capable of killing bacteria, were discovered in 1915, but the interest in their study has been limited since the advent of antibiotics. Their use in dentistry is still very limited. The authors reviewed studies about bacteriophage structure, mode of action, uses in oral health, and possible future uses in dentistry associated with their possible action over biofilm, as well as the advantages and limitations of phage therapy.
Collapse
Affiliation(s)
- Liviu Steier
- Visiting Professor, Post-Graduate Program in Dentistry, Federal University of Rio Grande do Sul-UFRGS, Porto Alegre 90035-003, Brazil.
| | - Silvia Dias de Oliveira
- Department of Biodiversity and Ecology, Pontifical Catholic University of Rio Grande do Sul-PUCRS, Porto Alegre 90619-900, Brazil.
| | | |
Collapse
|
13
|
ent-Copalic acid antibacterial and anti-biofilm properties against Actinomyces naeslundii and Peptostreptococcus anaerobius. Anaerobe 2018; 52:43-49. [DOI: 10.1016/j.anaerobe.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 12/11/2022]
|
14
|
Cieplik F, Kara E, Muehler D, Enax J, Hiller KA, Maisch T, Buchalla W. Antimicrobial efficacy of alternative compounds for use in oral care toward biofilms from caries-associated bacteria in vitro. Microbiologyopen 2018; 8:e00695. [PMID: 30051653 PMCID: PMC6460264 DOI: 10.1002/mbo3.695] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
For caries‐active patients, antimicrobial measures may be useful in addition to mechanical biofilm removal. The aim of this study was to investigate the antimicrobial efficacy of alternative compounds for use in oral care from two main categories (i.e., preservatives and natural compounds) toward biofilms from caries‐associated bacteria as compared to oral care gold‐standards chlorhexidine digluconate (CHX), cetylpyridinium chloride (CPC), and zinc. Compounds were screened in initial Streptococcus mutans biofilms. Then, the most effective compounds were further investigated in mature S. mutans and polymicrobial biofilms comprising Actinomyces naeslundii, Actinomyces odontolyticus, and S. mutans. Here, distinct treatment periods and concentrations were evaluated. Biofilms were visualized by scanning electron microscopy and bacterial membrane damage was evaluated by means of flow cytometry and staining with SYBR Green and propidium iodide. Citrus extract was the only compound exhibiting similar antimicrobial efficacy in initial S. mutans biofilms (>5 log10) as compared to CHX and CPC, but its effect was clearly inferior in mature S. mutans and polymicrobial biofilms. Flow cytometric data suggested that the mechanism of antimicrobial action of citrus extract may be based on damage of bacterial membranes similar to CHX and CPC. From all alternative compounds investigated in this study, citrus extract exhibited the highest antimicrobial efficacy toward in vitro biofilms from caries‐associated bacteria, but still was less effective than oral care gold‐standard antiseptics CHX and CPC. Nevertheless, citrus extract may be a valuable antimicrobial compound for use in oral care for caries‐active patients.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Esra Kara
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Denise Muehler
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Joachim Enax
- Oral Care Research Department, Dr. Kurt Wolff GmbH & Co. KG, Bielefeld, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Cieplik F, Wimmer F, Muehler D, Thurnheer T, Belibasakis G, Hiller KA, Maisch T, Buchalla W. Phenalen-1-One-Mediated Antimicrobial Photodynamic Therapy and Chlorhexidine Applied to a Novel Caries Biofilm Model. Caries Res 2018; 52:447-453. [DOI: 10.1159/000487815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) may be useful as a supportive antimicrobial measure for caries-active subjects. In this study, the antimicrobial efficacy of aPDT with a phenalen-1-one photosensitizer was evaluated in a novel in vitro biofilm model comprising Actinomyces naeslundii, Actinomyces odontolyticus, and Streptococcus mutans and was compared to chlorhexidine. The proposed biofilm model allows high-throughput screening for antimicrobial efficacy while exhibiting a differentiated response to different antimicrobial approaches. While chlorhexidine 0.2% showed a reduction of ≈4 log10 for all species, aPDT led to a more pronounced reduction of S. mutans (2.8 log10) than of Actinomyces spp. (1.2 or 1.3 log10). A similar effect was also observed in monospecies biofilms. Therefore, aPDT may be more effective against S. mutans than against Actinomyces spp. when in biofilms, and this antimicrobial approach merits further investigations.
Collapse
|
16
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
17
|
Kamilla S, Jain V. Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J 2015; 283:173-90. [PMID: 26471254 DOI: 10.1111/febs.13565] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023]
Abstract
Holins are phage-encoded small transmembrane proteins that perforate the bacterial cytoplasmic membrane. In most cases, this process allows the phage-encoded peptidoglycan hydrolases to act on the cell wall, resulting in host cell lysis and phage release. We report a detailed functional characterization of Mycobacterium phage D29 gp11 coding for a putative holin that, upon expression, rapidly kills both Escherichia coli and Mycobacterium smegmatis. We dissected Gp11 by making several deletions and expressing them in E. coli. The shortening of Gp11 from its C-terminus results in diminished cytotoxicity and smaller holes. Evidently, the two transmembrane domains (TMDs) present at the N-terminus of Gp11 are incapable of integrating into the cytoplasmic membrane and do not show toxicity. Interestingly, the fusion of two TMDs and a small C-terminal region that bears the coiled-coil motif resulted in restoration of the cell killing ability of the protein. We further show that the second TMD is dispensable in protein toxicity because its deletion does not abolish Gp11-mediated cell death. We conclude that Gp11 C-terminal region is necessary but not sufficient for toxicity. These results shed light on a yet undiscovered role of Gp11 C-terminal region that will help clarify the mechanism of holin-mediated membrane perforation. Finally, we abolish the toxicity of Gp11 using a specific Gly to Asp substitution in the putative loop region of the protein; the mutant protein may help to clarify how holin functions in mycobacteriophage D29.
Collapse
Affiliation(s)
- Soumya Kamilla
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, India
| |
Collapse
|
18
|
Ugorcakova J, Medzova L, Solteszova B, Bukovska G. Characterization of a phiBP endolysin encoded by the Paenibacillus polymyxa CCM 7400 phage. FEMS Microbiol Lett 2015; 362:fnv098. [PMID: 26085488 DOI: 10.1093/femsle/fnv098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 01/22/2023] Open
Abstract
Endolysin (gp1.2) from the Paenibacillus polymyxa CCM 7400 temperate phage phiBP has a modular structure consisting of an N-terminal region with a catalytic glycosyl hydrolase 25 domain and a C-terminal cell wall-binding domain. The entire gene of this endolysin and fragments containing its catalytic and binding domains separately were cloned into expression vectors and the corresponding recombinant proteins were expressed in Escherichia coli and purified by affinity chromatography. The lytic activities of endolysin and its catalytic domain were tested on cell wall substrates from paenibacilli, bacilli, corynebacteria and E. coli. The presence of a cell wall-binding domain was found to be essential, as the phiBP endolysin was fully active only as a full-length protein. The binding ability of the cell wall-binding domain alone and in fusion with green fluorescent protein was demonstrated by specific binding assays to the cell surface of P. polymyxa CCM 7400 and to those of other Paenibacillus strains. Thus the ability of phiBP endolysin to hydrolyze the paenibacilli cell wall was confirmed.
Collapse
Affiliation(s)
- Jana Ugorcakova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravská cesta 21, 845 51 Bratislava, Slovakia
| | - Livia Medzova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravská cesta 21, 845 51 Bratislava, Slovakia
| | - Barbora Solteszova
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravská cesta 21, 845 51 Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravská cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|
19
|
Ghasemi SM, Bouzari M, Yoon BH, Chang HI. Comparative genomic analysis of Lactococcus garvieae phage WP-2, a new member of Picovirinae subfamily of Podoviridae. Gene 2014; 551:222-9. [DOI: 10.1016/j.gene.2014.08.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/10/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
20
|
Briers Y, Peeters LM, Volckaert G, Lavigne R. The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin. BACTERIOPHAGE 2014; 1:25-30. [PMID: 21687532 DOI: 10.4161/bact.1.1.14868] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/11/2011] [Accepted: 01/17/2011] [Indexed: 12/13/2022]
Abstract
The lysis cassette of Pseudomonas aeruginosa phage ϕKMV encodes a holin, endolysin, Rz and Rz1 in the canonical order. It has a tight organization with a high degree of overlapping genes and is highly conserved (between 96 and 100% identity at the protein level) among several other members of the "phiKMV-like viruses." The endolysin KMV45 exhibits characteristics as expected for a signal-arrest-release (SAR) endolysin, whereas the holin KMV44 is a typical pinholin. KMV45 is initially secreted as an inactive, membrane-anchored endolysin, which is subsequently released by membrane depolarization driven by the pinholin KMV44. The SAR domain of KMV45 is necessary for its full enzymatic activity, suggesting a refolding of the catalytic cleft upon release from the membrane. The physical proximity of the catalytic glutamic acid residue close to SAR domain suggests an alternative activation mechanism compared to the SAR endolysin of phages P1, ERA103 and 21. Expression of KMV44 leads to a quick cell lysis when paired with SAR endolysin KMV45, but not with the cytoplasmic phage λ endolysin, indicating the membrane depolarizing function of KMV44 rather than the large hole-making function characteristic of classical holins.
Collapse
Affiliation(s)
- Yves Briers
- Laboratory of Gene Technology; Division of Gene Technology; Department of Biosystems; Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Wittmann J, Gartemann KH, Eichenlaub R, Dreiseikelmann B. Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis. BACTERIOPHAGE 2014; 1:6-14. [PMID: 21687530 DOI: 10.4161/bact.1.1.13873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/30/2010] [Accepted: 10/04/2010] [Indexed: 11/19/2022]
Abstract
Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections.
Collapse
Affiliation(s)
- Johannes Wittmann
- Department of Microbiology/Genetechnology; Faculty of Biology; University of Bielefeld Universitaetsstr; Bielefeld, Germany
| | | | | | | |
Collapse
|
22
|
Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/382539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The application of bacteriophages for the elimination of pathogenic bacteria has received significantly increased attention world-wide in the past decade. This is borne out by the increasing prevalence of bacteriophage-specific conferences highlighting significant and diverse advances in the exploitation of bacteriophages. While bacteriophage therapy has been associated with the Former Soviet Union historically, since the 1990s, it has been widely and enthusiastically adopted as a research topic in Western countries. This has been justified by the increasing prevalence of antibiotic resistance in many prominent human pathogenic bacteria. Discussion of the therapeutic aspects of bacteriophages in this review will include the uses of whole phages as antibacterials and will also describe studies on the applications of purified phage-derived peptidoglycan hydrolases, which do not have the constraint of limited bacterial host-range often observed with whole phages.
Collapse
|
23
|
Draft Genome Sequences of Actinomyces timonensis Strain 7400942
T
and Its Prophage. J Bacteriol 2012; 194:6613-4. [DOI: 10.1128/jb.01730-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
A draft genome sequence of
Actinomyces timonensis
, an anaerobic bacterium isolated from a human clinical osteoarticular sample, is described here. CRISPR-associated proteins, insertion sequence, and toxin-antitoxin loci were found on the genome. A new virus or provirus, AT-1, was characterized.
Collapse
|
24
|
Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci U S A 2012; 109:18482-7. [PMID: 23091024 DOI: 10.1073/pnas.1216635109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1-37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5' DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes.
Collapse
|
25
|
Yang DC, Tan K, Joachimiak A, Bernhardt TG. A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 2012; 85:768-81. [PMID: 22715947 DOI: 10.1111/j.1365-2958.2012.08138.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Remodelling of the peptidoglycan (PG) exoskeleton is intimately tied to the growth and division of bacteria. Enzymes that hydrolyse PG are critical for these processes, but their activities must be tightly regulated to prevent the generation of lethal breaches in the PG matrix. Despite their importance, the mechanisms regulating PG hydrolase activity have remained elusive. Here we investigate the control of cell division hydrolases called amidases (AmiA, AmiB and AmiC) required for Escherichia coli cell division. Poorly regulated amiB mutants were isolated encoding lytic AmiB variants with elevated basal PG hydrolase activities in vitro. The structure of an AmiB orthologue was also solved, revealing that the active site of AmiB is occluded by a conserved alpha helix. Strikingly, most of the amino acid substitutions in the lytic AmiB variants mapped to this domain and are predicted to disrupt its interaction with the active site. Our results therefore support a model in which cell separation is stimulated by the reversible relief of amidase autoinhibition governed by conserved subcomplexes within the cytokinetic ring. Analogous conformational control mechanisms are likely to be part of a general strategy used to control PG hydrolases present within multienzyme PG-remodelling machines.
Collapse
Affiliation(s)
- Desirée C Yang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
26
|
Volozhantsev NV, Oakley BB, Morales CA, Verevkin VV, Bannov VA, Krasilnikova VM, Popova AV, Zhilenkov EL, Garrish JK, Schegg KM, Woolsey R, Quilici DR, Line JE, Hiett KL, Siragusa GR, Svetoch EA, Seal BS. Molecular characterization of podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae. PLoS One 2012; 7:e38283. [PMID: 22666499 PMCID: PMC3362512 DOI: 10.1371/journal.pone.0038283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/02/2012] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium responsible for human food-borne disease as well as non-food-borne human, animal and poultry diseases. Because bacteriophages or their gene products could be applied to control bacterial diseases in a species-specific manner, they are potential important alternatives to antibiotics. Consequently, poultry intestinal material, soil, sewage and poultry processing drainage water were screened for virulent bacteriophages that lysed C. perfringens. Two bacteriophages, designated ΦCPV4 and ΦZP2, were isolated in the Moscow Region of the Russian Federation while another closely related virus, named ΦCP7R, was isolated in the southeastern USA. The viruses were identified as members of the order Caudovirales in the family Podoviridae with short, non-contractile tails of the C1 morphotype. The genomes of the three bacteriophages were 17.972, 18.078 and 18.397 kbp respectively; encoding twenty-six to twenty-eight ORF's with inverted terminal repeats and an average GC content of 34.6%. Structural proteins identified by mass spectrometry in the purified ΦCP7R virion included a pre-neck/appendage with putative lyase activity, major head, tail, connector/upper collar, lower collar and a structural protein with putative lysozyme-peptidase activity. All three podoviral bacteriophage genomes encoded a predicted N-acetylmuramoyl-L-alanine amidase and a putative stage V sporulation protein. Each putative amidase contained a predicted bacterial SH3 domain at the C-terminal end of the protein, presumably involved with binding the C. perfringens cell wall. The predicted DNA polymerase type B protein sequences were closely related to other members of the Podoviridae including Bacillus phage Φ29. Whole-genome comparisons supported this relationship, but also indicated that the Russian and USA viruses may be unique members of the sub-family Picovirinae.
Collapse
Affiliation(s)
- Nikolay V. Volozhantsev
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
- * E-mail: (NV); (BS)
| | - Brian B. Oakley
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Cesar A. Morales
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Vladimir V. Verevkin
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Vasily A. Bannov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Valentina M. Krasilnikova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Anastasia V. Popova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Eugeni L. Zhilenkov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Johnna K. Garrish
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Kathleen M. Schegg
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - Rebekah Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - David R. Quilici
- Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States of America
| | - J. Eric Line
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | - Kelli L. Hiett
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
| | | | - Edward A. Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow region, Russian Federation
| | - Bruce S. Seal
- Poultry Microbiology Safety Research Unit, Richard B. Russell Agricultural Research Center, Agricultural Research Service, USDA, Athens, Georgia, United States of America
- * E-mail: (NV); (BS)
| |
Collapse
|
27
|
Abstract
M102AD is the new designation for a Streptococcus mutans phage described in 1993 as phage M102. This change was necessitated by the genome analysis of another S. mutans phage named M102, which revealed differences from the genome sequence reported here. Additional host range analyses confirmed that S. mutans phage M102AD infects only a few serotype c strains. Phage M102AD adsorbed very slowly to its host, and it cannot adsorb to serotype e and f strains of S. mutans. M102AD adsorption was blocked by c-specific antiserum. Phage M102AD also adsorbed equally well to heat-treated and trypsin-treated cells, suggesting carbohydrate receptors. Saliva and polysaccharide production did not inhibit plaque formation. The genome of this siphophage consisted of a linear, double-stranded, 30,664-bp DNA molecule, with a GC content of 39.6%. Analysis of the genome extremities indicated the presence of a 3'-overhang cos site that was 11 nucleotides long. Bioinformatic analyses identified 40 open reading frames, all in the same orientation. No lysogeny-related genes were found, indicating that phage M102AD is strictly virulent. No obvious virulence factor gene candidates were found. Twelve proteins were identified in the virion structure by mass spectrometry. Comparative genomic analysis revealed a close relationship between S. mutans phages M102AD and M102 as well as with Streptococcus thermophilus phages. This study also highlights the importance of conducting research with biological materials obtained from recognized microbial collections.
Collapse
|
28
|
Evidence for two putative holin-like peptides encoding genes of Bacillus pumilus strain WAPB4. Curr Microbiol 2012; 64:343-8. [PMID: 22231453 DOI: 10.1007/s00284-011-0074-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
An open reading frame encoding a 71-amino acid BhlA bacteriocin-related holin-like peptide was present upstream of 86-amino acid holin-like peptide, xhlB, encoding gene in the genome of Bacillus pumilus strain WAPB4. Analysis of BhlA using TMHMM server suggested one putative transmembrane domain at the N-terminal part and a number of highly charged amino acid residues at the C-terminal part. XhlB of B. pumilus strain WAPB4 composed of two putative transmembrane domains separated by a β-turn, and numerous charged residues in the C-terminus. The dual start motifs were found in both BhlA and XhlB. Structural analysis of their sequence revealed features characteristic for holin. To analyze the effect of BhlA on bacteria cell, its ORF was cloned and expressed in Escherichia coli BL21(DE3). Expression of holin-like peptide, BhlA, was found to be toxic to the host cell. The site of action of BhlA is on the cell membrane and caused bacterial death by cell membrane disruption as clearly demonstrated by transmission electron microscopy or TEM.
Collapse
|
29
|
Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2011; 1:9-16. [PMID: 21327123 DOI: 10.4161/bbug.1.1.9818] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/14/2009] [Indexed: 01/01/2023] Open
Abstract
With the increasing worldwide prevalence of antibiotic resistant bacteria, bacteriophage endolysins (lysins) represent a very promising novel alternative class of antibacterial in the fight against infectious disease. Lysins are phage-encoded peptidoglycan hydrolases which, when applied exogenously (as purified recombinant proteins) to Gram-positive bacteria, bring about rapid lysis and death of the bacterial cell. A number of studies have recently demonstrated the strong potential of these enzymes in human and veterinary medicine to control and treat pathogens on mucosal surfaces and in systemic infections. They also have potential in diagnostics and detection, bio-defence, elimination of food pathogens and control of phytopathogens. This review discusses the extensive research on recombinant bacteriophage lysins in the context of antibacterials, and looks forward to future development and potential.
Collapse
Affiliation(s)
- Mark Fenton
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | | | | | | | | |
Collapse
|
30
|
Pasotti L, Zucca S, Lupotto M, Cusella De Angelis MG, Magni P. Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release. J Biol Eng 2011; 5:8. [PMID: 21645422 PMCID: PMC3127821 DOI: 10.1186/1754-1611-5-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 06/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior. Results Here, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction. Conclusions The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population.
Collapse
Affiliation(s)
- Lorenzo Pasotti
- Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, via Ferrata 1, Pavia, Italy.
| | | | | | | | | |
Collapse
|
31
|
Rodas PI, Trombert AN, Mora GC. A holin remnant protein encoded by STY1365 is involved in envelope stability of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 2011; 321:58-66. [PMID: 21592194 DOI: 10.1111/j.1574-6968.2011.02310.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We characterized STY1365, a small ORF of Salmonella enterica serovar Typhi. This 174-bp ORF encodes a putative product of 57 amino acid residues with a premature stop codon. Nevertheless, bioinformatic analyses revealed that the predicted product of STY1365 has similarity to putative holin genes of Escherichia coli and bacteriophage ΦP27. STY1365 showed a high-level expression at the early log phase and a small corresponding protein product was detected mainly in the inner membrane fraction. Cloning of STY1365 in pSU19 mid-copy-vector produced retardation in S. Typhi growth, increased cell permeability to crystal violet and altered the inner membrane protein profile. Similar results were obtained when STY1365 was induced with isopropyl-β-d-thio-galactoside in pCC1(™) single-copy vector. Our results support the fact that S. Typhi STY1365 encodes a holin remnant protein that is involved in the stability of the bacterial envelope.
Collapse
Affiliation(s)
- Paula I Rodas
- Programa de Doctorado en Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
32
|
Abstract
The mycobacteriophage Ms6 is a temperate double-stranded DNA (dsDNA) bacteriophage which, in addition to the predicted endolysin (LysA)-holin (Gp4) lysis system, encodes three additional proteins within its lysis module: Gp1, LysB, and Gp5. Ms6 Gp4 was previously described as a class II holin-like protein. By analysis of the amino acid sequence of Gp4, an N-terminal signal-arrest-release (SAR) domain was identified, followed by a typical transmembrane domain (TMD), features which have previously been observed for pinholins. A second putative holin gene (gp5) encoding a protein with a predicted single TMD at the N-terminal region was identified at the end of the Ms6 lytic operon. Neither the putative class II holin nor the single TMD polypeptide could trigger lysis in pairwise combinations with the endolysin LysA in Escherichia coli. One-step growth curves and single-burst-size experiments of different Ms6 derivatives with deletions in different regions of the lysis operon demonstrated that the gene products of gp4 and gp5, although nonessential for phage viability, appear to play a role in controlling the timing of lysis: an Ms6 mutant with a deletion of gp4 (Ms6(Δgp4)) caused slightly accelerated lysis, whereas an Ms6(Δgp5) deletion mutant delayed lysis, which is consistent with holin function. Additionally, cross-linking experiments showed that Ms6 Gp4 and Gp5 oligomerize and that both proteins interact. Our results suggest that in Ms6 infection, the correct and programmed timing of lysis is achieved by the combined action of Gp4 and Gp5.
Collapse
|
33
|
The genome sequence and proteome of bacteriophage ΦCPV1 virulent for Clostridium perfringens. Virus Res 2011; 155:433-9. [DOI: 10.1016/j.virusres.2010.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022]
|
34
|
Schmitz JE, Schuch R, Fischetti VA. Identifying active phage lysins through functional viral metagenomics. Appl Environ Microbiol 2010; 76:7181-7. [PMID: 20851985 PMCID: PMC2976241 DOI: 10.1128/aem.00732-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 09/07/2010] [Indexed: 11/20/2022] Open
Abstract
Recent metagenomic sequencing studies of uncultured viral populations have provided novel insights into the ecology of environmental bacteriophage. At the same time, viral metagenomes could also represent a potential source of recombinant proteins with biotechnological value. In order to identify such proteins, a novel two-step screening technique was devised for cloning phage lytic enzymes from uncultured viral DNA. This plasmid-based approach first involves a primary screen in which transformed Escherichia coli clones that demonstrate colony lysis following exposure to inducing agent are identified. This effect, which can be due to the expression of membrane-permeabilizing phage holins, is discerned by the development a hemolytic effect in surrounding blood agar. In a secondary step, the clones identified in the primary screen are overlaid with autoclaved Gram-negative bacteria (specifically Pseudomonas aeruginosa) to assay directly for recombinant expression of lytic enzymes, which are often encoded proximally to holins in phage genomes. As proof-of-principle, the method was applied to a viral metagenomic library constructed from mixed animal feces, and 26 actively expressed lytic enzymes were cloned. These proteins include both Gram-positive-like and Gram-negative-like enzymes, as well as several atypical lysins whose predicted structures are less common among known phage. Overall, this study represents one of the first functional screens of a viral metagenomic population, and it provides a general approach for characterizing lysins from uncultured phage.
Collapse
Affiliation(s)
- Jonathan E Schmitz
- Rockefeller University, Laboratory of Bacterial Pathogenesis and Immunology, 1230 York Ave., Box 172, New York, NY 10065, USA.
| | | | | |
Collapse
|
35
|
The Lysis System of the Streptomyces aureofaciens Phage μ1/6. Curr Microbiol 2008; 57:631-7. [DOI: 10.1007/s00284-008-9255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
36
|
Ye T, Zhang X. Characterization of a lysin from deep-sea thermophilic bacteriophage GVE2. Appl Microbiol Biotechnol 2008; 78:635-41. [PMID: 18224315 DOI: 10.1007/s00253-008-1353-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/06/2008] [Indexed: 10/22/2022]
Abstract
Thermostable enzymes from thermophiles have attracted extensive studies. However, little is known about thermophilic lysin of bacteriophage obtained from deep-sea hydrothermal vent. In this study, a lysin from deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2) was characterized for the first time. It was found that the GVE2 lysin was highly homologous with N-acetylmuramoyl-L-alanine amidases. After expression in Escherichia coli, the recombinant GVE2 lysin was purified. The recombinant lysin was active over a range of temperature from 40 degrees C to 80 degrees C, with an optimum at 60 degrees C. Its optimal pH was 6.0, and it was stable over a wide range of pH from 4.0 to 10.0. The lysin was highly active when some enzyme inhibitors or detergents (phenylmethylsulfonyl fluoride, Tween 20, Triton X-100, and chaps) were used. However, it was strongly inhibited by sodium dodecyl sulfate and ethylene diamine tetraacetic acid. Its enzymatic activity could be slightly stimulated in the presence of Na(+) and Li(+). But the metal ions Mg(2+), Ba(2+), Zn(2+), Fe(3+), Ca(2+), and Mn(2+) at concentrations of 1 or 10 mM showed inhibitions to the lysin activity. Our study demonstrated the first characterization of lysin from deep-sea thermophilic bacteriophage.
Collapse
Affiliation(s)
- Ting Ye
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | |
Collapse
|
37
|
Farkašovská J, Klucar L, Vlček Č, Kokavec J, Godány A. Complete genome sequence and analysis of theStreptomyces aureofaciens phage μ1/6. Folia Microbiol (Praha) 2007; 52:347-58. [DOI: 10.1007/bf02932089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|