1
|
Liao Y, Huang S, Hareem M, Hussain MB, Alarfaj AA, Alharbi SA, Alfarraj S. Addressing cadmium stress in rice with potassium-enriched biochar and Bacillus altitudinis rhizobacteria. BMC PLANT BIOLOGY 2024; 24:1084. [PMID: 39548402 PMCID: PMC11568540 DOI: 10.1186/s12870-024-05793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Cadmium (Cd) is a potentially harmful metal with significant biological toxicity that adversely affects plant growth and physiological metabolism. Excessive Cd exposure in plants leads to stunted plant growth owing to its negative impact on physiological functions such as photosynthesis, nutrient uptake, and water balance. Potassium-enriched biochar (KBC) and Bacillus altitudinis rhizobacteria (RB) can effectively overcome this problem. Potassium-enriched biochar (KBC) significantly enhances plant growth by improving the soil structure, encouraging water retention, and enhancing microbial activity as a slow-release nutrient. Rhizobacteria promote plant growth by improving root ion transport and nutrient availability while promoting soil health and water conservation through RB production. This study examined the effects of combining RB + KBC as an amendment to rice, both with and without Cd stress. Four treatments (control, KBC, RB, and RB + KBC) were applied using a completely randomized design (CRD) in four replications. The results showed that the combination of RB + KBC increased rice plant height (38.40%), shoot length (53.90%), and root length (12.49%) above the control under Cd stress. Additionally, there were notable improvements in chlorophyll a (15.31%), chlorophyll b (25.01%), and total chlorophyll (19.37%) compared to the control under Cd stress, which also showed the potential of RB + KBC treatment. Moreover, increased N, P, and K concentrations in the roots and shoots confirmed that RB + KBC could improve rice plant growth under Cd stress. Consequently, these findings suggest that RB + KBC is an effective amendment to alleviate Cd stress in rice. Farmers should use RB + KBC to achieve better rice growth under cadmium stress.
Collapse
Affiliation(s)
- Yonghui Liao
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Sharif University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Maglione G, Zinno P, Tropea A, Mussagy CU, Dufossé L, Giuffrida D, Mondello A. Microbes' role in environmental pollution and remediation: a bioeconomy focus approach. AIMS Microbiol 2024; 10:723-755. [PMID: 39219757 PMCID: PMC11362270 DOI: 10.3934/microbiol.2024033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Bioremediation stands as a promising solution amid the escalating challenges posed by environmental pollution. Over the past 25 years, the influx of synthetic chemicals and hazardous contaminants into ecosystems has required innovative approaches for mitigation and restoration. The resilience of these compounds stems from their non-natural existence, distressing both human and environmental health. Microbes take center stage in this scenario, demonstrating their ability of biodegradation to catalyze environmental remediation. Currently, the scientific community supports a straight connection between biorefinery and bioremediation concepts to encourage circular bio/economy practices. This review aimed to give a pre-overview of the state of the art regarding the main microorganisms employed in bioremediation processes and the different bioremediation approaches applied. Moreover, focus has been given to the implementation of bioremediation as a novel approach to agro-industrial waste management, highlighting how it is possible to reduce environmental pollution while still obtaining value-added products with commercial value, meeting the goals of a circular bioeconomy. The main drawbacks and challenges regarding the feasibility of bioremediation were also reported.
Collapse
Affiliation(s)
- Giuseppe Maglione
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, former Veterinary School, University of Messina, Viale G. Palatucci snc 98168–Messina, Italy
| | - Cassamo U. Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile
| | - Laurent Dufossé
- CHEMBIOPRO Laboratoire de Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, F-97400 Saint-Denis, Ile de La Réunion, France
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Alice Mondello
- Department of Economics, University of Messina, Via dei Verdi, 75, 98122 Messina, Italy
| |
Collapse
|
3
|
Jha A, Barsola B, Pathania D, Sonu, Raizada P, Thakur P, Singh P, Rustagi S, Khosla A, Chaudhary V. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. ENVIRONMENTAL RESEARCH 2024; 252:118926. [PMID: 38657848 DOI: 10.1016/j.envres.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Hazardous heavy metal (HM) pollution constitutes a pervasive global challenge, posing substantial risks to ecosystems and human health. The exigency for expeditious detection, meticulous monitoring, and efficacious remediation of HM within ecosystems is indisputable. Soil contamination, stemming from a myriad of anthropogenic activities, emerges as a principal conduit for HM ingress into the food chain. Traditional soil remediation modalities for HM elimination, while effective are labor-intensive, susceptible to secondary contamination, and exhibit limited efficacy in regions characterized by low metal toxicity. In response to these exigencies, the eco-friendly paradigm of bioremediation has garnered prominence as a financially judicious and sustainable remedial strategy. This approach entails the utilization of hyperaccumulators, Genetically Modified Microorganisms (GMM), and advantageous microbes. The current review offers a comprehensive elucidation of cutting-edge phyto/microbe-based bioremediation techniques, with a specific emphasis on their amalgamation with nanotechnology. Accentuating their pivotal role in advancing sustainable agricultural practices, the review meticulously dissects the synergistic interplay between plants and microbes, underscoring their adeptness in HM remediation sans secondary contamination. Moreover, the review scrutinizes the challenges intrinsic to implementing bioremediation-nanotechnology interface techniques and propounds innovative resolutions. These discernments proffer auspicious trajectories for the future of agriculture. Through the environmentally conscientious marvels of phyto/microbe bioremediation, an optimistic outlook emerges for environmental preservation and the cultivation of a sustainable, salubrious planet via the conduit of cleaner agricultural production.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Bindiya Barsola
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Diksha Pathania
- Department of Biosciences and Technology, MMEC, Maharishi Markandeshwar University, Mullana (Ambala), Haryana,133203, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, PR China.
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; Centre for Research Impact & Outcome, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
4
|
Gupta R, Khan F, Alqahtani FM, Hashem M, Ahmad F. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity. Appl Biochem Biotechnol 2024; 196:2928-2956. [PMID: 37097400 DOI: 10.1007/s12010-023-04545-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Due to a variety of natural and anthropogenic processes, heavy metal toxicity of soil constitutes a substantial hazard to all living beings in the environment. The heavy metals alter the soil properties, which directly or indirectly influence the agriculture systems. Thus, plant growth-promoting rhizobacteria (PGPR)-assisted bioremediation is a promising, eco-friendly, and sustainable method for eradicating heavy metals. PGPR cleans up the heavy metal-contaminated environment using various approaches including efflux systems, siderophores and chelation, biotransformation, biosorption, bioaccumulation, precipitation, ACC deaminase activity, biodegradation, and biomineralization methods. These PGPRs have been found effective to bioremediate the heavy metal-contaminated soil through increased plant tolerance to metal stress, improved nutrient availability in soil, alteration of heavy metal pathways, and by producing some chemical compounds like siderophores and chelating ions. Many heavy metals are non-degradable; hence, another remediation approach with a broader scope of contamination removal is needed. This article also briefly emphasized the role of genetically modified PGPR strains which improve the soil's degradation rate of heavy metals. In this regard, genetic engineering, a molecular approach, could improve bioremediation efficiency and be helpful. Thus, the ability of PGPRs can aid in heavy metal bioremediation and promote a sustainable agricultural soil system.
Collapse
Affiliation(s)
- Rishil Gupta
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
5
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
6
|
Daurov D, Zhambakin K, Shamekova M. Phytoremediation as a way to clean technogenically polluted areas of Kazakhstan. BRAZ J BIOL 2023; 83:e271684. [PMID: 37222372 DOI: 10.1590/1519-6984.271684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2023] [Indexed: 05/25/2023] Open
Abstract
One of the most serious problems worldwide is heavy metal (HM) pollution. HMs can have a toxic effect on human health and thus cause serious diseases. To date, several methods have been used to clean environments contaminated by HMs, but most of them are expensive, and it is difficult to achieve the desired result. Phytoremediation is currently an effective and affordable processing solution used to clean and remove HMs from the environment. This review article discusses in detail the technology of phytoremediation and mechanisms of HM absorption. In addition, methods are described using genetic engineering of various plants to enhance the resistance and accumulation of HMs. Thus, phytoremediation technology can become an additional aid to traditional methods of purification.
Collapse
Affiliation(s)
- D Daurov
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
- Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - K Zhambakin
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| | - M Shamekova
- Institute of Plant Biology and Biotechnology, Department of Breeding and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
7
|
Mushtaq S, Shafiq M, Tariq MR, Sami A, Nawaz-ul-Rehman MS, Bhatti MHT, Haider MS, Sadiq S, Abbas MT, Hussain M, Shahid MA. Interaction between bacterial endophytes and host plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1092105. [PMID: 36743537 PMCID: PMC9890182 DOI: 10.3389/fpls.2022.1092105] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 05/14/2023]
Abstract
Endophytic bacteria are mainly present in the plant's root systems. Endophytic bacteria improve plant health and are sometimes necessary to fight against adverse conditions. There is an increasing trend for the use of bacterial endophytes as bio-fertilizers. However, new challenges are also arising regarding the management of these newly discovered bacterial endophytes. Plant growth-promoting bacterial endophytes exist in a wide host range as part of their microbiome, and are proven to exhibit positive effects on plant growth. Endophytic bacterial communities within plant hosts are dynamic and affected by abiotic/biotic factors such as soil conditions, geographical distribution, climate, plant species, and plant-microbe interaction at a large scale. Therefore, there is a need to evaluate the mechanism of bacterial endophytes' interaction with plants under field conditions before their application. Bacterial endophytes have both beneficial and harmful impacts on plants but the exact mechanism of interaction is poorly understood. A basic approach to exploit the potential genetic elements involved in an endophytic lifestyle is to compare the genomes of rhizospheric plant growth-promoting bacteria with endophytic bacteria. In this mini-review, we will be focused to characterize the genetic diversity and dynamics of endophyte interaction in different host plants.
Collapse
Affiliation(s)
- Sehrish Mushtaq
- Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rizwan Tariq
- Department of Food Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad Pakistan, Faisalabad, Pakistan
| | | | | | - Saleha Sadiq
- Institute of Biochemistry, Biotechnology, and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Taqqi Abbas
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL, United States
| |
Collapse
|
8
|
Rafeeq H, Afsheen N, Rafique S, Arshad A, Intisar M, Hussain A, Bilal M, Iqbal HMN. Genetically engineered microorganisms for environmental remediation. CHEMOSPHERE 2023; 310:136751. [PMID: 36209847 DOI: 10.1016/j.chemosphere.2022.136751] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In the recent era, the increasing persistence of hazardous contaminants is badly affecting the globe in many ways. Due to high environmental contamination, almost every second species on earth facing the worst issue in their survival. Advances in newer remediation approaches may help enhance bioremediation's quality, while conventional procedures have failed to remove hazardous compounds from the environment. Chemical and physical waste cleanup approaches have been used in current circumstances; however, these methods are costly and harmful to the environment. Thus, there has been a rise in the use of bioremediation due to an increase in environmental contamination, which led to the development of genetically engineered microbes (GEMs). It is safer and more cost-effective to use engineered microorganisms rather than alternative methods. GEMs are created by introducing a stronger protein into bacteria through biotechnology or genetic engineering to enhance the desired trait. Biodegradation of oil spills, halobenzoates naphthalenes, toluenes, trichloroethylene, octanes, xylenes etc. has been accomplished using GEMs such bacteria, fungus, and algae. Biotechnologically induced microorganisms are more powerful than naturally occurring ones and may degrade contaminants faster because they can quickly adapt to new pollutants they encounter or co-metabolize. Genetic engineering is a worthy process that will benefit the environment and ultimately the health of our people.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Sadia Rafique
- Departement of Pharmacy, Riphah International University, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Arooj Arshad
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Maham Intisar
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Asim Hussain
- Department of Biochemistry, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Abeed AHA, Mahdy RE, Alshehri D, Hammami I, Eissa MA, Abdel Latef AAH, Mahmoud GAE. Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004173. [PMID: 36340332 PMCID: PMC9631322 DOI: 10.3389/fpls.2022.1004173] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using Trichoderma harzianum and plant growth-promoting (PGP) bacteria (Azotobacter chroococcum and Bacillus subtilis) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization in vitro. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated. Results Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with T. harzianum and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with control plants. The available soil and plant Cd concentrations were decreased by 11.5% and 47.5%, and 3.8% and 45.0% with T. harzianum and PGP bacterial inoculation, respectively, compared with non-inoculated Cd-stressed plants. Whereas, non-significant alternation in antioxidant capacity of sunflower mediated by T. harzianum action even with elevated soil Cd concentrations indicates stable oxidative status. The uptake of nutrients, viz., K, Ca, Mg, Fe, nitrate, and phosphorus, was interestingly increased (34.0, 4.4, 3.3, 9.2, 30.0, and 1.0 mg/g dry weight, respectively) owing to the synergic inoculation in the presence of 150 mg of Cd/kg. Conclusions However, strategies of microbe-induced resilience are largely exclusive and divergent. Biofertilizing potential of T. harzianum showed that, owing to its Cd biosorption capability, a resilience strategy was induced via reducing Cd bioavailability to be in the range that turned its effect from toxicity to essentiality posing well-known low-dose stimulation phenomena (hormetic effect), whereas using Azotobacter chroococcum and Bacillus subtilis, owing to their PGP traits, manifested a resilience strategy by neutralizing the potential side effects of Cd toxicity. The synergistic use of fungi and bacteria proved the highest efficiency in imparting sunflower adaptability under Cd stress.
Collapse
Affiliation(s)
- Amany H. A. Abeed
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Rasha E. Mahdy
- Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Inès Hammami
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mamdouh A. Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | | | | |
Collapse
|
10
|
Dundas CM, Dinneny JR. Genetic Circuit Design in Rhizobacteria. BIODESIGN RESEARCH 2022; 2022:9858049. [PMID: 37850138 PMCID: PMC10521742 DOI: 10.34133/2022/9858049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/31/2022] [Indexed: 10/19/2023] Open
Abstract
Genetically engineered plants hold enormous promise for tackling global food security and agricultural sustainability challenges. However, construction of plant-based genetic circuitry is constrained by a lack of well-characterized genetic parts and circuit design rules. In contrast, advances in bacterial synthetic biology have yielded a wealth of sensors, actuators, and other tools that can be used to build bacterial circuitry. As root-colonizing bacteria (rhizobacteria) exert substantial influence over plant health and growth, genetic circuit design in these microorganisms can be used to indirectly engineer plants and accelerate the design-build-test-learn cycle. Here, we outline genetic parts and best practices for designing rhizobacterial circuits, with an emphasis on sensors, actuators, and chassis species that can be used to monitor/control rhizosphere and plant processes.
Collapse
Affiliation(s)
| | - José R. Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Wang Q, Zhou YM, Xing CY, Li WC, Shen Y, Yan P, Guo JS, Fang F, Chen YP. Encapsulins from Ca. Brocadia fulgida: An effective tool to enhance the tolerance of engineered bacteria (pET-28a-cEnc) to Zn 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128954. [PMID: 35462189 DOI: 10.1016/j.jhazmat.2022.128954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Zn2+ is largely discharged from many industries and poses a severe threat to the environment, making its remediation crucial. Encapsulins, proteinaceous nano-compartments, may protect cells against environmental stresses by sequestering toxic substances. To determine whether hemerythrin-containing encapsulins (cEnc) from anammox bacteria Ca. Brocadia fulgida can help cells deal with toxic substances such as Zn2+, we transferred cEnc into E.coli by molecular biology technologies for massive expression and then cultured them in media with increasing Zn2+ levels. The engineered bacteria (with cEnc) grew better and entered the apoptosis phase later, while wild bacteria showed poor survival. Furthermore, tandem mass tag-based quantitative proteomic analysis was used to reveal the underlying regulatory mechanism by which the genetically-engineered bacteria (with cEnc) adapted to Zn2+ stress. When Zn2+ was sequestered in cEnc as a transition, the engineered bacteria presented a complex network of regulatory systems against Zn2+-induced cytotoxicity, including functions related to ribosomes, sulfur metabolism, flagellar assembly, DNA repair, protein synthesis, and Zn2+ efflux. Our findings offer an effective and promising stress control strategy to enhance the Zn2+ tolerance of bacteria for Zn2+ remediation and provide a new application for encapsulins.
Collapse
Affiliation(s)
- Que Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yue-Ming Zhou
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chong-Yang Xing
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligence Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wen-Chao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Base of International Science and Technology Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
12
|
Han P, Teo WZ, Yew WS. Biologically engineered microbes for bioremediation of electronic waste: Wayposts, challenges and future directions. ENGINEERING BIOLOGY 2022; 6:23-34. [PMID: 36968558 PMCID: PMC9995160 DOI: 10.1049/enb2.12020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
In the face of a burgeoning stream of e-waste globally, e-waste recycling becomes increasingly imperative, not only to mitigate the environmental and health risks it poses but also as an urban mining strategy for resource recovery of precious metals, rare Earth elements, and even plastics. As part of the continual efforts to develop greener alternatives to conventional approaches of e-waste recycling, biologically assisted degradation of e-waste offers a promising recourse by capitalising on certain microorganisms' innate ability to interact with metals or degrade plastics. By harnessing emerging genetic tools in synthetic biology, the evolution of novel or enhanced capabilities needed to advance bioremediation and resource recovery could be potentially accelerated by improving enzyme catalytic abilities, modifying substrate specificities, and increasing toxicity tolerance. Yet, the management of e-waste presents formidable challenges due to its massive volume, high component complexity, and associated toxicity. Several limitations will need to be addressed before nascent laboratory-scale achievements in bioremediation can be translated to viable industrial applications. Nonetheless, vested groups, involving both start-up and established companies, have taken visionary steps towards deploying microbes for commercial implementation in e-waste recycling.
Collapse
Affiliation(s)
- Ping Han
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wei Zhe Teo
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological InnovationNational University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research ProgrammeYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
13
|
Mathivanan K, Chandirika JU, Vinothkanna A, Yin H, Liu X, Meng D. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment - A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112863. [PMID: 34619478 DOI: 10.1016/j.ecoenv.2021.112863] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal contamination poses a serious environmental hazard, globally necessitating intricate attention. Heavy metals can cause deleterious health hazards to humans and other living organisms even at low concentrations. Environmental biotechnologists and eco-toxicologists have rigorously assessed a plethora of bioremediation mechanisms that can hamper the toxic outcomes and the molecular basis for rejuvenating the hazardous impacts, optimistically. Environmental impact assessment and restoration of native and positive scenario has compelled biological management in ensuring safety replenishment in polluted realms often hindered by heavy metal toxicity. Copious treatment modalities have been corroborated to mitigate the detrimental effects to remove heavy metals from polluted sites. In particular, Biological-based treatment methods are of great attention in the metal removal sector due to their high efficiency at low metal concentrations, ecofriendly nature, and cost-effectiveness. Due to rapid multiplication and growth rates, bacteria having metal resistance are advocated for metal removal applications. Evolutionary implications of coping with heavy metals toxicity have redressed bacterial adaptive/resistance strategies related to physiological and cross-protective mechanisms. Ample reviews have been reported for the bacterial adaptive strategies to cope with heavy metal toxicity. Nevertheless, a holistic review summarizing the redox reactions that address the cross-reactivity mechanisms between metallothionein synthesis, extracellular polysaccharides production, siderophore production, and efflux systems of metal resistant bacteria are scarce. Molecular dissection of how bacteria adapt themselves to metal toxicity can augment novel and innovative technologies for efficient detoxification, removal, and combat the restorative difficulties for stress alleviations. The present comprehensive compilation addresses the identification of newer methodologies, summarizing the prevailing strategies of adaptive/resistance mechanisms in bacterial bioremediation. Further pitfalls and respective future directions are enumerated in invigorating effective bioremediation technologies including overexpression studies and delivery systems. The analysis will aid in abridging the gap for limitations in heavy metal removal strategies and necessary cross-talk in elucidating the complex cascade of events in better bioremediation protocols.
Collapse
Affiliation(s)
- Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Jayaraman Uthaya Chandirika
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu 627412, India
| | - Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, PR China; The Hunan International Scientific and Technological Cooperation Base of Environmental Microbiome and Application, Central South University, Changsha 410083, PR China.
| |
Collapse
|
14
|
Haskett TL, Tkacz A, Poole PS. Engineering rhizobacteria for sustainable agriculture. THE ISME JOURNAL 2021; 15:949-964. [PMID: 33230265 PMCID: PMC8114929 DOI: 10.1038/s41396-020-00835-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Exploitation of plant growth promoting (PGP) rhizobacteria (PGPR) as crop inoculants could propel sustainable intensification of agriculture to feed our rapidly growing population. However, field performance of PGPR is typically inconsistent due to suboptimal rhizosphere colonisation and persistence in foreign soils, promiscuous host-specificity, and in some cases, the existence of undesirable genetic regulation that has evolved to repress PGP traits. While the genetics underlying these problems remain largely unresolved, molecular mechanisms of PGP have been elucidated in rigorous detail. Engineering and subsequent transfer of PGP traits into selected efficacious rhizobacterial isolates or entire bacterial rhizosphere communities now offers a powerful strategy to generate improved PGPR that are tailored for agricultural use. Through harnessing of synthetic plant-to-bacteria signalling, attempts are currently underway to establish exclusive coupling of plant-bacteria interactions in the field, which will be crucial to optimise efficacy and establish biocontainment of engineered PGPR. This review explores the many ecological and biotechnical facets of this research.
Collapse
Affiliation(s)
- Timothy L. Haskett
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Andrzej Tkacz
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| | - Philip S. Poole
- grid.4991.50000 0004 1936 8948Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
| |
Collapse
|
15
|
Pehlivan N, Gedik K, Eltem R, Terzi E. Dynamic interactions of Trichoderma harzianum TS 143 from an old mining site in Turkey for potent metal(oid)s phytoextraction and bioenergy crop farming. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123609. [PMID: 32798794 DOI: 10.1016/j.jhazmat.2020.123609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Despite high pollution risk, the termination of mining practices is not in question in the current era in line with the growing needs of beings. Instead, the rehabilitation by phytoremediation restores the economic and aesthetic values of the damaged locale. Here, potentially toxic elements (PTEs) tolerant 29 Trichoderma isolates from mining sites located foothills of Turkey`s NE Black Sea coast were isolated. The highest tolerant strain (As 1400 mg L-1, Cd 1200 mg L-1, Cu 2000 mg L-1, Pb 2100 mg L-1, Zn 3000 mg L-1) was characterized with translation elongation factor1 alpha (tef-1α) barcode and deposited in the GenBank. The PTEs removal strength of novel Trichoderma harzianum TS143 was highest for Pb (58%) and the lowest for As (8.5%) in the order of Pb > Cd > Cu > Zn > As. While bioleaching capacity was highest in Cd with 30%, the lowest was for As (8%). TS143 was found remarkably effective on all the physicochemical parameters in the shoot and root tissues of maize. The increase in the carbohydrate content (33.50%) proves the potential usage of the contaminated maize plants in bioenergy production. Core sustainable agents with their mesh type robust hyphal structure enfolding PTEs such as TS143 contribute to the phytoremediation technology along with potential plant biomass management for the biodiesel industry.
Collapse
Affiliation(s)
- Necla Pehlivan
- Recep Tayyip Erdogan University, Biology Department, Rize, Turkey.
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, Rize, Turkey.
| | - Rengin Eltem
- Ege University, Department of Bioengineering, Izmir, Turkey.
| | - Ertugrul Terzi
- Kastamonu University, Faculty of Fisheries, Kastamonu, Turkey.
| |
Collapse
|
16
|
Mahmoud GAE. Microbial Scavenging of Heavy Metals Using Bioremediation Strategies. RHIZOBIONT IN BIOREMEDIATION OF HAZARDOUS WASTE 2021:265-289. [DOI: 10.1007/978-981-16-0602-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Liaquat F, Munis MFH, Arif S, Haroon U, Shengquan C, Qunlu L. Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: a potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech 2020; 10:519. [PMID: 33194523 DOI: 10.1007/s13205-020-02524-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
Microbial and plant assisted bioremediation is an emerging way for the remediation of soils polluted with heavy metals. To screen the cadmium tolerant bacteria, soil samples were collected from Nanjing mining area, China. The average cadmium content of the mine soil reached 45.71 mg/kg, which was indicating serious pollution and potential ecological risk. From the mine soil, six cadmium tolerant plant growth-promoting rhizobacteria (PGPR) were isolated. The isolated bacterial strain "SY-2" showed maximum cadmium tolerance and it was selected for further experimentation. This strain was identified as Stenotrophomonas maltophilia by 16S rRNA gene sequencing (GenBank accession number MG597057). SY-2 was found to tolerate maximum cadmium at 1.0 mM concentration. This strain also exhibited good adsorption capacity (up to 35.7%) of heavy metal at 0.5 mM concentration. The results of this study exhibited organic phosphorus solubilization (37.08 mg/L) and IAA biosynthesis (15.11 mg/L) ability of isolated S. maltophilia. Scanning electron microscopy (SEM) revealed cell shrinkage and the cell wall of S. maltophilia was very rough. Moreover, the energy dispersive X-ray (EDX) analysis endorsed the adsorption of Cd ions on the surface of biomass. FT-IR study described the presence of functional groups and the nature of chemical bonds, before and after cadmium stress. At 0.25 mM cadmium concentration, S. maltophilia treated seeds of Capsicum annuum L. developed 1.46 times longer roots than untreated seeds. The results of this study helped us to conclude that SY-2 strain of S. maltophilia possesses significant metal tolerance and bioremediation potential against cadmium. In the future, this strain can be used as a microbial remediation agent to detoxify heavy metals in contaminated soils. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s13205-020-02524-7s) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Song L, Pan Z, Dai Y, Chen L, Zhang L, Liao Q, Yu X, Guo H, Zhou G. Characterization and comparison of the bacterial communities of rhizosphere and bulk soils from cadmium-polluted wheat fields. PeerJ 2020; 8:e10302. [PMID: 33194446 PMCID: PMC7648459 DOI: 10.7717/peerj.10302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cadmium pollution is becoming a serious problem due to its nondegradability and substantial negative influence on the normal growth of crops, thereby harming human health through the food chain. Rhizospheric bacteria play important roles in crop tolerance. However, there is little experimental evidence which demonstrates how various cadmium concentrations affect the bacterial community in wheat fields including rhizosphere microorganisms and nonrhizosphere (bulk) microorganisms. In this study, 16S rRNA amplicon sequencing technology was used to investigate bacterial communities in rhizosphere and bulk soils under different levels of pollution in terms of cadmium concentration. Both the richness and diversity of the rhizosphere microorganism community were higher under nonpolluted soil and very mild and mild cadmium-contaminated soils than compared with bulk soil, with a shift in community profile observed under severe cadmium pollution. Moreover, cadmium at various concentrations had greater influence on bacterial composition than for the nonpolluted site. In addition, redundancy analysis (RDA) and Spearman’s analysis elucidated the impact of exchangeable Cd and total Cd on bacterial community abundance and composition. This study suggests that cadmium imposes a distinct effect on bacterial community, both in bulk and rhizosphere soils of wheat fields. This study increases our understanding of how bacterial communities in wheat fields shaped under different concentrations of cadmium.
Collapse
Affiliation(s)
- Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenzhi Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yi Dai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lin Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Qilin Liao
- Geological Survey of Jiangsu Province, Nanjing, Jiangsu, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing Univerity, Nanjing, Jiangsu, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
19
|
Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. PLANTS 2020; 9:plants9101386. [PMID: 33080896 PMCID: PMC7603194 DOI: 10.3390/plants9101386] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Cadmium (Cd) is one of the heavy metals that negatively affects the growth of plants. High solubilization in water leads Cd to enter into plants quite easily, thus decreasing seed germination, photosynthesis, and transpiration. It also shows an antagonistic effect with many of the plants’ nutrients like Mn, Ca, K, Mg and Fe. Nowadays, inoculation of plants with ACC deaminase (ACCD) rhizobacteria to mitigate Cd’s adverse effects has drawn the attention of environmental microbiologists. The rhizobacteria secrete organic compounds that can immobilize Cd in soil. Therefore, this study was accomplished to investigate the effect of ACCD plant growth promoting rhizobacteria (PGPR) on the bitter gourd under Cd stress. There were six treatments consisting of two ACCD PGPR (Stenotrophomonas maltophilia and Agrobacterium fabrum) strains and inorganic fertilizers at two levels of Cd, i.e., 2 (Cd2) and 5 mg kg−1 soil (Cd5). The results showed A. fabrum with the recommended NPK fertilizer (RNPKF) significantly increased the vine length (48 and 55%), fresh weight (24 and 22%), and contents of chlorophyll a (79 and 50%), chlorophyll b (30 and 33%) and total chlorophyll (61 and 36%), over control at the two Cd levels i.e., Cd2 and Cd5, respectively. In conclusion, the recommended NPK fertilizer + A. fabrum combination is a very effective treatment with which to immobilize Cd in soil for the improvement of bitter gourd growth.
Collapse
|
20
|
Nurzhanova A, Mukasheva T, Berzhanova R, Kalugin S, Omirbekova A, Mikolasch A. Optimization of microbial assisted phytoremediation of soils contaminated with pesticides. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:482-491. [PMID: 33000955 DOI: 10.1080/15226514.2020.1825330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
580 microbial strains were isolated from the rhizosphere of the plants Cucurbita pepo L. and Xanthium strumarium grown on soil contaminated with dichlorodiphenyltrichloroethane (DDT) and its metabolites. During the cultivation, two bacterial strains were selected because of their ability to grow on media containing 0.5-5.0 mg L-1 of dichlorodiphenyldichloroethylene (DDE) as the sole carbon source. They were identified as Bacillus vallismortis and Bacillus aryabhattai. Both of these species were shown to have a high capacity for the utilization of DDE - more than 90% of which was consumed after 21 days of cultivation. Laboratory experiments were carried out then to assess the possibility of using these strains for the decontamination of organochlorine pesticides (OCPs) contaminated soils. Inoculation of C. pepo and X. strumarium with our isolates B. vallismortis and B. aryabhattai resulted in a reduction of the pollutant stress to the plants as shown by an increase both in aboveground and in root biomass. The microorganisms enhanced the uptake and phytostabilization potential of C. pepo and X. strumarium and can be applied for the treatment of DDE contaminated soils.
Collapse
Affiliation(s)
- Asil Nurzhanova
- Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Togzhan Mukasheva
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Ramza Berzhanova
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Sergey Kalugin
- Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Annett Mikolasch
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Efe D. Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance. Curr Microbiol 2020; 77:3861-3868. [PMID: 32960302 DOI: 10.1007/s00284-020-02208-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
Abstract
Plant growth-promoting (PGP) bacteria commonly have many strategies to cope with heavy metal toxicity. Heavy metal-resistant PGP bacteria can be used to improve the growth of plants in heavy metal contaminated soils. In this study, the soil samples were collected from the lead-zinc mineral deposits in Gümüşhane Province, Turkey. Nine bacterial isolates were obtained on the nutrient agar medium supplemented with 100 mg/mL zinc and lead. All of the isolates were screened in terms of plant growth-promoting characteristics including production of indole-3-acetic acid and siderophore, nitrogen fixation and phosphate solubilisation. Nine bacteria were identified as Bacillus cereus, Bacillus atrophaeus, Bacillus pumilus, Bacillus amyloliquefaciens, Bacillus tropicus, Bacillus subtilis, Bacillus halotolerans, Bacillus vallismortis, and Enterococcus mundtii by classical and 16S rDNA-PCR assays. In addition, these isolates were evaluated for their response to three heavy metals (lead, zinc, copper) dominant in the soil samples and minimal inhibitory concentration (MIC) of the heavy metals was determined with plate dilution method. Consequently, the bacterial isolates in this study possess plant growth-promoting traits and can ameliorate heavy metal contaminated soil. E. mundtii was reported to be found in heavy metal contaminated soil for the first time. This study is the first report about PGP characteristics (IAA production and phosphate solubilisation) of B. vallismortis.
Collapse
Affiliation(s)
- Derya Efe
- Department of Medicinal and Aromatic Plants, Espiye Vocational School, Giresun University, 28000, Giresun, Turkey.
| |
Collapse
|
22
|
Ramakrishna W, Rathore P, Kumari R, Yadav R. Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:135062. [PMID: 32000336 DOI: 10.1016/j.scitotenv.2019.135062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 05/14/2023]
Abstract
Marginal land is defined as land with poor soil characteristics and low crop productivity with no potential for profit. Poor soil quality due to the presence of xenobiotics or climate change is of great concern. Sustainable food production with increasing population is a challenge which becomes more difficult due to poor soil quality. Marginal soil can be made productive with the use of Plant Growth Promoting Bacteria (PGPB). This review outlines how PGPB can be used to improve marginal soil quality and its implications on agriculture, rhizoremediation, abiotic stress (drought, salinity and heavy metals) tolerance, carbon sequestration and production of biofuels. The feasibility of the idea is supported by several studies which showed maximal increase in the growth of plants inoculated with PGPB than to uninoculated plants grown in marginal soil when compared to the growth of plants inoculated with PGPB in healthy soil. The combination of PGPB and plants grown in marginal soil will serve as a green technology leading to the next green revolution, reduction in soil pollution and fossil fuel use, neutralizing abiotic stress and climate change effects.
Collapse
Affiliation(s)
- Wusirika Ramakrishna
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India.
| | - Parikshita Rathore
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ritu Kumari
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Radheshyam Yadav
- Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
23
|
Konkolewska A, Piechalak A, Ciszewska L, Antos-Krzemińska N, Skrzypczak T, Hanć A, Sitko K, Małkowski E, Barałkiewicz D, Małecka A. Combined use of companion planting and PGPR for the assisted phytoextraction of trace metals (Zn, Pb, Cd). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13809-13825. [PMID: 32034599 PMCID: PMC7162837 DOI: 10.1007/s11356-020-07885-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/27/2020] [Indexed: 05/20/2023]
Abstract
Biomass production and metal accumulation in plant tissue (bioconcentration) are two critical factors limiting the phytoextraction rate. Metal translocation to aboveground organs should be accounted for as the third most important factor, as harvesting of the plant roots is usually economically disadvantageous. These three parameters could be potentially increased with the use of companion planting, a well-known agricultural technique, and inoculation with plant growth-promoting bacteria (PGPB). The aim of the study was to determine whether intercropping and inoculation with endophytic PGPB (Burkholderia phytofirmans PsJNT) can increase the efficiency of phytoextraction of Zn, Pb, and Cd. The study was conducted on Brassica juncea (L.) Czern. "Małopolska" grown in a monoculture or co-planted with Zea mays L. "Codimon" and Medicago sativa L. "Sanditi." Results show that companion planting and inoculation with rhizobacteria can increase the efficiency of metal phytoextraction, mainly by increasing the yield of dry biomass and the survival rate of plants grown on contaminated soil. We have shown that the simultaneous planting of B. juncea with M. sativa and inoculation with PGPB were the most efficient variants of assisted phytoextraction reaching a recovery of 95% Zn, 90% Cd, and on average about 160% Pb compared with control B. juncea plants grown in monoculture.
Collapse
Affiliation(s)
- Agnieszka Konkolewska
- Department of Biochemistry, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland.
| | - Aneta Piechalak
- Laboratory of Genome Biology, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland
| | - Liliana Ciszewska
- Laboratory of RNA Biochemistry, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland
| | - Nina Antos-Krzemińska
- Department of Bioenergetics, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland
| | - Tomasz Skrzypczak
- Institute of Biology and Human Evolutionary, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Faculty Chemistry, Adam Mickiewicz University in Poznań, Uniwersytet Poznanski 8 Street, 61-614, Poznan, Poland
| | - Krzysztof Sitko
- Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Eugeniusz Małkowski
- Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - Danuta Barałkiewicz
- Department of Trace Analysis, Faculty Chemistry, Adam Mickiewicz University in Poznań, Uniwersytet Poznanski 8 Street, 61-614, Poznan, Poland
| | - Arleta Małecka
- Laboratory of Biotechnology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Uniwersytet Poznanski 6 Street, 61-614, Poznan, Poland.
| |
Collapse
|
24
|
Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 249:71-131. [PMID: 30806802 DOI: 10.1007/398_2019_24] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Environmental contamination due to heavy metals (HMs) is of serious ecotoxicological concern worldwide because of their increasing use at industries. Due to non-biodegradable and persistent nature, HMs cause serious soil/water pollution and severe health hazards in living beings upon exposure. HMs can be genotoxic, carcinogenic, mutagenic, and teratogenic in nature even at low concentration. They may also act as endocrine disruptors and induce developmental as well as neurological disorders, and thus, their removal from our natural environment is crucial for the rehabilitation of contaminated sites. To cope with HM pollution, phytoremediation has emerged as a low-cost and eco-sustainable solution to conventional physicochemical cleanup methods that require high capital investment and labor alter soil properties and disturb soil microflora. Phytoremediation is a green technology wherein plants and associated microbes are used to remediate HM-contaminated sites to safeguard the environment and protect public health. Hence, in view of the above, the present paper aims to examine the feasibility of phytoremediation as a sustainable remediation technology for the management of metal-contaminated sites. Therefore, this paper provides an in-depth review on both the conventional and novel phytoremediation approaches; evaluates their efficacy to remove toxic metals from our natural environment; explores current scientific progresses, field experiences, and sustainability issues; and revises world over trends in phytoremediation research for its wider recognition and public acceptance as a sustainable remediation technology for the management of contaminated sites in the twenty-first century.
Collapse
Affiliation(s)
- Gaurav Saxena
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, London, UK
| | - Sikandar I Mulla
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India.
| |
Collapse
|
25
|
Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
26
|
Mustafa S, Kabir S, Shabbir U, Batool R. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis 2019. [DOI: 10.1007/s13199-019-00602-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Kim H. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma sp. isolated from decayed wood. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:279-284. [PMID: 29407561 DOI: 10.1016/j.ecoenv.2018.01.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/27/2023]
Abstract
In the present study, Helianthus annuus grown in arsenic- (As) and lead- (Pb) contaminated soil were treated with plant-growth promoting fungi Trichoderma sp. MG isolated from decayed wood and assessed for their phytoremediation efficiency. The isolate MG exhibited a high tolerance to As (650mg/L) and Pb (500mg/L), and could remove > 70% of metals in aqueous solution with an initial concentration of 100mg/L each. In addition, the isolate MG was screened for plant-growth-promoting factors such as siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA) synthesis, and phosphate solubilisation. Phytoremediation studies indicated that treatment of H. annuus with the isolate MG had the maximum metal-accumulation in shoots (As; 67%, Pb; 59%). Furthermore, a significant increase in the soil extracellular enzyme-activities was observed in myco-phytoremediated soils. The activities of phosphatase (35 U/g dry soil), dehydrogenase (41mg TPF/g soil), cellulase (37.2mg glucose/g/2h), urease (55.4mgN/g soil/2h), amylase (49.3mg glucose/g/2h) and invertase (45.3mg glucose/g/2h) significantly increased by 12%, 14%, 12%, 22%, 19% and 14% in As contaminated soil, respectively. Similarly, the activities of phosphatase (31.4U/g dry soil), dehydrogenase (39.3mg TPF/g soil), cellulase (37.1mg glucose/g/2h), urease (49.8mgN/g soil/2h), amylase (46.3mg glucose/g/2h), and invertase (42.1mg glucose/g/2h) significantly increased by 11%, 15%, 11%, 18%, 20% and 14% in Pb contaminated soil, respectively. Obtained results indicate that the isolate MG could be a potential strain for myco-phytoremediation of As and Pb contaminated soil.
Collapse
Affiliation(s)
- M Govarthanan
- Department of Energy and Environmental System Engineering, University of Seoul, Seoul 02504, Republic of Korea; PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India.
| | - R Mythili
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India
| | - T Selvankumar
- PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India
| | - S Kamala-Kannan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570 752, South Korea
| | - H Kim
- Department of Energy and Environmental System Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
28
|
Al-Qahtani KM. Water purification using different waste fruit cortexes for the removal of heavy metals. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Khairia M. Al-Qahtani
- Department of Chemistry, Princess Nora bint Abdel-Rahman University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Tiwari S, Lata C. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. FRONTIERS IN PLANT SCIENCE 2018; 9:452. [PMID: 29681916 PMCID: PMC5897519 DOI: 10.3389/fpls.2018.00452] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/22/2018] [Indexed: 05/19/2023]
Abstract
Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant-microbe-metal interaction.
Collapse
Affiliation(s)
| | - Charu Lata
- CSIR-National Botanical Research Institute, Lucknow, India
| |
Collapse
|
30
|
Gupta P, Rani R, Chandra A, Kumar V. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr 6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 2018; 8:4860. [PMID: 29559691 PMCID: PMC5861048 DOI: 10.1038/s41598-018-23322-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022] Open
Abstract
Contamination of agricultural soil with heavy metals has become a serious concern worldwide. In the present study, Cr6+ resistant plant growth promoting Pseudomonas sp. (strain CPSB21) was isolated from the tannery effluent contaminated agricultural soils and evaluated for the plant growth promoting activities, oxidative stress tolerance, and Cr6+ bioremediation. Assessment of different plant growth promotion traits, such as phosphate solubilization, indole-3-acetic acid production, siderophores, ammonia and hydrogen cyanide production, revealed that the strain CPSB21 served as an efficient plant growth promoter under laboratory conditions. A pot experiment was performed using sunflower (Helianthus annuus L.) and tomato (Solanum lycopersicum L.) as a test crop. Cr6+ toxicity reduced plant growth, pigment content, N and P uptake, and Fe accumulation. However, inoculation of strain CPSB21 alleviated the Cr6+ toxicity and enhanced the plant growth parameters and nutrient uptake. Moreover, Cr toxicity had varied response on oxidative stress tolerance at graded Cr6+ concentration on both plants. An increase in superoxide dismutase (SOD) and catalase (CAT) activity and reduction in malonialdehyde (MDA) was observed on inoculation of strain CPSB21. Additionally, inoculation of CPSB21 enhanced the uptake of Cr6+ in sunflower plant, while no substantial enhancement was observed on inoculation in tomato plant.
Collapse
Affiliation(s)
- Pratishtha Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826 004, Jharkhand, India
| | - Rupa Rani
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826 004, Jharkhand, India
| | - Avantika Chandra
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826 004, Jharkhand, India
| | - Vipin Kumar
- Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, 826 004, Jharkhand, India.
| |
Collapse
|
31
|
|
32
|
Guarino C, Sciarrillo R. The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy). CHEMOSPHERE 2017; 183:371-379. [PMID: 28554021 DOI: 10.1016/j.chemosphere.2017.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
The Venice Lagoon is worldwide considered as a typical example of the human impact on the surrounding ecosystem. The development of the industrial zone of Porto Marghera begun in 1917 as an extension of the Venice Port, in order to sustain activities related to oil and coal, as well as to exploit the railway system. Despite the recent decrease in the number of employees, Porto Marghera is still one of the most important chemical districts in Italy. This study reports early results from the ongoing in-situ phytoextraction of potentially toxic elements (Cd, Hg, Zn) within the industrial area of Porto Marghera. Two agronomic plant species with high annual biomass yield (Helianthus annuus L., Brassica juncea (L.) Czern.) were used. This paper also reports the microcosms and mesocosms tests to evaluate the efficacy of the treatments to be applied to the in-situ phytoextraction process of the polluted site. The combined use of EDTA and Ammonium Thiosulfate during phytoextraction increases the efficiency of Cd, Hg, Zn removal from contaminated soil.
Collapse
Affiliation(s)
- C Guarino
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy
| | - R Sciarrillo
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
33
|
Ashraf MA, Hussain I, Rasheed R, Iqbal M, Riaz M, Arif MS. Advances in microbe-assisted reclamation of heavy metal contaminated soils over the last decade: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:132-143. [PMID: 28456029 DOI: 10.1016/j.jenvman.2017.04.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/03/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Contamination of agricultural soils with trace metals present lethal consequences in terms of diverse ecological and environmental problems that entail entry of metal in food chain, soil deterioration, plant growth suppression, yield reduction and alteration in microbial community. Metal polluted soils have become a major concern for scientists around the globe. Phytoremediation involves the hyperaccumulation of metals in different plant parts. Phytoremediation of metals from polluted soils could be enhanced through inoculation with metal resistant plant growth promoting (PGP) bacteria. These PGP bacteria not only promote plant growth but also enhance metal uptake by plants. There are a number of reports in the literature where PGP bacterial inoculation improves metal accumulation in different plant parts without influencing plant growth. Therefore, there is a need to select PGP bacterial strains which possess the potential to improve plant growth as well as expedite the phytoremediation of metals. In this review, we have discussed the mechanisms possessed by PGP bacteria to promote plant growth and phytoremediation of metals. The central part of this review deals with the recent advances in microbial assisted-phytoremediation of metals.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
34
|
Karthik C, Elangovan N, Kumar TS, Govindharaju S, Barathi S, Oves M, Arulselvi PI. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol Res 2017; 204:65-71. [PMID: 28870293 DOI: 10.1016/j.micres.2017.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Plant growth promoting rhizobacteria (PGPR) can increase the host plant tolerance to cope up with heavy metal induced stress, which can be improve plant growth. Thus, the present study was designed to isolate Cr(VI) tolerant PGPR strain and evaluate its plant growth promoting (PGP) properties under Cr(VI) stress. Rhizobacterial strain AR6 was isolated from the rhizosphere of Phaseolus vulgaris L. and showed 99% homology with Cellulosimicrobium funkei (KM032184) in BLASTn analysis. Strain AR6 was specifically selected due to its high Cr(VI) tolerance (1200μg/ml) and substantial production of PGP substances. Strain AR6 produced 36.75μg/ml of indole acetic acid (IAA), 60.40μg/ml of ammonia and 14.23μg/ml of exopolysaccharide (EPS). Moreover, strain AR6 showed positive results for catalase, protease, amylase, lipase production and phosphate solubilization. A trend of Cr(VI) concentration dependent progressive decline for PGP traits of strain AR6 was observed excluding EPS which was regularly increased on increasing concentrations of Cr(VI). Among the four tested Cr(VI) concentrations, 250μg/ml showed the maximum toxicity to PGP activities of strain AR6. Inoculation of rhizobacterial strain AR6 significantly increased the root length of test crops in the presence of Cr(VI) and produced a considerable number of colonizes on the root of versatile dicot and monocot plants. Moreover, strain AR6 exhibited strong antagonistic activity against phytopathogen Aspergillus niger. Thus, the present study suggests that metal tolerant and PGP activities of the rhizobacterial strain AR6 could be exploited for environmental and agricultural issues.
Collapse
Affiliation(s)
- Chinnannan Karthik
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India; DRDO - BU - Centre for Life Sciences, Coimbatore, Tamil Nadu, India
| | - Namasivayam Elangovan
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Thamilarasan Senthil Kumar
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Subramani Govindharaju
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Selvaraj Barathi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Mohammad Oves
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Padikasan Indra Arulselvi
- Plant and Microbial Biotechnology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| |
Collapse
|
35
|
Hansda A, Kumar V, Anshumali. Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 2017; 7:132. [PMID: 28593515 DOI: 10.1007/s13205-017-0757-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/30/2017] [Indexed: 10/19/2022] Open
Abstract
Rhizobacteria may enhance biomass production and heavy metal tolerance of plants under stress conditions. The present study was carried out for isolation of metal-resistant bacteria that can be further utilized for phytoremediation process. A potential metal-resistant strain CRB15 was isolated from rhizospheric region of Saccharum spontaneum that was found to be resistant against Cu (6.29 mM), Zn (3.25 mM), Pb (1.5 mM), Ni (1.25 mM), and Cd (0.25 mM). SEM analysis was performed for evaluation of morphological changes on bacterial isolate. FTIR analysis observed the change in wavenumbers after the addition of Cu. 16S rDNA sequence analysis showed that CRB15 isolate matched best with genus of Kocuria and was named as Kocuria sp. CRB15. The isolate Kocuria sp. CRB15 was a potential plant growth-promoting rhizobacterium as it had a high IAA (46 µg ml-1), P solubilisation (39.37 µg ml-1), ammonia production (30.46 µmol ml-1), and hydrogen cyanide production capacity. Root-shoot elongation assay conducted on Brassica nigra under lab conditions with strain CRB15 demonstrated positive effects of strain CRB15 in root and shoot elongation of Cu-treated seedlings. This study proved the Kocuria sp. CRB15 a potential PGPR for bacterial-assisted phytoremediation.
Collapse
|
36
|
Zhang X, Yang H, Cui Z. Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. Toxicol Res (Camb) 2017; 6:442-447. [PMID: 30090512 DOI: 10.1039/c7tx00110j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mucor circinelloides, selected from mine tailings for heavy metal bioremediation, was characterized at the genetic level by internal transcribed spacer (ITS) analysis. M. circinelloides was first applied for the absorption of heavy metals {Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii)}. The minimal inhibitory concentration test showed that M. circinelloides could tolerate relatively high concentrations of heavy metals. M. circinelloides could uptake 79.5%, 44.1%, 62.5%, 56.5%, and 85.5% of Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii), respectively, from the initial concentration of 20 mg L-1 under optimum conditions (pH 8; 30 °C). Monitoring the change in ATPase activity at certain intervals indicated that the mechanism of bioremediation was directly related to the energy consumption. M. circinelloides will be widely used for in-situ remediation in special environment because of strong vitality and excellent bioremediation efficiency.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| | - Huanhuan Yang
- School of Life Science , Shandong University , Ji'nan 250100 , China
| | - Zhaojie Cui
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| |
Collapse
|
37
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
38
|
Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 2016; 100:2967-84. [PMID: 26860944 DOI: 10.1007/s00253-016-7364-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.
Collapse
|
39
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:1-115. [PMID: 26423073 DOI: 10.1007/978-3-319-20013-2_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
40
|
Revealing crosstalk of plant and fungi in the symbiotic roots of sewage-cleaning Eichhornia crassipes using direct de novo metatranscriptomic analysis. Sci Rep 2015; 5:15407. [PMID: 26472343 PMCID: PMC4607945 DOI: 10.1038/srep15407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Cultivation and environmental changes can induce development of novel phenotypes in plants. For example, the root morphology of cultivated purple root Eichhornia crassipes differs remarkably from normal Eichhornia crassipes and also shows an enhanced ability to absorb heavy metal from groundwater. However, the changes in gene expression associated with these processes are unknown because of the lack of information on its large and unsequenced genome and its complex plant-rhizosphere symbiotic system. To investigate these gene expression changes, we applied a new strategy, direct de novo metatranscriptome analysis. Using this approach, we assembled the metatranscriptome of the entire rhizosphere and identified species-specific differentially expressed genes (DEGs) via hyper-accurate algorithms, showing a polarized plant/fungus distribution: the plant genes were responsible for morphological changes to the root system, offering a greater volume and surface area that hosts more fungi; while genes associated with heavy metal response in the fungus Fusarium were upregulated more than 3600-fold. These results suggested a distinct and synergistic functional response by the plant and fungal transcriptomes, indicating significant plant/fungal crosstalk during environmental changes. This study demonstrates that the metatranscriptomic approach adopted here offers a cost-efficient strategy to study symbiosis systems without the need for a priori genomic knowledge.
Collapse
|
41
|
Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil. Biodegradation 2015; 26:223-33. [DOI: 10.1007/s10532-015-9729-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
42
|
Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 2015; 338:241-54. [DOI: 10.1016/j.crvi.2015.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 01/21/2015] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
|
43
|
Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 2015; 81:2173-81. [PMID: 25595759 PMCID: PMC4345380 DOI: 10.1128/aem.03359-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/08/2015] [Indexed: 12/07/2022] Open
Abstract
The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.
Collapse
Affiliation(s)
- E Marie Muehe
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Irini J Adaktylou
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Ute Kraemer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
44
|
Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. SUSTAINABILITY 2015. [DOI: 10.3390/su7022189] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Ullah A, Mushtaq H, Ali H, Munis MFH, Javed MT, Chaudhary HJ. Diazotrophs-assisted phytoremediation of heavy metals: a novel approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2505-2514. [PMID: 25339525 DOI: 10.1007/s11356-014-3699-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/06/2014] [Indexed: 06/04/2023]
Abstract
Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.
Collapse
Affiliation(s)
- Abid Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | | | | | | | | |
Collapse
|
46
|
O'Brien S, Hodgson DJ, Buckling A. Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc Biol Sci 2015; 281:rspb.2014.0858. [PMID: 24898376 PMCID: PMC4071558 DOI: 10.1098/rspb.2014.0858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria are often iron-limited, and hence produce extracellular iron-scavenging siderophores. A crucial feature of siderophore production is that it can be an altruistic behaviour (individually costly but benefitting neighbouring cells), thus siderophore producers can be invaded by non-producing social 'cheats'. Recent studies have shown that siderophores can also bind other heavy metals (such as Cu and Zn), but in this case siderophore chelation actually reduces metal uptake by bacteria. These complexes reduce heavy metal toxicity, hence siderophore production may contribute to toxic metal bioremediation. Here, we show that siderophore production in the context of bioremediation is also an altruistic trait and can be exploited by cheating phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. Specifically, we show that in toxic copper concentrations (i) siderophore non-producers evolve de novo and reach high frequencies, and (ii) producing strains are fitter than isogenic non-producing strains in monoculture, and vice versa in co-culture. Moreover, we show that the evolutionary effect copper has on reducing siderophore production is greater than the reduction observed under iron-limited conditions. We discuss the relevance of these results to the evolution of siderophore production in natural communities and heavy metal bioremediation.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - David J Hodgson
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
47
|
Sharma S, Singh B, Manchanda VK. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:946-62. [PMID: 25277712 DOI: 10.1007/s11356-014-3635-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have significantly raised the amount of heavy metals and radionuclides in it. Also, these activities are continuously increasing the area of the contaminated sites. In this context, an attempt has been made to review different modes of the phytoremediation and various terrestrial and aquatic plants which are being used to remediate the heavy metals and radionuclide-contaminated soil and aquatic systems. Natural and synthetic enhancers, those hasten the process of metal adsorption/absorption by plants, are also discussed. The article includes 216 references.
Collapse
Affiliation(s)
- Sunita Sharma
- Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, Himachal Pradesh, India
| | | | | |
Collapse
|
48
|
Adam V, Chudobova D, Tmejova K, Cihalova K, Krizkova S, Guran R, Kominkova M, Zurek M, Kremplova M, Jimenez AMJ, Konecna M, Hynek D, Pekarik V, Kizek R. An Effect of Cadmium and Lead Ions on Escherichia coli with the Cloned Gene for Metallothionein (MT-3) Revealed by Electrochemistry. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
49
|
Azad MAK, Amin L, Sidik NM. Genetically engineered organisms for bioremediation of pollutants in contaminated sites. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-013-0058-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
He Y, Ma W, Li Y, Liu J, Jing W, Wang L. Expression of metallothionein of freshwater crab (Sinopotamon henanense) in Escherichia coli enhances tolerance and accumulation of zinc, copper and cadmium. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:56-64. [PMID: 24276409 DOI: 10.1007/s10646-013-1151-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins and play a major role in metal homeostasis and/or detoxification in all organisms. In a previous study, a novel full length MT gene was isolated from the freshwater crab (Sinopotamon henanense), a species widely distributed in Shanxi and Henan Provinces, China. In this report, the gene for the crab MT was inserted into a PET-28a-6His-SUMO vector and recombinant soluble MT was over-expressed as fusions with SUMO in Escherichia coli. The recombinant fusion protein was purified by affinity chromatography and its biochemical properties were analyzed. In addition, on the basis of constructing SUMO-MT, two mutants, namely SUMO-MTt1 and SUMO-MTt2, were constructed to change the primary structure of SUMO-MT using site-directed mutagenesis techniques with the amino acid substitutions D3C and S37C in order to increase metal-binding capacity of MT. E. coli cells expressing SUMO-MT and these single-mutant proteins exhibited enhanced metal tolerance and higher accumulation of metal ions than control cells. The results showed that the bioaccumulation and tolerance of Zn(2+), Cu(2+) and Cd(2+) in these strains followed the decreasing order of SUMO-MTt1 > SUMO-MTt2 > SUMO-MT. E. coli cells have low tolerance and high accumulation towards cadmium compared to zinc and copper. These results show that the MT of S. henanense could enhance tolerance and accumulation of metal ions. Moreover, we were able to create a novel protein based on the crab MT to bind metal ions at high density and with high affinity. Therefore, SUMO-MT and its mutants can provide potential candidates for heavy metal bioremediation. This study could help further elucidate the mechanism of how the crab detoxifies heavy metals and provide a scientific basis for environment bioremediation of heavy metal pollution using the over-expression of the crab MT and mutant proteins.
Collapse
Affiliation(s)
- Yongji He
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|