1
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
2
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
4
|
Cao LY, Liu CG, Yang SH, Bai FW. Regulation of biofilm formation in Zymomonas mobilis to enhance stress tolerance by heterologous expression of pfs and luxS. Front Bioeng Biotechnol 2023; 11:1130405. [PMID: 36845188 PMCID: PMC9945106 DOI: 10.3389/fbioe.2023.1130405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Zymomonas mobilis is a potential alternative of Saccharomyces cerevisiae to produce cellulosic ethanol with strengths in cofactor balance, but its lower tolerance to inhibitors in the lignocellulosic hydrolysate restricts the application. Although biofilm can improve bacteria stress tolerance, regulating biofilm formation in Z. mobilis is still a challenge. In this work, we constructed a pathway by heterologous expressing pfs and luxS from Escherichia coli in Z. mobilis to produce AI-2 (autoinducer 2), a universal quorum-sensing signal molecule, to control cell morphology for enhancing stress tolerance. Unexpectedly, the results suggested that neither endogenous AI-2 nor exogenous AI-2 promoted biofilm formation, while heterologous expression of pfs can significantly raise biofilm. Therefore, we proposed that the main factor in assisting biofilm formation was the product accumulated due to heterologous expression of pfs, like methylated DNA. Consequently, ZM4::pfs produced more biofilm, which presented an enhanced tolerance to acetic acid. All these findings provide a novel strategy to improve the stress tolerance of Z. mobilis by enhancing biofilm formation for efficient production of lignocellulosic ethanol and other value-added chemical products.
Collapse
Affiliation(s)
- Lian-Ying Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Chen-Guang Liu,
| | - Shi-Hui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Biofilme em parafusos ortopédicos prontos para uso adquiridos por meio de sistema de consiganação/comodato. ACTA PAUL ENFERM 2023. [DOI: 10.37689/acta-ape/2023ao00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
6
|
Patel A, Carlson RP, Henson MA. In silico analysis of synthetic multispecies biofilms for cellobiose-to-isobutanol conversion reveals design principles for stable and productive communities. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Biofilm accumulation in new flexible gastroscope channels in clinical use. Infect Control Hosp Epidemiol 2021; 43:174-180. [PMID: 34128460 DOI: 10.1017/ice.2021.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Assess the accumulation of protein and biofilm on the inner surfaces of new flexible gastroscope (FG) channels after 30 and 60 days of patient use and full reprocessing. DESIGN Clinical use study of biofilm accumulation in FG channels. SETTING Endoscopy service of a public hospital. METHODS First, we tested an FG in clinical use before the implementation of a revised reprocessing protocol (phase 1 baseline; n = 1). After replacement of the channels by new ones and the implementation of the protocol, 3 FGs were tested after 30 days of clinical use (phase 2; n = 3) and 3 FGs were tested after 60 days of clinical use (phase 3; n = 3), and the same FGs were tested in phase 2 and 3. Their biopsy, air, water, and air/water junction channels were removed and subjected to protein testing (n = 21), bacteriological culture (n = 21), and scanning electron microscopy (SEM) (n = 28). Air-water junction channels fragments were subjected to SEM only. RESULTS For the FGs, the average number of uses and reprocessing cycles was 60 times. Extensive biofilm was detected in air, water, and air-water junction channels (n = 18 of 28). All channels (28 of 28) showed residual matter, and structural damage was identified in most of them (20 of 28). Residual protein was detected in the air and water channels of all FG evaluated (phases 1-3), except for 1 air channel from phase 2. Bacteria were recovered from 8 of 21 channels, most air or water channels. CONCLUSIONS The short time before damage and biofilm accumulation in the channels was evident and suggests that improving the endoscope design is necessary. Better reprocessing methods and channel maintenance are needed.
Collapse
|
8
|
Jiang Y, Liu Y, Zhang X, Gao H, Mou L, Wu M, Zhang W, Xin F, Jiang M. Biofilm application in the microbial biochemicals production process. Biotechnol Adv 2021; 48:107724. [PMID: 33640404 DOI: 10.1016/j.biotechadv.2021.107724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Biofilms can be naturally formed through the attachment of microorganisms on the supporting materials. However, natural biofilms formed in the environment may cause some detrimental effects, such as the equipment contamination and food safety issues et al. On the contrary, biofilms mediated microbial fermentation provides a promising approach for the efficient biochemicals production owing to the properties of self-immobilization, high resistance to toxic reactants and maintenance of long-term cells activity. While few reviews have specifically addressed the biological application of biofilms in the microbial fermentation process. Accordingly, this review will comprehensively summarize the biofilms formation mechanism and potential functions in the microbial fermentation process. Furthermore, the construction strategies for the formation of stable biofilms through synthetic biology technology or the modification of suitable supporting materials will be also discussed. The application of biofilms mediated fermentation will provide an outlook for the biorefinery platform in the future.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
9
|
Chacón SJ, Matias G, Ezeji TC, Maciel Filho R, Mariano AP. Three-stage repeated-batch immobilized cell fermentation to produce butanol from non-detoxified sugarcane bagasse hemicellulose hydrolysates. BIORESOURCE TECHNOLOGY 2021; 321:124504. [PMID: 33307480 DOI: 10.1016/j.biortech.2020.124504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
To enable the production of butanol with undiluted, non-detoxified sugarcane bagasse hemicellulose hydrolysates, this study developed a three-staged repeated-batch immobilized cell fermentation in which the efficiency of a 3D-printed nylon carrier to passively immobilize Clostridium saccharoperbutylacetonicum DSM 14923 was compared with sugarcane bagasse. The first stage consisted of sugarcane molasses fermentation, and in the second stage, non-detoxified sugarcane bagasse hemicellulose hydrolysates (SBHH) was pulse-fed to sugarcane molasses fermentation. In the next four batches, immobilized cells were fed with undiluted SBHH supplemented with molasses, and SBHH-derived xylose accounted for approximately 50% of the sugars. Bagasse was a superior carrier, and the average xylose utilization (33%) was significantly higher than the treatment with the 3D-printed carrier (16%). Notably, bagasse allowed for 43% of the butanol to be SBHH-derived. Overall, cell immobilization on lignocellulosic materials can be an efficient strategy to produce butanol from repeated-batch fermentation of non-detoxified hemicellulose hydrolysates.
Collapse
Affiliation(s)
- Suranny Jiménez Chacón
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gabriela Matias
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Thaddeus Chukwuemeka Ezeji
- The Ohio State University, Department of Animal Sciences, Ohio State Agricultural Research and Development Center, Wooster, OH, USA
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
10
|
Biofilm reactors for value-added products production: An in-depth review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Todhanakasem T, Wu B, Simeon S. Perspectives and new directions for bioprocess optimization using Zymomonas mobilis in the ethanol production. World J Microbiol Biotechnol 2020; 36:112. [PMID: 32656581 DOI: 10.1007/s11274-020-02885-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
Zymomonas mobilis is an ethanologenic microbe that has a demonstrated potential for use in lignocellulosic biorefineries for bioethanol production. Z. mobilis exhibits a number of desirable characteristics for use as an ethanologenic microbe, with capabilities for metabolic engineering and bioprocess modification. Many advanced genetic tools, including mutation techniques, screening methods and genome editing have been successively performed to improve various Z. mobilis strains as potential consolidated ethanologenic microbes. Many bioprocess strategies have also been applied to this organism for bioethanol production. Z. mobilis biofilm reactors have been modified with various benefits, including high bacterial populations, less fermentation times, high productivity, high cell stability, resistance to the high concentration of substrates and toxicity, and higher product recovery. We suggest that Z. mobilis biofilm reactors could be used in bioethanol production using lignocellulosic substrates under batch, continuous and repeated batch processes.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro- Industry, Faculty of Biotechnology, Assumption University, Ramkhamhaeng Road, Bangkapi, Bangkok, 10240, Thailand.
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture and Rural Affairs, Renmin Rd. S 4-13, Chengdu, 610041, China
| | - Saw Simeon
- Absolute Clean Energy Public Company Limited, ITF Tower 7th Floor, Silom Road, Bang Rak, Bangkok, 10500, Thailand
| |
Collapse
|
12
|
Brück HL, Coutte F, Dhulster P, Gofflot S, Jacques P, Delvigne F. Growth Dynamics of Bacterial Populations in a Two-Compartment Biofilm Bioreactor Designed for Continuous Surfactin Biosynthesis. Microorganisms 2020; 8:microorganisms8050679. [PMID: 32392736 PMCID: PMC7285194 DOI: 10.3390/microorganisms8050679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
Biofilm bioreactors are promising systems for continuous biosurfactant production since they provide process stability through cell immobilization and avoid foam formation. In this work, a two-compartment biofilm bioreactor was designed consisting of a stirred tank reactor and a trickle-bed reactor containing a structured metal packing for biofilm formation. A strong and poor biofilm forming B. subtilis 168 strain due to restored exopolysaccharides (EPS) production or not were cultivated in the system to study the growth behavior of the planktonic and biofilm population for the establishment of a growth model. A high dilution rate was used in order to promote biofilm formation on the packing and wash out unwanted planktonic cells. Biofilm development kinetics on the packing were assessed through a total organic carbon mass balance. The EPS+ strain showed a significantly improved performance in terms of adhesion capacity and surfactin production. The mean surfactin productivity of the EPS+ strain was about 37% higher during the continuous cultivation compared to the EPS- strain. The substrate consumption together with the planktonic cell and biofilm development were properly predicted by the model (α = 0.05). The results show the efficiency of the biofilm bioreactor for continuous surfactin production using an EPS producing strain.
Collapse
Affiliation(s)
- Hannah Luise Brück
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - François Coutte
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - Pascal Dhulster
- ICV—Institut Charles Viollette, Joint Research Unit BioEcoAgro N° 1158, University Lille, INRAE, University Liège, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, F-59000 Lille, France; (F.C.); (P.D.)
| | - Sébastien Gofflot
- Walloon Agricultural Research Center (CRA-W), Agricultural Product Technology Unit, Chaussée de Namur, 24, B-5030 Gembloux, Belgium;
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
| | - Frank Delvigne
- MiPI, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro N° 1158, Gembloux Agro-Bio Tech, University Liège, University Lille, INRAE, UPJV, YNCREA, University Artois, University Littoral Côte d’Opale, B-5030 Gembloux, Belgium; (H.L.B.); (P.J.)
- Correspondence:
| |
Collapse
|
13
|
Giri S, Shitut S, Kost C. Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Curr Opin Biotechnol 2020; 62:228-238. [DOI: 10.1016/j.copbio.2019.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
|
14
|
Todhanakasem T, Salangsing OL, Koomphongse P, Kaewket S, Kanokratana P, Champreda V. Zymomonas mobilis Biofilm Reactor for Ethanol Production Using Rice Straw Hydrolysate Under Continuous and Repeated Batch Processes. Front Microbiol 2019; 10:1777. [PMID: 31440218 PMCID: PMC6693309 DOI: 10.3389/fmicb.2019.01777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic composited corn silk was developed as a biotic/abiotic carrier for Zymomonas mobilis biofilm formation for the purpose of ethanol production. Furthermore, we explored the use of rice straw hydrolysate as substrate in both multistage continuous culture and repeated batch processes and compared the ethanol production efficiency by two strains of Z. mobilis. Biofilm formed by bacterial strains Z. mobilis ZM4 and TISTR551 were detected, and its proficiencies were compared under various conditions by scanning electron microscopy (SEM) and crystal violet assays. The greatest biofilm formed by both strains was found on day five after the inoculation. Z. mobilis strain ZM4 grown in repeated batch biofilm reactors produced higher yields of ethanol than TISTR551 grown under the same conditions, while TISTR551 produced higher yields of ethanol in the multistage continuous process. The yields were highly maintained, with no significant differences (p < 0.05) among the three consecutive repeated batches. These experiments highlight exciting uses for agricultural byproducts in the production of ethanol using Z. mobilis biofilm reactors.
Collapse
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkok, Thailand
| | - O-Lan Salangsing
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkok, Thailand
| | - Piyawit Koomphongse
- National Metal and Materials Technology Center (MTEC), Klong Luang, Thailand
| | - Sanya Kaewket
- National Metal and Materials Technology Center (MTEC), Klong Luang, Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Thailand
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Thailand
| |
Collapse
|
15
|
Cuny L, Pfaff D, Luther J, Ranzinger F, Ödman P, Gescher J, Guthausen G, Horn H, Hille‐Reichel A. Evaluation of productive biofilms for continuous lactic acid production. Biotechnol Bioeng 2019; 116:2687-2697. [DOI: 10.1002/bit.27080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/11/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Laure Cuny
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Daniel Pfaff
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Jonas Luther
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | - Florian Ranzinger
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| | | | - Johannes Gescher
- Department of Applied Biology, Institute for Applied BiologyKarlsruhe Institute of Technology Karlsruhe Germany
| | - Gisela Guthausen
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
- Karlsruhe Institute of TechnologyMechanical Process Engineering and Mechanics Karlsruhe Germany
| | - Harald Horn
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
- DVGW Research Laboratories for Water Chemistry and Water Technology Karlsruhe Germany
| | - Andrea Hille‐Reichel
- Karlsruhe Institute of Technology, Engler‐Bunte‐InstitutWater Chemistry and Water Technology Karlsruhe Germany
| |
Collapse
|
16
|
Zarabadi MP, Couture M, Charette SJ, Greener J. A Generalized Kinetic Framework Applied to Whole‐Cell Bioelectrocatalysis in Bioflow Reactors Clarifies Performance Enhancements for
Geobacter Sulfurreducens
Biofilms. ChemElectroChem 2019. [DOI: 10.1002/celc.201900732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mir Pouyan Zarabadi
- Département de Chimie, Faculté des sciences et de génieUniversité Laval, Québec City, QC Canada
| | - Manon Couture
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génieUniversité Laval Québec City, QC Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes, Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génieUniversité Laval Québec City, QC Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec Québec City, QC Canada
| | - Jesse Greener
- Département de Chimie, Faculté des sciences et de génieUniversité Laval, Québec City, QC Canada
- CHU de Québec, centre de rechercheUniversité Laval, 10 rue de l'Espinay Québec, QC Canada
| |
Collapse
|
17
|
Cell Aggregation and Aerobic Respiration Are Important for Zymomonas mobilis ZM4 Survival in an Aerobic Minimal Medium. Appl Environ Microbiol 2019; 85:AEM.00193-19. [PMID: 30877116 DOI: 10.1128/aem.00193-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/09/2019] [Indexed: 12/30/2022] Open
Abstract
Zymomonas mobilis produces ethanol from glucose near the theoretical maximum yield, making it a potential alternative to the yeast Saccharomyces cerevisiae for industrial ethanol production. A potentially useful industrial feature is the ability to form multicellular aggregates called flocs, which can settle quickly and exhibit higher resistance to harmful chemicals than single cells. While spontaneous floc-forming Z. mobilis mutants have been described, little is known about the natural conditions that induce Z. mobilis floc formation or about the genetic factors involved. Here we found that wild-type Z. mobilis forms flocs in response to aerobic growth conditions but only in a minimal medium. We identified a cellulose synthase gene cluster and a single diguanylate cyclase that are essential for both floc formation and survival in a minimal aerobic medium. We also found that NADH dehydrogenase 2, a key component of the aerobic respiratory chain, is important for survival in a minimal aerobic medium, providing a physiological role for this enzyme, which has previously been found to be disadvantageous in a rich aerobic medium. Supplementation of the minimal medium with vitamins also promoted survival but did not inhibit floc formation.IMPORTANCE The bacterium Zymomonas mobilis is best known for its anaerobic fermentative lifestyle, in which it converts glucose into ethanol at a yield surpassing that of yeast. However, Z. mobilis also has an aerobic lifestyle, which has confounded researchers with its attributes of poor growth, accumulation of toxic acetic acid and acetaldehyde, and respiratory enzymes that are detrimental for aerobic growth. Here we show that a major Z. mobilis respiratory enzyme and the ability to form multicellular aggregates, called flocs, are important for survival, but only during aerobic growth in a medium containing a minimum set of nutrients required for growth. Supplements, such as vitamins or yeast extract, promote aerobic growth and, in some cases, inhibit floc formation. We propose that Z. mobilis likely requires aerobic respiration and floc formation in order to survive in natural environments that lack protective factors found in supplements such as yeast extract.
Collapse
|
18
|
Zhu CT, Mei YY, Zhu LL, Xu Y, Sheng S, Wang J. Recombinant Escherichia coli BL21-pET28a- egfp Cultivated with Nanomaterials in a Modified Microchannel for Biofilm Formation. Int J Mol Sci 2018; 19:E2590. [PMID: 30200345 PMCID: PMC6163294 DOI: 10.3390/ijms19092590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
The application of whole cells as catalytic biofilms in microchannels has attracted increasing scientific interest. However, the excessive biomass formation and structure of biofilms in a reactor limits their use. A microchannel reactor with surface modification was used to colonize recombinant Escherichia coil BL21-pET28a-egfp rapidly and accelerated growth of biofilms in the microchannel. The segmented flow system of 'air/culture medium containing nanomaterials' was firstly used to modulate the biofilms formation of recombinant E. coil; the inhibitory effects of nanomaterials on biofilm formation were investigated. The results indicated that the segmental flow mode has a significant impact on the structure and development of biofilms. Using the channels modified by silane reagent, the culture time of biofilms (30 h) was reduced by 6 h compared to unmodified channels. With the addition of graphene sheets (10 mg/L) in Luria-Bertani (LB) medium, the graphene sheets possessed a minimum inhibition rate of 3.23% against recombinant E. coil. The biofilms cultivated by the LB medium with added graphene sheets were stably formed in 20 h; the formation time was 33.33% shorter than that by LB medium without graphene. The developed method provides an efficient and simple approach for rapid preparation of catalytic biofilms in microchannel reactors.
Collapse
Affiliation(s)
- Chang-Tong Zhu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Yi-Yuan Mei
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Lin-Lin Zhu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
| | - Yan Xu
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| | - Sheng Sheng
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| | - Jun Wang
- School of Biotechnology & School of the Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China.
- Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China.
| |
Collapse
|
19
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
20
|
Yang Y, Hu M, Tang Y, Geng B, Qiu M, He Q, Chen S, Wang X, Yang S. Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0193-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Todhanakasem T, Yodsanga S, Sowatad A, Kanokratana P, Thanonkeo P, Champreda V. Inhibition analysis of inhibitors derived from lignocellulose pretreatment on the metabolic activity of Zymomonas mobilis
biofilm and planktonic cells and the proteomic responses. Biotechnol Bioeng 2017; 115:70-81. [DOI: 10.1002/bit.26449] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro-Industry; Faculty of Biotechnology; Assumption University; Bangkok Thailand
| | - Supanika Yodsanga
- Department of Agro-Industry; Faculty of Biotechnology; Assumption University; Bangkok Thailand
| | - Apinya Sowatad
- Department of Agro-Industry; Faculty of Biotechnology; Assumption University; Bangkok Thailand
| | - Pattanop Kanokratana
- National Center for Genetic Engineering and Biotechnology (BIOTEC); Pathumthani Thailand
| | | | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC); Pathumthani Thailand
| |
Collapse
|
22
|
Bhattacharjee RR, S T, Mal SS. A Liquid Derivative of Phosphotungstic Acid as Catalyst for Benzyl Alcohol Oxidation in Water: Facile Separation and Stability of Benzaldehyde at Room Temperature †. ChemistrySelect 2017. [DOI: 10.1002/slct.201700443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Thangamani S
- PSG Institute of Advanced Studies, Coimbatore; Tamil Nadu- 641004 India
| | - Sib S. Mal
- National Institute of Technology, Dept. of Chemistry, Surathkal; Karnataka- 575025 India
| |
Collapse
|
23
|
Todhanakasem T. Developing microbial biofilm as a robust biocatalyst and its challenges. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1295230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkok, Thailand
| |
Collapse
|
24
|
Tong X, Barberi TT, Botting CH, Sharma SV, Simmons MJH, Overton TW, Goss RJM. Rapid enzyme regeneration results in the striking catalytic longevity of an engineered, single species, biocatalytic biofilm. Microb Cell Fact 2016; 15:180. [PMID: 27769259 PMCID: PMC5073922 DOI: 10.1186/s12934-016-0579-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Engineering of single-species biofilms for enzymatic generation of fine chemicals is attractive. We have recently demonstrated the utility of an engineered Escherichia coli biofilm as a platform for synthesis of 5-halotryptophan. E. coli PHL644, expressing a recombinant tryptophan synthase, was employed to generate a biofilm. Its rapid deposition, and instigation of biofilm formation, was enforced by employing a spin-down method. The biofilm presents a large three-dimensional surface area, excellent for biocatalysis. The catalytic longevity of the engineered biofilm is striking, and we had postulated that this was likely to largely result from protection conferred to recombinant enzymes by biofilm's extracellular matrix. SILAC (stable isotopic labelled amino acids in cell cultures), and in particular dynamic SILAC, in which pulses of different isotopically labelled amino acids are administered to cells over a time course, has been used to follow the fate of proteins. To explore within our spin coated biofilm, whether the recombinant enzyme's longevity might be in part due to its regeneration, we introduced pulses of isotopically labelled lysine and phenylalanine into medium overlaying the biofilm and followed their incorporation over the course of biofilm development. RESULTS Through SILAC analysis, we reveal that constant and complete regeneration of recombinant enzymes occurs within spin coated biofilms. The striking catalytic longevity within the biofilm results from more than just simple protection of active enzyme by the biofilm and its associated extracellular matrix. The replenishment of recombinant enzyme is likely to contribute significantly to the catalytic longevity observed for the engineered biofilm system. CONCLUSIONS Here we provide the first evidence of a recombinant enzyme's regeneration in an engineered biofilm. The recombinant enzyme was constantly replenished over time as evidenced by dynamic SILAC, which suggests that the engineered E. coli biofilms are highly metabolically active, having a not inconsiderable energetic demand. The constant renewal of recombinant enzyme highlights the attractive possibility of utilising this biofilm system as a dynamic platform into which enzymes of interest can be introduced in a "plug-and-play" fashion and potentially be controlled through promoter switching for production of a series of desired fine chemicals.
Collapse
Affiliation(s)
- Xiaoxue Tong
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Tania Triscari Barberi
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Catherine H Botting
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Sunil V Sharma
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Mark J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
25
|
Khoei NS, Andreolli M, Lampis S, Vallini G, Turner RJ. A comparison of the response of twoBurkholderia fungorumstrains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Can J Microbiol 2016; 62:851-860. [DOI: 10.1139/cjm-2016-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In natural environments, bacteria often exist in close association with surfaces and interfaces by establishing biofilms. Here, we report on the ability of Burkholderia fungorum strains DBT1 and 95 to survive in high concentrations of hydrocarbons, and we compare their growth as a biofilm vs. planktonic cells. The 2 compounds tested were dibenzothiophene (DBT) and a mixture of naphthalene, phenanthrene, and pyrene (5:2:1) as representative compounds of thiophenes and polycyclic aromatic hydrocarbons (PAHs), respectively. The results showed that both strains were able to degrade DBT and to survive in the presence of up to a 2000 mg·L−1concentration of this compound both as a biofilm and as free-living cells. Moreover, B. fungorum DBT1 showed reduced tolerance towards the mixed PAHs (2000 mg·L−1naphthalene, 800 mg·L−1phenanthrene, and 400 mg·L−1pyrene) both as a biofilm and as free-living cells. Conversely, biofilms of B. fungorum 95 enhanced resistance against these toxic compounds compared with planktonic cells (P < 0.05). Visual observation through confocal laser scanning microscopy showed that exposure of biofilms to DBT and PAHs altered their structure: high concentrations of DBT triggered an aggregation of biofilm cells. These findings provide new perspectives on the effectiveness of using DBT-degrading bacterial strains in bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
26
|
Willrodt C, Halan B, Karthaus L, Rehdorf J, Julsing MK, Buehler K, Schmid A. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow. Biotechnol Bioeng 2016; 114:281-290. [DOI: 10.1002/bit.26071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Willrodt
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Babu Halan
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Lisa Karthaus
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | | | - Mattijs K. Julsing
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Katja Buehler
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Andreas Schmid
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
27
|
Schmutzler K, Kupitz K, Schmid A, Buehler K. Hyperadherence of Pseudomonas taiwanensis VLB120ΔC increases productivity of (S)-styrene oxide formation. Microb Biotechnol 2016; 10:735-744. [PMID: 27411543 PMCID: PMC5481534 DOI: 10.1111/1751-7915.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023] Open
Abstract
The attachment strength of biofilm microbes is responsible for the adherence of the cells to surfaces and thus is a critical parameter in biofilm processes. In tubular microreactors, aqueous‐air segmented flow ensures an optimal oxygen supply and prevents excessive biofilm growth. However, organisms growing in these systems depend on an adaptation phase of several days, before mature and strong biofilms can develop. This is due to strong interfacial forces. In this study, a hyperadherent mutant of Pseudomonas taiwanensis VLB120ΔCeGFP possessing an engineered cyclic diguanylate metabolism, was applied to a continuous biofilm process for the production of (S)‐styrene oxide. Cells of the mutant P. taiwanensis VLB120ΔCeGFP Δ04710, showing the same specific activity as the wild type, adhered substantially stronger to the substratum. Adaptation to the high interfacial forces was not necessary in these cases. Thereby, 40% higher final product concentrations were achieved and the maximal volumetric productivity of the parent strain was significantly surpassed by P. taiwanensis VLB120ΔCeGFP Δ04710. Applying mutants with strong adhesion in biofilm‐based catalysis opens the door to biological process control in future applications of catalytic biofilms using other industrially relevant strains.
Collapse
Affiliation(s)
- Karolin Schmutzler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.,Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Katharina Kupitz
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
28
|
Bandiera L, Furini S, Giordano E. Phenotypic Variability in Synthetic Biology Applications: Dealing with Noise in Microbial Gene Expression. Front Microbiol 2016; 7:479. [PMID: 27092132 PMCID: PMC4824758 DOI: 10.3389/fmicb.2016.00479] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/22/2016] [Indexed: 01/08/2023] Open
Abstract
The stochasticity due to the infrequent collisions among low copy-number molecules within the crowded cellular compartment is a feature of living systems. Single cell variability in gene expression within an isogenic population (i.e., biological noise) is usually described as the sum of two independent components: intrinsic and extrinsic stochasticity. Intrinsic stochasticity arises from the random occurrence of events inherent to the gene expression process (e.g., the burst-like synthesis of mRNA and protein molecules). Extrinsic fluctuations reflect the state of the biological system and its interaction with the intra and extracellular environments (e.g., concentration of available polymerases, ribosomes, metabolites, and micro-environmental conditions). A better understanding of cellular noise would help synthetic biologists design gene circuits with well-defined functional properties. In silico modeling has already revealed several aspects of the network topology’s impact on noise properties; this information could drive the selection of biological parts and the design of reliably engineered pathways. Importantly, while optimizing artificial gene circuitry for industrial applications, synthetic biology could also elucidate the natural mechanisms underlying natural phenotypic variability. In this review, we briefly summarize the functional roles of noise in unicellular organisms and address their relevance to synthetic network design. We will also consider how noise might influence the selection of network topologies supporting reliable functions, and how the variability of cellular events might be exploited when designing innovative biotechnology applications.
Collapse
Affiliation(s)
- Lucia Bandiera
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi", University of Bologna Cesena, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "G. Marconi", University of BolognaCesena, Italy; BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research, University of BolognaCesena, Italy; Advanced Research Center on Electronic Systems, University of BolognaCesena, Italy
| |
Collapse
|
29
|
Todhanakasem T, Tiwari R, Thanonkeo P. Development of corn silk as a biocarrier for Zymomonas mobilis biofilms in ethanol production from rice straw. J GEN APPL MICROBIOL 2016; 62:68-74. [DOI: 10.2323/jgam.62.68] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Zhuang W, Yang J, Wu J, Liu D, Zhou J, Chen Y, Ying H. Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Adv 2016. [DOI: 10.1039/c5ra24923f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular polymer substances limited the transfer of harmful substances, and thus diluted their concentration in order to protect biofilm cells, enabling the maintenance of stability and increased tolerance to environmental stress.
Collapse
Affiliation(s)
- Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| | - Jing Yang
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jingwei Zhou
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| |
Collapse
|
31
|
Hinks J, Wang Y, Matysik A, Kraut R, Kjelleberg S, Mu Y, Bazan GC, Wuertz S, Seviour T. Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules. CHEMSUSCHEM 2015; 8:3718-3726. [PMID: 26404512 DOI: 10.1002/cssc.201500194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/13/2015] [Indexed: 06/05/2023]
Abstract
Butanol is an ideal biofuel, although poor titers lead to high recovery costs by distillation. Fluidization of microbial membranes by butanol is one of the major factors limiting titers in butanol-producing bioprocesses. Starting with the hypothesis that certain membrane insertion molecules would stabilize the lipid bilayer in the presence of butanol, we applied a combination of in vivo and in vitro techniques within an in silico framework to describe a new approach to achieve solvent tolerance in bacteria. Single-molecule tracking of a model supported bilayer showed that COE1-5C, a five-ringed oligo-polyphenylenevinylene conjugated oligoelectrolyte (COE), reduced the diffusion rate of phospholipids in a microbially derived lipid bilayer to a greater extent than three-ringed and four-ringed COEs. Furthermore, COE1-5C treatment increased the specific growth rate of E. coli K12 relative to a control at inhibitory butanol concentrations. Consequently, to confer butanol tolerance to microbes by exogenous means is complementary to genetic modification of strains in industrial bioprocesses, extends the physiological range of microbes to match favorable bioprocess conditions, and is amenable with complex and undefined microbial consortia for biobutanol production. Molecular dynamics simulations indicated that the π-conjugated aromatic backbone of COE1-5C likely acts as a hydrophobic tether for glycerophospholipid acyl chains by enhancing bilayer integrity in the presence of high butanol concentrations, which thereby counters membrane fluidization. COE1-5C-mitigated E. coli K12 membrane depolarization by butanol is consistent with the hypothesis that improved growth rates in the presence of butanol are a consequence of improved bilayer stability.
Collapse
Affiliation(s)
- Jamie Hinks
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore.
| | - Yaofeng Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Artur Matysik
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Rachel Kraut
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Centre for Marine BioInnovation and School of Biotechnology and Bimolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillermo C Bazan
- Department of Chemistry & Biochemistry and Materials, Center for Polymers and Organic Solids, University of California, Santa Barbara, California, 93106, USA
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
- Department of Civil and Environmental Engineering, University of California, Davis, California, 95616, USA
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
32
|
Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 2015; 113:52-61. [PMID: 26153144 DOI: 10.1002/bit.25696] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022]
Abstract
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW (-1) were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous-air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g L tube (-1) h(-1) for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water.
Collapse
Affiliation(s)
- Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Linde Debor
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Diego Salamanca
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Fabian Bogdahn
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany. .,Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
33
|
Todhanakasem T, Narkmit T, Areerat K, Thanonkeo P. Fermentation of rice bran hydrolysate to ethanol using Zymomonas mobilis biofilm immobilization on DEAE-cellulose. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Willrodt C, Karande R, Schmid A, Julsing MK. Guiding efficient microbial synthesis of non-natural chemicals by physicochemical properties of reactants. Curr Opin Biotechnol 2015; 35:52-62. [PMID: 25835779 DOI: 10.1016/j.copbio.2015.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/18/2022]
Abstract
The recent progress in sustainable chemistry and in synthetic biology increased the interest of chemical and pharmaceutical industries to implement microbial processes for chemical synthesis. However, most organisms used in biotechnological applications are not evolved by Nature for the production of hydrophobic, non-charged, volatile, or toxic compounds. In order to overcome this discrepancy, bioprocess design should consist of an integrated approach addressing pathway, cellular, reaction, and process engineering. Highlighting selected examples, we show that surprisingly often Nature provides conceptual solutions to enable chemical synthesis. Complemented by established methods from (bio)chemical and metabolic engineering, these concepts offer potential strategies yet to be explored and translated into innovative technical solutions enabling sustainable microbial production of non-natural chemicals.
Collapse
Affiliation(s)
- Christian Willrodt
- Department of Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Mattijs K Julsing
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
35
|
Seviour T, Weerachanchai P, Hinks J, Roizman D, Rice SA, Bai L, Lee JM, Kjelleberg S. Solvent optimization for bacterial extracellular matrices: a solution for the insoluble. RSC Adv 2015. [DOI: 10.1039/c4ra10930a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids enable solvent optimization for different biofilms through solubility parameter concept.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Piyarat Weerachanchai
- Nanyang Environment and Water Research Institute (NEWRI)
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Dan Roizman
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Scott A. Rice
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- School of Biological Sciences (SBS)
- Nanyang Technological University
| | - Linlu Bai
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- Centre for Marine BioInnovation and School of Biotechnology and Biomolecular Sciences
- University of New South Wales
| |
Collapse
|
36
|
|
37
|
Karande R, Halan B, Schmid A, Buehler K. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 2014; 111:1831-40. [PMID: 24729096 DOI: 10.1002/bit.25256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
Abstract
Biofilm reactors are often mass transfer limited due to excessive biofilm growth, impeding reactor performance. Fluidic conditions play a key role for biofilm structural development and subsequently for overall reactor performance. Continuous interfacial forces generated by aqueous-air segmented flow are controlling biofilm structure and diminish mass transfer limitations in biofilm microreactors. A simple three step method allows the formation of robust biofilms under aqueous-air segmented flow conditions: a first-generation biofilm is developing during single phase flow, followed by the introduction of air segments discarding most of the established biofilm. Finally, a second-generation, mature biofilm is formed in the presence of aqueous-air segments. Confocal laser scanning microscopy experiments revealed that the segmented flow supports the development of a robust biofilm. This mature biofilm is characterized by a three to fourfold increase in growth rate, calculated from an increase in thickness, a faster spatial distribution (95% surface coverage in 24 h), and a significantly more compact structure (roughness coefficient <1), as compared to biofilms grown under single phase flow conditions. The applicability of the concept in a segmented flow biofilm microreactor was demonstrated using the epoxidation of styrene to (S)-styrene oxide (ee > 99.8%) catalyzed by Pseudomonas sp. strain VLB120ΔC cells in the mono-species biofilm. The limiting factor affecting reactor performance was oxygen transfer as the volumetric productivity rose from 11 to 46 g L tube (-1) day(-1) after increasing the air flow rate. In summary, different interfacial forces can be applied for separating cell attachment and adaptation resulting in the development of a robust catalytic biofilm in continuous microreactors.
Collapse
Affiliation(s)
- Rohan Karande
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, Dortmund, 44227, Germany
| | | | | | | |
Collapse
|
38
|
Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. N Biotechnol 2014; 31:451-9. [PMID: 24930397 DOI: 10.1016/j.nbt.2014.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 05/25/2014] [Accepted: 06/01/2014] [Indexed: 11/30/2022]
Abstract
Microorganisms play a significant role in bioethanol production from lignocellulosic material. A challenging problem in bioconversion of rice bran is the presence of toxic inhibitors in lignocellulosic acid hydrolysate. Various strains of Zymomonas mobilis (ZM4, TISTR 405, 548, 550 and 551) grown under biofilm or planktonic modes were used in this study to examine their potential for bioconversion of rice bran hydrolysate and ethanol production efficiencies. Z. mobilis readily formed bacterial attachment on plastic surfaces, but not on glass surfaces. Additionally, the biofilms formed on plastic surfaces steadily increased over time, while those formed on glass were speculated to cycle through accumulation and detachment phases. Microscopic analysis revealed that Z. mobilis ZM4 rapidly developed homogeneous biofilm structures within 24 hours, while other Z. mobilis strains developed heterogeneous biofilm structures. ZM4 biofilms were thicker and seemed to be more stable than other Z. mobilis strains. The percentage of live cells in biofilms was greater than that for planktonic cells (54.32 ± 7.10% vs. 28.69 ± 3.03%), suggesting that biofilms serve as a protective niche for growth of bacteria in the presence of toxic inhibitors in the rice bran hydrolysate. The metabolic activity of ZM4 grown as a biofilm was also higher than the same strain grown planktonically, as measured by ethanol production from rice bran hydrolysate (13.40 ± 2.43 g/L vs. 0.432 ± 0.29 g/L, with percent theoretical ethanol yields of 72.47 ± 6.13% and 3.71 ± 5.24% respectively). Strain TISTR 551 was also quite metabolically active, with ethanol production by biofilm and planktonically grown cells of 8.956 ± 4.06 g/L and 0.0846 ± 0.064 g/L (percent theoretical yields were 48.37 ± 16.64% and 2.046 ± 1.58%, respectively). This study illustrates the potential for enhancing ethanol production by utilizing bacterial biofilms in the bioconversion of a readily available and normally unusable low value by-product of rice farming.
Collapse
Affiliation(s)
| | | | | | - Glenn M Young
- Food Science and Technology, University of California, Davis 95616, USA
| | | |
Collapse
|
39
|
Teh KH, Lindsay D, Palmer J, Andrewes P, Bremer P, Flint S. Proteolysis in ultra-heat-treated skim milk after exposure to multispecies biofilms under conditions modelling a milk tanker. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koon Hoong Teh
- Institute of Food, Nutrition and Human Health; Massey University; Private Bag 11222 Palmerston North New Zealand
- Fonterra Research Centre; Private Bag 11029 Palmerston North New Zealand
| | - Denise Lindsay
- Fonterra Research Centre; Private Bag 11029 Palmerston North New Zealand
| | - Jon Palmer
- Institute of Food, Nutrition and Human Health; Massey University; Private Bag 11222 Palmerston North New Zealand
| | - Paul Andrewes
- Fonterra Research Centre; Private Bag 11029 Palmerston North New Zealand
| | - Phil Bremer
- Department of Food Science; University of Otago; PO Box 56 Dunedin New Zealand
| | - Steve Flint
- Institute of Food, Nutrition and Human Health; Massey University; Private Bag 11222 Palmerston North New Zealand
| |
Collapse
|
40
|
Schrewe M, Julsing MK, Bühler B, Schmid A. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Chem Soc Rev 2014; 42:6346-77. [PMID: 23475180 DOI: 10.1039/c3cs60011d] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the last decades, biocatalysis became of increasing importance for chemical and pharmaceutical industries. Regarding regio- and stereospecificity, enzymes have shown to be superior compared to traditional chemical synthesis approaches, especially in C-O functional group chemistry. Catalysts established on a process level are diverse and can be classified along a functional continuum starting with single-step biotransformations using isolated enzymes or microbial strains towards fermentative processes with recombinant microorganisms containing artificial synthetic pathways. The complex organization of respective enzymes combined with aspects such as cofactor dependency and low stability in isolated form often favors the use of whole cells over that of isolated enzymes. Based on an inventory of the large spectrum of biocatalytic C-O functional group chemistry, this review focuses on highlighting the potentials, limitations, and solutions offered by the application of self-regenerating microbial cells as biocatalysts. Different cellular functionalities are discussed in the light of their (possible) contribution to catalyst efficiency. The combined achievements in the areas of protein, genetic, metabolic, and reaction engineering enable the development of whole-cell biocatalysts as powerful tools in organic synthesis.
Collapse
Affiliation(s)
- Manfred Schrewe
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
41
|
|
42
|
Application of biofilm bioreactors in white biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:123-61. [PMID: 24402458 DOI: 10.1007/10_2013_267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of valuable compounds in industrial biotechnology is commonly done by cultivation of suspended cells or use of (immobilized) enzymes rather than using microorganisms in an immobilized state. Within the field of wastewater as well as odor treatment the application of immobilized cells is a proven technique. The cells are entrapped in a matrix of extracellular polymeric compounds produced by themselves. The surface-associated agglomerate of encapsulated cells is termed biofilm. In comparison to common immobilization techniques, toxic effects of compounds used for cell entrapment may be neglected. Although the economic impact of biofilm processes used for the production of valuable compounds is negligible, many prospective approaches were examined in the laboratory and on a pilot scale. This review gives an overview of biofilm reactors applied to the production of valuable compounds. Moreover, the characteristics of the utilized materials are discussed with respect to support of surface-attached microbial growth.
Collapse
|
43
|
Perni S, Hackett L, Goss RJM, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express 2013; 3:66. [PMID: 24188712 PMCID: PMC3843566 DOI: 10.1186/2191-0855-3-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022] Open
Abstract
Engineered biofilms comprising a single recombinant species have demonstrated remarkable activity as novel biocatalysts for a range of applications. In this work, we focused on the biotransformation of 5-haloindole into 5-halotryptophan, a pharmaceutical intermediate, using Escherichia coli expressing a recombinant tryptophan synthase enzyme encoded by plasmid pSTB7. To optimise the reaction we compared two E. coli K-12 strains (MC4100 and MG1655) and their ompR234 mutants, which overproduce the adhesin curli (PHL644 and PHL628). The ompR234 mutation increased the quantity of biofilm in both MG1655 and MC4100 backgrounds. In all cases, no conversion of 5-haloindoles was observed using cells without the pSTB7 plasmid. Engineered biofilms of strains PHL628 pSTB7 and PHL644 pSTB7 generated more 5-halotryptophan than their corresponding planktonic cells. Flow cytometry revealed that the vast majority of cells were alive after 24 hour biotransformation reactions, both in planktonic and biofilm forms, suggesting that cell viability was not a major factor in the greater performance of biofilm reactions. Monitoring 5-haloindole depletion, 5-halotryptophan synthesis and the percentage conversion of the biotransformation reaction suggested that there were inherent differences between strains MG1655 and MC4100, and between planktonic and biofilm cells, in terms of tryptophan and indole metabolism and transport. The study has reinforced the need to thoroughly investigate bacterial physiology and make informed strain selections when developing biotransformation reactions.
Collapse
|
44
|
Ishikawa M, Shigemori K, Hori K. Application of the adhesive bacterionanofiber AtaA to a novel microbial immobilization method for the production of indigo as a model chemical. Biotechnol Bioeng 2013; 111:16-24. [PMID: 23893702 DOI: 10.1002/bit.25012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022]
Abstract
The toluene-degrading bacterium Acinetobacter sp. Tol 5 shows high adhesiveness mediated by the bacterionanofiber protein AtaA, which is a new member of the trimeric autotransporter adhesin (TAA) family. In contrast to other reported TAAs, AtaA mediates the adhesion of Tol 5 to various abiotic surfaces ranging from hydrophobic plastics to hydrophilic glass and stainless steel. The expression of ataA in industrially relevant bacteria improves their adhesiveness and enables immobilization directly onto support materials. This represents a new method that can be alternated with conventional immobilization via gel entrapment and chemical bonding. In this study, we demonstrate the feasibility of this immobilizing method by utilizing AtaA. As a model case for this method, the indigo producer Acinetobacter sp. ST-550 was transformed with ataA and immobilized on a polyurethane support. The immobilized ST-550 cells were transferred directly to a reaction solution containing indole as the substrate. The immobilized ST-550 cells showed a faster indigo production rate at high concentrations of indole compared with planktonic ST-550 not expressing the ataA gene, implying that immobilization enhanced the tolerance of ST-550 to the substrate indole. As a result, the immobilized ST-550 produced fivefold higher levels of indigo than planktonic ST-550. These results proved that AtaA is useful for bacterial immobilization.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | |
Collapse
|
45
|
Mishra S, Upadhyay RS, Nautiyal CS. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 2013; 97:5659-68. [DOI: 10.1007/s00253-013-4885-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/25/2013] [Accepted: 03/30/2013] [Indexed: 10/26/2022]
|
46
|
Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 2012; 30:453-65. [PMID: 22704028 DOI: 10.1016/j.tibtech.2012.05.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/04/2012] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
Abstract
Biofilms are resilient to a wide variety of environmental stresses. This inherited robustness has been exploited mainly for bioremediation. With a better understanding of their physiology, the application of these living catalysts has been extended to the production of bulk and fine chemicals as well as towards biofuels, biohydrogen, and electricity production in microbial fuel cells. Numerous challenges call for novel solutions and concepts of analytics, biofilm reactor design, product recovery, and scale-up strategies. In this review, we highlight recent advancements in spatiotemporal biofilm characterization and new biofilm reactor developments for the production of value-added fine chemicals as well as current challenges and future scenarios.
Collapse
Affiliation(s)
- Babu Halan
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund 44227, Germany
| | | | | |
Collapse
|
47
|
Mishra S, Mishra A, Chauhan P, Mishra S, Kumari M, Niranjan A, Nautiyal C. Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 2012; 112:793-808. [DOI: 10.1111/j.1365-2672.2012.05256.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Winn M, Foulkes JM, Perni S, Simmons MJH, Overton TW, Goss RJM. Biofilms and their engineered counterparts: A new generation of immobilised biocatalysts. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20085f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Schenkmayerová A, Bučko M, Gemeiner P, Chorvát D, Lacík I. Viability of free and encapsulated Escherichia coli overexpressing cyclopentanone monooxygenase monitored during model Baeyer–Villiger biooxidation by confocal laser scanning microscopy. Biotechnol Lett 2011; 34:309-14. [DOI: 10.1007/s10529-011-0765-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
|
50
|
Real-time solvent tolerance analysis of pseudomonas sp. strain VLB120{Delta}C catalytic biofilms. Appl Environ Microbiol 2010; 77:1563-71. [PMID: 21193676 DOI: 10.1128/aem.02498-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms are ubiquitous surface-associated microbial communities embedded in an extracellular polymeric (EPS) matrix, which gives the biofilm structural integrity and strength. It is often reported that biofilm-grown cells exhibit enhanced tolerance toward adverse environmental stress conditions, and thus there has been a growing interest in recent years to use biofilms for biotechnological applications. We present a time- and locus-resolved, noninvasive, quantitative approach to study biofilm development and its response to the toxic solvent styrene. Pseudomonas sp. strain VLB120ΔC-BT-gfp1 was grown in modified flow-cell reactors and exposed to the solvent styrene. Biofilm-grown cells displayed stable catalytic activity, producing (S)-styrene oxide continuously during the experimental period. The pillar-like structure and growth rate of the biofilm was not influenced by the presence of the solvent. However, the cells experience severe membrane damage during styrene treatment, although they obviously are able to adapt to the solvent, as the amount of permeabilized cells decreased from 75 to 80% down to 40% in 48 h. Concomitantly, the fraction of concanavalin A (ConA)-stainable EPS increased, substantiating the assumption that those polysaccharides play a major role in structural integrity and enhanced biofilm tolerance toward toxic environments. Compared to control experiments with planktonic grown cells, the Pseudomonas biofilm adapted much better to toxic concentrations of styrene, as nearly 65% of biofilm cells were not permeabilized (viable), compared to only 7% in analogous planktonic cultures. These findings underline the robustness of biofilms under stress conditions and its potential for fine chemical syntheses.
Collapse
|