1
|
Sepúlveda-Cuéllar RD, Soria-Medina DA, Cañedo-Solares I, Gómez-Chávez F, Molina-López LM, Cruz-Martínez MY, Correa D. Controversies and insights into cytokine regulation of neurogenesis and behavior in adult rodents. Front Immunol 2025; 16:1550660. [PMID: 40352932 PMCID: PMC12061686 DOI: 10.3389/fimmu.2025.1550660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 05/14/2025] Open
Abstract
Adult learning, memory, and social interaction partially depend on neurogenesis in two regions: the hippocampus and the subventricular zone. There is evidence that the immune system is important for these processes in pathological situations, but there is no review of its role in non-pathological or near-physiological conditions. Although further research is warranted in this area, some conclusions can be drawn. Intrusive LyC6hi monocytes and autoreactive CD4+ T cells have a positive impact on neurogenesis and behavior, but the latter are deleterious if specific to external antigens. Mildly activated microglia play a crucial role in promoting these processes, by eliminating apoptotic neuronal progenitors and producing low levels of interleukins, which increase if the cells are activated, leading to inhibition of neurogenesis. Chemokines are poorly studied, but progenitor cells and neurons express their receptors, which appear important for migration and maturation. The few works that jointly analyzed neurogenesis and behavior showed congruent effects of immune cells and cytokines. In conclusion, the immune system components -mostly local- seem of utmost importance for the control of behavior under non-pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Daniel Sepúlveda-Cuéllar
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Diego Alberto Soria-Medina
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
- Facultad de Psicología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Irma Cañedo-Solares
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría (INP), Secretaría de Salud, Ciudad de México, Mexico
| | - Fernando Gómez-Chávez
- Laboratorio de Enfermedades Osteoarticulares e Inmunológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Liliana Monserrat Molina-López
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - María Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| | - Dolores Correa
- Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, EdoMex, Mexico
| |
Collapse
|
2
|
Villanueva CB, Stephensen HJT, Mokso R, Benraiss A, Sporring J, Goldman SA. Astrocytic engagement of the corticostriatal synaptic cleft is disrupted in a mouse model of Huntington's disease. Proc Natl Acad Sci U S A 2023; 120:e2210719120. [PMID: 37279261 PMCID: PMC10268590 DOI: 10.1073/pnas.2210719120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Astroglial dysfunction contributes to the pathogenesis of Huntington's disease (HD), and glial replacement can ameliorate the disease course. To establish the topographic relationship of diseased astrocytes to medium spiny neuron (MSN) synapses in HD, we used 2-photon imaging to map the relationship of turboRFP-tagged striatal astrocytes and rabies-traced, EGFP-tagged coupled neuronal pairs in R6/2 HD and wild-type (WT) mice. The tagged, prospectively identified corticostriatal synapses were then studied by correlated light electron microscopy followed by serial block-face scanning EM, allowing nanometer-scale assessment of synaptic structure in 3D. By this means, we compared the astrocytic engagement of single striatal synapses in HD and WT brains. R6/2 HD astrocytes exhibited constricted domains, with significantly less coverage of mature dendritic spines than WT astrocytes, despite enhanced engagement of immature, thin spines. These data suggest that disease-dependent changes in the astroglial engagement and sequestration of MSN synapses enable the high synaptic and extrasynaptic levels of glutamate and K+ that underlie striatal hyperexcitability in HD. As such, these data suggest that astrocytic structural pathology may causally contribute to the synaptic dysfunction and disease phenotype of those neurodegenerative disorders characterized by network overexcitation.
Collapse
Affiliation(s)
- Carlos Benitez Villanueva
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
| | - Hans J. T. Stephensen
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Rajmund Mokso
- Faculty of Engineering, Division of Solid Mechanics, Lund University, Lund22100, Sweden
| | - Abdellatif Benraiss
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen, Faculty of Science, Copenhagen N2200, Denmark
| | - Steven A. Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen N2200, Denmark
- Center for Translational Neuroscience, Department of Neurology, University of Rochester Medical Center, Rochester, NY14642
| |
Collapse
|
3
|
Caspani G, Green M, Swann JR, Foster JA. Microbe-Immune Crosstalk: Evidence That T Cells Influence the Development of the Brain Metabolome. Int J Mol Sci 2022; 23:3259. [PMID: 35328680 PMCID: PMC8952415 DOI: 10.3390/ijms23063259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Cross-talk between the immune system and the brain is essential to neuronal development, neuronal excitability, neuroplasticity, and neurotransmission. Gut microbiota are essential to immune system development and immune function; hence, it is essential to consider more broadly the microbiota-immune-brain axis in neurodevelopment. The gut, brain, and microbial metabolomes obtained from C57Bl/6 and T-cell-deficient mice across four developmental timepoints (postnatal day 17, 24, 28, and 84) were studied by 1H NMR spectroscopy. 16S rRNA gene sequencing was performed on cecal and fecal samples. In the absence of T-cells, the developmental trajectory of the gut microbiota and of the host's metabolic profile was altered. The novel insights from this work include (1) the requirement of functional T-cells for the normal trajectory of microbiotal development and the metabolic maturation of the supra-organism, (2) the potential role for Muribaculaceae taxa in modulating the cecal availability of metabolites previously implicated with a role in the gut-brain axis in T-cell deficient mice, and (3) the impact of T-cell-deficiency on central levels of neuroactive metabolites.
Collapse
Affiliation(s)
- Giorgia Caspani
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (G.C.); (J.R.S.)
| | - Miranda Green
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Jonathan R. Swann
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK; (G.C.); (J.R.S.)
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Jane A. Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4L8, Canada;
- St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada
- Centre for Depression and Suicide Studies, St. Michael’s Hospital, Toronto, ON M5B 1A6, Canada
| |
Collapse
|
4
|
Kunz N, Kemper C. Complement Has Brains-Do Intracellular Complement and Immunometabolism Cooperate in Tissue Homeostasis and Behavior? Front Immunol 2021; 12:629986. [PMID: 33717157 PMCID: PMC7946832 DOI: 10.3389/fimmu.2021.629986] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.
Collapse
Affiliation(s)
- Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Jeuthe S, Kemna J, Kemna CP, Zocholl D, Klopfleisch R, Palme R, Kirschbaum C, Thoene-Reineke C, Kammertoens T. Stress hormones or general well-being are not altered in immune-deficient mice lacking either T- and B- lymphocytes or Interferon gamma signaling if kept under specific pathogen free housing conditions. PLoS One 2020; 15:e0239231. [PMID: 32997686 PMCID: PMC7526874 DOI: 10.1371/journal.pone.0239231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022] Open
Abstract
It is controversially discussed whether immune-deficient mice experience severity in the absence of infection. Because a comprehensive analysis of the well-being of immune-deficient mice under specific pathogen free conditions is missing, we used a multi-parametric test analyzing, corticosterone, weight, nest building and facial expression over a period of 9 month to determine the well-being of two immune-deficient mouse lines (recombination activating gene 2- and interferon gamma receptor-deficient mice). We do not find evidence for severity when comparing immune-deficient mice to their heterozygous immune-competent littermates. Our data challenge the assumption that immune-deficiency per se regardless of housing conditions causes severity. Based on our study we propose to use objective non-invasive parameters determined by laboratory animal science for decisions concerning severity of immune-deficient mice.
Collapse
Affiliation(s)
- Sarah Jeuthe
- Animal Facility of the Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Josephine Kemna
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| | | | - Dario Zocholl
- Institut für Biometrie und Klinische Epidemiologie, Charité Campus Mitte, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Christa Thoene-Reineke
- Department of Veterinary Medicine, Institute for Animal Welfare, Animal Behavior and Laboratory Animal Science, Free University, Berlin, Germany
| | - Thomas Kammertoens
- Department of Gene Therapy and Molecular Immunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute of Immunology, Charité Campus Berlin Buch, Berlin, Germany
| |
Collapse
|
6
|
Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD, Theys T, Mancuso R, Tito RY, Kouser L, Callaerts-Vegh Z, de la Fuente AG, Prezzemolo T, Mascali LG, Brajic A, Whyte CE, Yshii L, Martinez-Muriana A, Naughton M, Young A, Moudra A, Lemaitre P, Poovathingal S, Raes J, De Strooper B, Fitzgerald DC, Dooley J, Liston A. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell 2020; 182:625-640.e24. [PMID: 32702313 PMCID: PMC7427333 DOI: 10.1016/j.cell.2020.06.026] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 03/05/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023]
Abstract
The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. Video Abstract
Residential CD4 T cells are present in the healthy mouse and human brain Brain residency is a transient program initiated in situ and lasting weeks CD4 T cell entry around birth drives a transcriptional maturation step in microglia Absence of CD4 T cells results in defective synaptic pruning and behavior
Collapse
Affiliation(s)
- Emanuela Pasciuto
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Oliver T Burton
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Carlos P Roca
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Vasiliki Lagou
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Wenson D Rajan
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosurgery, UZ Leuven, Leuven 3000, Belgium
| | - Renzo Mancuso
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Raul Y Tito
- Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Lubna Kouser
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Alerie G de la Fuente
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Teresa Prezzemolo
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Loriana G Mascali
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Aleksandra Brajic
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Carly E Whyte
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Lidia Yshii
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Anna Martinez-Muriana
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | - Michelle Naughton
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Andrew Young
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alena Moudra
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Pierre Lemaitre
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium
| | | | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; VIB-KU Leuven Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven-University of Leuven, Leuven 3000, Belgium; Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Denise C Fitzgerald
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT7 1NN, UK
| | - James Dooley
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Adrian Liston
- VIB Center for Brain and Disease Research, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, KU Leuven-University of Leuven, Leuven 3000, Belgium; Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
7
|
Rilett KC, Luo OD, McVey-Neufeld KA, MacKenzie RN, Foster JA. Loss of T cells influences sex differences in stress-related gene expression. J Neuroimmunol 2020; 343:577213. [PMID: 32278229 DOI: 10.1016/j.jneuroim.2020.577213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Deficiencies in the adaptive immune system have been linked to anxiety-like behaviours and stress reactivity. Mice lacking T lymphocytes through knockout of the T cell receptor (TCR) β and δ chains were compared to wild type C57Bl/6 mice. Central stress circuitry gene expression was assessed following repeated restraint stress. TCRβ-/-δ-/- mice showed an increased baseline plasma corticosterone and exaggerated changes in stress-related gene expression after repeated restraint stress. Sexual dimorphic stress responses were observed in wild-type C57Bl/6 mice but not in TCRβ-/-δ-/- mice. These data suggest that T cell-brain interactions influence sex-differences in CNS stress circuitry and stress reactivity.
Collapse
Affiliation(s)
- Kelly C Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Owen D Luo
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Karen-Anne McVey-Neufeld
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| | - Robyn N MacKenzie
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
8
|
Stress-Induced Metabolic Disorder in Peripheral CD4+ T Cells Leads to Anxiety-like Behavior. Cell 2019; 179:864-879.e19. [DOI: 10.1016/j.cell.2019.10.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/15/2019] [Accepted: 10/01/2019] [Indexed: 01/13/2023]
|
9
|
Bennett FC, Molofsky AV. The immune system and psychiatric disease: a basic science perspective. Clin Exp Immunol 2019; 197:294-307. [PMID: 31125426 PMCID: PMC6693968 DOI: 10.1111/cei.13334] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Mental illness exerts a major burden on human health, yet evidence-based treatments are rudimentary due to a limited understanding of the underlying pathologies. Clinical studies point to roles for the immune system in psychiatric diseases, while basic science has revealed that the brain has an active and multi-cellular resident immune system that interacts with peripheral immunity and impacts behavior. In this perspective, we highlight evidence of immune involvement in human psychiatric disease and review data from animal models that link immune signaling to neuronal function and behavior. We propose a conceptual framework for linking advances in basic neuroimmunology to their potential relevance for psychiatric diseases, based on the subtypes of immune responses defined in peripheral tissues. Our goal is to identify novel areas of focus for future basic and translational studies that may reveal the potential of the immune system for diagnosing and treating mental illnesses.
Collapse
Affiliation(s)
- F. C. Bennett
- Department of Psychiatry, Perelman School of MedicineUniversity of Pennsylvania, The Children's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - A. V. Molofsky
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoSan FranciscoCAUSA
| |
Collapse
|
10
|
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med 2018; 24:542-559. [PMID: 29731353 PMCID: PMC6044730 DOI: 10.1016/j.molmed.2018.04.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Abstract
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Clark SM, Vaughn CN, Soroka JA, Li X, Tonelli LH. Neonatal adoptive transfer of lymphocytes rescues social behaviour during adolescence in immune-deficient mice. Eur J Neurosci 2018; 47:968-978. [PMID: 29430738 DOI: 10.1111/ejn.13860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Accumulating evidence has shown that lymphocytes modulate behaviour and cognition by direct interactions with the central nervous system. Studies have shown that reconstitution by adoptive transfer of lymphocytes from wild type into immune-deficient mice restores a number of neurobehavioural deficits observed in these models. Moreover, it has been shown that these effects are mostly mediated by T lymphocytes. Studies of adoptive transfer thus far have employed adult mice, but whether lymphocytes may also modulate behaviour during development remains unknown. In this study, neonate lymphocyte-deficient Rag2-/- mice were reconstituted within 48 hours after birth with lymphoid cells from transgenic donors expressing green fluorescent protein, allowing for their identification in various tissues in recipient mice while retaining all functional aspects. Adolescent Rag2-/- and reconstituted Rag2-/- along with C57BL/6J wild-type mice underwent a series of behavioural tests, including open field, social interaction and sucrose preference tests. At 12 weeks, they were evaluated in the Morris water maze (MWM). Reconstituted mice showed changes in almost all aspects of behaviour that were assessed, with a remarkable complete rescue of impaired social behaviour displayed by adolescent Rag2-/- mice. Consistent with previous reports in adult mice, neonatal reconstitution in Rag2-/- mice restored spatial memory in the MWM. The presence of donor lymphocytes in the brain of neonatally reconstituted Rag2-/- mice was confirmed at various developmental points. These findings provide evidence that lymphocytes colonize the brain during post-natal development and modulate behaviour across the lifespan supporting a role for adaptive immunity during brain maturation.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Chloe N Vaughn
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Jennifer A Soroka
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore Street, MSTF Building Room 934E, Baltimore, MD, 21201, USA.,Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
12
|
Herkenham M, Kigar SL. Contributions of the adaptive immune system to mood regulation: Mechanisms and pathways of neuroimmune interactions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:49-57. [PMID: 27613155 PMCID: PMC5339070 DOI: 10.1016/j.pnpbp.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Clinical and basic studies of functional interactions between adaptive immunity, affective states, and brain function are reviewed, and the neural, humoral, and cellular routes of bidirectional communication between the brain and the adaptive immune system are evaluated. In clinical studies of depressed populations, lymphocytes-the principal cells of the adaptive immune system-exhibit altered T cell subtype ratios and CD4+ helper T cell polarization profiles. In basic studies using psychological stress to model depression, T cell profiles are altered as well, consistent with stress effects conveyed by the hypothalamic-pituitary-adrenal axis and sympathetic nervous system. Lymphocytes in turn have effects on behavior and CNS structure and function. CD4+ T cells in particular appear to modify affective behavior and rates of hippocampal dentate gyrus neurogenesis. These observations force the question of how such actions are carried out. CNS effects may occur via cellular and molecular mechanisms whereby effector memory T cells and the cytokine profiles they produce in the blood interact with the blood-brain barrier in ways that remain to be clarified. Understanding the mechanisms by which T cells polarize and interact with the brain to alter mood states is key to advances in the field, and may permit development of therapies that target cells in the periphery, thus bypassing problems associated with bioavailability of drugs within the brain.
Collapse
Affiliation(s)
- Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | - Stacey L Kigar
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
13
|
Scheinert RB, Haeri MH, Lehmann ML, Herkenham M. Therapeutic effects of stress-programmed lymphocytes transferred to chronically stressed mice. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:1-7. [PMID: 27109071 PMCID: PMC4925280 DOI: 10.1016/j.pnpbp.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
Our group has recently provided novel insights into a poorly understood component of intercommunication between the brain and the immune system by showing that psychological stress can modify lymphocytes in a manner that may boost resilience to psychological stress. To demonstrate the influence of the adaptive immune system on mood states, we previously showed that cells from lymph nodes of socially defeated mice, but not from unstressed mice, conferred anxiolytic and antidepressant-like effects and elevated hippocampal cell proliferation when transferred into naïve lymphopenic Rag2(-/-) mice. In the present study, we asked whether similar transfer could be anxiolytic and antidepressant when done in animals that had been rendered anxious and depressed by chronic psychological stress. First, we demonstrated that lymphopenic Rag2(-/-) mice and their wild-type C57BL/6 mouse counterparts had similar levels of affect normally. Second, we found that following chronic (14days) restraint stress, both groups displayed an anxious and depressive-like phenotype and decreased hippocampal cell proliferation. Third, we showed that behavior in the open field test and light/dark box was normalized in the restraint-stressed Rag2(-/-) mice following adoptive transfer of lymph node cells from green fluorescent protein (GFP) expressing donor mice previously exposed to chronic (14days) of social defeat stress. Cells transferred from unstressed donor mice had no effect on behavior. Immunolabeling of GFP+ cells confirmed that tissue engraftment had occurred at 14days after transfer. We found GFP+ lymphocytes in the spleen, lymph nodes, blood, choroid plexus, and meninges of the recipient Rag2(-/-) mice. The findings suggest that the adaptive immune system may play a key role in promoting recovery from chronic stress. The data support using lymphocytes as a novel therapeutic target for anxiety states.
Collapse
Affiliation(s)
- Rachel B Scheinert
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Mitra H Haeri
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Michael L Lehmann
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| |
Collapse
|
14
|
Jeon SG, Kim KA, Chung H, Choi J, Song EJ, Han SY, Oh MS, Park JH, Kim JI, Moon M. Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels. Mol Cells 2016; 39:603-10. [PMID: 27432189 PMCID: PMC4990752 DOI: 10.14348/molcells.2016.0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Kyoung Ah Kim
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Junghyun Choi
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 0527,
Korea
| | - Eun Ji Song
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Dajeon 35365,
Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447,
Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 61186,
Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju 63243,
Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Dajeon 35365,
Korea
- Konyang University Myunggok Medical Research Institute, Dajeon 35365,
Korea
| |
Collapse
|
15
|
Foster JA, Lyte M, Meyer E, Cryan JF. Gut Microbiota and Brain Function: An Evolving Field in Neuroscience. Int J Neuropsychopharmacol 2016; 19:pyv114. [PMID: 26438800 PMCID: PMC4886662 DOI: 10.1093/ijnp/pyv114] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023] Open
Abstract
There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations.
Collapse
Affiliation(s)
- Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan).
| | - Mark Lyte
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - Emeran Meyer
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| | - John F Cryan
- Department of Psychiatry & Behavioral Neurosciences, McMaster University; and Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada (Dr Foster); Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Dr Lyte); Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (Dr Meyer); Department of Anatomy & Neuroscience and APC Microbiome Institute, University College Cork, Ireland (Dr Cryan)
| |
Collapse
|
16
|
Clark SM, Soroka JA, Song C, Li X, Tonelli LH. CD4(+) T cells confer anxiolytic and antidepressant-like effects, but enhance fear memory processes in Rag2(-/-) mice. Stress 2016; 19:303-11. [PMID: 27295202 PMCID: PMC4960826 DOI: 10.1080/10253890.2016.1191466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence supports a role of T cells in behavioral stress responsiveness. Our laboratory previously reported that lymphocyte deficient Rag2(-/-) mice on a BALB/c background display resilience to maladaptive stress responses when compared with immune competent mice in the predator odor exposure (POE) paradigm, while exhibiting similar behavior in a cued fear-conditioning (FC) paradigm. In the present study, Rag2(-/-) mice on a C57BL/6 background were assessed in the same behavioral paradigms, as well as additional tests of anxiety and depressive-like behavior. Furthermore, the effects of naïve CD4(+ ) T cells were evaluated by adoptive transfer of functional cells from nonstressed, wild-type donors to Rag2(-/-) mice. Consistent with our prior results, Rag2(-/-) mice displayed an attenuated startle response after POE. Nevertheless, reconstitution of Rag2(-/-) mice with CD4(+ ) T cells did not modify startle reactivity. Additionally, in contrast with our previous findings, Rag2(-/-) mice showed attenuated fear responses in the FC paradigm compared to wild-type mice and reconstitution with CD4(+ ) T cells promoted fear learning and memory. Notably, reconstitution with CD4(+ ) T cells had anxiolytic and antidepressant-like effects in Rag2(-/-) mice that had not been previously stressed, but had no effect after POE. Taken together, our results support a role of CD4(+ ) T cells in emotionality, but also indicate that they may promote fear responses by enhancing learning and memory processes.
Collapse
Affiliation(s)
- Sarah M. Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD
- Corresponding author: Sarah M. Clark, PhD, 685 West Baltimore Street, MSTF 934-E, Baltimore, MD 21201, , Telephone: 410-706-2325
| | - Jennifer A Soroka
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Chang Song
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Xin Li
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD
| |
Collapse
|
17
|
|
18
|
Identification and Characterization of the V(D)J Recombination Activating Gene 1 in Long-Term Memory of Context Fear Conditioning. Neural Plast 2015; 2016:1752176. [PMID: 26843989 PMCID: PMC4710954 DOI: 10.1155/2016/1752176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.
Collapse
|
19
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
20
|
Viggiano A, Cacciola G, Widmer DAJ, Viggiano D. Anxiety as a neurodevelopmental disorder in a neuronal subpopulation: Evidence from gene expression data. Psychiatry Res 2015; 228:729-40. [PMID: 26089015 DOI: 10.1016/j.psychres.2015.05.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/14/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
The relationship between genes and anxious behavior, is nor linear nor monotonic. To address this problem, we analyzed with a meta-analytic method the literature data of the behavior of knockout mice, retrieving 33 genes whose deletion was accompanied by increased anxious behavior, 34 genes related to decreased anxious behavior and 48 genes not involved in anxiety. We correlated the anxious behavior resulting from the deletion of these genes to their brain expression, using the Allen Brain Atlas and Gene Expression Omnibus (GEO) database. The main finding is that the genes accompanied, after deletion, by a modification of the anxious behavior, have lower expression in the cerebral cortex, the amygdala and the ventral striatum. The lower expression level was putatively due to their selective presence in a neuronal subpopulation. This difference was replicated also using a database of human gene expression, further showing that the differential expression pertained, in humans, a temporal window of young postnatal age (4 months up to 4 years) but was not evident at fetal or adult human stages. Finally, using gene enrichment analysis we also show that presynaptic genes are involved in the emergence of anxiety and postsynaptic genes in the reduction of anxiety after gene deletion.
Collapse
Affiliation(s)
- Adela Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | - Giovanna Cacciola
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Health Sciences, University of Molise, Campobasso 86100, Italy; Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Italy.
| |
Collapse
|
21
|
Rilett KC, Friedel M, Ellegood J, MacKenzie RN, Lerch JP, Foster JA. Loss of T cells influences sex differences in behavior and brain structure. Brain Behav Immun 2015; 46:249-60. [PMID: 25725160 DOI: 10.1016/j.bbi.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior.
Collapse
Affiliation(s)
- Kelly C Rilett
- Neurosci. Grad Program, McMaster Univ., Hamilton, ON, Canada
| | - Miriam Friedel
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada
| | - Robyn N MacKenzie
- Psychiatry & Behavioural Neurosciences, McMaster Univ., Hamilton, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jane A Foster
- Psychiatry & Behavioural Neurosciences, McMaster Univ., Hamilton, ON, Canada; Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.
| |
Collapse
|
22
|
Petitto JM, Cushman JD, Huang Z. Effects of Brain-Derived IL-2 Deficiency and the Development of Autoimmunity on Spatial Learning and Fear Conditioning. ACTA ACUST UNITED AC 2015; 3:196. [PMID: 25961067 PMCID: PMC4423554 DOI: 10.4172/2329-6895.1000196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-2 (IL-2) has been implicated in neurological disorders including multiple sclerosis and Alzheimer’s disease. Peripheral IL-2 deficiency in gene-deleted mice results in T cell mediated autoimmunity that begins to develop slowly after weaning and progressively increases through adulthood. Loss of brain-derived IL-2 results in neurobiological and behavioral abnormalities, and may contribute to the development of CNS autoimmunity by modifying the neuroimmunological milieu of the brain. We have shown previously that IL-2 knockout (KO) mice have altered learning acquisition in the Morris water-maze. Hypothesizing that the learning acquisition deficits in IL-2KO would be associated largely with the loss of brain-derived IL-2, the present study sought to determine if these cognitive alterations are due to the loss the IL-2 gene in the brain and/or autoimmunity resulting from loss of the gene in the peripheral immune system. We found that SCID congenic mice (mice free of IL-2 deficiency induced peripheral autoimmunity) without brain IL-2 (two IL-2KO alleles) did not differ from SCID congenic mice with normal brain IL-2 (two WT IL-2 alleles); thus, contrary to our hypothesis, loss of brain-derived IL-2 did not affect learning acquisition in the water-maze. Compared to adult WT littermates (9 weeks), adult IL-2KO mice with autoimmunity exhibited alterations in learning acquisition in the Morris water-maze whereas younger pre-autoimmune IL-2KO mice (5 weeks) had performance comparable to younger WT littermates, suggesting that the water-maze learning deficits in IL-2KO mice were associated with the development of peripheral autoimmunity. As IL-2KO mice have cytoarchitectural alterations in the dentate gyrus, circuitry involved in the differentiation of contexts (versus places), we also compared IL-2KO mice and littermates in a contextual fear discrimination paradigm. IL-2KO mice were found to have reduced conditioned fear discrimination that was not related to age-associated autoimmunity. Together, these findings suggest that complex interactions between IL-2 deficiency in the brain and immune system may modify brain processes involved in different modalities of learning and memory.
Collapse
Affiliation(s)
- John M Petitto
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| | - Jesse D Cushman
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| | - Zhi Huang
- Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville FL, USA
| |
Collapse
|
23
|
Brod S, Rattazzi L, Piras G, D'Acquisto F. 'As above, so below' examining the interplay between emotion and the immune system. Immunology 2014; 143:311-8. [PMID: 24943894 DOI: 10.1111/imm.12341] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
While the concept of a palpable relationship between our mental and physical well-being is certainly not new, it is only in the light of modern scientific research that we have begun to realize how deeply connected our emotional and immune states may be. We begin this review with a series of studies demonstrating how four fundamental emotional responses: anger, anxiety, mirth and relaxation are able modulate cytokine production and cellular responses to a variety of immune stimuli. These modulations are shown to be either detrimental or beneficial to a patient's health dependent on the context and duration of the emotion. We also discuss the reverse, highlighting research demonstrating how the loss of key immune cells such as T lymphocytes in clinical and animal studies can negatively impact both emotional well-being and cognition. Additionally, to give a more complete picture of the manifold pathways that link emotion and the immune system, we give a brief overview of the influence the digestive system has upon mental and immunological health. Finally, throughout this review we attempt to highlight the therapeutic potential of this burgeoning field of research in both the diagnosis and treatment of immune and disorders. As well as identifying some of the key obstacles the field must address in order to put this potential into practice.
Collapse
Affiliation(s)
- Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
24
|
Neufeld KAM, Kang N, Bienenstock J, Foster JA. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 2014. [DOI: 10.4161/cib.15702] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
25
|
Clark SM, Sand J, Francis TC, Nagaraju A, Michael KC, Keegan AD, Kusnecov A, Gould TD, Tonelli LH. Immune status influences fear and anxiety responses in mice after acute stress exposure. Brain Behav Immun 2014; 38:192-201. [PMID: 24524915 PMCID: PMC3989422 DOI: 10.1016/j.bbi.2014.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 12/15/2022] Open
Abstract
Significant evidence suggests that exposure to traumatic and/or acute stress in both mice and humans results in compromised immune function that in turn may affect associated brain processes. Additionally, recent studies in mouse models of immune deficiency have suggested that adaptive immunity may play a role during traumatic stress exposure and that impairments in lymphocyte function may contribute to increased susceptibility to various psychogenic stressors. However, rodent studies on the relationship between maladaptive stress responses and lymphocyte deficiency have been complicated by the fact that genetic manipulations in these models may also result in changes in CNS function due to the expression of targeted genes in tissues other than lymphocytes, including the brain. To address these issues we utilized mice with a deletion of recombination-activating gene 2 (Rag2), which has no confirmed expression in the CNS; thus, its loss should result in the absence of mature lymphocytes without altering CNS function directly. Stress responsiveness of immune deficient Rag2(-/-) mice on a BALB/c background was evaluated in three different paradigms: predator odor exposure (POE), fear conditioning (FC) and learned helplessness (LH). These models are often used to study different aspects of stress responsiveness after the exposure to an acute stressor. In addition, immunoblot analysis was used to assess hippocampal BDNF expression under both stressed and non-stressed conditions. Subsequent to POE, Rag2(-/-) mice exhibited a reduced acoustic startle response compared to BALB/c mice; no significant differences in behavior were observed in either FC or LH. Furthermore, analysis of hippocampal BDNF indicated that Rag2(-/-) mice have elevated levels of the mature form of BDNF compared to BALB/c mice. Results from our studies suggest that the absence of mature lymphocytes is associated with increased resilience to stress exposure in the POE and does not affect behavioral responses in the FC and LH paradigms. These findings indicate that lymphocytes play a specific role in stress responsiveness dependent upon the type, nature and intensity of the stressor.
Collapse
Affiliation(s)
- Sarah M Clark
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, United States
| | - Joseph Sand
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - T Chase Francis
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anitha Nagaraju
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kerry C Michael
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, United States
| | | | - Todd D Gould
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, United States
| | - Leonardo H Tonelli
- Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, United States; Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, United States.
| |
Collapse
|
26
|
Sun L, Li Q, Li Q, Zhang Y, Liu D, Jiang H, Pan F, Yew DT. Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys. Addict Biol 2014; 19:185-94. [PMID: 23145560 DOI: 10.1111/adb.12004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartic acid receptor antagonist, has emerged as an increasingly popular drug among young drug abusers worldwide. Available evidence suggests that ketamine produces acute impairments of working, episodic and semantic memory along with psychotogenic and dissociative effects when a single dose is given to healthy volunteers. However, understanding of the possible chronic effects of ketamine on behavior, cognitive anomalies and neurochemical homeostasis is still incomplete. Although previous human studies demonstrate that ketamine could impair a range of cognitive skills, investigation using non-human models would permit more precise exploration of the neurochemical mechanisms which may underlie the detrimental effects. The current study examined the abnormalities in behavior (move, walk, jump and climb) and apoptosis of the prefrontal cortex using terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling (TUNEL) and apoptotic markers, including Bax, Bcl-2 and caspase-3 in adolescent male cynomolgus monkeys (Macaca fascicularis) after 1 or 6 months of sub-anesthetic ketamine administration (1 mg/kg, i.v.). Results showed that ketamine decreased locomotor activity and increased cell death in the prefrontal cortex of monkeys with 6 months of ketamine treatment when compared with the control monkeys. Such decreases were not found in the 1-month ketamine-treated group. Our study suggested that ketamine administration of recreational dose in monkeys might produce permanent and irreversible deficits in brain functions due to neurotoxic effects, involving the activation of apoptotic pathways in the prefrontal cortex.
Collapse
Affiliation(s)
- Lin Sun
- Department of Medical Psychology, Shandong University School of Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang Z, Ha G, Petitto J. Reversal of Neuronal Atrophy: Role of Cellular Immunity in Neuroplasticity and Aging. ACTA ACUST UNITED AC 2014; 2. [PMID: 25505790 DOI: 10.4172/2329-6895.1000170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emerging evidence indicates that neuroimmunological changes in the brain can modify intrinsic brain processes that are involved in regulating neuroplasticity. Increasing evidence suggests that in some forms of motor neuron injury, many neurons do not die, but reside in an atrophic state for an extended period of time. In mice, facial motor neurons in the brain undergo a protracted period of degeneration or atrophy following resection of their peripheral axons. Reinjuring the proximal nerve stump of the chronically resected facial nerve stimulates a robust reversal of motor neuron atrophy which results in marked increases in both the number and size of injured motor neurons in the facial motor nucleus. In this brief review, we describe research from our lab which indicates that the reversal of atrophy in this injury model is dependent on normal cellular immunity. The role of T cells in this unique form of neuroplasticity following injury and in brain aging, are discussed. The potential role of yet undiscover intrinsic actions of recombination activating genes in the brain are considered. Further research using the facial nerve reinjury model could identify molecular signals involved in neuroplasticity, and lead to new ways to stimulate neuroregenerative processes in neurotrauma and other forms of brain insult and disease.
Collapse
Affiliation(s)
- Zhi Huang
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Grace Ha
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - John Petitto
- Departments of Neuroscience and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Ghrelin increases hippocampal recombination activating gene 1 expression and spatial memory performance in mice. Neuroreport 2013; 24:712-7. [DOI: 10.1097/wnr.0b013e328363fdc6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
Rattazzi L, Piras G, Ono M, Deacon R, Pariante CM, D'Acquisto F. CD4⁺ but not CD8⁺ T cells revert the impaired emotional behavior of immunocompromised RAG-1-deficient mice. Transl Psychiatry 2013; 3:e280. [PMID: 23838891 PMCID: PMC3731786 DOI: 10.1038/tp.2013.54] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/08/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022] Open
Abstract
An imbalanced immune system has long been known to influence a variety of mood disorders including anxiety, obsessive-compulsive disorders and depression. In this study, we sought to model the impact of an immunocompromised state on these emotional behaviors using RAG-1⁻/⁻ mice, which lack T and B cells. We also investigated the relative contribution of CD4⁺ or CD8⁺ T cells to these manifestations using RAG-1⁻/⁻/OT-II and RAG-1⁻/⁻/OT-I transgenic mice, respectively. Our results show that RAG-1⁻/⁻ mice present a significant increase in digging and marble-burying activities compared with wild-type mice. Surprisingly, these anxiety-like behaviors were significantly reverted in RAG-1⁻/⁻/OT-II but not RAG-1⁻/⁻/OT-I transgenic mice. Immunodepletion experiments with anti-CD4 or anti-CD8 in C57/BL6 mice or repopulation studies in RAG-1⁻/⁻ mice did not reproduce these findings. Microarray analysis of the brain of RAG-1⁻/⁻ and RAG-1⁻/⁻/OT-II mice revealed a significantly different gene fingerprint, with the latter being more similar to wild-type mice than the former. Further analysis revealed nine main signaling pathways as being significantly modulated in RAG-1⁻/⁻ compared with wild-type mice. Taken together, these results suggest that life-long rather than transient immunodeficient conditions influence the emotional behaviors in mice. Most interestingly, these effects seem to correlate with a specific absence of CD4⁺ rather than CD8⁺ T cells. Validation of these findings in man might provide new clues on the mechanism by which early life immune modulation might impact mood response in adults and provide a further link between immune and emotional well-being.
Collapse
Affiliation(s)
- L Rattazzi
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - G Piras
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Ono
- Institute of Child Health, University College London, London, UK
| | - R Deacon
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - C M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK
| | - F D'Acquisto
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
30
|
Contribution of Rag1 to spatial memory ability in rats. Behav Brain Res 2013; 236:200-209. [DOI: 10.1016/j.bbr.2012.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/28/2012] [Accepted: 09/02/2012] [Indexed: 11/17/2022]
|
31
|
Huang Z, Ha GK, Petitto JM. 5. T cell immunity and neuroplasticity. RECENT RESEARCH DEVELOPMENTS IN NEUROSCIENCE 2013; 4:109-119. [PMID: 25599095 PMCID: PMC4295499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The proneuronal effects of T cells that impact the brain occur from both T cells trafficking into the brain, and from signals in the periphery (e.g., cytokine release and regulation). Recent data indicates that neuroimmunological changes in the brain can modify intrinsic brain processes that are involved in regulating neuroplasticity (e.g., T-cell/microglial interactions, neurotrophins, neurogenesis). We describe: 1) work from our lab and others showing that injury-induced loss of neuronal phenotype and reversal of motor neuron atrophy are associated with normal T cell immunity, and; 2) research indicating that these and other neuroimmunological processes may be generalizable to mechanisms of neuroplasticity involved in cognitive and emotional behavior. These findings are discussed in relation to our lab's working hypothesis, that T cell immunosenesence may contribute to alterations in brain neuroplasticity related to aging. Greater understanding of the role of adaptive T cell immunity on neuroplasticity could have important clinical implications for developing novel treatment strategies for neurodegenerative diseases (e.g., Alzheimer's) and brain injury (e.g., stroke, trauma).
Collapse
|
32
|
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder diagnosed based on the presence and severity of core abnormalities in social communication and repetitive behavior, yet several studies converge on immune dysregulation as a feature of ASD. Widespread alterations in immune molecules and responses are seen in the brains and periphery of ASD individuals, and early life immune disruptions are associated with ASD. This chapter discusses immune-related environmental and genetic risk factors for ASD, emphasizing population-wide studies and animal research that reveal potential mechanistic pathways involved in the development of ASD-related symptoms. It further reviews immunologic pathologies seen in ASD individuals and how such abnormalities can impact neurodevelopment and behavior. Finally, it evaluates emerging evidence for an immune contribution to the pathogenesis of ASD and a potential role for immunomodulatory effects in current treatments for ASD.
Collapse
Affiliation(s)
- Elaine Y Hsiao
- Division of Biology and Biological Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
33
|
Saulnier DM, Ringel Y, Heyman MB, Foster JA, Bercik P, Shulman RJ, Versalovic J, Verdu EF, Dinan TG, Hecht G, Guarner F. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013; 4. [PMID: 23202796 PMCID: PMC3555881 DOI: 10.4161/gmic.22973] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The brain-gut axis allows bidirectional communication between the central nervous system (CNS) and the enteric nervous system (ENS), linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent experimental work suggests that the gut microbiota have an impact on the brain-gut axis. A group of experts convened by the International Scientific Association for Probiotics and Prebiotics (ISAPP) discussed the role of gut bacteria on brain functions and the implications for probiotic and prebiotic science. The experts reviewed and discussed current available data on the role of gut microbiota on epithelial cell function, gastrointestinal motility, visceral sensitivity, perception and behavior. Data, mostly gathered from animal studies, suggest interactions of gut microbiota not only with the enteric nervous system but also with the central nervous system via neural, neuroendocrine, neuroimmune and humoral links. Microbial colonization impacts mammalian brain development in early life and subsequent adult behavior. These findings provide novel insights for improved understanding of the potential role of gut microbial communities on psychological disorders, most particularly in the field of psychological comorbidities associated with functional bowel disorders like irritable bowel syndrome (IBS) and should present new opportunity for interventions with pro- and prebiotics.
Collapse
Affiliation(s)
- Delphine M. Saulnier
- NIZO Food Research; Ede, The Netherlands,Correspondence to: Delphine M. Saulnier,
| | - Yehuda Ringel
- Department of Medicine; University of North Carolina School of Medicine; Chapel Hill, NC USA
| | - Melvin B. Heyman
- Department of Pediatrics; University of California, San Francisco; San Francisco, CA USA
| | - Jane A. Foster
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada,Department of Psychiatry and Behavioural Neurosciences; McMaster University; Hamilton, ON Canada
| | - Premysl Bercik
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada,Department of Psychiatry and Behavioural Neurosciences; McMaster University; Hamilton, ON Canada
| | - Robert J. Shulman
- Department of Pediatrics; Baylor College of Medicine; Houston, TX USA
| | - James Versalovic
- Department of Pathology; Baylor College of Medicine; Houston, TX USA,Texas Children’s Microbiome Center; Texas Children’s Hospital; Houston, TX USA
| | - Elena F. Verdu
- Department of Medicine; Farncombe Family Digestive Health Research Institute; McMaster University; Hamilton, ON Canada
| | - Ted G. Dinan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
| | - Gail Hecht
- Department of Medicine; Microbiology/Immunology; University of Illinois, Chicago; Chicago, IL USA
| | | |
Collapse
|
34
|
Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci U S A 2012; 109:12776-81. [PMID: 22802640 PMCID: PMC3411999 DOI: 10.1073/pnas.1202556109] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence highlights a role for the immune system in the pathogenesis of autism spectrum disorder (ASD), as immune dysregulation is observed in the brain, periphery, and gastrointestinal tract of ASD individuals. Furthermore, maternal infection (maternal immune activation, MIA) is a risk factor for ASD. Modeling this risk factor in mice yields offspring with the cardinal behavioral and neuropathological symptoms of human ASD. In this study, we find that offspring of immune-activated mothers display altered immune profiles and function, characterized by a systemic deficit in CD4(+) TCRβ(+) Foxp3(+) CD25(+) T regulatory cells, increased IL-6 and IL-17 production by CD4(+) T cells, and elevated levels of peripheral Gr-1(+) cells. In addition, hematopoietic stem cells from MIA offspring exhibit altered myeloid lineage potential and differentiation. Interestingly, repopulating irradiated control mice with bone marrow derived from MIA offspring does not confer MIA-related immunological deficits, implicating the peripheral environmental context in long-term programming of immune dysfunction. Furthermore, behaviorally abnormal MIA offspring that have been irradiated and transplanted with immunologically normal bone marrow from either MIA or control offspring no longer exhibit deficits in stereotyped/repetitive and anxiety-like behaviors, suggesting that immune abnormalities in MIA offspring can contribute to ASD-related behaviors. These studies support a link between cellular immune dysregulation and ASD-related behavioral deficits in a mouse model of an autism risk factor.
Collapse
|
35
|
Sankar A, MacKenzie RN, Foster JA. Loss of class I MHC function alters behavior and stress reactivity. J Neuroimmunol 2012; 244:8-15. [PMID: 22245287 DOI: 10.1016/j.jneuroim.2011.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 01/15/2023]
Abstract
The importance of the classical immune molecule, class I major histocompatibility complex to central nervous system function is one of the most surprising discoveries related to neuroimmunology in the past decade. Mice lacking both β-2microglobulin and transporter associated with antigen processing (β2M-/-TAP-/-) showed differences in basal behavior. In response to saline injection, β2M-/-TAP-/- mice showed a significant hypothalamic pituitary adrenal activation that was not observed in wild type mice, while lipopolysaccharide-induced cytokine expression in the hypothalamus was similar in β2M-/-TAP-/- and wild type mice. Overall, these data show that class I MHC plays an important role in behavior and stress reactivity.
Collapse
Affiliation(s)
- Ashwin Sankar
- Bachelor of Health Sciences Program, McMaster University, Canada
| | | | | |
Collapse
|
36
|
Neufeld KAM, Kang N, Bienenstock J, Foster JA. Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 2011; 4:492-4. [PMID: 21966581 DOI: 10.4161/cib.4.4.15702] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 02/08/2023] Open
Abstract
The acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of many immune and metabolic systems integral to health and well-being. Recent research has shown that the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity.1 Accordingly, we sought to investigate if there were other changes of brain function such as behavioral alterations in germ free (GF) mice, and if so, to compare these to behavior of mice with normal gut microbiota. Our recent paper showed reduced anxietylike behavior in the elevated plus maze (EPM) in adult GF mice when compared to conventionally reared specific pathogen-free (SPF) mice.2 Here, we present data collected when we next colonized the adult GF mice with SPF feces thereby introducing normal gut microbiota, and then reassessed anxiety-like behavior. Interestingly, the anxiolytic behavioral phenotype observed in GF mice persisted after colonization with SPF intestinal microbiota. These data show that gut-brain interactions are important to CNS development of stress systems and that a critical window may exist after which reconstitution of microbiota and the immune system does not normalize the behavioral phenotype.
Collapse
Affiliation(s)
- Karen-Anne M Neufeld
- Brain-Body Institute; St. Joseph's Healthcare; McMaster University; Hamilton, ON Canada
| | | | | | | |
Collapse
|
37
|
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23:255-64, e119. [PMID: 21054680 DOI: 10.1111/j.1365-2982.2010.01620.x] [Citation(s) in RCA: 917] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND There is increasing interest in the gut-brain axis and the role intestinal microbiota may play in communication between these two systems. Acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of the gastrointestinal, immune, neuroendocrine and metabolic systems. For example, the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity. METHODS We investigated basal behavior of adult germ-free (GF), Swiss Webster female mice in the elevated plus maze (EPM) and compared this to conventionally reared specific pathogen free (SPF) mice. Additionally, we measured brain mRNA expression of genes implicated in anxiety and stress-reactivity. KEY RESULTS Germ-free mice, compared to SPF mice, exhibited basal behavior in the EPM that can be interpreted as anxiolytic. Altered GF behavior was accompanied by a decrease in the N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the central amygdala, increased brain-derived neurotrophic factor expression and decreased serotonin receptor 1A (5HT1A) expression in the dentate granule layer of the hippocampus. CONCLUSIONS & INFERENCES We conclude that the presence or absence of conventional intestinal microbiota influences the development of behavior, and is accompanied by neurochemical changes in the brain.
Collapse
Affiliation(s)
- K M Neufeld
- Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
38
|
McGowan PO, Hope TA, Meck WH, Kelsoe G, Williams CL. Impaired social recognition memory in recombination activating gene 1-deficient mice. Brain Res 2011; 1383:187-95. [PMID: 21354115 DOI: 10.1016/j.brainres.2011.02.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The recombination activating genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype, we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
39
|
Gericke GS. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity. Med Hypotheses 2010; 74:911-8. [PMID: 20138440 DOI: 10.1016/j.mehy.2009.05.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/18/2022]
Abstract
Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the interpretation of risks posed by heredity and the environment and the search for neuropsychiatric candidate genes.
Collapse
Affiliation(s)
- G S Gericke
- Department of Biomedical Sciences, Tshwane University of Technology, Brooklyn Square, Pretoria, Gauteng, South Africa.
| |
Collapse
|
40
|
Habibi L, Ebtekar M, Jameie SB. Immune and nervous systems share molecular and functional similarities: memory storage mechanism. Scand J Immunol 2009; 69:291-301. [PMID: 19284492 DOI: 10.1111/j.1365-3083.2008.02215.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the most complex and important features of both the nervous and immune systems is their data storage and retrieval capability. Both systems encounter a common and complex challenge on how to overcome the cumbersome task of data management. Because each neuron makes many synapses with other neurons, they are capable of receiving data from thousands of synaptic connections. The immune system B and T cells have to deal with a similar level of complexity because of their unlimited task of recognizing foreign antigens. As for the complexity of memory storage, it has been proposed that both systems may share a common set of molecular mechanisms. Here, we review the molecular bases of memory storage in neurons and immune cells based on recent studies and findings. The expression of certain molecules and mechanisms shared between the two systems, including cytokine networks, and cell surface receptors, are reviewed. Intracellular signaling similarities and certain mechanisms such as diversity, memory storage, and their related molecular properties are briefly discussed. Moreover, two similar genetic mechanisms used by both systems is discussed, putting forward the idea that DNA recombination may be an underlying mechanism involved in CNS memory storage.
Collapse
Affiliation(s)
- L Habibi
- Medical Human Genetics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
41
|
Alam R. Foreword: psychoneuroimmunology--the essence of a three's company. Immunol Allergy Clin North Am 2009; 29:xiii-xiv. [PMID: 19389576 DOI: 10.1016/j.iac.2009.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Rafeul Alam
- Division of Allergy and Immunology, National Jewish Health and University of Colorado Denver Health Sciences Center, 1400 Jackson Street, Denver, CO 80206, USA.
| |
Collapse
|
42
|
An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment. Med Hypotheses 2008; 71:360-73. [DOI: 10.1016/j.mehy.2008.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 03/01/2008] [Accepted: 03/06/2008] [Indexed: 11/23/2022]
|