1
|
Parrish KM, Gestal MC. Eosinophils as drivers of bacterial immunomodulation and persistence. Infect Immun 2024; 92:e0017524. [PMID: 39007622 PMCID: PMC11385729 DOI: 10.1128/iai.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.
Collapse
Affiliation(s)
- Katelyn M. Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
2
|
Ip S, Ms S, Av K, Aa N, Ed B, Vi K, Li V, Vn T, Kv Y, Mm K, Ve B, I S, A M, DA K, O P, M R K. The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma. Int Immunopharmacol 2021; 103:108432. [PMID: 34923422 DOI: 10.1016/j.intimp.2021.108432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Bronchial asthma (BA) is one of the most common chronic inflammatory disease of airways. There are huge experimental data indicating that Th2-cytokines IL-4 and IL-13 play a key role in BA pathogenesis. They are implicated in the IgE synthesis, eosinophil infiltration to the lungs and in the development of airway hyperreactivity (AHR), that makes these cytokines the promising targets. Neutralization of IL-4 and IL-13 or its common receptor chain (IL-4Rα) by monoclonal antibodies substantially reduce asthma symptoms. RNA interference provides a novel method for regulation of gene expression by siRNA molecules. In this study we evaluated whether the siRNA targeted to IL-4 and IL-13 reduce BA symptoms in mice model. Experimental BA was induced in BALB/c mice by sensitization to ovalbumin allergen followed by intranasal challenge. The intranasal delivery of siRNAs targeted to IL-4 and IL-13 inhibited the lung expression of these cytokines by more than 50% that led to the attenuation of AHR and pulmonary inflammation; the quantity of eosinophils in lungs which are one of the major inflammatory cells involved in allergic asthma pathogenesis decreased by more than 50% after siRNA treatment. These data support the possibility of a dual IL-4 and IL-13 inhibition by locally delivered siRNAs which in turn leads to the suppression of allergen-induced pulmonary inflammation and AHR.
Collapse
Affiliation(s)
- Shilovskiy Ip
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation.
| | - Sundukova Ms
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Korneev Av
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Nikolskii Aa
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Barvinskaya Ed
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kovchina Vi
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Vishniakova Li
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Turenko Vn
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Yumashev Kv
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kaganova Mm
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Brylina Ve
- Federal State Budgetary Educational Institution of Higher Education «Moscow state Academy of Veterinary Medicine and Biotechnology - MVA by K.I. Skryabin» of the Ministry of Agriculture of the Russian Federation, 109472, Moscow, Russian Federation
| | - Sergeev I
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Maerle A
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Kudlay DA
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenovskiy University), 119991, Moscow, Russian Federation
| | - Petukhova O
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation
| | - Khaitov M R
- National Research Center - Institute of Immunology of Federal Medico-Biological Agency. 115478, 24, Kashirskoye shosse, Moscow, Russian Federation; Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation, 117997, Moscow, Russian Federation
| |
Collapse
|
3
|
Aun MV, Almeida FMD, Saraiva-Romanholo BM, Martins MDA, Kalil J, Arantes-Costa FM, Giavina-Bianchi P. Diphteria-tetanus-pertussis vaccine reduces specific IgE, inflammation and remodelling in an animal model of mite-induced respiratory allergy. Vaccine 2019; 38:70-78. [PMID: 31630941 DOI: 10.1016/j.vaccine.2019.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 08/20/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Adjuvants, such as bacterial lipopolysaccharides, have been studied to improve the efficacy of allergen-specific immunotherapy. The Bordetella pertussis (Pw) vaccine has been shown to have a protective role in ovalbumin-induced asthma models. However, its role in allergy to mites is unknown. We evaluated the effects of the diphtheria-tetanus-pertussis (DTPw) vaccine on a murine model of respiratory allergy induced by Dermatophagoides pteronyssinus (Derp). METHODS In a 30-day protocol, BALB/c mice were immunized subcutaneously with saline or Derp, alone or in combination with diphtheria-tetanus (DT) or DTPw vaccines (days 0, 7 and 14). Subsequently, they underwent a daily intranasal challenge with saline or Derp (days 22-28) and were then sacrificed (day 29). We evaluated serum-specific immunoglobulins, bronchoalveolar lavage (BAL) cellularity, remodelling of the lower airways, density of polymorphonuclear leukocytes (PMNs) and acidic nasal mucus content. RESULTS The animals sensitized with Derp produced high levels of specific immunoglobulins, increased density of PMNs and nasal mucus content, and elevated BAL cellularity and remodelling. Vaccines led to a reduction in IgE levels, with the Derp-DTPw group being similar to the saline groups. The vaccinated groups had reductions of BAL cellularity and remodelling, with more expressive results in the Derp-DTPw group compared to the Derp-DT group. The DT and DTPw vaccines inhibited the nasal PMN infiltrate, and DTPw modulated the production of acidic nasal mucus. CONCLUSIONS The DTPw vaccine reduced serum specific IgE, nasal and pulmonary inflammation and remodelling of the lower airways.
Collapse
Affiliation(s)
- Marcelo Vivolo Aun
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil.
| | - Francine Maria de Almeida
- Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mílton de Arruda Martins
- Laboratory of Experimental Therapeutics (LIM20), Department of Internal Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Jorge Kalil
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Pedro Giavina-Bianchi
- Clinical Immunology and Allergy Division, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Shilovskiy IP, Sundukova MS, Babakhin АА, Gaisina AR, Maerle AV, Sergeev IV, Nikolskiy AA, Barvinckaya ED, Kovchina VI, Kudlay DA, Nikonova AA, Khaitov MR. Experimental protocol for development of adjuvant-free murine chronic model of allergic asthma. J Immunol Methods 2019; 468:10-19. [PMID: 30880263 DOI: 10.1016/j.jim.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mouse models of allergic asthma play a crucial role in exploring of asthma pathogenesis and testing of novel anti-inflammatory drugs. Widely used acute asthma models usually developed with adjuvant (aluminum hydroxide (alum)) do not reproduce one of the main asthma feature - airway remodeling while chronic asthma model mimic the pathophysiology of human disease. Moreover, the use of alum causes distress in experimental animals and impedes the test of adjuvant-containing drugs. In this study, we aimed to develop a chronic adjuvant-free asthma model with pronounced asthmatic phenotype. METHODS Female BALB/c mice were divided into 3 groups. The first group was sensitized with intraperitoneal injections of ovalbumin (OVA) emulsified in aluminum hydroxide on days 0, 14, 28 followed by two stages of intranasally challenge with OVA on days 41-43 and 62-64. The second group was subcutaneously sensitized with the same dose of OVA without adjuvant and challenged on the same days. The third group (negative control) included mice which did not received any kind of treatment (i.e. sensitization and challenge). Serum levels of OVA-specific IgE, IgG2a and IgG1 antibodies were detected by ELISA. Airway hyper-responsiveness was measured by non-invasive plethysmography on days 44 and 65. Bronchoalveolar lavage fluids (BALF) sampled in all groups on days 45 and 66 were analyzed by light microscopy. The left lung was removed for histological analysis. The IL-4 and IFNγ mRNA expression in BALF cells was evaluated by RT-PCR. RESULTS The OVA-specific IgE antibody response was two-fold increased in mice from adjuvant-free group compared to the adjuvant group that reflects reorientation of immune response towards Th2 phenotype. At the same time, the level of OVA-specific IgG1 and IgG2a antibodies was increased in the adjuvant group. Airway hyperresponsiveness to methacholine in mice of both experimental groups was two-fold higher than in control. Analysis of cell composition in BAL has shown a significant increase in eosinophil count in both experimental groups that indicate the development of allergic inflammation. Lung histology revealed airway remodeling in both experimental groups including goblet cell hyperplasia/metaplasia, thickening of airway walls, collagen deposition in the wall of distal airways. Additionally, the tendency to develop hypertrophy of bronchial smooth muscle layer was observed. Study of gene expression in BAL cells revealed the increase of IL-4 level in both adjuvant and adjuvant-free groups while IFNγ expression in both experimental groups was similar to control group. CONCLUSION We have developed a chronic adjuvant-free mouse asthma model which possesses all necessary features of the disease including airway remodeling and is more suitable for pre-clinical evaluation of novel therapeutic approaches including adjuvant-containing drugs.
Collapse
Affiliation(s)
- I P Shilovskiy
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia.
| | - M S Sundukova
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - А А Babakhin
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A R Gaisina
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A V Maerle
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - I V Sergeev
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A A Nikolskiy
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - E D Barvinckaya
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - V I Kovchina
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - D A Kudlay
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| | - A A Nikonova
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia; Mechnikov Research Institute for vaccines and sera, 105064, 5A, M. Kazenny Per, Moscow, Russia
| | - M R Khaitov
- National Research Center - Institute of immunology of Federal Medico-Biological Agency, 115478, 24, Kashirskoye Shosse, Moscow, Russia
| |
Collapse
|
5
|
Rubin K, Glazer S. The pertussis hypothesis: Bordetella pertussis colonization in the etiology of asthma and diseases of allergic sensitization. Med Hypotheses 2018; 120:101-115. [PMID: 30220328 DOI: 10.1016/j.mehy.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Decades of peer reviewed evidence demonstrate that: 1)Bordetellapertussisand pertussis toxin are potent adjuvants, inducing asthma and allergic sensitization in animal models of human disease, 2)Bordetella pertussisoften colonizes the human nasopharynx, and is well documented in highly pertussis-vaccinated populations and 3) in children, a history of whooping cough increases the risk of asthma and allergic sensitization disease. We build on these observations with six case studies and offer a pertussis-based explanation for the rapid rise in allergic disease in former East Germany following the fall of the Berlin Wall; the current asthma, peanut allergy, and anaphylaxis epidemics in the United States; the correlation between the risk of asthma and gross national income per capita by country; the lower risk of asthma and allergy in children raised on farms; and the reduced risk of atopy with increased family size and later sibling birth order. To organize the evidence for the pertussis hypothesis, we apply the Bradford Hill criteria to the association between Bordetella pertussisand asthma and allergicsensitization disease. We propose that, contrary to conventional wisdom that nasopharyngealBordetella pertussiscolonizing infections are harmless, subclinicalBordetella pertussiscolonization is an important cause of asthma and diseases of allergic sensitization.
Collapse
|
6
|
Cahill EF, Tobin LM, Carty F, Mahon BP, English K. Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Ther 2015; 6:19. [PMID: 25890330 PMCID: PMC4414370 DOI: 10.1186/s13287-015-0021-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 12/26/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) have well defined immunomodulatory properties including the suppression of lymphocyte proliferation and inhibition of dendritic cell (DC) maturation involving both cell contact and soluble factors. These properties have made MSC attractive candidates for cellular therapy. However, the mechanism underlying these characteristics remains unclear. This study sought to investigate the mechanisms by which MSC induce a regulatory environment. Method Allogeneic bone marrow mesenchymal stromal cells were cultured with T cells or dendritic cells in the presence or absence of gamma secretase inhibitor to block Notch receptor signalling. T cells and dendritic cells were examined by flow cytometry for changes in phenotype marker expression. Stable knock down MSC were generated to examine the influence of Jagged 1 signalling by MSC. Both wildtype and knockdown MSC were subsequently used in vivo in an animal model of allergic airway inflammation. Results The Notch ligand Jagged-1 was demonstrated to be involved in MSC expansion of regulatory T cells (Treg). Additionally, MSC-induced a functional semi-mature DC phenotype, which further required Notch signalling for the expansion of Treg. MSC, but not Jagged-1 knock down MSC, reduced pathology in a mouse model of allergic airway inflammation. Protection mediated by MSC was associated with enhanced Treg in the lung and significantly increased production of interleukin (IL)-10 in splenocytes re-stimulated with allergen. Significantly less Treg and IL-10 was observed in mice treated with Jagged-1 knock down MSC. Conclusions The current study suggests that MSC-mediated immune modulation involves the education and expansion of regulatory immune cells in a Jagged-1 dependent manner and provides the first report of the importance of Jagged-1 signalling in MSC protection against inflammation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0021-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emer F Cahill
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Laura M Tobin
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Fiona Carty
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Bernard P Mahon
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Karen English
- Department of Biology, Institute of Immunology, Maynooth University, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
7
|
Khaitov MR, Shilovskiy IP, Nikonova AA, Shershakova NN, Kamyshnikov OY, Babakhin AA, Zverev VV, Johnston SL, Khaitov RM. Small interfering RNAs targeted to interleukin-4 and respiratory syncytial virus reduce airway inflammation in a mouse model of virus-induced asthma exacerbation. Hum Gene Ther 2014; 25:642-50. [PMID: 24655063 DOI: 10.1089/hum.2013.142] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Asthma exacerbations are caused primarily by viral infections. Antisense and small interfering RNA (siRNA) technologies have gained attention as potential antiasthma and antiviral approaches. In this study we analyzed whether gene silencing of interleukin (IL)-4 expression and respiratory syncytial virus (RSV) replication by RNA interference is able to suppress allergen- and virus-induced responses in a mouse model of virus-induced asthma exacerbation. Knockdown efficacy of IL-4 siRNA molecules was analyzed in the human HEK293T cell line by cotransfection of six different siRNAs with a plasmid carrying mouse IL-4. The most potent siRNA was then used in a mouse model of RSV-induced asthma exacerbation. BALB/c mice were sensitized intraperitoneally with ovalbumin (OVA) and then infected 12 days later intranasally with RSV Long strain (1×10(6) TCID50/mouse), followed 1 day later by intranasal challenge with OVA for 3 days. Mice were pretreated intranasally three times with either siRNA to IL-4 or GFP control, 2 days before, and on the first two OVA challenge days. siRNAs to RSV or rhinovirus control were inoculated intranasally once, 3 hr before RSV infection. Combined anti-IL-4 and anti-RSV siRNAs were able to significantly reduce total cell counts and eosinophilia in bronchoalveolar lavage fluid, development of airway hyperresponsiveness, and airway inflammation and to downregulate IL-4 mRNA expression and RSV viral RNA, but to upregulate IFN-γ levels in lung tissues. We conclude that anti-helper T cells type 2 and antiviral siRNAs may constitute a new therapeutic approach for treatment of virus induced asthma exacerbations.
Collapse
Affiliation(s)
- Musa R Khaitov
- 1 National Research Center Institute of Immunology of Federal Medicobiological Agency , Moscow 115478, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li R, Cheng C, Chong SZ, Lim ARF, Goh YF, Locht C, Kemeny DM, Angeli V, Wong WSF, Alonso S. Attenuated Bordetella pertussis BPZE1 protects against allergic airway inflammation and contact dermatitis in mouse models. Allergy 2012; 67:1250-8. [PMID: 22909095 DOI: 10.1111/j.1398-9995.2012.02884.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously reported that prior nasal administration of highly attenuated Bordetella pertussis BPZE1 provides effective and sustained protection against lethal challenge with influenza A viruses. The protective effect was mediated by suppressing the production of major pro-inflammatory mediators. To further explore the anti-inflammatory properties of BPZE1, we investigated the effect of BPZE1 nasal pretreatment on two mouse models of allergic disease, allergic airway inflammation, and contact hypersensitivity (CHS). METHODS Allergic reactions were induced in mice nasally pretreated with live attenuated BPZE1 bacteria using the ovalbumin (OVA)-induced allergic airway inflammation and dinitrochlorobenzene (DNCB)-induced CHS models. RESULTS Prior BPZE1 nasal treatment suppressed OVA-induced lung inflammation and inflammatory cell recruitment and significantly reduced IgE levels and cytokine production. Similarly, BPZE1 nasal pretreatment markedly inhibited ear swelling, skin inflammation, and production of pro-inflammatory cytokines in the DNCB-induced CHS model. For both models, we showed that BPZE1 pretreatment does not affect the sensitization phase. Upon challenge, BPZE1 pretreatment selectively reduced the level of cytokines whose production is increased and did not affect the basal level of other cytokines. Together, our observations suggest that BPZE1 pretreatment specifically targets those cytokine-producing effector cells that are recruited and involved in the inflammatory reaction. CONCLUSION Our study demonstrates the broad anti-inflammatory properties of the attenuated B. pertussis BPZE1 vaccine candidate and supports its development as a promising agent to prevent and/or treat allergic diseases.
Collapse
Affiliation(s)
- R Li
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kavanagh H, Mahon BP. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 2011; 66:523-31. [PMID: 21091718 DOI: 10.1111/j.1398-9995.2010.02509.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adult bone marrow-derived mesenchymal stem cells (MSC) possess potent immune modulatory effects which support their possible use as a therapy for immune-mediated disease. MSC induce regulatory T cells (T(reg)) in vitro although the in vivo relevance of this is not clear. OBJECTIVE This study addressed the hypothesis that adult bone marrow derived-MSC would prevent the pathology associated with allergen-driven airway inflammation, and sought to define the effector mechanism. METHODS The influence of allogeneic MSC was examined in a model system where T(reg) induction is essential to prevent pathology. This was tested using a combination of a model of ovalbumin-driven inflammation with allogeneic MSC cell therapy. RESULTS Systemic administration of allogeneic MSC protected the airways from allergen-induced pathology, reducing airway inflammation and allergen-specific IgE. MSC were not globally suppressive but induced CD4(+) FoxP3(+) T cells and modulated cell-mediated responses at a local and systemic level, decreasing IL-4 but increasing IL-10 in bronchial fluid and from allergen re-stimulated splenocytes. Moderate dose cyclophosphamide protocols were used to differentially ablate T(reg) responses; under these conditions the major beneficial effect of MSC therapy was lost, suggesting induction of T(reg) as the key mechanism of action by MSC in this model. In spite of the elimination of T(reg) , a significant reduction in airway eosinophilia persisted in those treated with MSC. CONCLUSION These data demonstrate that MSC induce T(reg) in vivo and reduce allergen-driven pathology. Multiple T(reg) dependent and independent mechanisms of therapeutic action are employed by MSC.
Collapse
Affiliation(s)
- H Kavanagh
- Cellular Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
10
|
Abstract
Vaccines play a major role in preventing potentially life-threatening diseases. More attention is now focused on the adult population, particularly as they age, as a reservoir for vaccine-preventable diseases. Adults with comorbid conditions such as asthma and chronic obstructive pulmonary disease (COPD) are considered to be at higher risk for invasive diseases, many of which are preventable through routine vaccination. This article reviews the pertinent literature for the use of vaccines in the management of adult patients with asthma and COPD.
Collapse
Affiliation(s)
- R Pesek
- Division of Allergy and Immunology, University of South Florida College of Medicine, James A. Haley Veteran's Hospital, Tampa, FL 33612, USA.
| | | |
Collapse
|
11
|
Kavanagh H, Noone C, Cahill E, English K, Locht C, Mahon BP. Attenuated Bordetella pertussis vaccine strain BPZE1 modulates allergen-induced immunity and prevents allergic pulmonary pathology in a murine model. Clin Exp Allergy 2010; 40:933-41. [PMID: 20184606 DOI: 10.1111/j.1365-2222.2010.03459.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Virulent Bordetella pertussis, the causative agent of whooping cough, exacerbates allergic airway inflammation in a murine model of ovalbumin (OVA) sensitization. A live genetically attenuated B. pertussis mucosal vaccine, BPZE1, has been developed that evokes full protection against virulent challenge in mice but the effect of this attenuated strain on the development of allergic responses is unknown. OBJECTIVE To assess the influence of attenuated B. pertussis BPZE1 on OVA priming in a murine model of allergic airway inflammation. METHODS Mice were challenged with virulent or attenuated strains of B. pertussis, and sensitized to allergen (OVA) at the peak of bacterial carriage. Subsequently, airway pathology, local inflammation and OVA-specific immunity were examined. RESULTS In contrast to virulent B. pertussis, live BPZE1 did not exacerbate but reduced the airway pathology associated with allergen sensitization. BPZE1 immunization before allergen sensitization did not have an adjuvant effect on allergen specific IgE but resulted in a statistically significant decrease in airway inflammation in tissue and bronchoalveolar lavage fluid. BPZE1 significantly reduced the levels of OVA-driven IL-4, IL-5 and IL-13 but induced a significant increase in IFN-gamma in response to OVA re-stimulation. CONCLUSIONS These data demonstrate that, unlike virulent strains, the candidate attenuated B. pertussis vaccine BPZE1 does not exacerbate allergen-driven airway pathology. BPZE1 may represent an attractive T-helper type 1 promoting vaccine candidate for eradication of whooping cough that is unlikely to promote atopic disease.
Collapse
Affiliation(s)
- H Kavanagh
- Cellular Immunology Laboratory, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
12
|
Kendirli SG, Yilmaz M, Bayram I, Altintas DU, Inal A, Karakoc G. Potential association between allergic diseases and pertussis infection in schoolchildren: results of two cross-sectional studies seven years apart. Allergol Immunopathol (Madr) 2009; 37:21-5. [PMID: 19268057 DOI: 10.1016/s0301-0546(09)70247-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND In this study, we aimed to investigate the relationship between pertussis infections and allergic diseases in two cross-sectional questionnaire-based surveys carried out in 1997 and 2004. We also measured serum level of antibody to B. pertussis. MATERIAL AND METHODS Two cross-sectional, questionnaire-based surveys were carried out in 1997 (n = 3164) and 2004 (n = 3728). 361 cases and 465 controls were recruited from both surveys. The skin tests were performed using standardised extracts. The level of pertussis specific IgG was measured in 136 allergic and 168 non-allergic children. RESULTS We found that allergic diseases prevalence was significantly higher in the children suffering from pertussis infections (22.3 % fi rst and 8.8 % second survey) compared to children who did not suffer from pertussis infections (6.6 % fi rst and 4.5 % second survey) (p = 0.001 and p = 0.035, respectively). Asthma prevalence was also significantly higher in children suffering from pertussis infection (37.6 % fi rst and 26.2 % second survey) compared to children who did not suffer from pertussis (7.4 % fi rst and 5.0 % second survey) (p = 0.001 and p = 0.001, respectively). However, the mean serum levels of anti-pertussis IgG were similar in allergic and non-allergic groups (p > 0.05). CONCLUSION Although pertussis antibody levels in atopic and non-atopic children were similar to each other, pertussis infection still seemed to have a significant effect on the development of atopic diseases.
Collapse
MESH Headings
- Adolescent
- Asthma/epidemiology
- Asthma/etiology
- Child
- Cross-Sectional Studies
- Dermatitis, Atopic/epidemiology
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hypersensitivity/epidemiology
- Hypersensitivity/etiology
- Hypersensitivity/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Male
- Prevalence
- Rhinitis, Allergic, Perennial/epidemiology
- Rhinitis, Allergic, Perennial/etiology
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/etiology
- Skin Tests
- Surveys and Questionnaires
- Time Factors
- Turkey/epidemiology
- Whooping Cough/complications
- Whooping Cough/epidemiology
- Whooping Cough/immunology
Collapse
Affiliation(s)
- S G Kendirli
- Cukurova University Faculty of Medicine, Division of Pediatric Allergy and Immunology, Adana, Turkey
| | | | | | | | | | | |
Collapse
|
13
|
Skerry CM, Cassidy JP, English K, Feunou-Feunou P, Locht C, Mahon BP. A live attenuated Bordetella pertussis candidate vaccine does not cause disseminating infection in gamma interferon receptor knockout mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1344-51. [PMID: 19625486 PMCID: PMC2745004 DOI: 10.1128/cvi.00082-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/04/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022]
Abstract
Bordetella pertussis is the cause of whooping cough and responsible for 300,000 infant deaths per annum. Current vaccines require 6 months to confer optimal immunity on infants, the population at highest risk. Recently, an attenuated strain of B. pertussis (BPZE1) has been developed to be used as a low-cost, live, intranasal, single-dose vaccine for newborns. Preclinical proof of concept has been established; however, it is necessary to evaluate the safety of BPZE1, especially in immunodeficient models, prior to human clinical trials. Here, the preclinical safety of BPZE1 was examined in well-characterized murine models. Immunocompetent and gamma interferon (IFN-gamma) receptor knockout mice were challenged by aerosol with either virulent B. pertussis or BPZE1. The two strains colonized the lung at equal levels, but inflammation was associated with carriage of only virulent bacteria. Virulent bacteria disseminated to the liver of IFN-gamma receptor-deficient mice, resulting in atypical pathology. In contrast, attenuated BPZE1 did not disseminate in either immunocompetent or immunodeficient mice and did not induce atypical pathology. In neonatal challenge models, virulent B. pertussis infection resulted in significant mortality of both immunodeficient and immunocompetent mice, whereas no mortality was observed for any neonatal mice challenged with BPZE1. BPZE1 was shown to elicit strong IFN-gamma responses in mice, equivalent to those elicited by the virulent streptomycin-resistant B. pertussis Tohama I derivative BPSM, also inducing immunoglobulin G2a, a process requiring TH1 cytokines in mice. These data indicate that a live attenuated whooping cough vaccine candidate shows no signs of disseminating infection in preclinical models but rather evokes an immunological profile associated with optimal protection against disease.
Collapse
Affiliation(s)
- Ciaran M Skerry
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
14
|
Vandebriel RJ, Gremmer ER, van Hartskamp M, Dormans JAMA, Mooi FR. Effects of a diphtheria-tetanus-acellular pertussis vaccine on immune responses in murine local lymph node and lung allergy models. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:211-9. [PMID: 17202304 PMCID: PMC1828861 DOI: 10.1128/cvi.00306-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that in mice, diphtheria-tetanus-acellular pertussis (DTaP) vaccination before Bordetella pertussis infection resulted in, besides effective clearance, immediate hypersensitivity (lung eosinophilia, increased total serum immunoglobulin E [IgE], and increased ex vivo Th2 cytokine production by cells from the bronchial lymph nodes). To better appreciate the extent of these findings, we measured DTaP vaccination effects in the local lymph node assay (LLNA) and an ovalbumin (OVA) lung allergy model. In the LLNA, mice were vaccinated or adjuvant treated before being sensitized with trimellitic anhydride (TMA; inducing a Th2-directed response) and dinitrochlorobenzene (DNCB; inducing a Th1-directed response). Compared to the adjuvant-treated controls, the vaccinated mice showed a decreased response to TMA and (to a much lesser extent) an increased response to DNCB. The decreased response to TMA coincided with increased transforming growth factor beta levels. With the exception of filamentous hemagglutinin, all vaccine constituents contributed to the decreased response to TMA. In the lung allergy model, sensitization induced OVA-specific IgE, lung pathology (peribronchiolitis, perivasculitis, and hypertrophy of the bronchiolar mucus cells) and increased the number of eosinophils, lymphocytes, and neutrophils in the bronchoalveolar lavage fluid. Vaccination failed to modulate these parameters. In conclusion, although DTaP vaccination may affect the LLNA response, we found no evidence of an effect on lung allergy.
Collapse
Affiliation(s)
- Rob J Vandebriel
- Laboratory for Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Grüber C, Gerhold K, von Stuckrad SL, Avagyan A, Quarcoo D, Ahrens B, Wahn U, Hamelmann E. Common vaccine antigens inhibit allergen-induced sensitization and airway hyperresponsiveness in a murine model. Allergy 2006; 61:820-7. [PMID: 16792579 DOI: 10.1111/j.1398-9995.2006.01093.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Co-vaccination with cellular pertussis vaccine down-regulates allergic sensitization to diphtheria and tetanus antigens. Using a murine model, we investigated whether vaccination with diphtheria/tetanus toxoids, administered separately or simultaneously with the whole cell vaccine of Bordetella pertussis, inhibits subsequent allergen-induced immune and inflammatory responses. METHODS BALB/c-mice were vaccinated intracutaneously with a combination of diphtheria and tetanus toxoids or a combination of diphtheria and tetanus toxoids with a whole cell vaccine of B. pertussis (three times, days -21 to -7) prior to systemic sensitization (days 1-14) and repeated airway challenges (days 28-30) with ovalbumin. RESULTS Compared with negative controls, systemic sensitization and airway allergen challenges induced high serum levels of allergen-specific IgE, predominant Th2-type cytokine production, airway inflammation and development of in vivo airway hyperreactivity. Vaccination with diphtheria and tetanus toxoids prior to sensitization suppressed IgE formation and development of eosinophilic airway inflammation. Co-vaccination with a whole cell pertussis vaccine inhibited allergen sensitization, airway inflammation and development of in vivo airway hyperreactivity. Prevention was due to an allergen-specific and general shift from a predominant Th2 towards a predominant Th1 immune response. CONCLUSION Vaccination with diphtheria and tetanus toxoids alone or in combination with whole cell pertussis vaccine prior to allergen sensitization prevented allergen-induced Th2 immune responses. Vaccine antigens may down-regulate allergic responses to a range of common allergens.
Collapse
Affiliation(s)
- C Grüber
- Pediatric Pneumology and Immunology, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zachariadis O, Cassidy JP, Brady J, Mahon BP. gammadelta T cells regulate the early inflammatory response to bordetella pertussis infection in the murine respiratory tract. Infect Immun 2006; 74:1837-45. [PMID: 16495558 PMCID: PMC1418642 DOI: 10.1128/iai.74.3.1837-1845.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of gammadelta T cells in the regulation of pulmonary inflammation following Bordetella pertussis infection was investigated. Using a well-characterized murine aerosol challenge model, inflammatory events in mice with targeted disruption of the T-cell receptor delta-chain gene (gammadelta TCR-/- mice) were compared with those in wild-type animals. Early following challenge with B. pertussis, gammadelta TCR-/- mice exhibited greater pulmonary inflammation, as measured by intra-alveolar albumin leakage and lesion histomorphometry, yet had lower contemporaneous bacterial lung loads. The larger numbers of neutrophils and macrophages and the greater concentration of the neutrophil marker myeloperoxidase in bronchoalveolar lavage fluid from gammadelta TCR-/- mice at this time suggested that differences in lung injury were mediated through increased leukocyte trafficking into infected alveoli. Furthermore, flow cytometric analysis found the pattern of recruitment of natural killer (NK) and NK receptor+ T cells into airspaces differed between the two mouse types over the same time period. Taken together, these findings suggest a regulatory influence for gammadelta T cells over the early pulmonary inflammatory response to bacterial infection. The absence of gammadelta T cells also influenced the subsequent adaptive immune response to specific bacterial components, as evidenced by a shift from a Th1 to a Th2 type response against the B. pertussis virulence factor filamentous hemagglutinin in gammadelta TCR-/- mice. The findings are relevant to the study of conditions such as neonatal B. pertussis infection and acute respiratory distress syndrome where gammadelta T cell dysfunction has been implicated in the inflammatory process.
Collapse
Affiliation(s)
- O Zachariadis
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|