1
|
Arona JC, Hall TJ, Mckinnirey F, Deng F. Comparison of four commercial immunomagnetic separation kits for the detection of Cryptosporidium. JOURNAL OF WATER AND HEALTH 2023; 21:1580-1590. [PMID: 37902211 PMCID: wh_2023_217 DOI: 10.2166/wh.2023.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Cryptosporidium spp. are protozoan parasites of significant health importance found in environmental waters globally. Four commercially available Cryptosporidium-specific immunomagnetic separation (IMS) kits used in various water sample matrices were analysed and compared. Beads were characterised by flow cytometry and tested for the recovery efficiencies for oocysts spiked into different matrices: river water sediment, clay sample, and filter backwash sample. Results showed that Dynabeads™ Cryptosporidium and Waterborne Crypto-Grab™ kits contained immunoglobulin IgM antibody-coated beads. In contrast, the BioPoint CryptoBead and the TCS Isolate kits contained immunoglobulin IgG antibody-coated beads. BioPoint CryptoBead was significantly coated with more antibodies and were able to capture oocysts more rapidly compared to the other beads. Recovery efficiencies of Dynabeads™, TCS Isolate® beads, and BioPoint CryptoBead ranged from 55 to 93% when tested against different sample matrices, with BioPoint CryptoBead resulting in the highest at 93% in reagent-grade water and Dynabeads™ at 55%, the lowest against clay samples. The Waterborne beads did not perform well on any samples, with recovery efficiencies ranging from 0 to 8%. Fluorescence microscopy analyses showed that both the IMS method and the sample matrix processed affect the quality of the membranes, with the cleanest samples for microscopy examination observed from BioPoint CryptoBead.
Collapse
Affiliation(s)
- Jeanne Claudeen Arona
- Graduate School of BioMedical Engineering, University of New South Wales, Sydney 2052, Australia E-mail:
| | - Timothy J Hall
- Graduate School of BioMedical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Flyn Mckinnirey
- Graduate School of BioMedical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Fei Deng
- Graduate School of BioMedical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
2
|
Siwak AM, Baker PG, Dube A. Biosensors as early warning detection systems for waterborne Cryptosporidium. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:615-630. [PMID: 37578878 PMCID: wst_2023_229 DOI: 10.2166/wst.2023.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Waterborne disease is a global health threat contributing to a high burden of diarrhoeal disease, and growing evidence indicates a prospective increase in incidence coinciding with the profound effects of climate change. A major causative agent of gastrointestinal disease is Cryptosporidium, a protozoan waterborne parasite identified in over 70 countries. Cryptosporidium is a cause of high disease morbidity in children and the immunocompromised with limited treatment options for patients at risk of severe illness. The hardy nature of the organism leads to its persistence in various water sources, with certain water treatment procedures proving inefficient for its complete removal. While diagnostic methods for Cryptosporidium are well-defined in the clinical sphere, detection of Cryptosporidium in water sources remains suboptimal due to low dispersion of organisms in large sample volumes, lengthy processing times and high costs of equipment and reagents. A need for improvement exists to identify the organism as an emerging threat in domestic water systems, and the technological advantages that biosensors offer over current analytical methods may provide a preventative approach to outbreaks of Cryptosporidium. Biosensors are innovative, versatile and adaptable analytical tools that could provide highly sensitive, rapid, on-site analysis needed for Cryptosporidium detection in low-resource settings.
Collapse
Affiliation(s)
- Andrea M Siwak
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa E-mail:
| | - Priscilla G Baker
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Robert Sobukwe Rd, Bellville, Cape Town, South Africa
| |
Collapse
|
3
|
Sarkhosh T, Mayerberger E, Jellison K, Jedlicka S. Development of cell-imprinted polymer surfaces for Cryptosporidium capture and detection. WATER RESEARCH 2021; 205:117675. [PMID: 34600226 DOI: 10.1016/j.watres.2021.117675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Cryptosporidium parvum is waterborne parasite that can cause potentially life-threatening gastrointestinal disease and is resistant to conventional water treatment processes, including chlorine disinfection. The current Environmental Protection Agency-approved method for oocyst detection and quantification is expensive, limiting the ability of water utilities to monitor complex watersheds thoroughly to understand the fate and transport of C. parvum oocysts. In this work, whole cell imprinting was used to create selective and sensitive surfaces for the capture of C. parvum oocysts in water. Cell-imprinted Polydimethylsiloxane (PDMS) was manufactured using a modified stamping approach, and sensitivity and selectivity were analyzed using different water chemistries and different surrogate biological and non-biological particles. The overall binding affinity was determined to be less than that of highly specific antibodies, but on par with standard antibodies and immune-enabled technologies. These initial results demonstrate the potential for developing devices using cell-imprinting for use in waterborne pathogen analysis.
Collapse
Affiliation(s)
- Tooba Sarkhosh
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA
| | - Elisa Mayerberger
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA
| | - Kristen Jellison
- Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, USA
| | - Sabrina Jedlicka
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA; Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
4
|
Li Y, Deng F, Hall T, Vesey G, Goldys EM. CRISPR/Cas12a-powered immunosensor suitable for ultra-sensitive whole Cryptosporidium oocyst detection from water samples using a plate reader. WATER RESEARCH 2021; 203:117553. [PMID: 34425437 DOI: 10.1016/j.watres.2021.117553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Waterborne pathogens, such as Cryptosporidium parvum, pose a major threat to public health globally, and this requires screening of drinking and environmental water for low number of contaminating microbes. However, current detection approaches generally require trained experts with sophisticated instruments, and are not suitable for large-scale screening and rapid outbreak response. Recent advances in ultrasensitive CRISPR/Cas-based biosensing continue to expand the range of detectable molecular targets, however single microbes could not be directly detected so far, especially in environmental samples. Here, we report an ultrasensitive CRISPR/Cas12a-powered immunosensing method suitable for microbial detection which links antibody-based recognition with CRISPR/Cas12a-based fluorescent signal amplification through an antibody-DNA conjugate. This approach is shown here to detect whole 4 µm size Cryptosporidium parvum oocysts with a linear range from 6.25 - 1600 oocysts/mL, at a maximum sensitivity of single oocyst per sample. Its potential to apply to various complex sample matrices has also been demonstrated. After sample dilution by factor of 10, we were able to detect 10 oocysts from a back-wash mud samples from water treatment plate. This method uses the same experimental setup (plate reader) as a conventional ELISA assay thus reducing the need for microscopy-based identification of Cryptosporidium, which represents the gold-standard but requires high level expertise and time-consuming manual counting. This work highlights the potential of CRISPR/Cas-based biosensing for water quality assessment and ultrasensitive whole pathogen detection.
Collapse
Affiliation(s)
- Yi Li
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia
| | - Fei Deng
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| | - Tim Hall
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Graham Vesey
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
5
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
6
|
Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro. mSphere 2018; 3:3/3/e00124-18. [PMID: 29848759 PMCID: PMC5976880 DOI: 10.1128/msphere.00124-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022] Open
Abstract
Cryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium. We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and help illuminate growth differences between various culture platforms. Among the obstacles hindering Cryptosporidium research is the lack of an in vitro culture system that supports complete life development and propagation. This major barrier has led to a shortage of widely available anti-Cryptosporidium antibodies and a lack of markers for staging developmental progression. Previously developed antibodies against Cryptosporidium were raised against extracellular stages or recombinant proteins, leading to antibodies with limited reactivity across the parasite life cycle. Here we sought to create antibodies that recognize novel epitopes that could be used to define intracellular development. We identified a mouse epithelial cell line that supported C. parvum growth, enabling immunization of mice with infected cells to create a bank of monoclonal antibodies (MAbs) against intracellular parasite stages while avoiding the development of host-specific antibodies. From this bank, we identified 12 antibodies with a range of reactivities across the parasite life cycle. Importantly, we identified specific MAbs that can distinguish different life cycle stages, such as trophozoites, merozoites, type I versus II meronts, and macrogamonts. These MAbs provide valuable tools for the Cryptosporidium research community and will facilitate future investigation into parasite biology. IMPORTANCECryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium. We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and help illuminate growth differences between various culture platforms.
Collapse
|
7
|
Calvo-Iglesias J, Pérez-Estévez D, González-Fernández Á. MSP22.8 is a protease inhibitor-like protein involved in shell mineralization in the edible mussel Mytilus galloprovincialis. FEBS Open Bio 2017; 7:1539-1556. [PMID: 28979842 PMCID: PMC5623705 DOI: 10.1002/2211-5463.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023] Open
Abstract
The mussel shell protein 22.8 (MSP22.8) is recognized by a monoclonal antibody (M22.8) directed against larvae of the mussel Mytilus galloprovincialis. After being secreted by cells of the mantle-edge epithelium into the extrapallial (EP) space (the gap between the mantle and the shell), the protein is detected in the extrapallial fluid (EPF) and EP hemocytes and finally becomes part of the shell matrix framework in adult specimens of M. galloprovincialis. In the work described here, we show how MSP22.8 is detected in EPF samples from different species of mussels (M. galloprovincialis, Mytilus edulis, and Xenostrobus securis), and also as a shell matrix protein in M. galloprovincialis, Mytilus chilensis, and Perna canaliculus. A multistep purification strategy was employed to isolate the protein from the EPF, which was then analyzed by mass spectrometry in order to identify it. The results indicate that MSP22.8 is a serpin-like protein that has great similarity with the protease inhibitor-like protein-B1, reported previously for Mytilus coruscus. We suggest that MSP22.8 is part of a system offering protection from proteolysis during biomineralization and is also part of the innate immune system in mussels.
Collapse
Affiliation(s)
- Juan Calvo-Iglesias
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| | | | - África González-Fernández
- Immunology Biomedical Research Center (CINBIO) Centro Singular de investigación de Galicia Institute of Biomedical Research of Vigo (IBIV) University of Vigo Pontevedra Spain
| |
Collapse
|
8
|
Weir C, Hudson AL, Moon E, Ross A, Alexander M, Peters L, Langova V, Clarke SJ, Pavlakis N, Davey R, Howell VM. Streptavidin: A Novel Immunostimulant for the Selection and Delivery of Autologous and Syngeneic Tumor Vaccines. Cancer Immunol Res 2014; 2:469-79. [DOI: 10.1158/2326-6066.cir-13-0157] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. EUKARYOTIC CELL 2009; 9:84-96. [PMID: 19949049 DOI: 10.1128/ec.00288-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C. parvum wall contains at least two unique proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) identified by monoclonal antibodies. C. parvum sporozoites have on their surface multiple mucin-like glycoproteins with Ser- and Thr-rich repeats (e.g., gp40 and gp900). Here we used ruthenium red staining and electron microscopy to demonstrate fibrils, which appear to attach or tether sporozoites to the inner surface of the C. parvum oocyst wall. When disconnected from the sporozoites, some of these fibrillar tethers appear to collapse into globules on the inner surface of oocyst walls. The most abundant proteins of purified oocyst walls, which are missing the tethers and outer veil, were COWP1, COWP6, and COWP8, while COWP2, COWP3, and COWP4 were present in trace amounts. In contrast, MPA affinity-purified glycoproteins from C. parvum oocysts, which are composed of walls and sporozoites, included previously identified mucin-like glycoproteins, a GalNAc-binding lectin, a Ser protease inhibitor, and several novel glycoproteins (C. parvum MPA affinity-purified glycoprotein 1 [CpMPA1] to CpMPA4). By immunoelectron microscopy (immuno-EM), we localized mucin-like glycoproteins (gp40 and gp900) to the ruthenium red-stained fibrils on the inner surface wall of oocysts, while antibodies to the O-linked GalNAc on glycoproteins were localized to the globules. These results suggest that mucin-like glycoproteins, which are associated with the sporozoite surface, may contribute to fibrils and/or globules that tether sporozoites to the inner surface of oocyst walls.
Collapse
|
10
|
Prevalence and genetic characterization of Cryptosporidium isolates from common brushtail possums (Trichosurus vulpecula) adapted to urban settings. Appl Environ Microbiol 2008; 74:5549-55. [PMID: 18641156 DOI: 10.1128/aem.00809-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The common brushtail possum (Trichosurus vulpecula) is one of the most abundant native marsupials in urban Australia, having successfully adapted to utilize anthropogenic resources. The habituation of possums to food and shelter available in human settlements has facilitated interaction with people, pets, and zoo animals, increasing the potential for transmission of zoonotic Cryptosporidium pathogens. This study sought to examine the identity and prevalence of Cryptosporidium species occurring in possums adapted to urban settings compared to possums inhabiting remote woodlands far from urban areas and to characterize the health of the host in response to oocyst shedding. Findings indicated that both populations were shedding oocysts of the same genotype (brushtail possum 1 [BTP1]) that were genetically and morphologically distinct from zoonotic species and genotypes and most closely related to Cryptosporidium species from marsupials. The urban population was shedding an additional five Cryptosporidium isolates that were genetically distinct from BTP1 and formed a sister clade with Cryptosporidium parvum and Cryptosporidium hominis. Possums that were shedding oocysts showed no evidence of pathogenic changes, including elevated levels of white blood cells, diminished body condition (body mass divided by skeletal body length), or reduced nutritional state, suggesting a stable host-parasite relationship typical of Cryptosporidium species that are adapted to the host. Overall, Cryptosporidium occurred with a higher prevalence in possums from urban habitat (11.3%) than in possums from woodland habitat (5.6%); however, the host-specific nature of the genotypes may limit spillover infection in the urban setting. This study determined that the coexistence of possums with sympatric populations of humans, pets, and zoo animals in the urban Australian environment is unlikely to present a threat to public health safety.
Collapse
|
11
|
Pokorny NJ, Boulter-Bitzer JI, Hall JC, Trevors JT, Lee H. Inhibition of Cryptosporidium parvum infection of a mammalian cell culture by recombinant scFv antibodies. Antonie van Leeuwenhoek 2008; 94:353-64. [PMID: 18581250 DOI: 10.1007/s10482-008-9252-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 05/12/2008] [Indexed: 11/28/2022]
Abstract
Two phage display antibody libraries (Tomlinson I and J) were screened against the whole oocysts of Cryptosporidium parvum to select for scFv (single chain variable fragment) antibodies. Three scFv antibodies were selected that bound to C. parvum oocysts as determined by monoclonal phage ELISA. DNA sequencing revealed that clone A11 lacked the majority of its V (H) chain. Clone B10 had a stop codon in the first framework region of the V (H) chain. We changed this stop codon to Gly by site-directed mutagenesis, and designated the variant mutB10. Clone B9 had a complete scFv gene with no internal stop codons. These antibody genes were individually subcloned into the pET-20b expression vector for soluble scFv antibody production. C. parvum infectivity was determined by infection of HCT-8 tissue culture monolayers and quantified by the foci detection method. By incubating C. parvum oocysts with individual scFv antibodies for 1 h at 37 degrees C prior to infecting the HCT-8 cells with the oocyst-scFv mixture, the infectivity of C. parvum was reduced in a dose-dependent manner. At the highest soluble scFv concentration tested (4 nmol), the mean number of infectious foci was reduced by 82%, 73% and 94% for the A11, B9 and mutB10 scFv, respectively. This inhibition of oocyst infectivity was abolished when the scFvs were exposed to boiling water. The results showed that the 3 selected scFvs bound to C. parvum oocysts, and their ability to neutralize infectivity may have potential therapeutic potential against cryptosporidiosis.
Collapse
Affiliation(s)
- Nicholas J Pokorny
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Jex AR, Smith HV, Monis PT, Campbell BE, Gasser RB. Cryptosporidium--biotechnological advances in the detection, diagnosis and analysis of genetic variation. Biotechnol Adv 2008; 26:304-17. [PMID: 18430539 DOI: 10.1016/j.biotechadv.2008.02.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/29/2008] [Accepted: 02/14/2008] [Indexed: 11/19/2022]
Abstract
Cryptosporidiosis is predominantly a gastrointestinal disease of humans and other animals, caused by various species of protozoan parasites representing the genus Cryptosporidium. This disease, transmitted mainly via the faecal-oral route (in water or food), is of major socioeconomic importance worldwide. The diagnosis and genetic characterization of the different species and population variants (usually recognised as "genotypes" or "subgenotypes") of Cryptosporidium is central to the prevention, surveillance and control of cryptosporidiosis, particularly given that there is presently no broadly applicable treatment regimen for this disease. Although traditional phenotypic techniques have had major limitations in the specific diagnosis of cryptosporidiosis, there have been major advances in the development of molecular analytical and diagnostic tools. This article provides a concise account of Cryptosporidium and cryptosporidiosis, and focuses mainly on recent advances in nucleic acid-based approaches for the diagnosis of cryptosporidiosis and analysis of genetic variation within and among species of Cryptosporidium. These advances represent a significant step toward an improved understanding of the epidemiology as well as the prevention and control of cryptosporidiosis.
Collapse
Affiliation(s)
- A R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia.
| | | | | | | | | |
Collapse
|
13
|
Jenkins MC, O'Brien CN, Trout JM. Detection of Cryptosporidium parvum Oocysts by Dot-Blotting Using Monoclonal Antibodies to Cryptosporidium parvum Virus 40-kDa Capsid Protein. J Parasitol 2008; 94:94-8. [DOI: 10.1645/ge-1313.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Kramer MF, Vesey G, Look NL, Herbert BR, Simpson-Stroot JM, Lim DV. Development of a Cryptosporidium oocyst assay using an automated fiber optic-based biosensor. J Biol Eng 2007; 1:3. [PMID: 18271980 PMCID: PMC2241826 DOI: 10.1186/1754-1611-1-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 10/10/2007] [Indexed: 11/10/2022] Open
Abstract
An intestinal protozoan parasite, Cryptosporidium parvum, is a major cause of waterborne gastrointestinal disease worldwide. Detection of Cryptosporidium oocysts in potable water is a high priority for the water treatment industry to reduce potential outbreaks among the consumer populace. Anti-Cryptosporidium oocyst polyclonal and monoclonal antibodies were tested as capture and detection reagents for use in a fiber optic biosensor assay for the detection of Cryptosporidium oocysts. Antibodies were validated using enzyme-linked immunosorbent assays, flow cytometry, Western blotting and fluorescent microscopy. Oocysts could be detected at a concentration of 105 oocysts/ml when the polyclonal antibodies were used as the capture and detection reagents. When oocysts were boiled prior to detection, a ten-fold increase in sensitivity was achieved using the polyclonal antibody. Western blotting and immunofluorescence revealed that both the monoclonal and polyclonal antibodies recognize a large (>300 kDa) molecular weight mucin-like antigen present on the surface of the oocyst wall. The polyclonal antibody also reacted with a small (105 kDa) molecular weight antigen that was present in boiled samples of oocysts. Preliminary steps to design an in-line biosensor assay system have shown that oocysts would have to be concentrated from water samples and heat treated to allow detection by a biosensor assay.
Collapse
Affiliation(s)
- Marianne F Kramer
- Division of Cell Biology, Microbiology, and Molecular Biology, Department of Biology, University of South Florida, 4202 E, Fowler Ave, SCA110, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Boulter-Bitzer JI, Lee H, Trevors JT. Molecular targets for detection and immunotherapy in Cryptosporidium parvum. Biotechnol Adv 2006; 25:13-44. [PMID: 17055210 DOI: 10.1016/j.biotechadv.2006.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 08/14/2006] [Accepted: 08/22/2006] [Indexed: 11/21/2022]
Abstract
Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although C. parvum is particularly pathogenic in immunocompromised hosts, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. Characterization of molecular-based antigenic targets of C. parvum is required to improve the specificity of detection, viability assessments, and immunotherapy (treatment). A number of zoite surface (glyco)proteins are known to be expressed during, and believed to be involved in, invasion and infection of host epithelial cells. In the absence of protective treatments for this illness, antibodies targeted against these zoite surface (glyco)proteins offers a rational approach to therapy. Monoclonal, polyclonal and recombinant antibodies represent useful immunotherapeutic means of combating infection, especially when highly immunogenic C. parvum antigens are utilized as targets. Interruption of life cycle stages of this parasite via antibodies that target critical surface-exposed proteins can potentially decrease the severity of disease symptoms and subsequent re-infection of host tissues. In addition, development of vaccines to this parasite based on the same antigens may be a valuable means of preventing infection. This paper describes many of the zoite surface glycoproteins potentially involved in infection, as well as summarizes many of the immunotherapeutic studies completed to date. The identification and characterization of antibodies that bind to C. parvum-specific cell surface antigens of the oocyst and sporozoite will allow researchers to fully realize the potential of molecular-based immunotherapy to this parasite.
Collapse
|
16
|
Ferrari BC, Stoner K, Bergquist PL. Applying fluorescence based technology to the recovery and isolation of Cryptosporidium and Giardia from industrial wastewater streams. WATER RESEARCH 2006; 40:541-8. [PMID: 16426657 DOI: 10.1016/j.watres.2005.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/21/2005] [Accepted: 11/25/2005] [Indexed: 05/06/2023]
Abstract
As increasing water shortages continue, water re-use is posing new challenges with treated wastewater becoming a significant source of non-potable water. Rapid detection strategies that target waterborne pathogens of concern to industry are gaining importance in the assessment of water quality. This study reports on the ability to recover spiked Cryptosporidium and Giardia from a variety of industrial wastewater streams of varied water quality. Incorporation of an internal quality control used commonly in finished water-enabled quantitative assessments of pathogen loads and we describe successful analysis of pre- and part-treated wastewater samples from four industrial sites. The method used combined calcium carbonate flocculation followed by flow cytometry and epifluorescence microscopy. Our focus will now aim at characterising the ambient parasites isolated from industrial wastewater with the objective of developing a suite of highly specific platform detection technologies targeted to industrial needs.
Collapse
Affiliation(s)
- B C Ferrari
- Department of Chemistry and Biomolecular Sciences, Environmental Biotechnology CRC and Biotechnology Research Institute, Macquarie University Sydney, NSW 2109, Australia.
| | | | | |
Collapse
|
17
|
Power ML, Sangster NC, Slade MB, Veal DA. Patterns of Cryptosporidium oocyst shedding by eastern grey kangaroos inhabiting an Australian watershed. Appl Environ Microbiol 2005; 71:6159-64. [PMID: 16204534 PMCID: PMC1265986 DOI: 10.1128/aem.71.10.6159-6164.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The occurrence of Cryptosporidium oocysts in feces from a population of wild eastern grey kangaroos inhabiting a protected watershed in Sydney, Australia, was investigated. Over a 2-year period, Cryptosporidium oocysts were detected in 239 of the 3,557 (6.7%) eastern grey kangaroo fecal samples tested by using a combined immunomagnetic separation and flow cytometric technique. The prevalence of Cryptosporidium in this host population was estimated to range from 0.32% to 28.5%, with peaks occurring during the autumn months. Oocyst shedding intensity ranged from below 20 oocysts/g feces to 2.0 x 10(6) oocysts/g feces, and shedding did not appear to be associated with diarrhea. Although morphologically similar to the human-infective Cryptosporidium hominis and the Cryptosporidium parvum "bovine" genotype oocysts, the oocysts isolated from kangaroo feces were identified as the Cryptosporidium "marsupial" genotype I or "marsupial" genotype II. Kangaroos are the predominant large mammal inhabiting Australian watersheds and are potentially a significant source of Cryptosporidium contamination of drinking water reservoirs. However, this host population was predominantly shedding the marsupial-derived genotypes, which to date have been identified only in marsupial host species.
Collapse
Affiliation(s)
- Michelle L Power
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | | | | | | |
Collapse
|
18
|
Ryan U, Read C, Hawkins P, Warnecke M, Swanson P, Griffith M, Deere D, Cunningham M, Cox P. Genotypes of Cryptosporidium from Sydney water catchment areas. J Appl Microbiol 2005; 98:1221-9. [PMID: 15836492 DOI: 10.1111/j.1365-2672.2005.02562.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Currently cryptosporidiosis represents the major public health concern of water utilities in developed nations and increasingly, new species and genotypes of Cryptosporidium are being identified in which the infectivity for humans is not clear. The complicated epidemiology of Cryptosporidium and the fact that the majority of species and genotypes of Cryptosporidium cannot be distinguished morphologically makes the assessment of public health risk difficult if oocysts are detected in the raw water supplies. The aim of this study was to use molecular tools to identify sources of Cryptosporidium from the Warragamba catchment area of Sydney, Australia. METHODS AND RESULTS Both faecal and water samples from the catchment area were collected and screened using immunomagnetic separation (IMS) and immunofluorescence microscopy. Samples that contained Cryptosporidium oocysts were genotyped using sequence and phylogenetic analysis of the 18S rDNA, and the heat-shock (HSP-70) gene. Analysis identified five Cryptosporidium species/genotypes including C. parvum (cattle genotype), C. suis, pig genotype II, the cervid genotype and a novel goat genotype. CONCLUSIONS Monitoring and characterization of the sources of oocyst contamination in watersheds will aid in the development and implementation of the most appropriate watershed management policies to protect the public from the risks of waterborne Cryptosporidium. SIGNIFICANCE AND IMPACT OF THE STUDY This study has shown that quantification by IMS analysis can be combined with the specificity of genotyping to provide an extremely valuable tool for assessing the human health risks from land use activities in drinking water catchments.
Collapse
Affiliation(s)
- U Ryan
- Division of Health Sciences, School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferguson C, Kaucner C, Krogh M, Deere D, Warnecke M. Comparison of methods for the concentration ofCryptosporidiumoocysts andGiardiacysts from raw waters. Can J Microbiol 2004; 50:675-82. [PMID: 15644920 DOI: 10.1139/w04-059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study compared the recovery of Cryptosporidium oocysts and Giardia cysts ((oo)cysts) from raw waters using 4 different concentrationelution methods: flatbed membranes, FiltaMaxTMfoam, EnvirochekTMHV capsules, and Hemoflow ultrafilters. The recovery efficiency of the combined immunomagnetic separation and staining steps was also determined. Analysis of variance of arcsine-transformed data demonstrated that recovery of Cryptosporidium oocysts by 2 of the methods was statistically equivalent (flatbed filtration 26.7% and Hemoflow 28.3%), with FiltaMaxTMand EnvirochekTMHV recoveries significantly lower (18.9% and 18.4%). Recovery of Giardia cysts was significantly higher using flatbed membrane filtration (42.2%) compared with the other 3 methods (EnvirochekTMHV 29.3%, FiltaMaxTM29.0%, and Hemoflow 20.9%). All methods were generally acceptable and are suitable for laboratory use; 2 of the methods are also suitable for field use (FiltaMaxTMand EnvirochekTMHV). In conclusion, with recoveries generally being statistically equivalent or similar, practical considerations become important in determining which filters to use for particular circumstances. The results indicate that while low-turbidity or "finished" waters can be processed with consistently high recovery efficiencies, recoveries from raw water samples differ significantly with variations in raw water quality. The use of an internal control with each raw water sample is therefore highly recommended.Key words: catchments, EnvirochekTMHV, Hemoflow, FiltaMaxTM, flatbed filtration.
Collapse
|
20
|
Power ML, Slade MB, Sangster NC, Veal DA. Genetic characterisation of Cryptosporidium from a wild population of eastern grey kangaroos Macropus giganteus inhabiting a water catchment. INFECTION GENETICS AND EVOLUTION 2004; 4:59-67. [PMID: 15019591 DOI: 10.1016/j.meegid.2004.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Revised: 01/08/2004] [Accepted: 01/08/2004] [Indexed: 11/24/2022]
Abstract
Molecular characterisation of Cryptosporidium oocysts isolated from faeces collected from eastern grey kangaroos Macropus giganteus inhabiting an Australian water catchment revealed that this host was susceptible to three types of Cryptosporidium. Nucleotide sequence analysis of the 18S rDNA, Cryptosporidium oocyst wall protein (COWP) and a 70kDa heat shock protein (HSP70) identified an isolate identical to the described Cryptosporidium 'marsupial' genotype. A second isolate had less than 0.5% variation, compared to the described Cryptosporidium 'marsupial' genotype, within the sequences of the 18S rDNA, COWP and HSP70 and 10% variation in the internal transcribed spacer 1 (ITS1). Multilocus analysis of the third Cryptosporidium revealed a novel genotype that had a degree of genetic variation, at the four loci characterised, which was greater than or equivalent to that used to discriminate between currently recognised Cryptosporidium species. These findings have increased our current understanding on the molecular epidemiology of Cryptosporidium in Australian wildlife and have provided information on the types of Cryptosporidium marsupials may shed into the environment.
Collapse
Affiliation(s)
- Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | | | |
Collapse
|
21
|
Abstract
Detection of Toxoplasma gondii oocysts in environmental samples is a great challenge for researchers as this coccidian parasite can be responsible for severe infections in humans and in animals via ingestion of a single oocyst from contaminated water, soil, fruits or vegetables. Despite field investigations, oocysts have been rarely recovered from the environment due to the lack of sensitive methods. Immunomagnetic separation, fluorescence-activated cell sorting, and polymerase chain reaction have recently shown promising use in detection of protozoa from complex matrices. Such procedures could be applied to T. gondii detection, if studies on the antigenic and biochemical composition of the oocyst wall are completed. Using such methods, it will be possible to assess the occurrence, prevalence, viability and virulence of T. gondii oocysts in environmental matrices and specify sources of human and animal contamination.
Collapse
Affiliation(s)
- Aurélien Dumètre
- UPRES EA 3174, Neuroparasitologie et Neuroépidémiologie Tropicale, Faculté de Médecine, 2 Rue du Dr Marcland, F-87025 Limoges, France
| | | |
Collapse
|
22
|
Warnecke M, Weir C, Vesey G. Evaluation of an internal positive control for Cryptosporidium and Giardia testing in water samples. Lett Appl Microbiol 2003; 37:244-8. [PMID: 12904227 DOI: 10.1046/j.1472-765x.2003.01383.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS An internal positive control for Cryptosporidium and Giardia monitoring was evaluated for use in routine water monitoring quality control. The control, known as ColorSeed C&G (BTF Pty Ltd, Sydney, Australia), is a suspension containing exactly 100 Cryptosporidium oocysts and 100 Giardia cysts that have been modified by attachment of Texas Red to the cell wall, allowing them to be differentiated from unmodified oocysts and cysts. The control enables recovery efficiencies to be determined for every water sample analysed. METHODS AND RESULTS A total of 494 water samples were seeded with ColorSeed C&G and with unlabelled Cryptosporidium and Giardia and then analysed. Additionally, the robustness of the ColorSeed labelling was challenged with various chemical treatments. Recoveries were significantly lower for the ColorSeed Texas Red labelled Cryptosporidium and Giardia than recoveries of unlabelled Cryptosporidium and Giardia. However, the differences in recoveries were small. On average ColorSeed Cryptosporidium recoveries were 3.3% lower than unlabelled Cryptosporidium, and ColorSeed Giardia recoveries were 4% lower than unlabelled Giardia. CONCLUSIONS ColorSeed C&G is suitable for use as an internal positive control for routine monitoring of both treated and raw water samples. SIGNIFICANCE AND IMPACT OF THE STUDY The small differences in recoveries are unlikely to limit the usefulness of ColorSeed C&G as an internal positive control. The ColorSeed labelling was found to be robust after different treatments.
Collapse
|
23
|
Ferrari BC, Veal D. Analysis-only detection of Giardia by combining immunomagnetic separation and two-color flow cytometry. Cytometry A 2003; 51:79-86. [PMID: 12541282 DOI: 10.1002/cyto.a.10009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Giardia is a protozoan parasite of concern to water utilities. Giardia detection relies on cyst isolation and confirmation with the use of fluorescence microscopy. It is of interest to develop a flow cytometric (FCM) method that reliably detects one cyst in 10 L of water. To date all available antibodies have targeted the same epitope on the cyst wall. To achieve a reliable method, two independent probes are required. METHODS Giardia cysts were spiked into a backwash water sample with and without prior hybridization to peptide nucleic acid (PNA) probes. Immunomagnetic separation (IMS) as a pre-enrichment step was compared with filtration of the water sample. Cysts were recovered with two-color FCM. Those cysts hybridized with PNA and fluorescein isothiocyanate (FITC) were dual stained with monoclonal antibody (mAb) conjugated to phycoerythrin (PE); those not hybridized to PNA were dual stained with mAb-FITC and mAb-PE. RESULTS A fourfold increase in fluorescent signal intensity was obtained when combining the mAb-PE and PNA probe compared with two-color antibody staining. When combined with IMS, Giardia was successfully identified by FCM, with no false positives detected. CONCLUSIONS Analysis-only FCM detection of Giardia in water is feasible. Further method development incorporating PNA probe hybridization after IMS is necessary.
Collapse
Affiliation(s)
- Belinda C Ferrari
- Centre for Fluorometric Applications in Biotechnology, School of Biological Sciences, Macquarie University, Sydney, Australia.
| | | |
Collapse
|
24
|
Quintero-Betancourt W, Peele ER, Rose JB. Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Methods 2002; 49:209-24. [PMID: 11869786 DOI: 10.1016/s0167-7012(02)00007-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cryptosporidium and Cyclospora are obligate, intracellular, coccidian protozoan parasites that infest the gastrointestinal tract of humans and animals causing severe diarrhea illness. In this paper, we present an overview of the conventional and more novel techniques that are currently available to detect Cryptosporidium and Cyclospora in water. Conventional techniques and new immunological and genetic/molecular methods make it possible to assess the occurrence, prevalence, virulence (to a lesser extent), viability, levels, and sources of waterborne protozoa. Concentration, purification, and detection are the three key steps in all methods that have been approved for routine monitoring of waterborne oocysts. These steps have been optimized to such an extent that low levels of naturally occurring Cryptosporidium oocysts can be efficiently recovered from water. The filtration systems developed in the US and Europe trap oocysts more effectively and are part of the standard methodologies for environmental monitoring of Cryptosporidium oocysts in source and treated water. Purification techniques such as immunomagnetic separation and flow cytometry with fluorescent activated cell sorting impart high capture efficiency and selective separation of oocysts from sample debris. Monoclonal antibodies with higher avidity and specificity to oocysts in water concentrates have significantly improved the detection and enumeration steps. To date, PCR-based detection methods allow us to differentiate the human pathogenic Cryptosporidium parasites from those that do not infect humans, and to track the source of oocyst contamination in the environment. Cell culture techniques are now used to examine oocyst viability. While fewer studies have focused on Cyclospora cayetanensis, the parasite has been successfully detected in drinking water and wastewater using current methods to recover Cryptosporidium oocysts. More research is needed for monitoring of Cyclospora in the environment. Meanwhile, molecular methods (e.g. molecular markers such as intervening transcribed spacer regions), which can identify different genotypes of C. cayetanensis, show good promise for detection of this emerging coccidian parasite in water.
Collapse
Affiliation(s)
- Walter Quintero-Betancourt
- Water Pollution Microbiology, College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | | | | |
Collapse
|