1
|
Hopo MG, Mabrok M, Abu-Elala N, Yu Y. Navigating Fish Immunity: Focus on Mucosal Immunity and the Evolving Landscape of Mucosal Vaccines. BIOLOGY 2024; 13:980. [PMID: 39765647 PMCID: PMC11727089 DOI: 10.3390/biology13120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The growing role of aquaculture in global food security has underscored the need for advanced immunological insights to protect fish health and boost productivity. As aquaculture's importance rises, understanding fish immunity is crucial for developing effective vaccination strategies. Fish possess a specialized immune system with unique mucosal structures that enable resilience in aquatic environments. This review examines critical advances in fish mucosal immunity, particularly focusing on mucosal vaccines that target infection at primary entry points, such as the gills, skin, and gastrointestinal tract. Mucosal vaccination has demonstrated a compelling capacity to stimulate localized and systemic immune responses, offering enhanced protection against waterborne pathogens. Additionally, this review addresses knowledge gaps from previous research on the global aquaculture vaccines market by offering a regional perspective on industry developments, recent trends, and innovative vaccine formulations. In doing so, it highlights the role of mucosal vaccines in overcoming the specific challenges of fish farming and supporting sustainable aquaculture. This synthesis of current methodologies, industry practices, and future directions contributes to a deeper understanding of fish immunology, ultimately informing strategies to achieve optimal disease management and bolster global aquaculture resilience.
Collapse
Affiliation(s)
- Mai G. Hopo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Mahmoud Mabrok
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Nermeen Abu-Elala
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
- Department of Animal Medicine, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Yongyao Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Jiang S, Huang X, Li T, Zhang Y, Zhang J. Immune response of large yellow croaker Larimichthys crocea towards a recombinant vaccine candidate targeting the parasitic ciliate Cryptocaryon irritans. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2023:1-20. [PMID: 37361880 PMCID: PMC10169208 DOI: 10.1007/s10499-023-01131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Cryptocaryon irritans, a parasitic ciliate, pose a major threat to marine teleost fish aquaculture. So far, no effective and safe control method is available. In this study, the protective efficacy of a recombinant truncated surface antigen of C. irritans (rCiSA32.6t) for large yellow croaker (Larimichthys crocea) against the parasite challenge with a sub-lethal dose of the infective theronts was evaluated by comparing the relative percent survivals (RPS), the specific antibody titers in sera, and the expression levels of the immune-related genes among the negative or adjuvant control fish, fish intraperitoneally immunized with rCiSA32.6t. The results showed that a RPS of 50.1% in rCiSA32.6t-immunized fish was achieved in comparison to negative control fish against C. irritans. A significant increase was noted in the antigen-specific immunoglobulin M (IgM) and immunoglobulin T (IgT) antibody levels in the sera of the rCiSA32.6t-vaccinated fish. Compared to the negative control fish, quantitative real-time PCR analysis indicated that the interleukin-1beta, IgT, and IgM heavy chain mRNA level in the fish head kidney, spleen, gill, and skin tissue were upregulated post-rCiSA32.6t immunization. This study indicates that the rCiSA32.6t can provide a high level of immune protection against C. irritans infection in grouper and is therefore pursued as a candidate C. irritans vaccine.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
- Guangdong Medical Valley, Nanjiang 2Nd Road, Zhujiang Street, Nansha District, Guangzhou, 511466 Guangdong China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Ting Li
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Yinan Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Jingwei Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| |
Collapse
|
3
|
Swain B, Powell CT, Curtiss R. Construction and Evaluation of Recombinant Attenuated Edwardsiella piscicida Vaccine (RAEV) Vector System Encoding Ichthyophthirius multifiliis (Ich) Antigen IAG52B. Front Immunol 2022; 12:802760. [PMID: 35145512 PMCID: PMC8821916 DOI: 10.3389/fimmu.2021.802760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
We have successfully designed and constructed a RAEV vector system with regulated-delayed attenuation in vivo attributes that synthesizes Ichthyophthirius multifiliis (Ich) protective antigen IAG52B to enable vaccination of fish susceptible to edwardsiellosis and white spot disease. The first feature of this vaccine delivery system is an Edwardsiella piscicida strain carrying genomic deletions of asdA. AsdA is an enzyme necessary for the synthesis of diaminopimelic acid (DAP), which is an essential component of the peptidoglycan layer of the cell wall of Gram-negative bacteria. asdA mutant strains have obligate growth requirements for DAP in the medium or a plasmid vector with the wild-type asdA gene enabling synthesis of DAP. This balanced-lethal plasmid vector-host system in E. piscicida enables as a second feature the synthesis of recombinant antigens to induce protective immunity against fish pathogens. Recombinant protective antigen IAG52B from the fish pathogen I. multifiliis was synthesized by RAEV strains harboring the AsdA+ plasmid pG8R8029. The third feature of this vaccine strain is a regulated-delayed attenuation in vivo phenotype that is based on the replacement of an arabinose-regulated araC ParaBAD cassette for the promoters of the fur and crp genes of E. piscicida such that the expression of these genes is dependent on arabinose provided during growth. Thus, following colonization, the Fur and Crp proteins stop being synthesized due to the lack of arabinose and attenuation is progressively achieved in vivo to prevent generation of diseases symptoms. Our vaccine strain χ16022 with the genotype ΔasdA10 ΔPfur170::TT araC ParaBAD fur ΔPcrp68::TT araC ParaBAD crp contains the AsdA+ plasmid, pG8R8029, which encodes the IAG52B antigen. Vaccine strain χ16022(pG8R8029) is attenuated and induces systemic and mucosal IgM titer against E. piscicida and Ich in zebrafish. In addition, transcript levels of tnf-α, il-1β, il-6 and il-8 were significantly increased in different tissues of vaccinated zebrafish compared to unimmunized fish. Zebrafish vaccinated with χ16022(pG8R8029) showed 60% survival upon intracoelomic (i.c.) challenge with a lethal dose of virulent E. piscicida strain J118. Our RAEV system could be used as a generalized vaccine-vector system to protect teleost fish against multiple bacterial, viral and parasitic infectious diseases.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Cole T Powell
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Infectivity and genes differentially expressed between young and aging theront cells of the marine fish parasite Cryptocaryon irritans. PLoS One 2020; 15:e0238167. [PMID: 32857792 PMCID: PMC7454944 DOI: 10.1371/journal.pone.0238167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
The ciliated protozoan Cryptocaryon irritans infects a wide range of marine fish and causes the highly lethal white spot disease. This parasite possesses three morphologically and physiologically distinct life stages: an infectious theront, a parasitic trophont, and an asexually reproductive tomont. In the past few years, several attempts have been made to help elucidate how C. irritans transforms from one stage to another using transcriptomic or proteomic approaches. However, there has been no research studying changes in transcription profiles between different time points of a single C. irritans life stage—the development of this parasite. Here we use RNA-seq and compare gene expression profiles of theront cells collected by 1 and 10 hrs after they emerged from tomonts. It has been shown that infectivity of theront cells declines 6–8 hours post-emergence, and we used this characteristic as a physiological marker to confirm the aging of theront cells. We identified a total of 41 upregulated and 90 downregulated genes that were differentially expressed between young and aging theront cells. Using Blast2Go to further analyze functions of these genes, we show that genes related to energy production are downregulated, but quite surprisingly many genes involved in transcription/translation processes are upregulated. We also show that expression of all nine detectable agglutination/immobilization antigen genes, with great sequence divergence, is invariably downregulated. Functions of other differentially expressed genes and indications are also discussed in our study.
Collapse
|
5
|
Yu YY, Kong WG, Xu HY, Huang ZY, Zhang XT, Ding LG, Dong S, Yin GM, Dong F, Yu W, Cao JF, Meng KF, Liu X, Fu Y, Zhang XZ, Zhang YA, Sunyer JO, Xu Z. Convergent Evolution of Mucosal Immune Responses at the Buccal Cavity of Teleost Fish. iScience 2019; 19:821-835. [PMID: 31499339 PMCID: PMC6734174 DOI: 10.1016/j.isci.2019.08.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/27/2022] Open
Abstract
The buccal mucosa (BM) is a critical first line of defense in terrestrial animals. To gain further insights into the evolutionary origins and primordial roles of BM in teleosts here we show that rainbow trout, a teleost fish, contains a diffuse mucosal associated lymphoid tissue (MALT) within its buccal cavity. Upon parasite infection, a fish immunoglobulin specialized in mucosal immunity (sIgT) was induced to a high degree, and parasite-specific sIgT responses were mainly detected in the buccal mucus. Moreover, we show that the trout buccal microbiota is prevalently coated with sIgT. Overall our findings revealed that the MALT is present in the BM of a non-tetrapod species. As fish IgT and mucus-producing cells are evolutionarily unrelated to mammalian IgA and salivary glands, respectively, our findings indicate that mucosal immune responses in the BM of teleost fish and tetrapods evolved through a process of convergent evolution.
Collapse
Affiliation(s)
- Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao-Ting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guang-Mei Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Fu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xue-Zhen Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China.
| |
Collapse
|
6
|
Characterization and immune regulation role of an immobilization antigen from Cryptocaryon irritans on groupers. Sci Rep 2019; 9:1029. [PMID: 30705292 PMCID: PMC6355922 DOI: 10.1038/s41598-018-25710-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022] Open
Abstract
Immobilization antigens (i-antigens) are surface membrane proteins that are widely recognized to be the ideal candidates as vaccines antigens for immunization against Cryptocaryon irritans. In this study, we cloned a putative i-antigen gene from C. irritans, which was expressed in all three stages of the C. irritans life-cycle, and localized primarily to the cell surface. The recombinant GDCI3 i-antigen was expressed and purified using the free-living ciliate, Tetrahymena thermophila as an expression system. The purified recombinant protein was recognized by rabbit anti-C. irritans antiserum and was capable of eliciting immobilizing antibodies in rabbits and fish suggesting that the antigen itself was correctly folded. Following immunization and parasite challenge, groupers vaccinated with, recombinant GDCI3 i-antigen had a 25% cumulative percent survival rate compared to 8.3% for controls. Both non-specific and parasite-specific IgMs were generated in fish following immunization, with the levels of both increasing following challenge. Parasite-specific IgM in mucus could only be elicited after challenge of the GDCI3 i-antigen vaccinated groupers. To our knowledge, this is the first report using the Tetrahymena expression system to generate C. irritans i-antigens and investigate their use for fish vaccination.
Collapse
|
7
|
Fu YW, Wang B, Zhang QZ, Xu DH, Liu YM, Hou TL, Guo SQ. Efficacy and antiparasitic mechanism of 10-gingerol isolated from ginger Zingiber officinale against Ichthyophthirius multifiliis in grass carp. Vet Parasitol 2019; 265:74-84. [PMID: 30638524 DOI: 10.1016/j.vetpar.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Ichthyophthirius multifiliis is a ciliate parasite of freshwater fish with a global distribution and results in severe economic losses in aquaculture. The present study aimed to investigate the efficacy and antiparasitic mechanism of active compounds isolated from Zingiber officinale against I. multifiliis. Three compounds were isolated from the Z. officinale extract and identified as 10-gingerol, 6-dehydroshogaol, and 6-dehydro-10-gingerol. 10-gingerol demonstrated the greatest antiparasitic efficacy in vitro. 10-gingerol resulted in 100% mortalities of theronts, nonencysted tomonts, and encysted tomonts at concentrations of 2, 8, and 16 mg/L, respectively. 10-gingerol significantly reduced theronts infectivity (p < 0.05) at a concentration of 1 mg/L, and it was effective in treating infected grass carp and protecting naïve fish from I. multifiliis infestation at a concentration of 4 mg/L. The antiparasitic mechanism might be attributed to the increase of intracellular osmotic pressure, accumulation of free radicals, and membrane damage of I. multifiliis post 10-gingerol treatment. The study demonstrated that 10-gingerol had the potential as a therapeutic agent against I. multifiliis.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Bin Wang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Yan-Meng Liu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Ting-Long Hou
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Shu-Quan Guo
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
8
|
Dickerson HW, Findly RC. Vertebrate Adaptive Immunity-Comparative Insights from a Teleost Model. Front Immunol 2017; 8:1379. [PMID: 29123524 PMCID: PMC5662878 DOI: 10.3389/fimmu.2017.01379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
The channel catfish (Ictalurus punctatus) and the ciliated protozoan parasite Ichthyophthirius multifiliis are used to study pathogen-specific protective immunity. In this review, we briefly describe this host–parasite system and discuss the comparative insights it provides on the adaptive immune response of vertebrates. We include studies related to cutaneous mucosal immunity, B cell memory responses, and analyses of αβ T cell receptor (TCR) repertoires. This host–parasite model has played an important role in elucidating host protective responses to parasite invasion and for comparative studies of vertebrate immunity. Recent findings from bioinformatics analyses of TCR β repertoires suggest that channel catfish preferentially expand specific clonotypes that are stably integrated in the genome. This finding could have broad implications related to diversity in lymphocyte receptors of early vertebrates.
Collapse
Affiliation(s)
- Harry W Dickerson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Robert Craig Findly
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Comparative transcriptional profile of the fish parasite Cryptocaryon irritans. Parasit Vectors 2016; 9:630. [PMID: 27923398 PMCID: PMC5142281 DOI: 10.1186/s13071-016-1919-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptocaryon irritans is an obligate ectoparasitic ciliate pathogen of marine fishes. It can infect most marine teleosts and cause heavy economic losses in aquaculture. There is currently no effective method of controlling this disease, and little information is available regarding the genes involved in its development and virulence. We aimed to investigate the distinct features of the three major life-cycle stages of C. irritans in terms of gene transcription level, and identify candidate vaccines/drug targets. We established a reference transcriptome of C. irritans by RNA-seq. METHODS Three cDNA libraries using total poly(A)+ mRNA isolated from trophonts, tomonts, and theronts was constructed and sequenced, respectively. Clean reads from the three stages were de novo assembled to generated unigene. Annotation of unigenes and transcriptomic comparison of three stages was performed. RESULTS Totals of 73.15, 62.23, and 109.57 million clean reads were generated from trophont, tomont, and theront libraries, respectively. After de novo assembly, 49,104 unigenes were obtained, including 9,253 unigenes with significant similarities to proteins from other ciliates. Transcriptomic comparisons revealed that 2,470 genes were differentially expressed among the three stages, including 2,011, 1,404, and 1,797 genes that were significantly differentially expressed in tomont/theront, tomont/trophont, and theront/trophont pairwise comparisons, respectively. Based on the results of hierarchical clustering, all differentially expressed genes (DEGs) were located in five major clusters. DEGs in clusters 1 and 2 were more highly expressed in tomonts than in other stages, DEGs in cluster 3 were dominant in the tomont and trophont stages, whereas clusters 4 and 5 included genes upregulated in the theront stage. In addition, Immobilization antigens (I-antigens) and proteases have long been considered major targets for vaccine development and potential drug targets in parasites, respectively. In the present study, nine putative I-antigens transcripts and 161 protease transcripts were found in the transcriptome of C. irritans. CONCLUSION It was concluded that DEGs enriched in tomonts were involved in cell division, to increase the number of theronts and ensure parasite continuity. DEGs enriched in theronts were associated with response to stimuli, whereas genes enriched in trophonts were related to nutrient accumulation and cell growth. In addition, the I-antigen and protease transcripts in our transcriptome could contribute to the development of vaccines or targeted drugs. Together, the results of the present study provide novel insights into the physiological processes of a marine parasitic ciliate.
Collapse
|
10
|
Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer. Sci Rep 2015; 5:15470. [PMID: 26486372 PMCID: PMC4614350 DOI: 10.1038/srep15470] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/28/2015] [Indexed: 01/22/2023] Open
Abstract
Certain ciliates of the subclass Scuticociliatia (scuticociliates) are facultative parasites of fishes in which they cause a suite of diseases collectively termed scuticociliatosis. Hitherto, comparatively little was known about genetics and genomics of scuticociliates or the mechanism of scuticociliatosis. In this study, a laboratory culture of the facultatively pathogenic scuticociliate Pseudocohnilembus persalinus was established and its genome sequenced, giving the first genome of a marine ciliate. Genome-wide horizontal gene transfer (HGT) analysis showed P. persalinus has acquired many unique prokaryote-derived genes that potentially contribute to the virulence of this organism, including cell adhesion, hemolysis and heme utilization genes. These findings give new insights into our understanding of the pathology of scuticociliates.
Collapse
|
11
|
Munang'andu HM, Mutoloki S, Evensen Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front Immunol 2015; 6:427. [PMID: 26379665 PMCID: PMC4547047 DOI: 10.3389/fimmu.2015.00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mucosal organs are principle portals of entry for microbial invasion and as such developing protective vaccines against these pathogens can serve as a first line of defense against infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose main function is not only to prevent pathogen attachment by being continuously secreted and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting cells (APCs) that activate cells of the adaptive immune system to generate long-lasting protective immune responses. The functional activities of APCs are orchestrated by a vast array of proinflammatory cytokines and chemokines found in all mucosal organs. The adaptive immune system in mucosal organs is made of humoral immune responses that are able to neutralize invading pathogens as well as cellular-mediated immune responses whose kinetics are comparable to those induced by parenteral vaccines. In general, finfish mucosal immune system has the capacity to serve as the first-line defense mechanism against microbial invasion as well as being responsive to vaccination.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
12
|
Ye J, Kaattari IM, Ma C, Kaattari S. The teleost humoral immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1719-28. [PMID: 24436975 DOI: 10.1016/j.fsi.2013.10.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Over the past 10 years our knowledge of cellular and molecular dynamics of teleost humoral immunity has increased enormously to now include: the existence of multiple isotypes, affinity-driven modulation of antibody structure and function, the unique trafficking patterns of each stage of B cell differentiation (including the plasma blast, short-lived and long-lived plasma cell, and the memory cell). Unfortunately the work which has generated the bulk of this information has generally employed defined antigens rather than vaccines. Thus, the focus of this review is to relate these aspects of immunity that are requisite for a mechanistic understanding of the generation of prophylactic immunity to the necessary analysis of responses to vaccines and vaccine candidates.
Collapse
|
13
|
von Gersdorff Jørgensen L, Sigh J, Kania PW, Holten-Andersen L, Buchmann K, Clark T, Rasmussen JS, Einer-Jensen K, Lorenzen N. Approaches towards DNA vaccination against a skin ciliate parasite in fish. PLoS One 2012; 7:e48129. [PMID: 23144852 PMCID: PMC3492342 DOI: 10.1371/journal.pone.0048129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/27/2012] [Indexed: 11/19/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags) and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(G)protein (VHSV G) were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens are required for such a vaccine to be successful.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Aquaculture
- Cells, Cultured
- Ciliophora Infections/immunology
- Ciliophora Infections/prevention & control
- Ciliophora Infections/veterinary
- Fish Diseases/immunology
- Fish Diseases/prevention & control
- Gene Expression
- HEK293 Cells
- Humans
- Hymenostomatida/genetics
- Hymenostomatida/immunology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Oncorhynchus mykiss/immunology
- Oncorhynchus mykiss/parasitology
- Parasite Load
- Skin Diseases, Parasitic/immunology
- Skin Diseases, Parasitic/prevention & control
- Skin Diseases, Parasitic/veterinary
- Spleen/immunology
- Spleen/metabolism
- Transfection
- Vaccination
- Vaccines, DNA/administration & dosage
Collapse
|
14
|
Lee EH, Kim KH. Identification of differentially expressed genes in parasitic phase Miamiensis avidus (Ciliophora: Scuticociliatia) using suppression subtractive hybridization. DISEASES OF AQUATIC ORGANISMS 2011; 94:135-142. [PMID: 21648242 DOI: 10.3354/dao02320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Miamiensis avidus, a causative agent of scuticociliatosis in cultured marine fish, can live not only in seawater as a free-living organism but also in fish as a parasite. In this study, a cDNA library of representative mRNAs more specific to parasitic phase M. avidus was generated using suppression subtractive hybridization (SSH), and 520 clones selected from the SSH library were single-run sequenced. The differential gene expression patterns were confirmed by semi-quantitative reverse-transcription PCR. Of the 510 SSH clones, 21 clones of 6 putative genes did not match sequences in the public database. The expectation values (E-values) of 117 clones encoding 9 putative genes were greater than 1 x 10(-5). The other 372 clones that met the criterion of E value <1 x 10-5 were matched to 26 known sequences in the database. Genes associated with signal transduction, cell proliferation, membrane transportation, protein translocation, and transcription regulation were preferentially expressed in parasitic phase M. avidus. The differential gene expression may be needed for the ciliates to survive in the host fish, and the corresponding proteins might be used as antigen candidates for development of scuticociliatosis vaccines.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | | |
Collapse
|
15
|
Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genomics 2010; 11:76. [PMID: 20113487 PMCID: PMC2828411 DOI: 10.1186/1471-2164-11-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/29/2010] [Indexed: 01/26/2023] Open
Abstract
Background Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins. Results ESTs were generated from a cDNA library of C. irritans tomonts isolated from infected Asian sea bass, Lates calcarifer. Clustering of the 5356 ESTs produced 2659 unique transcripts (UTs) containing 1989 singletons and 670 consensi. BLAST analysis showed that 74% of the UTs had significant similarity (E-value < 10-5) to sequences that are currently available in the GenBank database, with more than 15% of the significant hits showing unknown function. Forty percent of the UTs had significant similarity to ciliates from the genera Tetrahymena and Paramecium. Comparative gene family analysis with related taxa showed that many protein families are conserved among the protozoans. Based on gene ontology annotation, functional groups were successfully assigned to 790 UTs. Genes encoding excretory/secretory proteins and membrane and membrane-associated proteins were identified because these proteins often function as antigens and are good antibody targets. A total of 481 UTs were classified as encoding membrane proteins, 54 were classified as encoding for membrane-bound proteins, and 155 were found to contain excretory/secretory protein-coding sequences. Amino acid repeat-containing proteins and GPI-anchored proteins were also identified as potential candidates for the development of diagnostic and control strategies for C. irritans. Conclusions We successfully discovered and examined a large portion of the previously unexplored C. irritans transcriptome and identified potential genes for the development and validation of diagnostic and control strategies for cryptocaryonosis.
Collapse
Affiliation(s)
- Yogeswaran Lokanathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | | | | |
Collapse
|
16
|
DAN XM. IMMUNE RESPONSE AND IMMUNOPROTECTION OF POMPANOS ( TRACHINOTUS OVATUS) AGAINST CRYPTOCARYON IRRITANS. ACTA ACUST UNITED AC 2008. [DOI: 10.3724/sp.j.1035.2008.00013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Abstract
In the past decades, the major focus of antigen variation research has been on parasitic protists. However, antigenic variation occurs also in free-living protists. The antigenic systems of the ciliates Paramecium and Tetrahymena have been studied for more than 100 yr. In spite of different life strategies and distant phylogenetic relationships of free-living ciliates and parasitic protists, their antigenic systems have features in common, such as the presence of repeated protein motifs and multigene families. The function of variable surface antigens in free-living ciliates is still unknown. Up to now no detailed monitoring of antigen expression in free-living ciliates in natural habitats has been performed. Unlike stochastic switching in parasites, antigen expression in ciliates can be directed, e.g. by temperature, which holds great advantages for research on the expression mechanism. Regulated expression of surface antigens occurs in an exclusive way and the responsible mechanism is complex, involving both transcriptional and post-transcriptional features. The involvement of homology-dependent effects has been proposed several times but has not been proved yet.
Collapse
Affiliation(s)
- Martin C Simon
- Department of Ecology, University of Kaiserslautern, Building 14, Gottlieb-Daimler-Street, 67663 Kaiserslautern, Germany.
| | | |
Collapse
|
18
|
Vincent BN, Morrison RN, Nowak BF. Amoebic gill disease (AGD)-affected Atlantic salmon, Salmo salar L., are resistant to subsequent AGD challenge. JOURNAL OF FISH DISEASES 2006; 29:549-59. [PMID: 16948705 DOI: 10.1111/j.1365-2761.2006.00751.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is inconsistent evidence of resistance of Atlantic salmon, Salmo salar L., to amoebic gill disease (AGD). Here, evidence is presented that demonstrates that Atlantic salmon exposed and subsequently challenged with AGD are more resistant than naïve control fish. Seventy-three per cent of Atlantic salmon previously exposed to AGD survived to day 35 post-challenge compared with 26% exposed to Neoparamoeba sp. for the first time, yet the gill pathology of surviving naïve control or previously exposed fish was not significantly different. Development of resistance to AGD is associated with anti-Neoparamoeba sp. antibodies that were detectable in serum of 50% of surviving Atlantic salmon previously exposed to AGD. However, anti-Neoparamoeba sp. antibodies were not detectable in cutaneous mucus of resistant fish. Increased resistance of Atlantic salmon after secondary Neoparamoeba sp. infection and detection of specific serum antibodies provides support for the development of a vaccine for AGD.
Collapse
Affiliation(s)
- B N Vincent
- Aquafin CRC, School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Launceston, Tasmania, Australia.
| | | | | |
Collapse
|
19
|
Xu DH, Klesius PH, Panangala VS. Induced cross-protection in channel catfish, Ictalurus punctatus (Rafinesque), against different immobilization serotypes of Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2006; 29:131-8. [PMID: 16533298 DOI: 10.1111/j.1365-2761.2006.00700.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Abstract Channel catfish, Ictalurus punctatus (Rafinesque), were immunized with Ichthyophthirius multifiliis (Ich) theronts and trophonts, and the immune response and host protection against both homologous and heterologous serotypes of Ich were evaluated. Immunizations were done with two immobilization serotypes (ARS4 and ARS6) of live theronts by bath immersion (trial I) and with sonicated trophonts by intraperitoneal (i.p.) injection (trial II). Cutaneous and serum antibody titres against Ich following immunization were measured and survival of catfish was determined after theront challenge. Theronts were immobilized by the antiserum from fish immunized with homologous theronts or trophonts, but not by the serum of fish immunized with the heterologous serotype. Serum from fish immunized by immersion with live theronts showed higher enzyme-linked immunosorbent assay titres against both homologous and heterologous serotypes than fish immunized by i.p. injection of trophonts. Channel catfish immunized by immersion with live theronts or by i.p. injection with sonicated trophonts developed an immune response against Ich and provided cross-protection against challenge from both serotypes (ARS4 and ARS6) of the parasite. Sonicated trophont antigens in aqueous solution by i.p. injection could stimulate an immune response in fish, but the immunity was of short duration.
Collapse
Affiliation(s)
- D-H Xu
- US Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Laboratory, Auburn, AL 36831-0952, USA.
| | | | | |
Collapse
|
20
|
Hatanaka A, Umeda N, Yamashita S, Hirazawa N. A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus. Parasitology 2006; 131:591-600. [PMID: 16255817 DOI: 10.1017/s0031182005008322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 11/07/2022]
Abstract
The capsalid monogenean Neobenedenia girellae, a parasite of seawater fishes, was found to express an antigen that elicits antibodies in rabbits, and these antibodies had agglutination/immobilization activity against N. girellae larvae (oncomiracidia) in vitro. Indirect immunofluorescence staining of N. girellae oncomiracidia showed that this agglutination/immobilization antigen was expressed on the surface of cilia. An intraperitoneal injection of ciliary proteins (either sonicated or intact) with adjuvant also elicited agglutinizing/immobilizing antibodies in sera from Japanese flounder, Paralichthys olivaceus. These antisera showed a clear correlation between anti-ciliary antibody levels (measured by enzyme-linked immunosorbent assays) and their agglutination/immobilization activity. Anti-ciliary antibody levels in Japanese flounder reached a plateau at 39 days after booster immunization and were significantly higher in the two immunized groups (injection of sonicated or intact cilia) as compared with control fish (injection of bovine serum albumin; ANOVA, Tukey's test, P < 0.01). Anti-ciliary antibodies were also found in fish mucus; however, there was no correlation between fish serum anti-ciliary antibody levels and mucus antibody levels. A Triton X-114-soluble 8 kDa glycoprotein of the ciliary integral membrane fraction is a plausible candidate for the agglutination/immobilization antigen based on SDS-polyacrylamide gel electrophoresis and immunoblot analyses with rabbit and fish antisera.
Collapse
Affiliation(s)
- A Hatanaka
- Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan.
| | | | | | | |
Collapse
|
21
|
Xu DH, Klesius PH, Shelby RA. Immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis after immunization with live theronts and sonicated trophonts. JOURNAL OF FISH DISEASES 2004; 27:135-141. [PMID: 15009239 DOI: 10.1111/j.1365-2761.2004.00523.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The humoral immune responses and host protection of channel catfish, Ictalurus punctatus (Rafinesque), against Ichthyophthirius multifiliis (Ich) were determined after immunization with live theronts and sonicated trophonts. Immunizations with live theronts or sonicated trophonts were carried out by both bath immersion and intraperitoneal (i.p.) injection. Cutaneous and serum immunoglobulin (Ig) levels and anti-Ich antibodies were measured 12 and 21 days post-immunization. The level of Ich infection and survival of catfish were determined after theront challenge. Cutaneous and serum anti-Ich antibodies were significantly higher (P < 0.05) in fish immunized with live theronts by immersion or i.p. injection, or with sonicated trophonts administered by i.p. injection, than in fish immunized with sonicated trophonts by immersion, with bovine serum albumin by i.p. injection, or non-immunized controls. Host protection was noted only in fish immunized with live theronts by immersion or i.p. injection or with sonicated trophonts by i.p. injection. There was a positive correlation between higher levels of anti-Ich antibodies and host survival in the immunized fish.
Collapse
Affiliation(s)
- D-H Xu
- Aquatic Animal Health Research Laboratory, Agricultural Research Service, US Department of Agriculture, Auburn, AL 36831, USA.
| | | | | |
Collapse
|
22
|
Bisharyan Y, Chen Q, Hossain MM, Papoyan A, Clark TG. Cadmium effects on Ichthyophthirius: evidence for metal-sequestration in fish tissues following administration of recombinant vaccines. Parasitology 2004; 126 Suppl:S87-93. [PMID: 14667175 DOI: 10.1017/s0031182003003731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We are developing Tetrahymena thermophila as a delivery system for recombinant vaccines against parasitic protozoa, including the common fish parasite, Ichthyophthirius multifiliis. T. thermophila cell lines expressing I. multifiliis genes under the control of a cadmium-inducible metallothionein gene promoter conferred strong protection against a lethal parasite challenge when administered parenterally to naive fish. Nevertheless, given that heavy metals can be toxic to parasites, a question arose as to whether protection resulted from Cd residues carried over with the vaccine, rather than acquired immunity per se. To address this issue, we examined the sensitivity of I. multifiliis to Cd in vitro and determined Cd concentrations in different host tissues following i.p. injection of juvenile channel catfish with the recombinant vaccine. We found that CdCl2 at concentrations > or = 50 ppb were lethal to I. multifiliis theronts in vitro. Furthermore, Cd concentrations were clearly elevated in fish tissues and reached levels equivalent to 74 ng/g wet weight (74 ppb) in the skin within 14 days of injection with recombinant T. thermophila. Nevertheless, fish injected with non-transformed Tetrahymena grown in the presence or absence of CdCl2 showed no significant difference in either relative survival or parasite load following direct challenge with I. multifiliis.
Collapse
Affiliation(s)
- Y Bisharyan
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
23
|
Maki JL, Dickerson HW. Systemic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:876-81. [PMID: 12965920 PMCID: PMC193910 DOI: 10.1128/cdli.10.5.876-881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 12/30/2002] [Accepted: 06/05/2003] [Indexed: 11/20/2022]
Abstract
Fish acquire protective immunity against the ciliated protozoan parasite Ichthyophthirius multifiliis following sublethal infection or inoculation with I. multifiliis immobilization antigens (i-antigens). In both cases, parasite-immobilizing antibodies have been identified in sera and mucosal secretions. To investigate the kinetics of this immune response, antibody levels were determined by enzyme-linked immunosorbent assay (ELISA) in the sera and cutaneous mucus of channel catfish (Ictalurus punctatus) that were either infected with parasites or given a single injection of purified i-antigen (5.0 microg/fish) in Freund's incomplete adjuvant. At 5 weeks, infected and inoculated fish had a mean serum (1:80 dilution) antibody absorbance (A405) value of 0.54 +/- 0.17 and 0.35 +/- 0.03, respectively, which were significantly higher (alpha = 0.05) than the pretreatment serum (1:80 dilution) antibody absorbance value of 0.24 +/- 0.05. At 14 weeks, mean serum (1:80 dilution) ELISA absorbance values in the teo groups of fish increased to 0.79 +/- 0.30 and 0.71 +/- 0.24, respectively. In both groups of fish, antibody levels in cutaneous mucus (undiluted) were much lower than those in sera. Infected fish had detectable mucus (undiluted) antibody levels from 3 to 9 weeks, with the highest mean value (0.30 +/- 0.07) occurring at 7 weeks. Although individual inoculated fish produced serum antibody absorbance values comparable to those seen in infected fish, the mean mucus antibody values in this group did not rise above pretreatment levels. I. multifiliis infection induced a transient mucosal antibody response that coincided with the resolution of infection. Whether elicited by infection or intraperitoneal injection of i-antigen, the serum and mucus antibody responses of channel catfish immunized against I. multifiliis did not occur synchronously.
Collapse
Affiliation(s)
- Joanne L Maki
- Department of Medical Microbiology and Parasitology, The University of Georgia, Athens, Georgia 30602-7386, USA
| | | |
Collapse
|
24
|
Maki JL, Dickerson HW. Systemic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003. [PMID: 12965920 DOI: 10.1128/cdli.10.5.876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Fish acquire protective immunity against the ciliated protozoan parasite Ichthyophthirius multifiliis following sublethal infection or inoculation with I. multifiliis immobilization antigens (i-antigens). In both cases, parasite-immobilizing antibodies have been identified in sera and mucosal secretions. To investigate the kinetics of this immune response, antibody levels were determined by enzyme-linked immunosorbent assay (ELISA) in the sera and cutaneous mucus of channel catfish (Ictalurus punctatus) that were either infected with parasites or given a single injection of purified i-antigen (5.0 microg/fish) in Freund's incomplete adjuvant. At 5 weeks, infected and inoculated fish had a mean serum (1:80 dilution) antibody absorbance (A405) value of 0.54 +/- 0.17 and 0.35 +/- 0.03, respectively, which were significantly higher (alpha = 0.05) than the pretreatment serum (1:80 dilution) antibody absorbance value of 0.24 +/- 0.05. At 14 weeks, mean serum (1:80 dilution) ELISA absorbance values in the teo groups of fish increased to 0.79 +/- 0.30 and 0.71 +/- 0.24, respectively. In both groups of fish, antibody levels in cutaneous mucus (undiluted) were much lower than those in sera. Infected fish had detectable mucus (undiluted) antibody levels from 3 to 9 weeks, with the highest mean value (0.30 +/- 0.07) occurring at 7 weeks. Although individual inoculated fish produced serum antibody absorbance values comparable to those seen in infected fish, the mean mucus antibody values in this group did not rise above pretreatment levels. I. multifiliis infection induced a transient mucosal antibody response that coincided with the resolution of infection. Whether elicited by infection or intraperitoneal injection of i-antigen, the serum and mucus antibody responses of channel catfish immunized against I. multifiliis did not occur synchronously.
Collapse
Affiliation(s)
- Joanne L Maki
- Department of Medical Microbiology and Parasitology, The University of Georgia, Athens, Georgia 30602-7386, USA
| | | |
Collapse
|