1
|
Habib MB, Batool G, Shah NA, Muhammad T, Akbar NS, Shahid A. Biofilm-mediated infections; novel therapeutic approaches and harnessing artificial intelligence for early detection and treatment of biofilm-associated infections. Microb Pathog 2025; 203:107497. [PMID: 40118297 DOI: 10.1016/j.micpath.2025.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/04/2024] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
A biofilm is a group of bacteria that have self-produced a matrix and are grouped together in a dense population. By resisting the host's immune system's phagocytosis process and attacking with anti-microbial chemicals such as reactive oxygen and nitrogen species, a biofilm enables pathogenic bacteria to evade elimination. One of the major problems in managing chronic injuries is treating wounds colonized by biofilms. These days, a major issue is the biofilms, which exacerbate infection pathogenesis and severity. Numerous investigators have already discovered cutting-edge methods for biofilm manipulation. Using phytochemicals is a practical tactic to control and prevent the production of biofilms. Numerous studies conducted in the last few years have demonstrated the antibacterial and antibiofilm qualities of nanoparticles (NPs) against bacteria, fungi, and protozoa. Because hydrogel has antibiofilm properties, it has been employed extensively in wound care recently. It may be removed with ease and without causing trauma. Today, artificial intelligence (AI) is being used to improve these tactics by providing customized treatment alternatives and predictive analytics. Artificial intelligence (AI) algorithms have the capability to examine extensive datasets and detect trends in biofilm formation and resistance mechanisms. This can aid in the creation of more potent antimicrobial drugs. AI models analyze complex datasets, predict biofilm formation, and guide the design of personalized treatment strategies by identifying resistance mechanisms and therapeutic targets with exceptional precision. This review provides an integrative perspective on biofilm formation mechanisms and their role in infections, highlighting the innovative applications of AI in this domain. By integrating data from diverse biological systems, AI accelerates drug discovery, optimizes treatment regimens, and enables real-time monitoring of biofilm dynamics. From predictive analytics to personalized care, we explore how AI enhances biofilm diagnostics and introduces precision medicine in biofilm-associated infections. This approach not only addresses the limitations of traditional methods but also paves the way for revolutionary advancements in infection control, antimicrobial resistance management, and improved patient outcomes.
Collapse
Affiliation(s)
| | - Ghanwa Batool
- Department of Computer Science, Comsats University Islamabad, Abbottabad, 22060, Pakistan
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Islamabad, 44000, Pakistan
| | - Taseer Muhammad
- Department of Mathematics, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Noreen Sher Akbar
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Ameera Shahid
- National Institute of Health, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Ake B, Yang H, Yang H, Liu H, Gui X, Liu T, Chen J, Liu J, Zhou W, Qu B, Zeng Z, Zhou C. Ultrasound-responsive smart biomaterials for bone tissue engineering. J Mater Chem B 2025; 13:4527-4543. [PMID: 40111085 DOI: 10.1039/d5tb00109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Bone defects resulting from trauma, tumors, or other injuries significantly impact human health and quality of life. However, current treatments for bone defects are constrained by donor shortages and immune rejection. Bone tissue engineering has partially alleviated the limitations of traditional bone repair methods. The development of smart biomaterials that can respond to external stimuli to modulate the biofunctions has become a prominent area of research. Ultrasound technology is regarded as an optimal "remote controller" and "trigger" for bone repair biomaterials. This review reports the comprehensive and systematic overview of ultrasound-responsive bone repair smart biomaterials. It presents the fundamental theories of bone repair, the definition of ultrasound, and its applications. Furthermore, the review summarizes the ultrasound effect mechanisms of biomaterials and their roles in bone repair, including detailed studies on anti-inflammation, immunomodulation, and cell therapy. Finally, the advantages of ultrasound-responsive smart biomaterials and their future prospects in this field are discussed.
Collapse
Affiliation(s)
- Bicheng Ake
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hongsheng Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hao Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Hao Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Taoyu Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Jie Chen
- Department of Pediatric Dentistry, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jia Liu
- The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Wenzheng Zhou
- The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Bo Qu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Zhimou Zeng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
3
|
Isabel Cristina RS, Diego PR. Cutibacterium avidum: A virulent pathogen in esthetic surgery infection, a case series. Anaerobe 2025; 92:102944. [PMID: 40010485 DOI: 10.1016/j.anaerobe.2025.102944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Cutibacterium avidum is a member of the skin microbiota whose composition changes with age. Recently, it has been implicated in infections associated with implants and other medical devices, and it is now recognized as an etiological agent of surgical site infections. We present six cases of surgical site infections following aesthetic surgery: three cases linked to gluteal implants, one to gluteoplasty without implants, one to liposuction and one to abdominoplasty. Previously, C. avidum was considered a contaminant; however, recent findings indicate virulence factors and pathogenic behavior, so this microbe now is regarded as a potential causative agent of infection.
Collapse
Affiliation(s)
- Ramírez-Sánchez Isabel Cristina
- Infectious diseases division, Universidad de Antioquia, St. 67 #53-108, Quirófanos el Tesoro Clinic, Hospital Pablo Tobón Uribe, St 78B #69-240, 050010, Medellín, Colombia.
| | - Posada-Rios Diego
- Plastic surgery division, Universidad CES, St. 10A #22-04, 050010, Medellín, Colombia.
| |
Collapse
|
4
|
Cai R, Cheng Q, Zhao J, Zhou P, Wu Z, Ma X, Hu Y, Wang H, Lan X, Zhou J, Tao G. Sericin-Assisted Green Synthesis of Gold Nanoparticles as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents for Therapy of Bacterial Infection. Int J Nanomedicine 2025; 20:3559-3574. [PMID: 40125431 PMCID: PMC11930024 DOI: 10.2147/ijn.s494616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Background Tens of millions of people die from wound infections globally each year, and nearly 80% of tissue infections are associated with bacterial biofilms. However, overuse of antibiotics can lead to bacterial resistance. Therefore, it is critical to develop simple and effective strategies to kill bacteria and remove biofilms. Methods The present study used sericin as a reducing and stabilizing agent to synthesize sericin-gold nanoparticles (Ser-Au NPs) and tested its colloidal stability under different pH and salt concentration conditions. Subsequently, functional gold nanocomposites (Ser-Au@MMI) were synthesized by combining Ser-Au NPs with 2-mercapto-1-methylimidazole (MMI). The antimicrobial effect of Ser-Au@MMI was checked by MIC, antimicrobial activity test, and in vitro cytotoxicity was assessed using CCK-8 assay. In vitro anti-biofilm effect was observed by fluorescence microscopy and SEM. Finally, the anti-infective therapeutic efficacy of Ser-Au@MMI was determined in an in vivo rat-infected wound model. Results Sericin as a reducing and stabilizing agent to synthesize Ser-Au NPs exhibited excellent colloidal stability under different pH and salt concentration conditions. The TEM, EDS, and XPS analyses confirmed the successful synthesis of Ser-Au@MMI. It exhibited higher antibacterial activity due to the synergistic effect of MMI and AuNP, which can achieve a bactericidal effect by destroying the integrity of bacterial cell walls and structure. In addition, Ser-Au@MMI10 (HAuCl4:MMI =1:10) concentration (64 μg/mL) could effectively disrupt biofilms formed by four species of bacteria and kill them, including P. aeruginosa, B. subtilis, E. coli, and S. aureus, but was not cytotoxic to mouse fibroblasts (L929) cells. Infected wound modeling showed that Ser-Au@MMI10 accelerated infected wound healing in vivo. Conclusion Ser-Au@MMI nanocomposites are prepared through a facile and environmentally friendly strategy and have the advantages of excellent bactericidal effect and low toxicity, which has the potential for application as a broad-spectrum antimicrobial agent and biofilm disrupting agent in healthcare.
Collapse
Affiliation(s)
- Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qian Cheng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiayu Zhao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peirong Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhaodan Wu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xuemin Ma
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Yajuan Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Huiyue Wang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jing Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
5
|
Gruszecka J, Filip R. Bacterial Biofilms-A Threat to Biliary Stents, Understanding Their Formation, Clinical Consequences and Management. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:512. [PMID: 40142322 PMCID: PMC11943510 DOI: 10.3390/medicina61030512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
A biofilm is a community of microbial cells which are enclosed in an external matrix and separated by a network of water channels attached to natural or artificial surfaces. Biofilms formed inside biliary stents consist of a mixed spectrum of bacterial communities, most of which usually originate from the intestines. The patency of biliary stents is the most important problem. Stent occlusion can threaten the health and even life of patients. The main cause of this phenomenon is bile sludge, which is an excellent environment for the multiplication and existence of microorganisms. Due to the great clinical importance of maintaining the patency of biliary stents, several methods have been developed to prevent the accumulation of sludge and the subsequent formation of biofilm; these include, among others, the use of anti-adhesive materials, coating the inner surface of stents with metal cations (silver, copper) or other antimicrobial substances, the implementation of biodegradable drug-eluting biliary stents and the development of a new stent design with an anti-reflux effect. This article presents the latest information on the formation of biofilms in biliary stents, as well as historical and future methods of prevention.
Collapse
Affiliation(s)
- Jolanta Gruszecka
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Clinical Microbiology, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Rafał Filip
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
6
|
Nair SS, Kleffmann T, Smith B, Morris V, Göbl C, Pletzer D, Fellner M. Comparative lipidomics profiles of planktonic and biofilms of methicillin-resistant and -susceptible Staphylococcus aureus. Anal Biochem 2025; 698:115746. [PMID: 39672221 DOI: 10.1016/j.ab.2024.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Staphylococcus aureus is a significant human pathogen causing acute life-threatening, and chronic infections often linked to biofilms. This study conducted a comparative lipidomic analysis of a methicillin-resistant (MRSA) and a methicillin-susceptible (MSSA) S. aureus strain in both planktonic and biofilm cultures using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The developed protocol successfully differentiates between the strains in various living states (planktonic and biofilm) and growth media (Tryptic Soy Broth and Brain Heart Infusion) using S. aureus USA300 LAC (MRSA) and S. aureus Newman (MSSA). LC-MS and NMR lipidomics profiles revealed global differences and particular ones among the following classes of bacterial lipids: phosphatidylglycerols, diacylglycerols, monoglycosyldiacylglycerols, diglycosyldiacylglycerols, and cardiolipins. Lipid content was higher in the biofilm states for most of these classes. Growth media differences were significant, while differences between MRSA and MSSA were less pronounced but still detectable. Additionally, we provide data on hundreds of unknown compounds that differ based on living state, strain background, or growth media. This study offer insights into the dynamic nature of S. aureus lipid composition and the used methods are adaptable to other organisms.
Collapse
Affiliation(s)
- Shilpa Saseendran Nair
- Biochemistry Department, University of Otago, Dunedin, New Zealand; Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | - Briana Smith
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Vanessa Morris
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Christoph Göbl
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand; Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matthias Fellner
- Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Liang Z, Sun R, Zhang X, Luan S, Xu H, Wang R, Song L, Shi H, Wang L. Ultrasound-Controllable Release of Carbon Monoxide in Multifunctional Polymer Coating for Synergetic Treatment of Catheter-Related Infections. Adv Healthc Mater 2025; 14:e2403597. [PMID: 39744785 DOI: 10.1002/adhm.202403597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/23/2024] [Indexed: 03/04/2025]
Abstract
Medical catheters are susceptible to biological contamination and pathogen invasion, leading to infection and inflammatory complications. The development of antimicrobial coatings for medical devices has emerged as a promising strategy. However, limited biological functionality and the incompatibility between bactericidal properties and biosafety remain great challenges. Herein, a multifunctional polymer coating (CPB-Ac) is created, incorporating an ultrasonic-responsive carbon monoxide release unit (CORM-Ac) and antifouling unit to treat catheter-related complications. As-synthesized CPB-Ac polymer can be stably anchored to various medical devices with arbitrary shapes and compositions via facile UV treatment. Both in vivo and vitro experiments demonstrated that this multi-functional coating exhibits anti-fouling, anti-inflammatory, and broad-spectrum antibacterial activities as well as good biosafety. During the initial implantation phase, the antifouling units of CPB-Ac coating effectively inhibit the attachment of biological contaminants, significantly reducing the risk of thrombosis and bacterial infection. Once bacterial infection occurs, ultrasonic irradiation can activate CPB-Ac coating to release CO with a much higher amount of 55.3 µm than non-ultrasound controls, therefore rapidly eliminating bacteria and alleviating inflammatory response. It is believed that the work may provide an effective method for the development of next-generation intelligent medical coatings against catheter-related complications.
Collapse
Affiliation(s)
- Ziqing Liang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Rui Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Rui Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lingjie Song
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
8
|
Hao Y, Li L, Du W, Lu J. Shifting of Distribution and Changing of Antibiotic Resistance in Gram-Positive Bacteria from Bile of Patients with Acute Cholangitis. Infect Drug Resist 2025; 18:1187-1197. [PMID: 40034266 PMCID: PMC11874747 DOI: 10.2147/idr.s482375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Gram-negative bacteria are the predominant pathogens responsible for biliary infections; however, the prevalence of Gram-positive bacteria is currently increasing. Investigating the bacterial spectrum and evolving antibiotic resistance patterns of Gram-positive bacteria is crucial for optimizing the management of acute cholangitis, particularly in the context of the global rise in antibiotic resistance. Methods This retrospective analysis focused on Gram-positive bacteria isolated from the bile of patients undergoing biliary drainage with acute cholangitis at our hospital from January 1, 2018, to March 31, 2024. In total, 342 strains of Gram-positive bacteria were examined. Results The main Gram-positive bacteria detected included Enterococcus (57.23%), Staphylococcus (23.41%), and Streptococcus (13.01%). The most common species detected were Enterococcus faecium (36.42%), Enterococcus faecalis (14.16%), and Staphylococcus epidermidis (7.80%). Trend analysis revealed a decrease in the proportion of Enterococcus and an increase in Streptococcus. Additionally, the detection rate of methicillin-resistant Staphylococcus (MRS) showed a significant rise. Gram-positive bacteria exhibited high resistance to erythromycin and penicillin but remained highly susceptible to linezolid and vancomycin. Further, resistance to quinolones among Gram-positive bacteria was notably elevated. Conclusion The bacterial spectrum and antibiotic resistance patterns of Gram-positive bacteria in acute cholangitis have undergone significant changes. Penicillin is not recommended for the treatment of Gram-positive bacterial infections. Antibiotic resistance should be closely monitored when using quinolones. Particular attention is warranted regarding the markedly increasing antibiotic resistance of Enterococcus faecium.
Collapse
Affiliation(s)
- Yuqi Hao
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Lianxin Li
- Endoscopy Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Wenting Du
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| | - Jinshuai Lu
- Department of General Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
9
|
Belgacem S, Chaâbane-Banaoues R, Mejri A, Ifa SB, Mastouri M, Babba H. Parasitological and microbiological assessment of contact lens storage cases: a survey of asymptomatic lens student wearers from five medical specialties in Tunisia, North Africa. BMC Infect Dis 2025; 25:227. [PMID: 39956912 PMCID: PMC11831826 DOI: 10.1186/s12879-024-10357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 12/16/2024] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Contamination of contact lenses has always been correlated with contamination of lenses and lens storage cases (LSCs), with higher loads of microorganisms in LSCs. The aim of the present study is to better understand non-compliance with strict hygiene rules in asymptomatic contact lens wearers, and to track circulating germs in LSCs that may affect the integrity of the eye. METHODS Demographic and behavioral data were collected from 111 asymptomatic lens wearers belonging to different medical faculties in Tunisia. Seventy LSCs were subjected to microbiological investigations, by direct examination and culture, in order to identify contaminating micro-organisms. The Richness and evenness of the species encountered were assessed to measure biodiversity on a local and international scale. RESULTS The study population was characterized by an average age of 22.8 ± 2.4 years and 95% female gender. Microbiological contamination accounted for 81.42% of LSCs, with only one case positive for Acanthamoeba spp. The Candida spp. fungal elements (20.0%) and Staphylococcus coagulase negative bacteria (60.5%) were the predominant microorganisms. Biodiversity markers namely: Simpson (0.802) and Shannon-Weiner (1.895) diversity indices were high in comparison to other studies. Monthly lens renewal (OR = 1.333, p = 0.040) and soft lens wear (OR = 4.66, p = 0.066) enhanced the installation of fungal elements. CONCLUSIONS The behaviors of contact lens wearers observed in this work corroborate those of all studies of contact lens wearers. The complexity of the recommended procedure and poor understanding of the instructions may explain any imperfections. This study highlights a high level of biodiversity in LSCs, and the strains in circulation are almost potentially pathogenic for humans.
Collapse
Affiliation(s)
- Sameh Belgacem
- Laboratory of Parasitology and Mycology (LP3M) LR12ES08, Faculty of Pharmacy of Monastir, Department of Clinical Biology B, Monastir, 5000, Tunisia
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital of Monastir, Monastir, 5000, Tunisia
| | - Raja Chaâbane-Banaoues
- Laboratory of Parasitology and Mycology (LP3M) LR12ES08, Faculty of Pharmacy of Monastir, Department of Clinical Biology B, Monastir, 5000, Tunisia.
- Rue Avicenne, Faculty of Pharmacy of Monastir, Monastir, 5000, Tunisia.
| | - Amira Mejri
- Laboratory of Parasitology and Mycology (LP3M) LR12ES08, Faculty of Pharmacy of Monastir, Department of Clinical Biology B, Monastir, 5000, Tunisia
| | - Sawsen Ben Ifa
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital of Monastir, Monastir, 5000, Tunisia
| | - Maha Mastouri
- Laboratory of Transmissible Diseases and Biologically Active Substances LR99ES27, Faculty of Pharmacy, Department of Clinical Biology B, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital of Monastir, Monastir, 5000, Tunisia
| | - Hamouda Babba
- Laboratory of Parasitology and Mycology (LP3M) LR12ES08, Faculty of Pharmacy of Monastir, Department of Clinical Biology B, Monastir, 5000, Tunisia
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
10
|
Amod A, Anand AA, Sahoo AK, Samanta SK. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01242-y. [PMID: 39865215 DOI: 10.1007/s12223-025-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| |
Collapse
|
11
|
Hoffmann M, Anthuber L, Anthuber M, Pinto D, Schrempf M. Positive Intraoperative Bile Culture and Antibiotic Resistance Increase the Risk of Pancreatic Fistula in Patients After Pancreatoduodenectomy. J Clin Med 2025; 14:455. [PMID: 39860461 PMCID: PMC11766183 DOI: 10.3390/jcm14020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: A positive intraoperative bile culture (bacterobilia) is considered to be a risk factor for increased morbidity after pancreatoduodenectomy. The aim of our study was to describe the frequency of bacterobilia with a special emphasis on antibiotic resistance and to analyze the association of these findings with postoperative complications, in particular with postoperative pancreatic fistula. Methods: From a prospective database, patients with available intraoperative bile cultures (n = 95) were selected and analyzed. Microbiological test results reported the type of bacteria as well as sensitivity and resistance patterns. Associations between culture results, antibiotic resistance, and postoperative outcomes were assessed. Results: Among 95 patients that were included in this trial, 71 (74.7%) had a positive bile culture. A total of 29.6% (21/71) of patients with positive bile cultures developed POPF grade B/C compared to 8.3% (2/24) of patients with negative bile cultures (p = 0.052). The difference in CR-POPF became statistically significant when at least one of the isolated microorganisms was resistant to ampicillin/sulbactam, the perioperative antibiotic administered for prophylaxis. CR-POPF was diagnosed in 38.5% (15/39) of patients with antibiotic resistance vs. 14.3% (8/56) of patients without resistant microorganisms (p = 0.007). We also identified the isolation of Enterococcus spp. (p = 0.006), resistant Enterobacter (p = 0.031), or resistant Escherichia coli (p = 0.027) as risk factors for pancreatic fistula. Conclusions: The isolation of antibiotic-resistant strains in a positive bile culture is a major risk factor for the development of pancreatic fistula after pancreatoduodenectomy. The most relevant bacteria in our study were Enterococcus spp., Enterobacter cloacae, and Escherichia coli. Thus, broad-spectrum antimicrobial prophylaxis with efficacy against these microorganisms and with low resistance rates should be routinely administered perioperatively.
Collapse
Affiliation(s)
- Michael Hoffmann
- Department of General, Visceral and Transplantation Surgery, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany; (L.A.); (M.A.); (D.P.); (M.S.)
| | | | | | | | | |
Collapse
|
12
|
Liu Y, Liu K, Lei L, Wang Q, Wang X, Meng X, Liu Q, Du J, Zhang L, Nazaré M, Hu HY. Aminopeptidase-Responsive NIR Photosensitizer for Precision Targeting and Eradication of Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1-12. [PMID: 39711235 DOI: 10.1021/acsami.4c16028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The emergence of resistance in Pseudomonas aeruginosa represents a significant global health challenge, particularly due to the hurdle of effectively penetrating biofilms with antimicrobials. Moreover, the rise of antibiotic-resistant pathogens has driven the urgent need for developing innovative therapeutic approaches to overcome antibiotic resistance. Antibacterial phototherapy strategies have shown great potential for combating pathogens due to their broad-spectrum antimicrobial activity, spatiotemporal controllability, and relatively low rate of resistance emergence. However, due to the lack of bacterial specificity and penetration, photosensitizers cause considerable damage to mammalian cells and normal tissues and are less effective against bacterial biofilms. Herein, we developed a novel dual-targeting antibacterial strategy to construct a near-infrared photosensitizer, Cy-NEO-Leu. Cy-NEO-Leu showed great bacterial targeting affinity, penetrating and accumulating in biofilms. At the site of infection, it was specifically activated by P. aeruginosa aminopeptidase (PaAP), producing Cy-NEO-NH2, which demonstrated outstanding photothermal (PTT) and photodynamic (PDT) properties, with a photothermal conversion efficiency of up to 70.34%. Both in vitro and in vivo results demonstrated that Cy-NEO-Leu significantly reduced the biofilm biomass and bacterial viability in P. aeruginosa biofilms. Moreover, phototherapy with Cy-NEO-Leu further activated the immune system, enhancing therapeutic efficacy and promoting wound healing. RNA-seq analysis revealed that the antibacterial mechanism of Cy-NEO-Leu-mediated phototherapy involves disruption of the transcriptional and translational processes of P. aeruginosa under laser irradiation. Overall, our results present a promising therapeutic approach against P. aeruginosa biofilms and inspire the development of next-generation antimicrobials.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kaixuan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiangchuan Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiacheng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
14
|
Teng JLL, Tang Y, Wong SSY, Yeung ML, Cai JP, Chen C, Chan E, Fong JYH, Au-Yeung RKH, Xiong L, Lau TCK, Lau SKP, Woo PCY. Mycolyltransferase is important for biofilm formation and pathogenesis of Tsukamurella keratitis. Emerg Microbes Infect 2024; 13:2373317. [PMID: 38934251 PMCID: PMC11229725 DOI: 10.1080/22221751.2024.2373317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Tsukamurella, a group of multi-drug resistant, Gram-positive, aerobic, and partially acid-fast bacteria, are emerging causes of bacterial conjunctivitis and keratitis. However, the pathogenesis of Tsukamurella keratitis is largely unknown. To address this, we used New Zealand White rabbits to develop the first eye infection model and conducted in vitro tests to study the pathogenesis mechanisms of Tsukamurella. There is increasing evidence that biofilms play a significant role in ocular infections, leading us to hypothesize that biofilm formation is crucial for effective Tsukamurella infection. In order to look for potential candidate genes which are important in biofilm formation and Tsukamurella keratitis. We performed genome sequencing of two ocular isolates, T. pulmonis-PW1004 and T. tyrosinosolvens-PW899, to identify potential virulence factors. Through in vitro and in vivo studies, we characterized their biological roles in mediating Tsukamurella keratitis. Our findings confirmed that Tsukamurella is an ocular pathogen by fulfilling Koch's postulates, and using genome sequence data, we identified tmytC, encoding a mycolyltransferase, as a crucial gene in biofilm formation and causing Tsukamurella keratitis in the rabbit model. This is the first report demonstrating the novel role of mycolyltransferase in causing ocular infections. Overall, our findings contribute to a better understanding of Tsukamurella pathogenesis and provide a potential target for treatment. Specific inhibitors targeting TmytC could serve as an effective treatment option for Tsukamurella infections.
Collapse
Affiliation(s)
- Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Ying Tang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Samson Sai-Yin Wong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jian-Pao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Chen Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging infectious Diseases, Beijing, People’s Republic of China
| | - Elaine Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jordan Yik-Hei Fong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Rex Kwok-Him Au-Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Lifeng Xiong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Xian C, Liu Y, Zhou L, Ding T, Chen J, Wang T, Gao J, Hao X, Bi L. Optimal ultrasonic treatment frequency and duration parameters were used to detect the pathogenic bacteria of orthopedic implant-associated infection by ultrasonic oscillation. J Infect Chemother 2024; 30:1237-1243. [PMID: 38823678 DOI: 10.1016/j.jiac.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
INTRUDUCTON The most accurate method for detecting the pathogen of orthopedic implant-associated infections (OIAIs) is sonication fluid (SF). However, the frequency and duration of ultrasound significantly influence the number and activity of microorganisms. Currently, there is no consensus on the selection of these two parameters. Through this study, the choice of these two parameters is clarified. METHODS We established five ultrasonic groups (40kHz/10min, 40kHz/5min, 40 kHz/1min, 20kHz/5min, and 10kHz/5min) based on previous literature. OIAIs models were then developed and applied to ultrasound group treatment. Subsequently, we evaluated the efficiency of bacteria removal by conducting SEM and crystal violet staining. The number of live bacteria in the SF was determined using plate colony count and live/dead bacteria staining. RESULTS The results of crystal violet staining revealed that both the 40kHz/5min group and the 40kHz/10min group exhibited a significantly higher bacterial clearance rate compared to the other groups. However, there was no significant difference between the two groups. Additionally, the results of plate colony count and fluorescence staining of live and dead bacteria indicated that the number of live bacteria in the 40kHz/5min SF group was significantly higher than in the other groups. CONCLUSION 40kHz/5min ultrasound is the most beneficial for the detection of pathogenic bacteria on the surface of orthopedic implants.
Collapse
Affiliation(s)
- Chunxing Xian
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| | - Yanwu Liu
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Lei Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Ting Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jingdi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Taoran Wang
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Jiakai Gao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Xiaotian Hao
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China
| | - Long Bi
- Department of Orthopaedics, The First Affiliated Hospital of Air Force Medical University, Xian, China.
| |
Collapse
|
16
|
Markowska K, Szymanek-Majchrzak K, Pituch H, Majewska A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int J Mol Sci 2024; 25:12808. [PMID: 39684519 DOI: 10.3390/ijms252312808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms.
Collapse
Affiliation(s)
- Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| |
Collapse
|
17
|
Hall J, Mekapothula S, Coxhill R, Craske D, Varney AM, Cave GWV, McLean S. Surface-Functionalised Copper Oxide Nanoparticles: A Pathway to Multidrug-Resistant Pathogen Control in Medical Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1899. [PMID: 39683288 DOI: 10.3390/nano14231899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Copper oxide nanoparticles (CuONPs) offer promising antimicrobial properties against a range of pathogens, addressing the urgent issue of antibiotic resistance. This study details the synthesis of glutamic acid-coated CuONPs (GA-CuONPs) and their functionalisation on medical-grade silicone tubing, using an oxysilane bonding agent. The resulting coating shows significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, while remaining non-toxic to human cells and exhibiting stable adherence, without leaching. This versatile coating method can be applied during manufacturing, or for ad hoc modifications, enhancing the antimicrobial properties of medical devices.
Collapse
Affiliation(s)
- James Hall
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Subbareddy Mekapothula
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Rebecca Coxhill
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Dominic Craske
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Adam M Varney
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Gareth W V Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|
18
|
Li S, Yue Y, Wang W, Han M, Wan X, Li Q, Chen X, Cao J, Zhang Y, Li J, Li J, Cheng L, Yang J, Wang D, Zhou Z. Ultrasound-Activated Probiotics Vesicles Coating for Titanium Implant Infections Through Bacterial Cuproptosis-Like Death and Immunoregulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405953. [PMID: 39101293 DOI: 10.1002/adma.202405953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Indexed: 08/06/2024]
Abstract
Implant-associated infections (IAIs) are the main cause of prosthetic implant failure. Bacterial biofilms prevent antibiotic penetration, and the unique metabolic conditions in hypoxic biofilm microenvironment may limit the efficacy of conventional antibiotic treatment. Escaping survival bacteria may not be continually eradicated, resulting in the recurrence of IAIs. Herein, a sonosensitive metal-organic framework of Cu-TCPP (tetrakis(4-carboxyphenyl) porphyrin) nanosheets and tinidazole doped probiotic-derived membrane vesicles (OMVs) with high-penetration sonodynamic therapy (SDT), bacterial metabolic state interference, and bacterial cuproptosis-like death to eradicate IAIs is proposed. The Cu-TCPP can convert O2 to toxic 1O2 through SDT in the normoxic conditions, enhancing the hypoxic microenvironment and activating the antibacterial activity of tinidazole. The released Cu(II) under ultrasound can be converted to Cu(I) by exogenous poly(tannic acid) (pTA) and endogenous glutathione. The disruption of the bacterial membrane by SDT can enhance the Cu(I) transporter activity. Transcriptomics indicate that the SDT-enhanced Cu(I) overload and hypoxia-activated therapy hinder the tricarboxylic acid cycle (TCA), leading to bacterial cuproptosis-like death. Moreover, the OMVs-activated therapy can polarize macrophages to a M2-like phenotype and facilitate bone repair. The sonodynamic biofilm microenvironment modulation strategy, whereby the hypoxia-enhanced microenvironment is potentiated to synergize SDT with OMVs-activated therapy, provides an effective strategy for antibacterial and osteogenesis performance.
Collapse
Affiliation(s)
- Shuoyuan Li
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Yue
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenqi Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xufeng Wan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiaochu Li
- Department of orthopedics, the First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cao
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangming Zhang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Duan Wang
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zongke Zhou
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Liu T, Li M, Tang L, Wang B, Li T, Huang Y, Xu Y, Li Y. Epidemiological, clinical and microbiological characteristics of patients with biliary tract diseases with positive bile culture in a tertiary hospital. BMC Infect Dis 2024; 24:1010. [PMID: 39300331 DOI: 10.1186/s12879-024-09799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The prevalence of biliary tract diseases, which are common gastrointestinal disorders, is steadily rising. If it progresses to sepsis or septic shock, it can endanger the patient's life. Therefore, it is crucial to promptly diagnose bacterial infection in individuals suffering from biliary diseases and comprehend the risk factors associated with infection. The objective of this study was to examine the types of bacteria present in the bile of patients with biliary tract diseases, assess any alterations in their susceptibility to antimicrobial agents, and identify the risk factors contributing to the development of infection in these patients. PATIENTS AND METHODS From June 2019 to November 2022, 317 patients of biliary tract diseases with positive bile culture were included in this hospital-based descriptive analysis. The hospital's computerized medical records were used to collect data on demographic information (including gender, age, and occupation), laboratory, and clinical findings, physical examination results, comorbidities, basic diseases, treatment history, complications, and in-hospital outcomes. The study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) principles. RESULTS Of the 317 patients with positive biliary tract diseases, 247 had benign diseases and 70 had malignant diseases. Patients with benign disease experienced a higher prevalence of statistically significant symptoms such as abdominal pain (81.4% vs. 57.1%, P = 0.000), nausea (31.2% vs. 14.3%, P = 0.005), vomiting (30.0% vs. 12.9%, P = 0.004), and chills (10.9% vs. 2.9%, P = 0.039), while jaundice (12.6% vs. 37.1%, P = 0.000) was more common in patients with malignant disease. At the species level, Escherichia coli (105; 40.5%), Klebsiella pneumoniae (41; 15.8%), and Pseudomonas aeruginosa (30; 11.6%) were the most commonly found Gram-negative bacterial strains in biliary tract infection. Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa were most susceptible to tigecycline, ertapenem and ceftazidime/avibactam, respectively. CONCLUSION Gram-negative bacteria are the most commonly isolated biliary bacteria. Clinical doctors should pay attention to patients with malignant diseases with low hemoglobin, high total bilirubin and high alkaline phosphatase. Carbapenems, tigecycline, and minocycline are the recommended antibiotics for Enterobacteriaceae. In recent years, the proportion of enterococcus has gradually increased, and clinical attention should be paid to enterococcus infection. Linezolid and vancomycin were recommended for the treatment of Enterococci infections. Overall, this work can provide reference for clinical diagnosis, treatment and effective interventions.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Moyan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ling Tang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bo Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yajuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
20
|
Dube E. Antimicrobial Photodynamic Therapy: Self-Disinfecting Surfaces for Controlling Microbial Infections. Microorganisms 2024; 12:1573. [PMID: 39203415 PMCID: PMC11356738 DOI: 10.3390/microorganisms12081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial infections caused by bacteria, viruses, and fungi pose significant global health threats in diverse environments. While conventional disinfection methods are effective, their reliance on frequent chemical applications raises concerns about resistance and environmental impact. Photodynamic self-disinfecting surfaces have emerged as a promising alternative. These surfaces incorporate photosensitizers that, when exposed to light, produce reactive oxygen species to target and eliminate microbial pathogens. This review explores the concept and mechanism of photodynamic self-disinfecting surfaces, highlighting the variety and characteristics of photosensitizers integrated into surfaces and the range of light sources used across different applications. It also highlights the effectiveness of these surfaces against a broad spectrum of pathogens, including bacteria, viruses, and fungi, while also discussing their potential for providing continuous antimicrobial protection without frequent reapplication. Additionally, the review addresses both the advantages and limitations associated with photodynamic self-disinfecting surfaces and concludes with future perspectives on advancing this technology to meet ongoing challenges in infection control.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, P/B X1, Mthatha 5117, South Africa
| |
Collapse
|
21
|
Zhang Y, Liu M, Ma H, Zhang X, Li N, Chen X, Cheng Y, Li H, Xie Q, Gu J, Zhao B, Ren X, Wang X. Effect of impacted mandibular third molar extraction on periodontal microbiota and clinical parameters of adjacent teeth: A randomized clinical trial. J Craniomaxillofac Surg 2024; 52:937-947. [PMID: 39003214 DOI: 10.1016/j.jcms.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/03/2024] [Accepted: 06/08/2024] [Indexed: 07/15/2024] Open
Abstract
It is urgently necessary to clarify the effect of extraction of impacted mandibular third molar (IMTM) on the periodontal tissue of adjacent second molars (ASMs). In this study, the ASM periodontal condition and pathogenic microbes were assessed before IMTM extraction and at 1, 4, 8 and 12 weeks postoperatively. Based on the inclusion and exclusion criteria, our study revealed that IMTM extractions adversely affected distal - periodontal probing depth (dPPD), attachment loss (dAL), plaque index (dPLI) and bleeding on probing (dBOP) within 8 weeks, but these indices gradually normalize after 12 weeks. The subgingival pathogens near the ASMs distal surface, Porphyromonas and Pseudomonas, were significantly increased postoperatively. Moreover, relevance of ASMs clinical indices and subgingival microbes after IMTM extractions was found. In contrast to the situation in chronic periodontitis, the effects of IMTM extraction on dPPD, dAL, dPLI and dBOP of ASMs were mainly correlated with Pseudomonas. Additionally, while the IMTM extractions have adverse distal periodontal indices of ASMs within 8 weeks and increase subgingival pathogens, the modified triangular flap (MTF) had fewer distal periodontal indices and less Pseudomonas. Compared to the traditional envelope flap and triangular flap, the MTF benefits the periodontal health, which could be considered as the priority option for IMTM extractions.
Collapse
Affiliation(s)
- Yuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Meixian Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Huanhuan Ma
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Na Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yongfeng Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Huifei Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Qingpeng Xie
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jiawen Gu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
22
|
Dai T, Ma C, Zhang F, Wang H, Ma Z, Wang H, Wen Y, Chen L. The Efficacy and Safety of an Intra-articular Dual-Acting Antibacterial Agent (TNP-2092) for Implant Infection-Associated Methicillin-Resistant Staphylococcus aureus. J Infect Dis 2024; 229:1658-1668. [PMID: 38147364 DOI: 10.1093/infdis/jiad588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.
Collapse
Affiliation(s)
- Tianyu Dai
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
| | - Chi Ma
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Department of Orthopedics, The First Affiliated Hospital of Jishou University, Jishou
| | - Fan Zhang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan
| | - Zhenkun Ma
- Department of Pharmacology & Toxicology, TenNor Therapeutics, Suzhou
| | - Huan Wang
- Department of Pharmacology & Toxicology, TenNor Therapeutics, Suzhou
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Joint Disease Research Center of Wuhan University, Wuhan University, Wuhan, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan
- Joint Disease Research Center of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Azad MA, Patel R. Practical Guidance for Clinical Microbiology Laboratories: Microbiologic diagnosis of implant-associated infections. Clin Microbiol Rev 2024; 37:e0010423. [PMID: 38506553 PMCID: PMC11237642 DOI: 10.1128/cmr.00104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYImplant-associated infections (IAIs) pose serious threats to patients and can be associated with significant morbidity and mortality. These infections may be difficult to diagnose due, in part, to biofilm formation on device surfaces, and because even when microbes are found, their clinical significance may be unclear. Despite recent advances in laboratory testing, IAIs remain a diagnostic challenge. From a therapeutic standpoint, many IAIs currently require device removal and prolonged courses of antimicrobial therapy to effect a cure. Therefore, making an accurate diagnosis, defining both the presence of infection and the involved microorganisms, is paramount. The sensitivity of standard microbial culture for IAI diagnosis varies depending on the type of IAI, the specimen analyzed, and the culture technique(s) used. Although IAI-specific culture-based diagnostics have been described, the challenge of culture-negative IAIs remains. Given this, molecular assays, including both nucleic acid amplification tests and next-generation sequencing-based assays, have been used. In this review, an overview of these challenging infections is presented, as well as an approach to their diagnosis from a microbiologic perspective.
Collapse
Affiliation(s)
- Marisa Ann Azad
- Division of Infectious Diseases, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Robin Patel
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Passerini M, Petri F, Suh GA. Phage Therapy for Cardiac Implantable Electronic Devices and Vascular Grafts: A Targeted Literature Review. Pathogens 2024; 13:424. [PMID: 38787276 PMCID: PMC11123972 DOI: 10.3390/pathogens13050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Infections of cardiac implantable electronic devices (CIEDs) and vascular grafts are some of the most dreaded complications of these otherwise life-saving devices. Many of these infections are not responsive to conventional treatment, such as systemic antibiotics and surgical irrigation and debridement. Therefore, innovative strategies to prevent and manage these conditions are warranted. Among these, there is an increasing interest in phages as a therapeutical option. In this review, we aim to collect the available evidence for the clinical application of phage therapy for CIED and vascular graft infections through literature research. We found 17 studies for a total of 34 patients. Most of the indications were left ventricular assist device (LVAD) (n = 20) and vascular graft infections (n = 7). The bacteria most often encountered were Staphylococcus aureus (n = 18) and Pseudomonas aeruginosa (n = 16). Clinical improvements were observed in 21/34 (61.8%) patients, with microbiological eradication in 18/21 (85.7%) of them. In eight cases, an adverse event related to phage therapy was reported. Phage therapy is a promising option for difficult-to-treat CIED and vascular graft infections by means of an individualized approach. Clinical trials and expanded access programs for compassionate use are needed to further unveil the role of phage therapy in clinical application.
Collapse
Affiliation(s)
- Matteo Passerini
- Department of Pathophysiology and Transplantation, University of Milano, 20122 Milan, Italy;
- Department of Infectious Disease, ASST FBF Sacco Milano, 20157 Milan, Italy;
- ESGNTA–ESCMID Study Group for Non-Traditional Antibacterials, 4051 Basel, Switzerland
| | - Francesco Petri
- Department of Infectious Disease, ASST FBF Sacco Milano, 20157 Milan, Italy;
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Gina A. Suh
- ESGNTA–ESCMID Study Group for Non-Traditional Antibacterials, 4051 Basel, Switzerland
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|
25
|
Ren H, Wang P, Huang H, Huang J, Lu Y, Wu Y, Xie Z, Tang Y, Cai Z, Shen H. N-Halaminated spermidine-containing polymeric coating enables titanium to achieve dual functions of antibacterial and osseointegration. Biomater Sci 2024; 12:2648-2659. [PMID: 38573023 DOI: 10.1039/d4bm00061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Titanium (Ti) and its alloys have been widely employed in the treatment of orthopedics and other hard tissue diseases. However, Ti-based implants are bioinert and suffer from bacterial infections and poor osseointegration in clinical applications. Herein, we successfully modified Ti with a porous N-halaminated spermidine-containing polymeric coating (Ti-SPD-Cl) through alkali-heat treatment, surface grafting and chlorination, and it has both excellent antibacterial and osteogenic abilities to significantly enhance osseointegration. The as-obtained Ti-SPD-Cl contains abundant N-Cl groups and demonstrates effective antibacterial ability against S. aureus and E. coli. Meanwhile, due to the presence of the spermidine component and construction of a porous hydrophilic surface, Ti-SPD-Cl is also beneficial for maintaining cell membrane homeostasis and promoting cell adhesion, exhibiting good biocompatibility and osteogenic ability. The rat osteomyelitis model demonstrates that Ti-SPD-Cl can effectively suppress bacterial infection and enhance bone-implant integration. Thus, Ti-SPD-Cl shows promising clinical applicability in the prevention of orthopedic implant infections and poor osseointegration.
Collapse
Affiliation(s)
- Hang Ren
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Peng Wang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Hanwen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Junshen Huang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yuheng Lu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Yanfeng Wu
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhongyu Xie
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Youchen Tang
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Zhaopeng Cai
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| | - Huiyong Shen
- The Eighth Affiliated Hospital Sun Yat-sen University Shenzhen 518033, P.R. China.
| |
Collapse
|
26
|
Vinci V, Belgiovine C, Janszen G, Agnelli B, Pellegrino L, Calcaterra F, Cancellara A, Ciceri R, Benedetti A, Cardenas C, Colombo F, Supino D, Lozito A, Caimi E, Monari M, Klinger FM, Riccipetitoni G, Raffaele A, Comoli P, Allavena P, Mavilio D, Di Landro L, Klinger M, Rusconi R. Breast implant surface topography triggers a chronic-like inflammatory response. Life Sci Alliance 2024; 7:e202302132. [PMID: 38383454 PMCID: PMC10881835 DOI: 10.26508/lsa.202302132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Breast implants are extensively employed for both reconstructive and esthetic purposes. However, the safety of breast implants with textured surfaces has been questioned, owing to a potential correlation with anaplastic large-cell lymphoma and the recurrence of breast cancer. This study investigates the immune response elicited by different prosthetic surfaces, focusing on the comparison between macrotextured and microtextured breast implants. Through the analysis of intraoperatively harvested periprosthetic fluids and cell culture experiments on surface replicas, we demonstrate that macrotextured surfaces elicit a more pronounced chronic-like activation of leucocytes and an increased release of inflammatory cytokines, in contrast to microtextured surfaces. In addition, in vitro fluorescent imaging of leucocytes revealed an accumulation of lymphocytes within the cavities of the macrotextured surfaces, indicating that the physical entrapment of these cells may contribute to their activation. These findings suggest that the topography of implant surfaces plays a significant role in promoting a chronic-like inflammatory environment, which could be a contributing factor in the development of lymphomas associated with a wide range of implantable devices.
Collapse
Affiliation(s)
- Valeriano Vinci
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Gerardus Janszen
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | - Benedetta Agnelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Luca Pellegrino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Francesca Calcaterra
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Assunta Cancellara
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Roberta Ciceri
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandra Benedetti
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | | | | | | | - Alessia Lozito
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Edoardo Caimi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marta Monari
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Giovanna Riccipetitoni
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Paola Allavena
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Domenico Mavilio
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Di Landro
- Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
| | - Marco Klinger
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
27
|
Chu G, Guan M, Jin J, Luo Y, Luo Z, Shi T, Liu T, Zhang C, Wang Y. Mechanochemically Reprogrammed Interface Orchestrates Neutrophil Bactericidal Activity and Apoptosis for Preventing Implant-Associated Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311855. [PMID: 38164817 DOI: 10.1002/adma.202311855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The onset of implant-associated infection (IAI) triggers a cascade of immune responses, which are initially dominated by neutrophils. Bacterial aggregate formation and hypoxic microenvironment, which occur shortly after implantation, may be two major risk factors that impair neutrophil function and lead to IAI. Here, the implant surface with phytic acid-Zn2+ coordinated TiO2 nanopillar arrays (PA-Zn@TiNPs) and oxygen self-supporting CaO2 nanoparticles, named as CPZTs, is mechanochemically reprogrammed. The engineered CPZTs interface integrates multiple properties to inhibit the formation of nascent biofilm, encompassing antibacterial adhesion, mechanobactericidal effect, and chemobiocidal effect. Meanwhile, continuous oxygenation fuels the neutrophils with reactive oxygen species (ROS) for efficient bacterial elimination on the implant surface and inside the neutrophils. Furthermore, this surface modulation strategy accelerates neutrophil apoptosis and promotes M2 macrophage-mediated osteogenesis both in vitro and in a rat model of IAI. In conclusion, targeting neutrophils for immunomodulation is a practical and effective strategy to prevent IAI and promote bone-implant integration.
Collapse
Affiliation(s)
- Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yao Luo
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tingwang Shi
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tao Liu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
28
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Bacterial extracellular vesicles: Modulation of biofilm and virulence properties. Acta Biomater 2024; 178:13-23. [PMID: 38417645 DOI: 10.1016/j.actbio.2024.02.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Microbial pathogens cause persistent infections by forming biofilms and producing numerous virulence factors. Bacterial extracellular vesicles (BEVs) are nanostructures produced by various bacterial species vital for molecular transport. BEVs include various components, including lipids (glycolipids, LPS, and phospholipids), nucleic acids (genomic DNA, plasmids, and short RNA), proteins (membrane proteins, enzymes, and toxins), and quorum-sensing signaling molecules. BEVs play a major role in forming extracellular polymeric substances (EPS) in biofilms by transporting EPS components such as extracellular polysaccharides, proteins, and extracellular DNA. BEVs have been observed to carry various secretory virulence factors. Thus, BEVs play critical roles in cell-to-cell communication, biofilm formation, virulence, disease progression, and resistance to antimicrobial treatment. In contrast, BEVs have been shown to impede early-stage biofilm formation, disseminate mature biofilms, and reduce virulence. This review summarizes the current status in the literature regarding the composition and role of BEVs in microbial infections. Furthermore, the dual functions of BEVs in eliciting and suppressing biofilm formation and virulence in various microbial pathogens are thoroughly discussed. This review is expected to improve our understanding of the use of BEVs in determining the mechanism of biofilm development in pathogenic bacteria and in developing drugs to inhibit biofilm formation by microbial pathogens. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are nanostructures formed by membrane blebbing and explosive cell lysis. It is essential for transporting lipids, nucleic acids, proteins, and quorum-sensing signaling molecules. BEVs play an important role in the formation of the biofilm's extracellular polymeric substances (EPS) by transporting its components, such as extracellular polysaccharides, proteins, and extracellular DNA. Furthermore, BEVs shield genetic material from nucleases and thermodegradation by packaging it during horizontal gene transfer, contributing to the transmission of bacterial adaptation determinants like antibiotic resistance. Thus, BEVs play a critical role in cell-to-cell communication, biofilm formation, virulence enhancement, disease progression, and drug resistance. In contrast, BEVs have been shown to prevent early-stage biofilm, disperse mature biofilm, and reduce virulence characteristics.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
29
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
30
|
Jiang F, Wang J, Ren Z, Hu Y, Wang B, Li M, Yu J, Tang J, Guo G, Cheng Y, Han P, Shen H. Targeted Light-Induced Immunomodulatory Strategy for Implant-Associated Infections via Reversing Biofilm-Mediated Immunosuppression. ACS NANO 2024; 18:6990-7010. [PMID: 38385433 DOI: 10.1021/acsnano.3c10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The clinical treatment efficacy for implant-associated infections (IAIs), particularly those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains unsatisfactory, primarily due to the formation of biofilm barriers and the resulting immunosuppressive microenvironment, leading to the chronicity and recurrence of IAIs. To address this challenge, we propose a light-induced immune enhancement strategy, synthesizing BSA@MnO2@Ce6@Van (BMCV). The BMCV exhibits precise targeting and adhesion to the S. aureus biofilm-infected region, coupled with its capacity to catalyze oxygen generation from H2O2 in the hypoxic and acidic biofilm microenvironment (BME), promoting oxygen-dependent photodynamic therapy efficacy while ensuring continuous release of manganese ions. Notably, targeted BMCV can penetrate biofilms, producing ROS that degrade extracellular DNA, disrupting the biofilm structure and impairing its barrier function, making it vulnerable to infiltration and elimination by the immune system. Furthermore, light-induced reactive oxygen species (ROS) around the biofilm can lyse S. aureus, triggering bacterium-like immunogenic cell death (ICD), releasing abundant immune costimulatory factors, facilitating the recognition and maturation of antigen-presenting cells (APCs), and activating adaptive immunity. Additionally, manganese ions in the BME act as immunoadjuvants, further amplifying macrophage-mediated innate and adaptive immune responses and reversing the immunologically cold BME to an immunologically hot BME. We prove that our synthesized BMCV elicits a robust adaptive immune response in vivo, effectively clearing primary IAIs and inducing long-term immune memory to prevent recurrence. Our study introduces a potent light-induced immunomodulatory nanoplatform capable of reversing the biofilm-induced immunosuppressive microenvironment and disrupting biofilm-mediated protective barriers, offering a promising immunotherapeutic strategy for addressing challenging S. aureus IAIs.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian Wang
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zun Ren
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yujie Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Boyong Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mingzhang Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinlong Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Geyong Guo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Imaging Medicine and Nuclear Medicine, Tongji Hospital, Shanghai 200065, China
| | - Pei Han
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
31
|
Boutoub O, El-Guendouz S, Matos I, El Ghadraoui L, Costa MC, Carlier JD, Faleiro ML, Figueiredo AC, Estevinho LM, Miguel MG. Chemical Characterization and Biological Properties Assessment of Euphorbia resinifera and Euphorbia officinarum Moroccan Propolis. Antibiotics (Basel) 2024; 13:230. [PMID: 38534665 DOI: 10.3390/antibiotics13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Although the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and the phenolic and mineral profiles of three Euphorbia propolis samples collected in Morocco and evaluate their antimicrobial activities. The minimum inhibitory concentration of the propolis samples was determined by the microdilution method, and the anti-adherence activity was evaluated by the crystal violet assay. The examination of anti-quorum-sensing proprieties was performed using the biosensor Chromobacterium violaceum CV026. Pollen analysis revealed that Euphorbia resinifera pollen dominated in the P1 sample (58%), while E. officinarum pollen dominated in the P2 and P3 samples (44%). The volatile compounds were primarily composed of monoterpene hydrocarbons, constituting 35% in P1 and 31% in P2, with α-pinene being the major component in both cases, at 16% in P1 and 15% in P2. Calcium (Ca) was the predominant mineral element in both E. resinifera (P1) and E. officinarum (P2 and P3) propolis samples. Higher levels of phenols, flavonoids and dihydroflavonoids were detected in the E. officinarum P2 sample. The minimum inhibitory concentration (MIC) value ranged from 50 to 450 µL/mL against Gram-positive and Gram-negative bacteria. Euphorbia propolis displayed the ability to inhibit quorum sensing in the biosensor C. violaceum CV026 and disrupted bacterial biofilm formation, including that of resistant bacterial pathogens. In summary, the current study evidences the potential use of E. officinarum propolis (P2 and P3) to combat important features of resistant pathogenic bacteria, such as quorum sensing and biofilm formation.
Collapse
Affiliation(s)
- Oumaima Boutoub
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Soukaina El-Guendouz
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Isabel Matos
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center-Research Institute, 8005-139 Faro, Portugal
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environmental Engineering, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
| | - Maria Clara Costa
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias Carlier
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center-Research Institute, 8005-139 Faro, Portugal
- Champalimaud Researh Program, Chaupalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Ciências), Faculdade de Ciências da Universidade de Lisboa (FCUL), Biotecnologia Vegetal, DBV, C2, Campo Grande, 1749-016 Lisboa, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento (MED), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
32
|
Wang S, Liu S, Cao S, Bao Y, Wang L, He ZE, Li J, Zhou Y, Lv M. Engineering Bacterial Biofilm Development and Structure via Regulation of Silver Nanoparticle Density in Graphene Oxide Composite Coating. JACS AU 2024; 4:855-864. [PMID: 38425932 PMCID: PMC10900484 DOI: 10.1021/jacsau.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Graphene-based composites have shown significant potential in the treatment of biofilm infections in clinical settings due to their exceptional antimicrobial properties and specific mechanisms. Nevertheless, a comprehensive understanding of the influence exerted by nanoparticles embedded in the composites on the development and structure of biofilms is still lacking. Here, we fabricate different graphene oxide-silver nanoparticle (GAg) composite-modified substrates (GAgS) with varying densities of silver nanoparticles (AgNPs) and investigate their effects on planktonic bacterial adhesion, subsequent biofilm formation, and mature biofilm structure. Our findings indicate that the initial attachment of Pseudomonas aeruginosa cells during biofilm formation is determined by the density of AgNPs on the GAgS surface. In contrast, the subsequent transition from adherent bacteria to the biofilm is determined by GAgS's synergistic antimicrobial effect. There exists a threshold for the inhibitory performance of GAgS, where the 20 μg/cm2 GAg composite completely prevents biofilm formation; below this concentration, GAgS delays the development of the biofilm and causes structural changes in the mature biofilm with enhanced bacterial growth and increased production of extracellular polymeric substance. More importantly, GAgS have minimal impact on mammalian cell morphology and proliferation while not inducing hemolysis in red blood cells. These results suggest that GAg composites hold promise as a therapeutic approach for addressing medical devices and implant-associated biofilm infections.
Collapse
Affiliation(s)
- Shanshan Wang
- College
of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Shima Liu
- Key
Laboratory of Hunan Forest Products and Chemical Industry Engineering,
National and Local United Engineering Laboratory of Integrative Utilization
of Eucommia ulmoides, College of Chemistry and Chemical Engineering, Jishou University, Jiajie Zhang,Hunan 427000, China
| | | | - Yunhui Bao
- Key
Laboratory of Hunan Forest Products and Chemical Industry Engineering,
National and Local United Engineering Laboratory of Integrative Utilization
of Eucommia ulmoides, College of Chemistry and Chemical Engineering, Jishou University, Jiajie Zhang,Hunan 427000, China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
| | | | - Jiang Li
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
| | - Yi Zhou
- College
of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Lv
- College
of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
33
|
Coenye T. Biofilm antimicrobial susceptibility testing: where are we and where could we be going? Clin Microbiol Rev 2023; 36:e0002423. [PMID: 37812003 PMCID: PMC10732061 DOI: 10.1128/cmr.00024-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Our knowledge about the fundamental aspects of biofilm biology, including the mechanisms behind the reduced antimicrobial susceptibility of biofilms, has increased drastically over the last decades. However, this knowledge has so far not been translated into major changes in clinical practice. While the biofilm concept is increasingly on the radar of clinical microbiologists, physicians, and healthcare professionals in general, the standardized tools to study biofilms in the clinical microbiology laboratory are still lacking; one area in which this is particularly obvious is that of antimicrobial susceptibility testing (AST). It is generally accepted that the biofilm lifestyle has a tremendous impact on antibiotic susceptibility, yet AST is typically still carried out with planktonic cells. On top of that, the microenvironment at the site of infection is an important driver for microbial physiology and hence susceptibility; but this is poorly reflected in current AST methods. The goal of this review is to provide an overview of the state of the art concerning biofilm AST and highlight the knowledge gaps in this area. Subsequently, potential ways to improve biofilm-based AST will be discussed. Finally, bottlenecks currently preventing the use of biofilm AST in clinical practice, as well as the steps needed to get past these bottlenecks, will be discussed.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Guo Z, Liu M, Zhang D. Potential of phage depolymerase for the treatment of bacterial biofilms. Virulence 2023; 14:2273567. [PMID: 37872768 PMCID: PMC10621286 DOI: 10.1080/21505594.2023.2273567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Resistance of bacteria to antibiotics is a major concern in medicine and veterinary science. The bacterial biofilm structures not only prevent the penetration of drugs into cells within the biofilm's interior but also aid in evasion of the host immune system. Hence, there is an urgent need to develop novel therapeutic approaches against bacterial biofilms. One potential strategy to counter biofilms is to use phage depolymerases that degrade the matrix structure of the bacteria and enable access to bacterial cells. This review mainly discusses the methods by which phage depolymerases enhance the efficacy of the human immune system and the therapeutic applications of some phage depolymerases, such as single phage depolymerase application, combined therapy with phage depolymerase and antibiotics, and phage depolymerase cocktails, for treating bacterial biofilms. This review also summarizes the relationship between bacterial biofilms and antibiotic resistance.
Collapse
Affiliation(s)
- Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Mengmeng Liu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatological Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Weber DJ, Rutala WA, Anderson DJ, Sickbert-Bennett EE. Biofilms on medical instruments and surfaces: Do they interfere with instrument reprocessing and surface disinfection. Am J Infect Control 2023; 51:A114-A119. [PMID: 37890940 DOI: 10.1016/j.ajic.2023.04.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Biofilms are surface-attached communities of bacteria embedded in an extracellular matrix. This matrix shields the resident cells from desiccation, chemical perturbation, invasion by other bacteria, and confers reduced susceptibility to antibiotics and disinfectants. There is growing evidence that biofilms on medical instruments (especially endoscopes) and environmental surfaces interfere with cleaning and disinfection. METHODS The English literature on the impact of biofilms in medicine was reviewed with a focus on the impact of biofilms on reusable semicritical medical instruments and hospital environmental surfaces. RESULTS Biofilms are frequently present on hospital environmental surfaces and reusable medical equipment. Important health care...associated pathogens that readily form biofilms on environmental surfaces include Staphylococcus aureus, Pseudomonas aeruginosa, and Candida auris. Evidence has demonstrated that biofilms interfere with cleaning and disinfection. DISCUSSION New technologies such as ..úself-disinfecting..Ñ surfaces or continuous room disinfection systems may reduce or disrupt biofilm formation and are under study to reduce the impact of the contaminated surface environment on health care...associated infections. CONCLUSIONS Future research is urgently needed to develop methods to reduce or eliminate biofilms from forming on implantable medical devices, reusable medical equipment, and hospital surfaces.
Collapse
Affiliation(s)
- David J Weber
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC.
| | - William A Rutala
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Deverick J Anderson
- Division of Infectious Diseases, School of Medicine, Duke University, Durham, NC
| | - Emily E Sickbert-Bennett
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC; Department of Infection Prevention, UNC Medical Center, Chapel Hill, NC
| |
Collapse
|
36
|
Marques A, Carabineiro SAC, Aureliano M, Faleiro L. Evaluation of Gold Complexes to Address Bacterial Resistance, Quorum Sensing, Biofilm Formation, and Their Antiviral Properties against Bacteriophages. TOXICS 2023; 11:879. [PMID: 37999531 PMCID: PMC10674251 DOI: 10.3390/toxics11110879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
The worldwide increase in antibiotic resistance poses a significant challenge, and researchers are diligently seeking new drugs to combat infections and prevent bacterial pathogens from developing resistance. Gold (I and III) complexes are suitable for this purpose. In this study, we tested four gold (I and III) complexes, (1) chlorotrimethylphosphine gold(I); (2) chlorotriphenylphosphine gold(I); (3) dichloro(2-pyridinecarboxylate) gold (III); and (4) 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene gold(I) chloride, for their antibacterial, antibiofilm, antiviral, and anti-quorum sensing activities. Results reveal that 1 significantly inhibits Escherichia coli DSM 1077 and Staphylococcus aureus ATCC 6538, while 2, 3, and 4 only inhibit S. aureus ATCC 6538. The minimum inhibitory concentration (MIC) of 1 for S. aureus ATCC 6538 is 0.59 μg/mL (1.91 μM), and for methicillin-resistant S. aureus strains MRSA 12 and MRSA 15, it is 1.16 μg/mL (3.75 μM). For E. coli DSM 1077 (Gram-negative), the MIC is 4.63 μg/mL (15 μM), and for multi-resistant E. coli I731940778-1, it is 9.25 μg/mL (30 μM). Complex 1 also disrupts biofilm formation in E. coli and S. aureus after 6 h or 24 h exposure. Moreover, 1 and 2 inhibit the replication of two enterobacteria phages. Anti-quorum sensing potential still requires further clarification. These findings highlight the potential of gold complexes as effective agents to combat bacterial and viral infections.
Collapse
Affiliation(s)
- Ana Marques
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
| | - Sónia A. C. Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
37
|
Grafia I, Chumbita M, Seguí E, Cardozo C, Laguna JC, García de Herreros M, Garcia-Pouton N, Villaescusa A, Pitart C, Rico-Caballero V, Marco-Hernández J, Zamora C, Viladot M, Padrosa J, Tuca A, Mayor-Vázquez E, Marco F, Martínez JA, Mensa J, Garcia-Vidal C, Soriano A, Puerta-Alcalde P. Epidemiology and risk factors for recurrence in biliary source bloodstream infection episodes in oncological patients. Microbiol Spectr 2023; 11:e0214223. [PMID: 37610217 PMCID: PMC10580831 DOI: 10.1128/spectrum.02142-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
We aimed to describe the characteristics and outcomes of biliary source bloodstream infections (BSIs) in oncological patients. Secondarily, we analyzed risk factors for recurrent BSI episodes. All episodes of biliary source BSIs in oncological patients were prospectively collected (2008-2019) and retrospectively analyzed. Logistic regression analyses were performed. A rule to stratify patients into risk groups for recurrent biliary source BSI was conducted. Four hundred biliary source BSIs were documented in 291 oncological patients. The most frequent causative agents were Escherichia coli (42%) and Klebsiella spp. (27%), and 86 (21.5%) episodes were caused by multidrug-resistant Gram-negative bacilli (MDR-GNB). The rates of MDR-GNB increased over time. Overall, 73 patients developed 118 recurrent BSI episodes. Independent risk factors for recurrent BSI episodes were prior antibiotic therapy (OR 3.781, 95% CI 1.906-7.503), biliary prosthesis (OR 2.232, 95% CI 1.157-4.305), prior admission due to suspected biliary source infection (OR 4.409, 95% CI 2.338-8.311), and BSI episode caused by an MDR-GNB (OR 2.857, 95% CI 1.389-5.874). With these variables, a score was generated that predicted recurrent biliary source BSI with an area under the receiver operating characteristic (ROC) curve of 0.819. Inappropriate empirical antibiotic treatment (IEAT) was administered in 23.8% of patients, and 30-d mortality was 19.5%. As a conclusion, biliary source BSI in oncological patients is mainly caused by GNB, with high and increasing MDR rates, frequent IEAT, and high mortality. Recurrent BSI episodes are frequent. A simple score to identify recurrent episodes was developed to potentially establish prophylactic strategies. IMPORTANCE This study shows that biliary source bloodstream infections (BSIs) in oncological patients are mainly caused by Gram-negative bacilli (GNB), with high and increasing rates of multidrug resistance. Importantly, recurrent biliary source BSI episodes were very frequent and associated with delays in chemotherapy, high rates of inappropriate empirical antibiotic therapy, and high 30-d mortality (19.5%). Using the variable independently associated with recurrent BSI episodes, a score was generated that predicted recurrent biliary source BSI with high accuracy. This score could be used to establish prophylactic strategies and lower the risk of relapsing episodes and the associated morbidity and mortality.
Collapse
Affiliation(s)
- Ignacio Grafia
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Mariana Chumbita
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Elia Seguí
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Celia Cardozo
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | | | | | | | - Ana Villaescusa
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Cristina Pitart
- Microbiology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | | | - Javier Marco-Hernández
- Internal Medicine Department, Supportive and Palliative Care in Cancer Unit, Hospital Clínic, Barcelona, Spain
| | - Carles Zamora
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Margarita Viladot
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Joan Padrosa
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Albert Tuca
- Medical Oncology Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Eric Mayor-Vázquez
- Medical Intensive Care Unit, Internal Medicine Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Francesc Marco
- Microbiology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Jose A. Martínez
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- CIBERINF, CIBER in Infectious Diseases, Barcelona, Spain
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- CIBERINF, CIBER in Infectious Diseases, Barcelona, Spain
| | - Pedro Puerta-Alcalde
- Infectious Diseases Department, Hospital Clínic-IDIBAPS, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Ceresa C, Fracchia L, Sansotera AC, De Rienzo MAD, Banat IM. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023; 15:2156. [PMID: 37631370 PMCID: PMC10457971 DOI: 10.3390/pharmaceutics15082156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biosurfactants (BSs) are microbial compounds that have emerged as potential alternatives to chemical surfactants due to their multifunctional properties, sustainability and biodegradability. Owing to their amphipathic nature and distinctive structural arrangement, biosurfactants exhibit a range of physicochemical properties, including excellent surface activity, efficient critical micelle concentration, humectant properties, foaming and cleaning abilities and the capacity to form microemulsions. Furthermore, numerous biosurfactants display additional biological characteristics, such as antibacterial, antifungal and antiviral effects, and antioxidant, anticancer and immunomodulatory activities. Over the past two decades, numerous studies have explored their potential applications, including pharmaceuticals, cosmetics, antimicrobial and antibiofilm agents, wound healing, anticancer treatments, immune system modulators and drug/gene carriers. These applications are particularly important in addressing challenges such as antimicrobial resistance and biofilm formations in clinical, hygiene and therapeutic settings. They can also serve as coating agents for surfaces, enabling antiadhesive, suppression, or eradication strategies. Not least importantly, biosurfactants have shown compatibility with various drug formulations, including nanoparticles, liposomes, micro- and nanoemulsions and hydrogels, improving drug solubility, stability and bioavailability, and enabling a targeted and controlled drug release. These qualities make biosurfactants promising candidates for the development of next-generation antimicrobial, antibiofilm, anticancer, wound-healing, immunomodulating, drug or gene delivery agents, as well as adjuvants to other antibiotics. Analysing the most recent literature, this review aims to update the present understanding, highlight emerging trends, and identify promising directions and advancements in the utilization of biosurfactants within the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | - Andrea Chiara Sansotera
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (L.F.); (A.C.S.)
| | | | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine BT52 1SA, UK
| |
Collapse
|
39
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
40
|
Belgiovine C, Pellegrino L, Bulgarelli A, Lauta FC, Di Claudio A, Ciceri R, Cancellara A, Calcaterra F, Mavilio D, Grappiolo G, Chiappetta K, Loppini M, Rusconi R. Interaction of Bacteria, Immune Cells, and Surface Topography in Periprosthetic Joint Infections. Int J Mol Sci 2023; 24:ijms24109028. [PMID: 37240374 DOI: 10.3390/ijms24109028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence of periprosthetic joint infections (PJIs) is ~2% of total procedures and it is expected to rise due to an ageing population. Despite the large burden PJI has on both the individual and society, the immune response to the most commonly isolated pathogens, i.e., Staphylococcus aureus and Staphylococcus epidermidis, remains incompletely understood. In this work, we integrate the analysis of synovial fluids from patients undergoing hip and knee replacement surgery with in-vitro experimental data obtained using a newly developed platform, mimicking the environment of periprosthetic implants. We found that the presence of an implant, even in patients undergoing aseptic revisions, is sufficient to induce an immune response, which is significantly different between septic and aseptic revisions. This difference is confirmed by the presence of pro- and anti-inflammatory cytokines in synovial fluids. Moreover, we discovered that the immune response is also dependent on the type of bacteria and the topography of the implant surface. While S. epidermidis seems to be able to hide better from the attack of the immune system when cultured on rough surfaces (indicative of uncemented prostheses), S. aureus reacts differently depending on the contact surface it is exposed to. The experiments we performed in-vitro also showed a higher biofilm formation on rough surfaces compared to flat ones for both species, suggesting that the topography of the implant could influence both biofilm formation and the consequent immune response.
Collapse
Affiliation(s)
- Cristina Belgiovine
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Luca Pellegrino
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Alberto Bulgarelli
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | | | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Roberta Ciceri
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Assunta Cancellara
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Francesca Calcaterra
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Domenico Mavilio
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Unit of Clinical and Experimental Immunology, Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20089 Rozzano, Italy
| | - Guido Grappiolo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Katia Chiappetta
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Mattia Loppini
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
- Fondazione Livio Sciutto Onlus, Università Degli Studi Di Genova, 17100 Savona, Italy
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| |
Collapse
|
41
|
Wang HJ, Hao MF, Wang G, Peng H, Wahid F, Yang Y, Liang L, Liu SQ, Li RL, Feng SY. Zein nanospheres assisting inorganic and organic drug combination to overcome stent implantation-induced thrombosis and infection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162438. [PMID: 36842591 DOI: 10.1016/j.scitotenv.2023.162438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The complication of stent implantation is the biggest obstacle to the success of its clinical application. In this study, we developed a combination way of 3D printing and the coating technique for preparation of functional polyurethane stents against stent implantation-induced thrombosis and postoperative infection. SEM, XPS, static water contact angle, and XRD demonstrated that the functional polyurethane stent had a 37 μm-thickness membrane composed of zein nanospheres (250-350 nm). Meanwhile, ZnO nanoparticles were encapsulated in zein nanospheres while heparin was adsorbed on the surface, causing 97.1 ± 6.4 % release of heparin in 120 min (first-order kinetic model) and 62.7 ± 5.6 % release of Zn2+ in 9 days (Korsmeyer-Peppas model). The mechanical analysis revealed that the functional polyurethane stents had about 8.61 MPa and 2.5 MPa tensile strength and bending strength, respectively. The in vitro biological analysis showed that the functional polyurethane stents had good EA.hy926 cells compatibility (97.9 ± 3.8 %), anti-coagulation response (comparable plasma protein, platelet adhesion and suppressed clotting) and sustained antibacterial activities by comparison with the bare polyurethane stent. The preliminary evaluation by rabbit ex vivo carotid artery intervention experiment demonstrated that the functional polyurethane stents could maintain blood circulation under the continuous stresses of blood flow. Meanwhile, the detailed data from the simulated implant infection experiment in vivo showed the functional polyurethane stents could effectively reduce microbial infection by 3-6 times lower and improve fibrosis and macrophage infiltration.
Collapse
Affiliation(s)
- Hua-Jie Wang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China; School of Food Science, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China.
| | - Meng-Fei Hao
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Guan Wang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Hao Peng
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Fazli Wahid
- School of Biomedical Sciences and Biotechnology, Pak-Austria Fachhochshule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur 22620, Pakistan
| | - Yan Yang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Lei Liang
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Shan-Qin Liu
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Ren-Long Li
- Xinxiang Key Laboratory of 3D Bioprinting and Precision Medicine, School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, PR China
| | - Shu-Ying Feng
- Medical College, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou, Henan 450046, PR China
| |
Collapse
|
42
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
43
|
Zhao A, Sun J, Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect Microbiol 2023; 13:1137947. [PMID: 37091673 PMCID: PMC10117668 DOI: 10.3389/fcimb.2023.1137947] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Bacterial biofilms are complex microbial communities encased in extracellular polymeric substances. Their formation is a multi-step process. Biofilms are a significant problem in treating bacterial infections and are one of the main reasons for the persistence of infections. They can exhibit increased resistance to classical antibiotics and cause disease through device-related and non-device (tissue) -associated infections, posing a severe threat to global health issues. Therefore, early detection and search for new and alternative treatments are essential for treating and suppressing biofilm-associated infections. In this paper, we systematically reviewed the formation of bacterial biofilms, associated infections, detection methods, and potential treatment strategies, aiming to provide researchers with the latest progress in the detection and treatment of bacterial biofilms.
Collapse
Affiliation(s)
- Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Jiazheng Sun
- Department of Vasculocardiology, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
- *Correspondence: Yipin Liu,
| |
Collapse
|
44
|
Li F, Huang K, Wang J, Yuan K, Yang Y, Liu Y, Zhou X, Kong K, Yang T, He J, Liu C, Ao H, Liu F, Liu Q, Tang T, Yang S. A dual functional Ti-Ga alloy: inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism. Biomater Res 2023; 27:24. [PMID: 36978196 PMCID: PMC10053110 DOI: 10.1186/s40824-023-00362-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Although biomedical implants have been widely used in orthopedic treatments, two major clinical challenges remain to be solved, one is the bacterial infection resulting in biofilm formation, and the other is aseptic loosening during implantation due to over-activated osteoclastogenesis. These factors can cause many clinical issues and even lead to implant failure. Thus, it is necessary to endow implants with antibiofilm and aseptic loosening-prevention properties, to facilitate the integration between implants and bone tissues for successful implantation. To achieve this goal, this study aimed to develop a biocompatible titanium alloy with antibiofilm and anti-aseptic loosening dual function by utilizing gallium (Ga) as a component. METHODS A series of Ti-Ga alloys were prepared. We examined the Ga content, Ga distribution, hardness, tensile strength, biocompatibility, and anti-biofilm performance in vitro and in vivo. We also explored how Ga3+ ions inhibited the biofilm formation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) and osteoclast differentiation. RESULTS The alloy exhibited outstanding antibiofilm properties against both S. aureus and E. coli in vitro and decent antibiofilm performance against S. aureus in vivo. The proteomics results demonstrated that Ga3+ ions could disturb the bacterial Fe metabolism of both S. aureus and E. coli, inhibiting bacterial biofilm formation. In addition, Ti-Ga alloys could inhibit receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclast differentiation and function by targeting iron metabolism, then suppressing the activation of the NF-κB signaling pathway, thus, showing their potential to prevent aseptic loosening. CONCLUSION This study provides an advanced Ti-Ga alloy that can be used as a promising orthopedic implant raw material for various clinical scenarios. This work also revealed that iron metabolism is the common target of Ga3+ ions to inhibit biofilm formation and osteoclast differentiation.
Collapse
Affiliation(s)
- Fupeng Li
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Huang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Kai Yuan
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yiqi Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xianhao Zhou
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Keyu Kong
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Tao Yang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jian He
- M-Duke Medical Technology (Shanghai) Co., Ltd, Shanghai, Shanghai, China
| | - Chunjie Liu
- M-Duke Medical Technology (Shanghai) Co., Ltd, Shanghai, Shanghai, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330000, China
| | - Fengxiang Liu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Qian Liu
- Department of laboratory medicine, Ren Ji Hospital, Shanghai Jiao tong university school of medicine, Shanghai, 200127, China.
| | - Tingting Tang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Shengbing Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
45
|
The Role of Microorganisms in the Development of Breast Implant-Associated Anaplastic Large Cell Lymphoma. Pathogens 2023; 12:pathogens12020313. [PMID: 36839585 PMCID: PMC9961223 DOI: 10.3390/pathogens12020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) is a variant of anaplastic large cell lymphoma (ALCL) associated with textured-surface silicone breast implants. Since first being described in 1997, over 1100 cases have been currently reported worldwide. A causal relationship between BIA-ALCL and textured implants has been established in epidemiological studies, but a multifactorial process is likely to be involved in the pathogenesis of BIA-ALCL. However, pathophysiologic mechanisms remain unclear. One of the hypotheses that could explain the link between textured implants and BIA-ALCL consists in the greater tendency of bacterial biofilm in colonizing the surface of textured implants compared to smooth implants, and the resulting chronic inflammation which, in predisposed individuals, may lead to tumorigenesis. This review summarizes the existing evidence on the role of micro-organisms and rough surface implants in the development of BIA-ALCL. It also provides insights into the most updated clinical practice knowledge about BIA-ALCL, from clinical presentation and investigation to treatment and outcomes.
Collapse
|
46
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
47
|
Development and Evaluation of Bacteriophage Cocktail to Eradicate Biofilms Formed by an Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa. Viruses 2023; 15:v15020427. [PMID: 36851640 PMCID: PMC9965693 DOI: 10.3390/v15020427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Extensive and multiple drug resistance in P. aeruginosa combined with the formation of biofilms is responsible for its high persistence in nosocomial infections. A sequential method to devise a suitable phage cocktail with a broad host range and high lytic efficiency against a biofilm forming XDR P. aeruginosa strain is presented here. Out of a total thirteen phages isolated against P. aeruginosa, five were selected on the basis of their high lytic spectra assessed using spot assay and productivity by efficiency of plating assay. Phages, after selection, were tested individually and in combinations of two-, three-, four-, and five-phage cocktails using liquid infection model. Out of total 22 combinations tested, the cocktail comprising four phages viz. φPA170, φPA172, φPA177, and φPA180 significantly inhibited the bacterial growth in liquid infection model (p < 0.0001). The minimal inhibitory dose of each phage in a cocktail was effectively reduced to >10 times than the individual dose in the inhibition of XDR P. aeruginosa host. Field emission-scanning electron microscopy was used to visualize phage cocktail mediated eradication of 4-day-old multi-layers of XDR P. aeruginosa biofilms from urinary catheters and glass cover slips, and was confirmed by absence of any viable cells. Differential bacterial inhibition was observed with different phage combinations where multiple phages were found to enhance the cocktail's lytic range, but the addition of too many phages reduced the overall inhibition. This study elaborates an effective and sequential method for the preparation of a phage cocktail and evaluates its antimicrobial potential against biofilm forming XDR strains of P. aeruginosa.
Collapse
|
48
|
Efimenko A, Ishchenko O, Stepanskyi O, Stepanskyi D. MICROBIOLOGICAL FEATURES OF STAPHYLOCOCCUS ASSOCIATED WITH COMPLICATIONS OF DENTAL IMPLANTATION. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:936-943. [PMID: 37326073 DOI: 10.36740/wlek202305107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: To describe microbiological features of the Staphylococcus spp. involved in complications of dental implantation. PATIENTS AND METHODS Materials and methods: The main method was bacteriological. Indentification of the obtained isolates was done using commercially available test kits. Adhesive properties were evaluated using Brillis technique. Biofilm-forming ability was studied according to Christensen et al. Antimicrobial susceptibility testing was done following EUCAST recomendations. RESULTS Results: There were 26 smears taken from the peri-implant area and gingival pockets of 12 patients. We obtained 38 isolates. Most of the patients were positive for Streptococcus spp. - 94% and Staphylococcus spp. - 90%. Among the representatives of Staphylococcus spp., the initial share of clinical isolates was S. aureus (34.21%) with inherent coagulase-positive properties. Coagulase-negative pathogens accounted for 65.79% of Staphylococcus spp., among them S. epidermidis, S. hominis, S. warneri were the main. All obtained isolates had typical properties, but appearance of small colonial variants of S. aureus was also recorded. Antimicrobial susceptibility testing was performed in 100% of cases. Among 13 isolates of S. aureus there were 2 cultures resistant to cefoxitin, i. e. methicillin-resistant by phenotype. Clinical isolates of S. aureus, colonizing peri-implant tissues in infectious-inflammatory complications of dental implantation, also had high adhesive and biofilm-forming properties. Clinical isolates of S. epidermidis an average ability to form biofilms. CONCLUSION Conclusions: There is a prooved direct correlation between biofilm-forming ability and adhesive properties in highly biofilm-forming clinical isolates involved in the occurrence of purulent-inflammatory complications in peri-implant site.
Collapse
|
49
|
Khan FA, Yaqoob S, Ali S, Tanveer N, Wang Y, Ashraf S, Hasan KA, Khalifa SAM, Shou Q, Ul-Haq Z, Jiang ZH, El-Seedi HR. Designing Functionally Substituted Pyridine-Carbohydrazides for Potent Antibacterial and Devouring Antifungal Effect on Multidrug Resistant (MDR) Strains. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010212. [PMID: 36615406 PMCID: PMC9822510 DOI: 10.3390/molecules28010212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The emergence of multidrug-resistant (MDR) pathogens and the gradual depletion of available antibiotics have exacerbated the need for novel antimicrobial agents with minimal toxicity. Herein, we report functionally substituted pyridine carbohydrazide with remarkable antimicrobial effect on multi-drug resistant strains. In the series, compound 6 had potent activity against four MDR strains of Candida spp., with minimum inhibitory concentration (MIC) values being in the range of 16-24 µg/mL and percentage inhibition up to 92.57%, which was exceptional when compared to broad-spectrum antifungal drug fluconazole (MIC = 20 µg/mL, 81.88% inhibition). Substitution of the octyl chain in 6 with a shorter butyl chain resulted in a significant anti-bacterial effect of 4 against Pseudomonas aeruginosa (ATCC 27853), the MIC value being 2-fold superior to the standard combination of ampicillin/cloxacillin. Time-kill kinetics assays were used to discern the efficacy and pharmacodynamics of the potent compounds. Further, hemolysis tests confirmed that both compounds had better safety profiles than the standard drugs. Besides, molecular docking simulations were used to further explore their mode of interaction with target proteins. Overall results suggest that these compounds have the potential to become promising antimicrobial drugs against MDR strains.
Collapse
Affiliation(s)
- Farooq-Ahmad Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Sana Yaqoob
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shujaat Ali
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Nimra Tanveer
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan Wang
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sajda Ashraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khwaja Ali Hasan
- Molecular and Structural Biology Research Laboratory, Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing 210024, China
- Correspondence: (F.-A.K.); (K.A.H.); (H.R.E.-S.)
| |
Collapse
|
50
|
Geisel S, Secchi E, Vermant J. Experimental challenges in determining the rheological properties of bacterial biofilms. Interface Focus 2022; 12:20220032. [PMID: 36330324 PMCID: PMC9560794 DOI: 10.1098/rsfs.2022.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/03/2022] [Indexed: 08/01/2023] Open
Abstract
Bacterial biofilms are communities living in a matrix consisting of self-produced, hydrated extracellular polymeric substances. Most microorganisms adopt the biofilm lifestyle since it protects by conferring resistance to antibiotics and physico-chemical stress factors. Consequently, mechanical removal is often necessary but rendered difficult by the biofilm's complex, viscoelastic response, and adhesive properties. Overall, the mechanical behaviour of biofilms also plays a role in the spreading, dispersal and subsequent colonization of new surfaces. Therefore, the characterization of the mechanical properties of biofilms plays a crucial role in controlling and combating biofilms in industrial and medical environments. We performed in situ shear rheological measurements of Bacillus subtilis biofilms grown between the plates of a rotational rheometer under well-controlled conditions relevant to many biofilm habitats. We investigated how the mechanical history preceding rheological measurements influenced biofilm mechanics and compared these results to the techniques commonly used in the literature. We also compare our results to measurements using interfacial rheology on bacterial pellicles formed at the air-water interface. This work aims to help understand how different growth and measurement conditions contribute to the large variability of mechanical properties reported in the literature and provide a new tool for the rigorous characterization of matrix components and biofilms.
Collapse
Affiliation(s)
- Steffen Geisel
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Jan Vermant
- Laboratory for Soft Materials, Department of Materials, ETH Zurich, Zurich, Switzerland
| |
Collapse
|