1
|
Ayers KN, Lauver MD, Alexander KM, Jin G, Paraiso K, Ochetto A, Garg S, Goetschius DJ, Hafenstein SL, Wang JCY, Lukacher AE. The CD4 T cell-independent IgG response during persistent virus infection favors emergence of neutralization-escape variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629980. [PMID: 39763786 PMCID: PMC11703251 DOI: 10.1101/2024.12.22.629980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
How changes in the quality of anti-viral antibody (Ab) responses due to pre-existing or acquired CD4 T cell insufficiency affect virus evolution during persistent infection are unknown. Using mouse polyomavirus (MuPyV), we found that CD4 T cell depletion before infection results in short-lived plasma cells secreting low-avidity antiviral IgG with limited BCR diversity and weak virus-neutralizing ability. CD4 T cell deficiency during persistent infection incurs a shift from a T-dependent (TD) to T-independent (TI) Ab response, resembling the pre-existing TI Ab response. CD4 T cell loss before infection or during persistent infection is conducive for emergence of Ab-escape variants. Cryo-EM reconstruction of complexes of MuPyV virions with polyclonal IgG directly from infected mice with pre-existing or acquired CD4 T cell deficiency enabled visualization of shortfalls in TI IgG binding. By debilitating the antiviral IgG response, CD4 T cell deficiency sets the stage for outgrowth of variant viruses resistant to neutralization.
Collapse
Affiliation(s)
- Katelyn N Ayers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Matthew D Lauver
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kalynn M Alexander
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ge Jin
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Alyssa Ochetto
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sonal Garg
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Takahashi K, Nakamichi K, Sato Y, Katano H, Hasegawa H, Saijo M, Suzuki T. Performance of Ultrasensitive Polymerase Chain Reaction Testing for JC Polyomavirus in Cerebrospinal Fluid Compared with Pathological Diagnosis of Progressive Multifocal Leukoencephalopathy. Viruses 2024; 16:1950. [PMID: 39772255 PMCID: PMC11680323 DOI: 10.3390/v16121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation. This study retrospectively analyzed the detection performance of ultrasensitive PCR for CSF JCPyV in patients who underwent brain tissue examination based on the pathological diagnostic criteria for PML. Of the 110 patients with pathologically confirmed definite PML or not PML, standard and ultrasensitive CSF testing was performed for 36 and 74 patients, respectively. The sensitivity of ultrasensitive CSF JCPyV testing of the initial specimens was 85%. With the addition of the follow-up testing, this figure increased to 95%. The specificity and false-positive rate of ultrasensitive CSF JCPyV testing, including follow-up, were 100% and 0%, respectively. No statistically significant correlation was observed between CSF and brain JCPyV levels. The results of this study demonstrate the high sensitivity and accuracy of ultrasensitive CSF JCPyV testing and provide essential information for the clinical diagnosis of PML.
Collapse
Affiliation(s)
- Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (K.T.); (Y.S.); (H.K.); (H.H.)
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (K.T.); (Y.S.); (H.K.); (H.H.)
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (K.T.); (Y.S.); (H.K.); (H.H.)
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (K.T.); (Y.S.); (H.K.); (H.H.)
- Research Center for Influenza and Respiratory Viruses, National Institute of Infectious Diseases, Musashimurayama-shi 208-0011, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan;
- Public Health Office, Health and Welfare Bureau, City of Sapporo, Sapporo-shi 060-0042, Hokkaido, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan; (K.T.); (Y.S.); (H.K.); (H.H.)
| |
Collapse
|
3
|
Möhn N, Grote-Levi L, Wattjes MP, Bonifacius A, Holzwart D, Hopfner F, Nay S, Tischer-Zimmermann S, Saßmann ML, Schwenkenbecher P, Sühs KW, Mahmoudi N, Warnke C, Zimmermann J, Hagin D, Goudeva L, Blasczyk R, Koch A, Maecker-Kolhoff B, Eiz-Vesper B, Höglinger G, Skripuletz T. Directly Isolated Allogeneic Virus-Specific T Cells in Progressive Multifocal Leukoencephalopathy. JAMA Neurol 2024; 81:2824325. [PMID: 39374035 PMCID: PMC11459361 DOI: 10.1001/jamaneurol.2024.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/09/2024] [Indexed: 10/08/2024]
Abstract
Importance Progressive multifocal leukoencephalopathy (PML) is a life-threatening viral infection with no approved antiviral treatment. Objective To determine whether restoring the compromised immune system of patients with PML with directly isolated allogeneic virus-specific (DIAVIS) T cells is a promising therapeutic strategy, especially if other curative options are absent. Design, Setting, and Participants A retrospective case series of patients with PML who were treated with DIAVIS T cells was conducted between March 2020 and February 2022. T cells were isolated from healthy donors within 24 hours and targeted against the BK polyomavirus. Patients with PML were treated monocentrically. Eligibility for treatment with DIAVIS T cells was assessed for patients with confirmed PML, and exclusion criteria included stable PML disease and previous treatment with natalizumab. Exposure Fresh DIAVIS T cells were administered with a maximum dose of 2 × 104 CD3+ cells/kg body weight. Remaining T cells were cryopreserved in divided doses and administered in additional treatments approximately 2 and 6 weeks later. Main Outcomes and Measures Primary outcome measures were clinical response and survival of patients, compared with the outcomes of a historical reference group of PML cases receiving best supportive treatment (BST) and with recently published real-world data of patients with PML who were treated with immune checkpoint inhibition. Results The study cohort consisted of 28 patients (median [IQR] age, 60 [51-72] years; 20 male [71.4%]). Twenty-two patients (79%) treated with DIAVIS T cells showed response, resulting in significant clinical stabilization or improvement and a reduction in viral load. Six individuals (21%) were classified as nonresponders, deteriorated rapidly, and died, as did 2 other patients during a 12-month follow-up. Older age was the only predictor of a poor treatment response. Survival analysis revealed better 12-month survival rates (hazard ratio, 0.42; 95% CI, 0.24-0.73; P =.02) from diagnosis for patients treated with DIAVIS T cells (18 of 26 [69%]; 12-mo survival rate, 69%) compared with historical controls with BST (57 of 113 [50%]; 12-mo survival rate, including censored data, 45%). Conclusion and Relevance This case series of DIAVIS T-cell therapy in PML provides first class IV evidence suggesting efficacy to reduce mortality and improve functional outcome. Further prospective studies are required to confirm these results.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Mike P. Wattjes
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Dennis Holzwart
- Department of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra Nay
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | | | | | | | - Nima Mahmoudi
- Department of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Clemens Warnke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Armin Koch
- Department of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover, Germany
| | - Britta Eiz-Vesper
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research, Hannover, Germany
| | - Günter Höglinger
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Centre for Individualised Infection Medicine, Hannover, Germany
| |
Collapse
|
4
|
Sakurai S, Maezawa M, Nakao S, Hirofuji S, Miyasaka K, Yamashita M, Matsui K, Nishida S, Kobayashi R, Iguchi K, Hayashi Y, Suzuki A, Nakamura M. Progressive multifocal leukoencephalopathy analyzed using the Japanese Adverse Drug Event Report database. J Neurol Sci 2023; 455:122789. [PMID: 37984106 DOI: 10.1016/j.jns.2023.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) has been reported as the development of drugs with immunomodulatory properties, such as anticancer, immunosuppressive, and biological agents, has accelerated. To clarify an incidence profile of drug-associated PML in real-world clinical practice, we analyzed reported patients with PML using the Japanese Adverse Drug Event Report (JADER) database. METHODS We analyzed PML reports extracted from the JADER database based on the preferred term of "progressive multifocal leukoencephalopathy" from between 2004 and 2021. This was a retrospective, observational study. We evaluated the effects of causative drugs, underlying diseases, and the age of the patients on the annual number of PML reports. RESULTS The JADER database contained 773,966 reports published between April 2004 and March 2022, from which we identified 361 PML events. These PML events may include multiple counts of the same case reported by different pathways and patients diagnosed with probable or possible PML. The number of PML reports and reporting ratios have gradually increased over the past decade. The annual number of PML reports associated with biologics, immunosuppressants, and antineoplastic drugs showed an increasing trend. Females aged ≥30 years showed an increase in PML reports; in contrast, there the number of reports for males aged ≥50 years increased. CONCLUSIONS The number of PML reports and reporting ratios have gradually increased in the past decade in Japan, and it considered that it was related to change in the treatment of malignancies and autoimmune diseases, and the increasing use of biologics, immunosuppressive agents, and antineoplastic agents.
Collapse
Affiliation(s)
- Shuji Sakurai
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Mika Maezawa
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoshi Nakao
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Sakiko Hirofuji
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Koumi Miyasaka
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Moe Yamashita
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kensuke Matsui
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan
| | - Shohei Nishida
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan
| | - Ryo Kobayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuichi Hayashi
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Faculty of Nursing Science, Tsuruga Nursing University, Fukui, Japan
| | - Akio Suzuki
- Department of Pharmacy, Gifu University Hospital, Gifu, Japan; Laboratory of Advanced Medical Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Mitsuhiro Nakamura
- Laboratory of Drug Informatics, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
5
|
Kiasari BA, Fallah FH, Koohi MK, Duarte PM, Tazerji SS, Fawzy M. Simian virus 40 DNA in immunocompetent children with respiratory disease. J Med Virol 2022; 94:5507-5511. [PMID: 35790406 DOI: 10.1002/jmv.27973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/14/2022] [Accepted: 07/02/2022] [Indexed: 12/15/2022]
Abstract
Evidence of Simian virus 40 (SV40) DNA sequences or gene products has been reported in a variety of organ systems in humans. However, the route of transmission and the significance of SV40 polyomavirus infection in human are unknown. The aim of study was to characterize the frequency of SV40 infection in immunocompetent and immunocompromised patients with respiratory diseases. Respiratory specimens from patients with respiratory tract illness obtained from nasopharyngeal aspirates (n = 280) were screened for SV40 polyomavirus using real-time PCR; coinfection with other viruses was examined. Positive results were confirmed with sequencing. Of the 280 samples analysed, 2 (0.71%) were positive for SV40. SV40 was identified in nasopharyngeal aspirate samples from children aged 8 and 14 months who were immunocompetent. Both patients had upper or lower respiratory tract infection. Coinfections with other viruses were found in 50% of the SV40 positive samples. The data suggest that SV40 can infect respiratory tract, that respiratory tract may represent a route of transmission or a site for virus persistence, and that with the high rate of co-infection, SV40 may not involved in respiratory diseases.
Collapse
Affiliation(s)
- Bahman Abedi Kiasari
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Hoda Fallah
- Department of Allergy and Clinical Immunology, Children's Medical Centre, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Phelipe Magalhães Duarte
- University of Cuiabá Primavera do Leste - Mato Grosso - Brazil Programa de Pós-Graduação em Biociência Animal (PPGBA) - UFRPE Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sina Salajegheh Tazerji
- Department of Clinical Science, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Clinical Science, Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohamed Fawzy
- Department of Virology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Zheng HC, Xue H, Zhang CY. The oncogenic roles of JC polyomavirus in cancer. Front Oncol 2022; 12:976577. [PMID: 36212474 PMCID: PMC9537617 DOI: 10.3389/fonc.2022.976577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyomavirus (JCPyV) belongs to the human polyomavirus family. Based on alternative splicing, the early region encodes the large and small T antigens, while the late region encodes the capsid structural proteins (VP1, VP2, and VP3) and the agnoprotein. The regulatory transcription factors for JCPyV include Sp1, TCF-4, DDX1, YB-1, LCP-1, Purα, GF-1, and NF-1. JCPyV enters tonsillar tissue through the intake of raw sewage, inhalation of air droplets, or parent-to-child transmission. It persists quiescently in lymphoid and renal tissues during latency. Both TGF-β1 and TNF-α stimulates JCPyV multiplication, while interferon-γ suppresses the process. The distinct distribution of caspid receptors (α-2, 6-linked sialic acid, non-sialylated glycosaminoglycans, and serotonin) determines the infection capabilities of JCPyV virions, and JCPyV entry is mediated by clathrin-mediated endocytosis. In permissive cells, JCPyV undergoes lytic proliferation and causes progressive multifocal leukoencephalopathy, while its DNA is inserted into genomic DNA and leads to carcinogenesis in non-permissive cells. T antigen targets p53, β-catenin, IRS, Rb, TGF-β1, PI3K/Akt and AMPK signal pathways in cancer cells. Intracranial injection of T antigen into animals results in neural tumors, and transgenic mice develop neural tumors, lens tumor, breast cancer, gastric, Vater’s, colorectal and pancreatic cancers, insulinoma, and hepatocellular carcinoma. Additionally, JCPyV DNA and its encoded products can be detected in the brain tissues of PML patients and brain, oral, esophageal, gastric, colorectal, breast, cervical, pancreatic, and hepatocellular cancer tissues. Therefore, JCPyV might represent an etiological risk factor for carcinogenesis and should be evaluated for early prevention, diagnosis, and treatment of cancers.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
7
|
Ragoonanan D, Sheikh IN, Gupta S, Khazal SJ, Tewari P, Petropoulos D, Li S, Mahadeo KM. The Evolution of Chimeric Antigen Receptor T-Cell Therapy in Children, Adolescents and Young Adults with Acute Lymphoblastic Leukemia. Biomedicines 2022; 10:biomedicines10092286. [PMID: 36140387 PMCID: PMC9496125 DOI: 10.3390/biomedicines10092286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor T-cell (CAR T) therapy is a revolutionary treatment for pediatric, adolescent and young adult patients (AYA) with relapsed/refractory B-cell acute lymphoblastic leukemia. While the landscape of immunotherapy continues to rapidly evolve, widespread use of CAR T therapy is limited and many questions remain regarding the durability of CAR T therapy, methods to avoid CAR T therapy resistance and the role of consolidative stem cell transplant. Modified strategies to develop effective and persistent CAR T cells at lower costs and decreased toxicities are warranted. In this review we present current indications, limitations and future directions of CAR T therapy for ALL in the pediatric and AYA population.
Collapse
Affiliation(s)
- Dristhi Ragoonanan
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (D.R.); (I.N.S.)
| | - Irtiza N. Sheikh
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (D.R.); (I.N.S.)
| | - Sumit Gupta
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sajad J. Khazal
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priti Tewari
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Demetrios Petropoulos
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kris M. Mahadeo
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Fang CY, Chen SY, Hsiao BX, Huang HY, Chen YJ, Tung CL, Fang CY. Unusually high incidence of polyomavirus JC infection in the higher grade of colorectal cancer tissues in Taiwan. Eur J Med Res 2022; 27:127. [PMID: 35859146 PMCID: PMC9301828 DOI: 10.1186/s40001-022-00756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The human JC polyomavirus (JCPyV) has been detected in colorectal cancer (CRC) tissues and is suggested to contribute to CRC tumorigenesis. The rearrangement of the JCPyV regulatory region is supposedly associated with CRC development. The progression of CRC involves the stepwise accumulation of mutations. The large tumor antigen (LT) of JCPyV can trigger uncontrolled cell cycle progression by targeting oncogenes, and tumor suppressor genes, and causing chromosome instability. Few studies have focused on the presence of JCPyV DNA in the higher grade of CRC tissues. Methods We collected 95 tissue blocks from samples of stages I, II, III, and IV CRC. Nested PCR targeting the regulatory region of the viral genome was performed to determine the presence of JCPyV DNA in the various stages of colorectal cancer tissues. Results The nested PCR results showed that the positive rate of JCPyV DNA increased with the progression of CRC stages. The archetypal-like, non-rearrangement genotype of JCPyV with subtle mutations was the major genotype found in CRC samples. Conclusions This finding in our study suggests that there may be an association between JCPyV and CRC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00756-2.
Collapse
Affiliation(s)
- Chuan-Yin Fang
- Division of Colon and Rectal Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 621, Taiwan
| | - San-Yuan Chen
- Department of Chinese Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Sports Management, Chia Nan University of Pharmacy & Science, Tainan City, Taiwan
| | - Bo-Xiu Hsiao
- Department of Chinese Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Hsin-Yi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, 539, Chung Hsiao Road, Chiayi, 600, Taiwan
| | - Yi-Ju Chen
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan. .,Department of Food Nutrition and Health Biotechnology, Asian University, Taichung, 413, Taiwan.
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, 539, Chung Hsiao Road, Chiayi, 600, Taiwan.
| |
Collapse
|
9
|
Tahir F, Sy J, Reddel S, Trotman J. Progressive multifocal leukoencephalopathy post ibrutinib therapy in relapsed chronic lymphocytic leukaemia. Leuk Lymphoma 2022; 63:1464-1468. [PMID: 35037559 DOI: 10.1080/10428194.2022.2025796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a generally fatal infection of the cerebrum by the JC virus. It occurs in a range of primary and secondary immunosuppressed states and has become more common with AIDS and increasing the use of immunosuppressive therapies. Recently, Ibrutinib, a Bruton's Tyrosine Kinase Inhibitor (BTKi), has also been associated with PML. Here, we describe the case of a 77-year-old man treated for relapsed Chronic Lymphocytic Leukemia (CLL) with Ibrutinib, who eventually developed a fatal cerebellar granule cell variant of PML confirmed on autopsy. The case adds to the growing body of literature finding such an association with BTKis and highlights the importance of clinical vigilance in patients receiving such therapy.
Collapse
Affiliation(s)
- F Tahir
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - J Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, Australia
| | - S Reddel
- Neurosciences Department, Concord Repatriation General Hospital, Sydney, Australia
| | - J Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
10
|
Çetintepe T, Gediz F, Akyar I, Çetintepe L, Koç AM. Progressive Multifocal Leukoencephalopathy Among Ibrutinib Treatment In Chronic Lymphocytic Leukemia. J Oncol Pharm Pract 2022:10781552221074281. [PMID: 35037793 DOI: 10.1177/10781552221074281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Both chronic lymphocytic leukemia (CLL) itself and the drugs used for its treatment, pose a risk for progressive multifocal leukoencephalopathy (PML). Although the relationship between Rituximab and PML is well known, case reports that have been recently published, suggest that ibrutinib; which is used in the treatment of CLL, may increase the risk of PML. CASE REPORT Here, we report a case of 64 year-old female patient with CLL who was previously treated with rituximab, fludarabine and bendamustin but developed PML after receiving monotherapy with ibrutinib. According to Naranjo's algorithm, the causality relationship with the drug is possible with a score of 3. The patient initially exhibited neurological symptoms. Magnetic resonance of the brain revealed a bilateral asymmetric hyperintensity in the white matter involving the parietal and occipital lobules, and there was no mass effect, edema, hemorrhagic or iscemic lesions. No enhancement of contrast media was observed. The findings were consistent with demyelination and suggestive of PML. MANAGEMENT AND OUTCOME Mirtazapine treatment was initiated. However, neurological sympthoms continuously progressed over the following weeks and the patient, aged 64, died six weeks after diagnosis of PML. DISCUSSION PML is a rare and often fatal demyelinating disease of the central nervous system (CNS) that is exclusively seen in immunocompromised patients and there is no specific agent to treat PML. The case discussed here, highlights that the use of ibrutinib in chronic lymphocytic leukemia (CLL) therapy may result in PML.
Collapse
Affiliation(s)
- Tuğba Çetintepe
- Department of Hematology, 226844Izmir Katip Celebi University, Ataturk Training and Research Hospital, Izmir, Turkey
| | - Füsun Gediz
- Department of Hematology, 534983Medical Park Hospital, Izmir, Turkey
| | - Işın Akyar
- Department of Clinical Microbiology, 162328Acibadem University, Acibadem Labmed C. Laboratories, Istanbul, Turkey
| | - Lutfi Çetintepe
- Department of Nephrology, University of Celal Bayar, Manisa, Turkey
| | - Ali Murat Koç
- Department of Radiology, 578037Izmir Bozyaka Education and Research Hospital Izmir, Turkey
| |
Collapse
|
11
|
Progressive multifocal leukoencephalopathy in patients treated with rituximab: a 20-year review from the Southern Network on Adverse Reactions. LANCET HAEMATOLOGY 2021; 8:e593-e604. [PMID: 34329579 DOI: 10.1016/s2352-3026(21)00167-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a serious and usually fatal CNS infection caused by the John Cunningham virus. CD4+ and CD8+ T-cell lymphopenia, resulting from HIV infection, chemotherapy, or immunosuppressive therapy, are primary risk factors for PML. Following its introduction in 1997, the immunomodulatory anti-CD20 monoclonal antibody, rituximab, has received regulatory approval worldwide for treatment of non-Hodgkin lymphoma, rheumatoid arthritis, chronic lymphocytic leukaemia, granulomatosis with polyangiitis, microscopic polyangiitis, and pemphigus vulagris. Rituximab leads to prolonged B-lymphocyte depletion, potentially allowing John Cunningham viral infection to occur. Six unexpected cases of PML infection developing in rituximab-treated patients were first reported in 2002. We review 20 years of information on clinical findings, pathology, epidemiology, proposed pathogenesis, and risk-management issues associated with PML infection developing after rituximab treatment. Since the first case series report of 52 cases of rituximab-associated PML among patients with non-Hodgkin lymphoma or chronic lymphocytic leukaemia in 2009, updated and diligent pharmacovigilance efforts have provided reassurance that this fatal toxicity is a rare clinical event with concurring causal factors. International harmonisation of safety warnings around rituximab-associated PML should be considered, with these notifications listing rituximab-associated PML under a section titled warnings and precautions as is the case in most countries, rather than a boxed warning as is the case in the USA.
Collapse
|
12
|
Adra N, Goodheart AE, Rapalino O, Caruso P, Mukerji SS, González RG, Venna N, Schmahmann JD. MRI Shrimp Sign in Cerebellar Progressive Multifocal Leukoencephalopathy: Description and Validation of a Novel Observation. AJNR Am J Neuroradiol 2021; 42:1073-1079. [PMID: 33985948 DOI: 10.3174/ajnr.a7145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/07/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE There are no validated imaging criteria for the diagnosis of progressive multifocal leukoencephalopathy in the cerebellum. Here we introduce the MR imaging shrimp sign, a cerebellar white matter lesion identifiable in patients with cerebellar progressive multifocal leukoencephalopathy, and we evaluate its sensitivity and specificity. MATERIALS AND METHODS We first identified patients with progressive multifocal leukoencephalopathy seen at Massachusetts General Hospital between 1998 and 2019 whose radiology reports included the term "cerebellum." Drawing on a priori knowledge, 2 investigators developed preliminary diagnostic criteria for the shrimp sign. These criteria were revised and validated in 2 successive stages by 4 additional blinded investigators. After defining the MR imaging shrimp sign, we assessed its sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS We identified 20 patients with cerebellar progressive multifocal leukoencephalopathy: 16 with definite progressive multifocal leukoencephalopathy (mean, 46.4 [SD, 9.2] years of age; 5 women), and 4 with possible progressive multifocal leukoencephalopathy (mean, 45.8 [SD, 8.5] years of age; 1 woman). We studied 40 disease controls (mean, 43.6 [SD, 21.0] years of age; 16 women) with conditions known to affect the cerebellar white matter. We defined the MR imaging shrimp sign as a T2- and FLAIR-hyperintense, T1-hypointense, discrete cerebellar white matter lesion abutting-but-sparing the dentate nucleus. MR imaging shrimp sign sensitivity was 0.85; specificity, 1; positive predictive value, 1; and negative predictive value, 0.93. The shrimp sign was also seen in fragile X-associated tremor ataxia syndrome, but radiographic and clinical features distinguished it from progressive multifocal leukoencephalopathy. CONCLUSIONS In the right clinical context, the MR imaging shrimp sign has excellent sensitivity and specificity for cerebellar progressive multifocal leukoencephalopathy, providing a new radiologic marker of the disease.
Collapse
Affiliation(s)
- N Adra
- From the Department of Neurology (N.A., A.E.G., S.S.M., N.V., J.D.S.).,Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology (N.A., A.E.G., J.D.S.).,Wellesley College (N.A.), Wellesley, Massachusetts
| | - A E Goodheart
- From the Department of Neurology (N.A., A.E.G., S.S.M., N.V., J.D.S.).,Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology (N.A., A.E.G., J.D.S.)
| | - O Rapalino
- Neuroradiology Division (O.R., P.C., R.G.G.)
| | - P Caruso
- Neuroradiology Division (O.R., P.C., R.G.G.)
| | - S S Mukerji
- From the Department of Neurology (N.A., A.E.G., S.S.M., N.V., J.D.S.).,Department of Neurology, (S.S.M., N.V.), Neuroinfectious Diseases Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - N Venna
- From the Department of Neurology (N.A., A.E.G., S.S.M., N.V., J.D.S.).,Department of Neurology, (S.S.M., N.V.), Neuroinfectious Diseases Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - J D Schmahmann
- From the Department of Neurology (N.A., A.E.G., S.S.M., N.V., J.D.S.) .,Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology (N.A., A.E.G., J.D.S.)
| |
Collapse
|
13
|
Ye D, Zimmermann T, Demina V, Sotnikov S, Ried CL, Rahn H, Stapf M, Untucht C, Rohe M, Terstappen GC, Wicke K, Mezler M, Manninga H, Meyer AH. Trafficking of JC virus-like particles across the blood-brain barrier. NANOSCALE ADVANCES 2021; 3:2488-2500. [PMID: 36134165 PMCID: PMC9418390 DOI: 10.1039/d0na00879f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 06/10/2023]
Abstract
Hollow viral vectors, such as John Cunningham virus-like particles (JC VLPs), provide a unique opportunity to deliver drug cargo into targeted cells and tissue. Current understanding of the entry of JC virus in brain cells has remained insufficient. In particular, interaction of JC VLPs with the blood-brain barrier (BBB) has not been analyzed in detail. Thus, JC VLPs were produced in this study for investigating the trafficking across the BBB. We performed a carotid artery injection procedure for mouse brain to qualitatively study JC VLPs' in vivo binding and distribution and used in vitro approaches to analyze their uptake and export kinetics in brain endothelial cells. Our results show that clathrin-dependent mechanisms contributed to the entry of VLPs into brain endothelial cells, and exocytosis or transcytosis of VLPs across the BBB was observed in vitro. VLPs were found to interact with sialic acid glycans in mouse brain endothelia. The ability of JC VLPs to cross the BBB can be useful in developing a delivery system for transport of genes and small molecule cargoes to the brain.
Collapse
Affiliation(s)
- Dong Ye
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| | - Tina Zimmermann
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | | | | | - Christian L Ried
- AbbVie Deutschland GmbH & Co. KG, Development Sciences NBE Knollstraße 67061 Ludwigshafen Germany
| | - Harri Rahn
- AbbVie Deutschland GmbH & Co. KG, Development Sciences NBE Knollstraße 67061 Ludwigshafen Germany
| | - Marcus Stapf
- NEUWAY Pharma GmbH Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Christopher Untucht
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Michael Rohe
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Georg C Terstappen
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Karsten Wicke
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Knollstraße 67061 Ludwigshafen Germany
| | - Mario Mezler
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| | - Heiko Manninga
- NEUWAY Pharma GmbH Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, DMPK, Bioanalytical Research Knollstraße 67061 Ludwigshafen Germany
| |
Collapse
|
14
|
JC Polyomavirus and Transplantation: Implications for Virus Reactivation after Immunosuppression in Transplant Patients and the Occurrence of PML Disease. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The JC polyomavirus (JCPyV/JCV) is a member of the Polyomaviridae family and is ubiquitious in the general population, infecting 50–80% of individuals globally. A primary infection with JCV usally results in an asymptomatic, persistent infection that establishes latency in the renourinary tract. Reactivation from latency via iatrogenic immununosuppression for allograft transplantation may result in organ pathology and a potential life-threatening neuropathological disease in the form of progressive multifocal leukoencephalopathy (PML). Currently, no treatment exists for PML, a rare complication that occurs after transplantation, with an incidence of 1.24 per 1000 persons a year among solid organ transplant patients. PML is also observed in HIV patients who are immununosuppressed and are not receiving antiretroviral therapy, as well as individuals treated with biologics to suppress chronic inflammatory responses due to multiple sclerosis, Crohn’s disease, non-Hodgkin’s lymphoma, rheumatoid arthritis, and other autoimmune-mediated hematological disorders. Here, we describe the proposed mechanisms of JCV reactivation as it relates to iatrogenic immunosuppression for graft survival and the treatment of proinflammatory disease, such as biologics, proposed trafficking of JCV from the renourinary tract, JCV central nervous system dissemination and the pathology of PML in immunosuppressed patients, and potential novel therapeutics for PML disease.
Collapse
|
15
|
Del Valle L, Khalili K. Induction of Brain Tumors by the Archetype Strain of Human Neurotropic JCPyV in a Transgenic Mouse Model. Viruses 2021; 13:v13020162. [PMID: 33499370 PMCID: PMC7911272 DOI: 10.3390/v13020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
JC Virus (JCPyV), a member of the Polyomaviridiæ family, is a human neurotropic virus with world-wide distribution. JCPyV is the established opportunistic infectious agent of progressive multifocal leukoencephalopathy, a fatal demyelinating disease, which results from the cytolytic infection of oligodendrocytes. Mutations in the regulatory region of JCPyV determine the different viral strains. Mad-1 the strain associated with PML contains two 98 base pair repeats, whereas the archetype strain (CY), which is the transmissible form of JCPyV, contains only one 98 tandem with two insertions of 62 and 23 base pairs respectively. The oncogenicity of JCPyV has been suspected since direct inoculation into the brain of rodents and primates resulted in the development of brain tumors and has been attributed to the viral protein, T-Antigen. To further understand the oncogenicity of JCPyV, a transgenic mouse colony containing the early region of the archetype strain (CY), under the regulation of its own promoter was generated. These transgenic animals developed tumors of neural crest origin, including: primitive neuroectodermal tumors, medulloblastomas, adrenal neuroblastomas, pituitary tumors, malignant peripheral nerve sheath tumors, and glioblastomas. Neoplastic cells from all different phenotypes express T-Antigen. The close parallels between the tumors developed by these transgenic animals and human CNS tumors make this animal model an excellent tool for the study of viral oncogenesis.
Collapse
Affiliation(s)
- Luis Del Valle
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Departments of Medicine and Pathology, Louisiana State University Health, New Orleans, LA 70112, USA
- Correspondence: (L.D.V.); (K.K.)
| | - Kamel Khalili
- Department of Neurosciences and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (L.D.V.); (K.K.)
| |
Collapse
|
16
|
Neelapu SS, Adkins S, Ansell SM, Brody J, Cairo MS, Friedberg JW, Kline JP, Levy R, Porter DL, van Besien K, Werner M, Bishop MR. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of lymphoma. J Immunother Cancer 2020; 8:e001235. [PMID: 33361336 PMCID: PMC7768967 DOI: 10.1136/jitc-2020-001235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The recent development and clinical implementation of novel immunotherapies for the treatment of Hodgkin and non-Hodgkin lymphoma have improved patient outcomes across subgroups. The rapid introduction of immunotherapeutic agents into the clinic, however, has presented significant questions regarding optimal treatment scheduling around existing chemotherapy/radiation options, as well as a need for improved understanding of how to properly manage patients and recognize toxicities. To address these challenges, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts in lymphoma to develop a clinical practice guideline for the education of healthcare professionals on various aspects of immunotherapeutic treatment. The panel discussed subjects including treatment scheduling, immune-related adverse events (irAEs), and the integration of immunotherapy and stem cell transplant to form recommendations to guide healthcare professionals treating patients with lymphoma.
Collapse
Affiliation(s)
- Sattva S Neelapu
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sherry Adkins
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Internal Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota, USA
| | - Joshua Brody
- Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mitchell S Cairo
- Department of Pediatrics, Medicine, Pathology, Microbiology and Immunology and Cell Biology, New York Medical College At Maria Fareri Children's Hospital, New York City, New York, USA
| | - Jonathan W Friedberg
- Department of Medicine, Hematology-Oncology Division, Wilmot Cancer Institute University of Rochester Medical Center, Rochester, New York, USA
| | - Justin P Kline
- Department of Medicine Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| | - Ronald Levy
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David L Porter
- Cell Therapy and Transplant and Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Koen van Besien
- Division of Hematology/Oncology, Weill Cornell Medical College, New York City, New York, USA
| | | | - Michael R Bishop
- Department of Medicine Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
17
|
Shimbo E, Nukuzuma S, Tagawa YI. Human iPS cell-derived astrocytes support efficient replication of progressive multifocal leukoencephalopathy-type JC polyomavirus. Biochem Biophys Res Commun 2020; 533:983-987. [PMID: 33008586 DOI: 10.1016/j.bbrc.2020.09.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system, in immunocompromised patients. Although PML used to be rare, recently the incidence of PML has risen due to an increase in immunosuppressive therapy. An in vitro JCPyV infection system could be used for anti-drug screening and investigation of tropism changes, but study of JCPyV in vitro has been limited due to the difficulty of efficiently propagating the virus in cultured cells. PML-type JCPyV efficiently propagates in primary human fetal and progenitor cell-derived astrocytes, but the preparation of cells from human fetuses is associated with severe ethical problems. In this study, human iPS cell-derived astrocytes were exposed to PML-type JCPyV. Infection, replication, and VP1 and T antigens of JCPyV were detected and confirmed in this culture. The non-coding control region (NCCR) of M1-IMRb was conserved in infected cells without point mutations. In addition, PML-type JCPyV genomic DNA in infected cells was detected as a single band of approximately 5.1 kbp, with no deletions. This is the first demonstration that human iPS cell-derived astrocytes efficiently support replication of PML-type JCPyV without production of defective interfering particles. These findings indicated that a culture system using human iPS cell-derived astrocyte would be useful for studies of PML, especially for screening anti-JCPyV drugs.
Collapse
Affiliation(s)
- Emiko Shimbo
- Tokyo Institute of Technology School of Life Science and Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima Nakamachi, Chuo-ku, Kobe, 650-0046, Japan
| | - Yoh-Ichi Tagawa
- Tokyo Institute of Technology School of Life Science and Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, 226-8501, Japan.
| |
Collapse
|
18
|
Ahye N, Bellizzi A, May D, Wollebo HS. The Role of the JC Virus in Central Nervous System Tumorigenesis. Int J Mol Sci 2020; 21:ijms21176236. [PMID: 32872288 PMCID: PMC7503523 DOI: 10.3390/ijms21176236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The study of DNA tumor-inducing viruses and their oncoproteins as a causative agent in cancer initiation and tumor progression has greatly enhanced our understanding of cancer cell biology. The initiation of oncogenesis is a complex process. Specific gene mutations cause functional changes in the cell that ultimately result in the inability to regulate cell differentiation and proliferation effectively. The human neurotropic Polyomavirus JC (JCV) belongs to the family Polyomaviridae and it is the causative agent of progressive multifocal leukoencephalopathy (PML), which is a fatal neurodegenerative disease in an immunosuppressed state. Sero-epidemiological studies have indicated JCV infection is prevalent in the population (85%) and that initial infection usually occurs during childhood. The JC virus has small circular, double-stranded DNA that includes coding sequences for viral early and late proteins. Persistence of the virus in the brain and other tissues, as well as its potential to transform cells, has made it a subject of study for its role in brain tumor development. Earlier observation of malignant astrocytes and oligodendrocytes in PML, as well as glioblastoma formation in non-human primates inoculated with JCV, led to the hypothesis that JCV plays a role in central nervous system (CNS) tumorigenesis. Some studies have reported the presence of both JC viral DNA and its proteins in several primary brain tumor specimens. The discovery of new Polyomaviruses such as the Merkel cell Polyomavirus, which is associated with Merkel cell carcinomas in humans, ignited our interest in the role of the JC virus in CNS tumors. The current evidence known about JCV and its effects, which are sufficient to produce tumors in animal models, suggest it can be a causative factor in central nervous system tumorigenesis. However, there is no clear association between JCV presence in CNS and its ability to initiate CNS cancer and tumor formation in humans. In this review, we will discuss the correlation between JCV and tumorigenesis of CNS in animal models, and we will give an overview of the current evidence for the JC virus’s role in brain tumor formation.
Collapse
|
19
|
Jordan AL, Yang J, Fisher CJ, Racke MK, Mao-Draayer Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult Scler 2020; 28:7-15. [PMID: 32808554 DOI: 10.1177/1352458520949158] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dimethyl fumarate (DMF), a fumaric acid with antioxidant and immunomodulatory properties, is among the most commonly used oral therapies for relapsing multiple sclerosis (MS). Progressive multifocal leukoencephalopathy (PML) has been associated with several disease-modifying therapies (DMTs), including DMF in treating MS. We present detailed clinical characteristics of nine PML cases and show that the PML incidence in DMF-treated patients is 0.02 per 1000 patients. In addition to persistent severe lymphopenia, older age appears to be a potential risk for PML. However, younger patients without lymphopenia were also observed to develop PML. DMF-associated PML has occurred in patients with absolute lymphocyte counts (ALCs) above the guideline threshold, suggesting that changes in specific subsets might be more important than total ALC. Furthermore, since DMF has been found to decrease immune cell migration by decreasing the expression of adhesive molecules, the cerebrospinal fluid (CSF) immune profile may also be useful for assessing PML risk in DMF-treated patients. This review provides an up-to-date assessment of PML cases occurring in DMF-treated patients and discusses other potential considerations in light of our current understanding of DMF's mechanism of action on the immune system in the periphery and in the central nervous system (CNS).
Collapse
Affiliation(s)
- Allison Lm Jordan
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jennifer Yang
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Caitlyn J Fisher
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael K Racke
- The Consortium of Multiple Sclerosis Centers, Hackensack, NJ, USA
| | - Yang Mao-Draayer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA/Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Hidaka K, Takegami T. Characterization of JC Polyomavirus Derived from COS-IMRb Cells. Jpn J Infect Dis 2020; 74:48-53. [PMID: 32741932 DOI: 10.7883/yoken.jjid.2020.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system affecting immunocompromised patients. The study of PML-type JCPyV in vitro has been limited owing to the inefficient propagation of the virus in cultured cells. In this study, we carried out long-term culture of COS-7 cells (designated as COS-IMRb cells) transfected with PML-type M1-IMRb, an adapted viral DNA with a rearranged non-coding control region (NCCR). The JCPyV derived from COS-IMRb cells were characterized by analyzing the viral replication, amount of virus by hemagglutination (HA), production of viral protein 1 (VP1), and structure of the NCCR. HA assays indicated the presence of high amounts of PML-type JCPyV in COS-IMRb cells. Immunostaining showed only a small population of JCPyV carrying COS-IMRb cells to be VP1-positive. Sequencing analysis of the NCCR of JCPyV after long-term culture revealed that the NCCR of M1-IMRb was conserved in COS-IMRb cells without any point mutation. The JCPyV genomic DNA derived from a clone of COS-IMRb-3 cells was detected, via Southern blotting, as a single band of approximately 5.1 kbp without deletion. These findings suggest the potential of using COS-IMRb-3 cells as a useful tool for screening anti-JCPyV drugs.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Kanazawa Medical University, Japan.,Department of Medical Zoology, School of Medicine, Kanazawa Medical University, Japan
| | - Koushi Hidaka
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Japan
| |
Collapse
|
21
|
Bianchi A, Ragonese P, Banco MA, Realmuto S, Vazzoler G, Portera E, La Tona G, Salemi G. Four cases of progressive multifocal leukoencephalopathy in iatrogenic immunocompromised patients. eNeurologicalSci 2020; 19:100243. [PMID: 32478179 PMCID: PMC7248236 DOI: 10.1016/j.ensci.2020.100243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2020] [Indexed: 11/06/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS) caused by John Cunningham Virus (JCV). We report four PML cases in immunocompromised patients, respectively treated with (1) Natalizumab, (2) Rituximab, (3) autologous stem-cell transplantation, and (4) Tacrolimus. All patients underwent neurological examination, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), JCV-DNA research on biological samples, and lymphocytes subpopulation study. All cases presented with motor, behavioural, and cognitive disorders. Visual, sensitive, and cerebellar deficits developed in three cases. MRI revealed widespread progressive demyelinating areas with active borders; three patients presented contrast enhancement. One patient developed inflammatory reconstitution syndrome (IRIS). At MRS, all cases presented decreased N-acetyl-aspartate (NAA) and three cases showed increased choline (Cho). In one patient, plasma and urine tested positive for JCV-DNA, while cerebrospinal fluid (CSF) analysis confirmed JCV in two patients. The fourth patient had a low JCV-DNA blood titer and brain biopsy showed subacute necrosis. Two patients had abnormal lymphocyte subpopulations. Three patients underwent therapy with Mirtazapine, one of whom received Mefloquine in add-on. No clinical response was registered. Clinical onset, MRI and MRS were highly suggestive of PML in all patients, despite three cases presented contrast enhancement. In three cases JCV-DNA detection in biological samples confirmed the diagnosis. The fourth patient fulfilled diagnosis of “presumptive PML”. Our data confirm the importance to complete the diagnostic workup despite the presence of findings not completely consistent with classical PML. We hypothesize that atypical characteristics could due to the clinical conditions leading to PML. Four cases of PML in iatrogenic immunocompromised patients. Clinical presentation was typical for PML. Diagnostic findings were not completely consistent with classical PML. Atypical findings do not exclude diagnosis when clinical data are highly suggestive. It is necessary to improve the diagnostic and therapeutic management of patients.
Collapse
Affiliation(s)
- Alessia Bianchi
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Maria Aurelia Banco
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Sabrina Realmuto
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy.,Clinic of Neurology and Stroke Unite, Centre of Neuroimmunology, AOOR Villa Sofia-Cervello, Palermo, Italy
| | - Giulia Vazzoler
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Erika Portera
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppe La Tona
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience & Advanced Diagnostic, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
DUMEA E, MIHAI R, MAVRODIN M, DOGARU G, PASCU Corina. Remission of progressive multifocal leukoencephalopathy in HIV- positive patient after multidisciplinary rehabilitation: a case report. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: One of the most common neurologic disease in Acquired Immunodeficiency Syndrome (AIDS) caused by Human Immunodeficiency Virus (HIV) is represented by progressive multifocal leukoencephalopathy (PML), being caused by John Cunningham (JC) polyoma virus.
Case presentation: We report a case of a 27 years old women, HIV-positive since childhood, under specific antiretroviral therapy with good adherence to it in that period but starting with adolescence adherence to highly active antiretroviral therapy (HAART) decreased. In this context her HIV viral load increased to a 690.000 copies/ml, and CD4 collapsed at 57 cells/mmc. She presented in our clinic with ataxic left hemiparesis, truncal ataxia and left hemi-hypoesthesia. Cerebrospinal fluid (CSF) showed a slightly pleocytosis and polymerase chain reaction performed from CSF diagnosed John Cunningham (JC) virus. Once diagnosis established, we reinitiated HAART, but some neurologic disorders persisted like difficulty of the left upper member, having the modified Rankin scale (mRS) of 5. The patient started a multidisciplinary rehabilitation (MDR) treatment, specifically adapted. It consisted of 4 sessions of neuromotor treatments, 20 sessions of massages, and 12 sessions of occupational therapy. According to MDR, the patient improved the ataxic walking, without support, presenting an improvement mRS of 3.
Conclusions: AIDS patients with PML could require a prolonged MDR treatment for neurological disorders and rehabilitation treatment promptly should be applied when such diagnosis is suspected.
Key words: progressive multifocal leukoencephalopathy, human immunodeficiency virus, neurological disorder, multidisciplinary rehabilitation,
Collapse
Affiliation(s)
- Elena DUMEA
- 1.Clinic of Infectious Diseases, Faculty of Medicine, “Ovidius” University, Constanta, Romania 2Clinical Infectious Diseases Hospital, Constanta, Romania
| | - Raluca MIHAI
- 2Clinical Infectious Diseases Hospital, Constanta, Romania
| | | | - Gabriela DOGARU
- ”Iuliu Hatieganu” University of Medicine and Pharmacy, Rehabilitation Department, Cluj Napoca, Romania
| | - PASCU Corina
- Neurology Department, Constanta Clinical County Emergency Hospital “Sf.Ap. Andrei”, Constanta, Romania
| |
Collapse
|
23
|
Witkin AE, Banerji J, Bullock PA. A model for the formation of the duplicated enhancers found in polyomavirus regulatory regions. Virology 2020; 543:27-33. [PMID: 32056844 DOI: 10.1016/j.virol.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
When purified from persistent infections, the genomes of most human polyomaviruses contain single enhancers. However, when isolated from productively infected cells from immunocompromised individuals, the genomes of several polyomaviruses contain duplicated enhancers that promote a number of polyoma-based diseases. The mechanism(s) that gives rise to the duplicated enhancers in the polyomaviruses is, however, not known. Herein we propose a model for the duplication of the enhancers that is based on recent advances in our understanding of; 1) the initiation of polyomavirus DNA replication, 2) the formation of long flaps via displacement synthesis and 3) the subsequent generation of duplicated enhancers via double stranded break repair. Finally, we discuss the possibility that the polyomavirus based replication dependent enhancer duplication model may be relevant to the enhancer-associated rearrangements detected in human genomes that are associated with various diseases, including cancers.
Collapse
Affiliation(s)
- Anna E Witkin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA
| | - Julian Banerji
- Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
24
|
Khalili A, Craigie M, Donadoni M, Sariyer IK. Host-Immune Interactions in JC Virus Reactivation and Development of Progressive Multifocal Leukoencephalopathy (PML). J Neuroimmune Pharmacol 2019; 14:649-660. [PMID: 31452013 PMCID: PMC6898772 DOI: 10.1007/s11481-019-09877-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
With the advent of immunomodulatory therapies and the HIV epidemic, the impact of JC Virus (JCV) on the public health system has grown significantly due to the increased incidence of Progressive Multifocal Leukoencephalopathy (PML). Currently, there are no pharmaceutical agents targeting JCV infection for the treatment and the prevention of viral reactivation leading to the development of PML. As JCV primarily reactivates in immunocompromised patients, it is proposed that the immune system (mainly the cellular-immunity component) plays a key role in the regulation of JCV to prevent productive infection and PML development. However, the exact mechanism of JCV immune regulation and reactivation is not well understood. Likewise, the impact of host factors on JCV regulation and reactivation is another understudied area. Here we discuss the current literature on host factor-mediated and immune factor-mediated regulation of JCV gene expression with the purpose of developing a model of the factors that are bypassed during JCV reactivation, and thus are potential targets for the development of therapeutic interventions to suppress PML initiation. Graphical Abstract.
Collapse
Affiliation(s)
- Amir Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Michael Craigie
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA
| | - Ilker Kudret Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Medical Education and Research Building, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
25
|
Reddi A, Patel N, Morris NA. Diffuse large B cell lymphoma secondary to JC virus in progressive multifocal leukoencephalopathy. J Neurovirol 2019; 25:883-886. [PMID: 31140130 DOI: 10.1007/s13365-019-00760-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/28/2022]
Abstract
We present the case of a 43-year-old-man with a past medical history of HIV with recently initiated HAART and existing PML that presented with altered mental status. The initial diagnosis was deemed to be PML-IRIS; however, neuroimaging brought into question this diagnosis. Flow cytometry performed from the cerebrospinal fluid revealed diffuse large B cell lymphoma. JC virus may act in an oncogenic role similarly to EBV and predispose to CNS lymphomas. Patients with PML caused by JC virus may develop secondary malignancies.
Collapse
Affiliation(s)
- Ashwin Reddi
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nikhil Patel
- Division of Neurocritical Care and Emergency Neurology, University of Maryland, School of Medicine, 22 South Greene Street, Baltimore, MD, 20201, USA
| | - Nicholas A Morris
- Division of Neurocritical Care and Emergency Neurology, University of Maryland, School of Medicine, 22 South Greene Street, Baltimore, MD, 20201, USA.
| |
Collapse
|
26
|
JC Polyomavirus Entry by Clathrin-Mediated Endocytosis Is Driven by β-Arrestin. J Virol 2019; 93:JVI.01948-18. [PMID: 30700597 DOI: 10.1128/jvi.01948-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 01/09/2023] Open
Abstract
JC polyomavirus (JCPyV) establishes a persistent, lifelong, asymptomatic infection within the kidney of the majority of the human population. Under conditions of severe immunosuppression or immune modulation, JCPyV can reactivate in the central nervous system (CNS) and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease. Initiation of infection is mediated through viral attachment to α2,6-sialic acid-containing lactoseries tetrasaccharide c (LSTc) on the surface of host cells. JCPyV internalization is dependent on serotonin 5-hydroxytryptamine subfamily 2 receptors (5-HT2Rs), and entry is thought to occur by clathrin-mediated endocytosis (CME). However, the JCPyV entry process and the cellular factors involved in viral internalization remain poorly understood. Treatment of cells with small-molecule chemical inhibitors and RNA interference of 5-HT2R endocytic machinery, including β-arrestin, clathrin, AP2, and dynamin, significantly reduced JCPyV infection. However, infectivity of the polyomavirus simian virus 40 (SV40) was not affected by CME-specific treatments. Inhibition of clathrin or β-arrestin specifically reduced JCPyV internalization but did not affect viral attachment. Furthermore, mutagenesis of a β-arrestin binding domain (Ala-Ser-Lys) within the intracellular C terminus of 5-HT2AR severely diminished internalization and infection, suggesting that β-arrestin interactions with 5-HT2AR are critical for JCPyV infection and entry. These conclusions illuminate key host factors that regulate clathrin-mediated endocytosis of JCPyV, which is necessary for viral internalization and productive infection.IMPORTANCE Viruses usurp cellular factors to invade host cells. Activation and utilization of these proteins upon initiation of viral infection are therefore required for productive infection and resultant viral disease. The majority of healthy individuals are asymptomatically infected by JC polyomavirus (JCPyV), but if the host immune system is compromised, JCPyV can cause progressive multifocal leukoencephalopathy (PML), a rare, fatal, demyelinating disease. Individuals infected with HIV or taking prolonged immunomodulatory therapies have a heightened risk for developing PML. The cellular proteins and pathways utilized by JCPyV to mediate viral entry are poorly understood. Our findings further characterize how JCPyV utilizes the clathrin-mediated endocytosis pathway to invade host cells. We have identified specific components of this pathway that are necessary for the viral entry process and infection. Collectively, the conclusions increase our understanding of JCPyV infection and pathogenesis and may contribute to the future development of novel therapeutic strategies for PML.
Collapse
|
27
|
Muto R, Sugita Y, Momosaki S, Ito Y, Wakugawa Y, Ohshima K. An autopsy case of progressive multifocal leukoencephalopathy after rituximab therapy for malignant lymphoma. Neuropathology 2018; 39:58-63. [PMID: 30511425 DOI: 10.1111/neup.12526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare fatal demyelinating disease of the central nervous system caused by reactivation of the JC virus (JCV), which is named after the initials of the patient from whom the virus was first isolated. JCV is highly prevalent worldwide, infects humans in early childhood, and the infection persists throughout the course of life in latent form. The present paper deals with the second autopsy case report of rituximab-associated PML in Japan. A 63-year-old woman who had undergone chemotherapy for non-Hodgkin lymphoma developed progressive dysarthria and cerebellar ataxia. Head magnetic resonance imaging (MRI) revealed small, scattered, hyperintense areas in the midbrain, pons and thalamus, and the patient was first diagnosed as having cerebral infarction. Follow-up MRI showed tendency toward cerebellar atrophy and multiple system atrophy cerebellar type was suggested, which we concluded must have coincidentally occurred. It was challenging to perform biopsy due to the location of the foci and the patient's condition. Twelve months later she died of aspiration pneumonia caused by the bulbar lesion. At autopsy, the histological examination suggested the presence of demyelinating foci with numerous foamy macrophages. In the foci, oligodendrocytes with enlarged ground-glass like nuclei were found in a scattered manner and astrocytes with bizarre nuclei were also detected. These findings verified the case as PML. The first diagnosis of cerebral infarction was later withdrawn, although appropriate disorders were not recalled even after testing with various antibodies. The rate of PML development tends to increase after treatment with molecular-targeted therapies, which directly or indirectly attenuate the cellular-mediated immune system. Various novel molecular-targeted and immunosuppressive drugs have been released on the market; the cases of PML have consequently increased. Accordingly, pathologists should keep this disease in mind in the differential diagnosis when neural symptoms newly emerge in patients who are treated with these drugs.
Collapse
Affiliation(s)
- Reiji Muto
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan.,Department of Pathology, National Hospital Organization, Kumamoto Medical Center, Kumamoto, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Seiya Momosaki
- Department of Pathology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Yuriko Ito
- Department of Cerebrovascular Disease and Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Yoshiyuki Wakugawa
- Department of Cerebrovascular Disease and Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
28
|
Stoner GL, Agostini HT, Ryschkewitsch CF, Baumhefner RW, Tourtellotte WW. Characterization of Jc Virus Dna Amplified from Urine of Chronic Progressive Multiple Sclerosis Patients. Mult Scler 2018. [DOI: 10.1177/135245859600100401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thirty-seven chronic progressive multiple sclerosis (MS) patients, 20 of whom were taking cyclosporine, were examined for excretion of JC virus (JCV) in the urine. Polymerase chain reaction (PCR) amplification of DNA in urinary cell extracts detected JCV in 30% of the MS urines. In the cyclosporine treated group four of 20 (20%) excreted JCV, whereas in the untreated group seven of 17 (41%) excreted JCV. Thus, cyclosporine treatment did not enhance urinary excretion of the virus. A control group consisting of an unselected series of 89 patients donating urine in a general medical clinic and 16 healthy volunteers showed 41% with detectable urinary JCV. Thirty-three percent of the control females excreted JCV (18154), as did 49% of the control males (25151). Although the percentage of MS patients excreting detectable virus was not increased compared to the control group, the presence of JCV in the urine provides or convenient source of the virus for further characterization. Genotyping of DNA fragments amplified from the VPI region indicates mainly the presence of JCV Type 1 in these chronic progressive MS patients. This is also the type that predominates in the control group. An apparent recombinant between Type 1 and Type 3 (African) within the VPI region, tentatively designated Type 113 (or Type 4), was found in both the MS group and the controls. A larger series of MS patients that includes relapsing/remitting disease will be required to determine whether the genotype profile of JCV excreted in the urine of MS patients differs significantly from controls.
Collapse
Affiliation(s)
- Gerald L Stoner
- Laboratory of Experimental Neuropathology, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Hansjürgen T Agostini
- Laboratory of Experimental Neuropathology, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Caroline F Ryschkewitsch
- Laboratory of Experimental Neuropathology, NINDS, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert W Baumhefner
- Neurology Service, VAMC West Los Angeles, Los Angeles, California 90073, USA
| | | |
Collapse
|
29
|
|
30
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Hidaka K, Takegami T. Establishment of COS-JC cells persistently producing archetype JC polyomavirus. Microbiol Immunol 2018; 62:524-530. [PMID: 29932215 DOI: 10.1111/1348-0421.12632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
JC polyomavirus (JCPyV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system in immunocompromised patients. Archetype JCPyV circulates in the human population. There have been several reports of archetype JCPyV replication in cultured cells, in which propagation was not enough to produce high titers of archetype JCPyV. In this study, we carried out cultivation of the transfected cells with archetype JCPyV DNA MY for more than 2 months to establish COS-7 cells (designated COS-JC cells) persistently producing archetype JCPyV. Moreover, JCPyV derived from COS-JC cells was characterized by analyzing the viral propagation, size of the viral genome, amount of viral DNA, production of viral protein, and structure of the non-coding control region (NCCR). Southern blotting using a digoxigenin-labeled JCPyV probe showed two different sizes of the JCPyV genome in COS-JC cells. For molecular cloning, four of five clones showed a decrease in the size of complete JCPyV genome. Especially, clone No. 10 was generated the large deletion within the Large T antigen. On the other hand, the archetype structure of the NCCR was maintained in COS-JC cells, although a few point mutations occurred. Quantitative PCR analysis of viral DNA in COS-JC cells indicated that a high copy number of archetype JCPyV DNA was replicated in COS-JC cells. These findings suggest that COS-JC cells could efficiently propagate archetype JCPyV MY and offer a useful tool to study persistent infection of archetype JCPyV in a kidney-derived system.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima, -Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Koushi Hidaka
- Faculty of Pharmaceutical Sciences, Kobe 650-8586, Japan.,Cooperative Research Center for Life Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
31
|
Adrianzen Herrera D, Ayyappan S, Jasra S, Kornblum N, Derman O, Shastri A, Mantzaris I, Verma A, Braunschweig I, Janakiram M. Characteristics and outcomes of progressive multifocal leukoencephalopathy in hematologic malignancies and stem cell transplant – a case series. Leuk Lymphoma 2018; 60:395-401. [DOI: 10.1080/10428194.2018.1474523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Diego Adrianzen Herrera
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Sabarish Ayyappan
- Department of Medicine, Division of Hematology, Ohio State University, Columbus, OH, USA
| | - Sakshi Jasra
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Noah Kornblum
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Olga Derman
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Aditi Shastri
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ioannis Mantzaris
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Ira Braunschweig
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Murali Janakiram
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
32
|
Geoghegan EM, Pastrana DV, Schowalter RM, Ray U, Gao W, Ho M, Pauly GT, Sigano DM, Kaynor C, Cahir-McFarland E, Combaluzier B, Grimm J, Buck CB. Infectious Entry and Neutralization of Pathogenic JC Polyomaviruses. Cell Rep 2018; 21:1169-1179. [PMID: 29091757 DOI: 10.1016/j.celrep.2017.10.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/08/2017] [Accepted: 10/06/2017] [Indexed: 12/24/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a lethal brain disease caused by uncontrolled replication of JC polyomavirus (JCV). JCV strains recovered from the brains of PML patients carry mutations that prevent the engagement of sialylated glycans, which are thought to serve as receptors for the infectious entry of wild-type JCV. In this report, we show that non-sialylated glycosaminoglycans (GAGs) can serve as alternative attachment receptors for the infectious entry of both wild-type and PML mutant JCV strains. After GAG-mediated attachment, PML mutant strains engage non-sialylated non-GAG co-receptor glycans, such as asialo-GM1. JCV-neutralizing monoclonal antibodies isolated from patients who recovered from PML appear to block infection by preventing the docking of post-attachment co-receptor glycans in an apical pocket of the JCV major capsid protein. Identification of the GAG-dependent/sialylated glycan-independent alternative entry pathway should facilitate the development of infection inhibitors, including recombinant neutralizing antibodies.
Collapse
Affiliation(s)
- Eileen M Geoghegan
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Rachel M Schowalter
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Upasana Ray
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA
| | - Wei Gao
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gary T Pauly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Dina M Sigano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | | | | - Jan Grimm
- Neurimmune Holding AG, Schlieren-Zurich, Switzerland
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4263, USA.
| |
Collapse
|
33
|
Virtanen E, Seppälä H, Helanterä I, Laine P, Lautenschlager I, Paulin L, Mannonen L, Auvinen P, Auvinen E. BK polyomavirus microRNA expression and sequence variation in polyomavirus-associated nephropathy. J Clin Virol 2018. [DOI: 10.1016/j.jcv.2018.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Yuan C, Deberardinis C, Patel R, Shroff SM, Messina SA, Goldstein S, Mori S. Progressive multifocal leukoencephalopathy after allogeneic stem cell transplantation: Case report and review of the literature. Transpl Infect Dis 2018. [PMID: 29512846 DOI: 10.1111/tid.12879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, yet typically fatal complication of allogeneic stem cell transplantation. It is caused by reactivation of the John Cunningham (JC) virus in an immunocompromised host. This report describes an unfortunate case of PML in a recipient of an allogeneic stem cell transplant for acute myelogenous leukemia. The JC virus was undetectable in the patient's cerebrospinal fluid by polymerase chain reaction (PCR); however, a positive diagnosis was made after a brain biopsy. This and other published cases demonstrate that recipients of allogeneic stem cells can develop PML. Moreover, early diagnosis of the disease is often difficult and, as demonstrated in this case, screening with PCR does not appear to have strong diagnostic significance. With no effective treatment presently available, restoration of immune function is the only intervention that can affect prognosis. Further prospective studies are needed to understand the pathophysiology and treatment of this disease.
Collapse
Affiliation(s)
- Cai Yuan
- Hematology and Oncology Fellowship, University of Florida, Gainesville, FL, USA
| | | | - Rushang Patel
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| | - Seema M Shroff
- Pathology Department, Florida Hospital, Orlando, FL, USA
| | | | - Steven Goldstein
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| | - Shahram Mori
- Blood & Marrow Transplant Center, Florida Hospital, Orlando, FL, USA
| |
Collapse
|
35
|
Prezioso C, Scribano D, Rodio DM, Ambrosi C, Trancassini M, Palamara AT, Pietropaolo V. COS-7-based model: methodological approach to study John Cunningham virus replication cycle. Virol J 2018; 15:29. [PMID: 29402297 PMCID: PMC5799914 DOI: 10.1186/s12985-018-0939-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/23/2018] [Indexed: 11/26/2022] Open
Abstract
John Cunningham virus (JCV) is a human neurotropic polyomavirus whose replication in the Central Nervous System (SNC) induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV propagation and PML investigation have been severely hampered by the lack of an animal model and cell culture systems to propagate JCV have been very limited in their availability and robustness. We previously confirmed that JCV CY strain efficiently replicated in COS-7 cells as demonstrated by the progressive increase of viral load by quantitative PCR (Q-PCR) during the time of transfection and that archetypal regulatory structure was maintained, although two characteristic point mutations were detected during the viral cycle. This short report is an important extension of our previous efforts in defining our reliable model culture system able to support a productive JCV infection. Supernatants collected from transfected cells have been used to infect freshly seeded COS-7 cell line. An infectious viral progeny was obtained as confirmed by Western blot and immunofluorescence assay. During infection, the archetype regulatory region was conserved. Importantly, in this study we developed an improved culture system to obtain a large scale production of JC virus in order to study the genetic features, the biology and the pathogenic mechanisms of JC virus that induce PML.
Collapse
Affiliation(s)
- C Prezioso
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - D Scribano
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.,Department of Experimental and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - D M Rodio
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - C Ambrosi
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - M Trancassini
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - A T Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, "Sapienza" University of Rome, Rome, Italy.,San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - V Pietropaolo
- Department of Public Health and Infectous Diseases, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
36
|
Hu C, Huang Y, Su J, Wang M, Zhou Q, Zhu B. Detection and analysis of variants of JC polyomavirus in urine samples from HIV-1-infected patients in China's Zhejiang Province. J Int Med Res 2018; 46:1024-1032. [PMID: 29322824 PMCID: PMC5972266 DOI: 10.1177/0300060517746297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objectives Human JC polyomavirus (JCPyV) infection has an increased risk of developing progressive multifocal leukoencephalopathy (PML). Different JCPyV subtypes differ in the virulence with which they cause PML. Currently, the JCPyV infection status and subtype distribution in patients with human immunodeficiency virus-1 (HIV-1) in China are still unclear. This study aimed to investigate the epidemiology and subtype distribution of JCPyV in HIV-1-infected patients in China. Methods Urine samples from 137 HIV-1-infected patients in Zhejiang Province in China were tested for the presence of JCPyV DNA. The detected VP1 sequences were aligned and analysed using BioEdit and MEGA software. Results Among urine samples from HIV-1-infected patients, 67.2% were positive for JCPyV DNA (92/137). Primarily, the type 7 strains of JCPyV were detected, among which 45.5% (15/33) were subtype 7A, 30.3% (10/33) were 7B, and 24.2% (8/33) were 7C. Six nucleotide mutations, as well as one amino acid substitution, were isolated from the patients. Conclusions Urine samples from HIV-1-infected patients from Zhejiang Province show a high JCPyV infection rate. The most common JCPyV strains are subtypes 7A, 7B, and 7C.
Collapse
Affiliation(s)
- Caiqin Hu
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| | - Ying Huang
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| | - Junwei Su
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| | - Mengyan Wang
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| | - Qihui Zhou
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| | - Biao Zhu
- Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, 71069 College of Medicine, Zhejiang University , Hangzhou, China
| |
Collapse
|
37
|
|
38
|
Nukuzuma S, Nukuzuma C, Kameoka M, Sugiura S, Nakamichi K, Tasaki T, Takegami T. CPT11 prevents virus replication in JCI cells persistently infected with JC polyomavirus. Microbiol Immunol 2017; 61:232-238. [PMID: 28463406 DOI: 10.1111/1348-0421.12486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/04/2017] [Accepted: 04/28/2017] [Indexed: 12/29/2022]
Abstract
JC polyomavirus (JCPyV) is the causative agent of the demyelinating disease of the central nervous system known as progressive multifocal leukoencephalopathy (PML), which occurs in immunocompromised patients. Moreover, patients treated with natalizumab for multiple sclerosis or Crohn disease can develop PML, which is then termed natalizumab-related PML. Because few drugs are currently available for treating PML, many antiviral agents are being investigated. It has been demonstrated that the topoisomerase I inhibitors topotecan and β-lapachone have inhibitory effects on JCPyV replication in IMR-32 cells. However, both of these drugs have marginal inhibitory effects on virus propagation in JC1 cells according to RT-PCR analysis. In the present study, the inhibitory effect of another topoisomerase I inhibitor, 7-ethy-10-[4-(1-piperidino)-1-piperidino] carbonyloxy camptothecin (CPT11), was assessed by investigating viral replication, propagation, and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using real-time PCR combined with Dpn I treatment in IMR-32 cells transfected with JCPyV DNA. It was found that JCPyV replicates less in IMR-32 cells treated with CPT11 than in untreated cells. Moreover, CPT11 treatment of JCI cells persistently infected with JCPyV led to a dose-dependent reduction in JCPyV DNA and VP1 production. Additionally, the inhibitory effect of CPT11 was found to be stronger than those of topotecan and β-lapachone. These findings suggest that CPT11 may be a potential anti-JCPyV agent that could be used to treat PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046, Japan
| | | | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124, Japan
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
39
|
Williamson EML, Berger JR. Diagnosis and Treatment of Progressive Multifocal Leukoencephalopathy Associated with Multiple Sclerosis Therapies. Neurotherapeutics 2017; 14:961-973. [PMID: 28913726 PMCID: PMC5722774 DOI: 10.1007/s13311-017-0570-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare, but serious, complication encountered in patients treated with a select number of disease-modifying therapies (DMTs) utilized in treating multiple sclerosis (MS). PML results from a viral infection in the brain for which the only demonstrated effective therapy is restoring the perturbed immune system-typically achieved in the patient with MS by removing the offending therapeutic agent or, in the case of HIV-associated PML, treatment with highly active antiretroviral therapies. Other therapies for PML remain either ineffective or experimental. Significant work to understand the virus and host interaction has been undertaken, but lack of an animal model for the disorder has significantly hindered progress, especially with respect to development of treatments. Strategies to limit risk of PML with natalizumab, a drug that carries a uniquely high risk for the development of the disorder, have been developed. Identifying factors such as positive JC virus antibody status that increase PML risk, at least in theory, should decrease the incidence rate of the disease. Whether other risk factors for PML can be identified and validated or unique strategies should be employed in association with other DMTs that predispose to PML and whether this has a salutary effect on outcome remains to be demonstrated. Identifying PML early, then promptly eliminating drug in the case of natalizumab-associated PML has demonstrated better outcomes, but the complication of PML continues to carry significant morbidity and mortality. While the scientific community has yet to identify targeted therapy with proven efficacy against JCV or PML there are several candidates being studied.
Collapse
Affiliation(s)
- Eric M L Williamson
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Joseph R Berger
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Bohra C, Sokol L, Dalia S. Progressive Multifocal Leukoencephalopathy and Monoclonal Antibodies: A Review. Cancer Control 2017; 24:1073274817729901. [PMID: 28975841 PMCID: PMC5937251 DOI: 10.1177/1073274817729901] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a viral infection predominantly seen in patients with HIV infection. However, with the increased use of monoclonal antibodies (MAB) for various lymphoproliferative disorders, we are now seeing this infection in non-HIV patients on drugs such as natalizumab, rituximab, and so on. The aim of this article is to review the relationship between the occurrence of PML and MAB used in the treatment of hematological malignancies and autoimmune diseases. Review of articles from PubMed-indexed journals which study PML in relation to the use of MAB. Relevant literature demonstrated an increased risk of reactivation of latent John Cunningham polyomavirus (JCV) resulting in development of PML in patients on long-term therapy with MAB. The highest incidence of 1 PML case per 1000 treated patients and 1 case per 32 000 was observed in patients treated with natalizumab and rituximab, respectively. Serological and polymerase chain reaction tests for the detection of JCV can be helpful in risk stratification of patients for the development of PML before and during therapy with MAB. Treatment with MAB can result in development of PML. Clinicians should include PML in differential diagnosis in patients treated with these agents if they manifest central nervous system symptoms.
Collapse
Affiliation(s)
- Chandrashekar Bohra
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Lubomir Sokol
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Samir Dalia
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| |
Collapse
|
41
|
Efficient propagation of archetype JC polyomavirus in COS-7 cells: evaluation of rearrangements within the NCCR structural organization after transfection. Arch Virol 2017; 162:3745-3752. [PMID: 28884263 PMCID: PMC5671531 DOI: 10.1007/s00705-017-3542-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
Abstract
John Cunningham virus (JCPyV) is an ubiquitous human pathogen that causes disease in immunocompromised patients. The JCPyV genome is composed of an early region and a late region, which are physically separated by the non-coding control region (NCCR). The DNA sequence of the NCCR distinguishes two forms of JCPyV, the designated archetype and the prototype, which resulted from a rearrangement of the archetype sequence. To date, the cell culture systems for propagating JCPyV archetype have been very limited in their availability and robustness. Prior to this study, it was demonstrated that JCPyV archetype DNA replicates in COS-7 simian kidney cells expressing SV40 TAg and COS-7 cells expressing HIV-1 Tat. Based on these observations, the present study was conducted to reproduce an in vitro model in COS-7 cells transfected with the JCPyV archetype strain in order to study JCPyV DNA replication and analyze NCCR rearrangements during the viral life cycle. The efficiency of JCPyV replication was evaluated by quantitative PCR (Q-PCR) and by hemagglutination (HA) assay after transfection. In parallel, sequence analysis of JCPyV NCCR was performed. JCPyV efficiently replicated in kidney-derived COS-7 cells, as demonstrated by a progressive increase in viral load and virion particle production after transfection. The archetypal structure of NCCR was maintained during the viral cycle, but two characteristic point mutations were detected 28 days after transfection. This model is a useful tool for analyzing NCCR rearrangements during in vitro replication in cells that are sites of viral persistence, such as tubular epithelial cells of the kidney.
Collapse
|
42
|
Saribas AS, White MK, Safak M. Structure-based release analysis of the JC virus agnoprotein regions: A role for the hydrophilic surface of the major alpha helix domain in release. J Cell Physiol 2017; 233:2343-2359. [PMID: 28722139 DOI: 10.1002/jcp.26106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022]
Abstract
Agnoprotein (Agno) is an important regulatory protein of JC virus (JCV), BK virus (BKV) and simian virus 40 (SV40) and these viruses are unable to replicate efficiently in the absence of this protein. Recent 3D-NMR structural data revealed that Agno contains two alpha-helices (a minor and a major) while the rest of the protein adopts an unstructured conformation (Coric et al., 2017, J Cell Biochem). Previously, release of the JCV Agno from the Agno-positive cells was reported. Here, we have further mapped the regions of Agno responsible for its release by a structure-based systematic mutagenesis approach. Results revealed that amino acid residues (Lys22, Lys23, Phe31, Glu34, and Asp38) located either on or adjacent to the hydrophilic surface of the major alpha-helix domain of Agno play critical roles in release. Additionally, Agno was shown to strongly interact with unidentified components of the cell surface when cells are treated with Agno, suggesting additional novel roles for Agno during the viral infection cycle.
Collapse
Affiliation(s)
- A Sami Saribas
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Martyn K White
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Mahmut Safak
- Laboratory of Molecular Neurovirology, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Abstract
Over the last 10 years, the number of identified polyomaviruses has grown to more than 35 subtypes, including 13 in humans. The polyomaviruses have similar genetic makeup, including genes that encode viral capsid proteins VP1, 2, and 3 and large and small T region proteins. The T proteins play a role in viral replication and have been implicated in viral chromosomal integration and possible dysregulation of growth factor genes. In humans, the Merkel cell polyomavirus has been shown to be highly associated with integration and the development of Merkel cell cancers. The first two human polyomaviruses discovered, BKPyV and JCPyV, are the causative agents for transplant-related kidney disease, BK commonly and JC rarely. JC has also been strongly associated with the development of progressive multifocal leukoencephalopathy (PML), a rare but serious infection in untreated HIV-1-infected individuals and in other immunosuppressed patients including those treated with monoclonal antibody therapies for autoimmune diseases systemic lupus erythematosus, rheumatoid arthritis, or multiple sclerosis. The trichodysplasia spinulosa-associated polyomavirus (TSAPyV) may be the causative agent of the rare skin disease trichodysplasia spinulosa. The remaining nine polyomaviruses have not been strongly associated with clinical disease to date. Antiviral therapies for these infections are under development. Antibodies specific for each of the 13 human polyomaviruses have been identified in a high percentage of normal individuals, indicating a high rate of exposure to each of the polyomaviruses in the human population. PCR methods are now available for detection of these viruses in a variety of clinical samples.
Collapse
|
44
|
Delbue S, Comar M, Ferrante P. Review on the role of the human Polyomavirus JC in the development of tumors. Infect Agent Cancer 2017; 12:10. [PMID: 28174598 PMCID: PMC5292005 DOI: 10.1186/s13027-017-0122-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Almost one fifth of human cancers worldwide are associated with infectious agents, either bacteria or viruses, and this makes the possible association between infections and tumors a relevant research issue. We focused our attention on the human Polyomavirus JC (JCPyV), that is a small, naked DNA virus, belonging to the Polyomaviridae family. It is the recognized etiological agent of the Progressive Multifocal Leukoencephalopathy (PML), a fatal demyelinating disease, occurring in immunosuppressed individuals. JCPyV is able to induce cell transformation in vitro when infecting non-permissive cells, that do not support viral replication and JCPyV inoculation into small animal models and non human primates drives to tumor formation. The molecular mechanisms involved in JCPyV oncogenesis have been extensively studied: the main oncogenic viral protein is the large tumor antigen (T-Ag), that is able to bind, among other cellular factors, both Retinoblastoma protein (pRb) and p53 and to dysregulate the cell cycle, but also the early proteins small tumor antigen (t-Ag) and Agnoprotein appear to cooperate in the process of cell transformation. Consequently, it is not surprising that JCPyV genomic sequences and protein expression have been detected in Central Nervous System (CNS) tumors and colon cancer and an association between this virus and several brain and non CNS-tumors has been proposed. However, the significances of these findings are under debate because there is still insufficient evidence of a casual association between JCPyV and solid cancer development. In this paper we summarized and critically analyzed the published literature, in order to describe the current knowledge on the possible role of JCPyV in the development of human tumors.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy
| | - Manola Comar
- Department of Medical Sciences, University of Trieste, Trieste, Italy.,Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Pascal, 36-20133 Milan, Italy.,Istituto Clinico Città Studi, Milan, Italy
| |
Collapse
|
45
|
Nukuzuma S, Nakamichi K, Kameoka M, Sugiura S, Nukuzuma C, Tasaki T, Takegami T. Suppressive effect of topoisomerase inhibitors on JC polyomavirus propagation in human neuroblastoma cells. Microbiol Immunol 2017; 60:253-60. [PMID: 26935240 DOI: 10.1111/1348-0421.12372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 11/28/2022]
Abstract
JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system, in immunocompromised patients. Because no drugs have been approved for treating PML, many antiviral agents are currently being investigated for this purpose. The inhibitory effects of the topoisomerase I inhibitors topotecan and β-lapachone were assessed by investigating viral replication, propagation and viral protein 1 (VP1) production in cultured cells. JCPyV replication was assayed using the human neuroblastoma cell line IMR-32 transfected with the JCPyV plasmid and RT- PCR combined with Dpn I treatment. Dpn I digests the input plasmid DNA containing methylated adenosine, but not newly replicated JCPyV DNA, in IMR-32 cells. It was found that JCPyV replicates less in IMR-32 cells treated with topotecan or β-lapachone than in untreated cells. Moreover, drug treatment of JCI cells, which are IMR-32 cells persistently infected with JCPyV, led to a reduction in the amount of JCPyV DNA and population of VP1-positive cells. These results demonstrate that topotecan and β-lapachone affects JCPyV propagation in human neuroblastoma cell lines, suggesting that topotecan and β-lapachone could potentially be used to treat PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, 4-6-5, Minatojima-Nakamachi, Chuo-ku, Kobe 650-0046
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo 162-8640
| | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Suma-ku, Kobe 615-0124
| | - Shigeki Sugiura
- Medical Genetics Research Center, Nara Medical University, Kashihara, Nara 634-8521
| | | | - Takafumi Tasaki
- Divison of Protein Regulation Research, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293
| | - Tsutomu Takegami
- Division of Molecular Oncology and Virology, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
46
|
Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord 2017; 12:59-63. [PMID: 28283109 DOI: 10.1016/j.msard.2017.01.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To catalogue the risk of PML with the currently available disease modifying therapies (DMTs) for multiple sclerosis (MS). BACKGROUND All DMTs perturb the immune system in some fashion. Natalizumab, a highly effective DMT, has been associated with a significant risk of PML. Fingolimod and dimethyl fumarate have also been unquestionably associated with a risk of PML in the MS population. Concerns about PML risk with other DMTs have arisen due to their mechanism of action and pharmacological parallel to other agents with known PML risk. A method of contextualizing PML risk for DMTs is warranted. METHODS Classification of PML risk was predicated on three criteria:: 1) whether the underlying condition being treated predisposes to PML in the absence of the drug; 2) the latency from initiation of the drug to the development of PML; and 3) the frequency with which PML is observed. RESULTS Among the DMTs, natalizumab occupies a place of its own with respect to PML risk. Significantly lesser degrees of risk exist for fingolimod and dimethyl fumarate. Whether PML will be observed with other DMTs in use for MS, such as, rituximab, teriflunomide, and alemtuzumab, remains uncertain. DISCUSSION A logical classification for stratifying DMT PML risk is important for both the physician and patient in contextualizing risk/benefit ratios. As additional experience accumulates regarding PML and the DMTs, this early effort will undoubtedly require revisiting.
Collapse
Affiliation(s)
- Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Gates 3W, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Polyomaviruses. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
The emergence of neuroepidemiology, neurovirology and neuroimmunology: the legacies of John F. Kurtzke and Richard ‘Dick’ T. Johnson. J Neurol 2016; 264:817-828. [DOI: 10.1007/s00415-016-8293-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
|
49
|
Abstract
This chapter reviews the neurologic complications of medications administered in the hospital setting, by class, introducing both common and less common side effects. Detail is devoted to the interaction between pain, analgesia, sedation, and their residual consequences. Antimicrobials are given in nearly every hospital setting, and we review their capacity to produce neurologic sequelae with special devotion to cefepime and the antiviral treatment of human immunodeficiency virus. The management of hemorrhagic stroke has become more complex with the introduction of novel oral anticoagulants, and we provide an update on what is known about reversal of the new oral anticoagulants. Both central and peripheral nervous system complications of immunosuppressants and chemotherapies are reviewed. Because diagnosis is generally based on clinical acumen, alone, neurotoxic syndromes resulting from psychotropic medications may be easily overlooked until severe dysautonomia develops. We include a practical approach to the diagnosis of serotonin syndrome and neuroleptic malignant syndrome.
Collapse
Affiliation(s)
- Elliot T Dawson
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Sara E Hocker
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neurology, Division of Critical Care Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Iannetta M, Zingaropoli MA, Bellizzi A, Morreale M, Pontecorvo S, D’Abramo A, Oliva A, Anzivino E, Lo Menzo S, D’Agostino C, Mastroianni CM, Millefiorini E, Pietropaolo V, Francia A, Vullo V, Ciardi MR. Natalizumab Affects T-Cell Phenotype in Multiple Sclerosis: Implications for JCV Reactivation. PLoS One 2016; 11:e0160277. [PMID: 27486658 PMCID: PMC4972347 DOI: 10.1371/journal.pone.0160277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/15/2016] [Indexed: 01/12/2023] Open
Abstract
The anti-CD49d monoclonal antibody natalizumab is currently an effective therapy against the relapsing-remitting form of multiple sclerosis (RRMS). Natalizumab therapeutic efficacy is limited by the reactivation of the John Cunningham polyomavirus (JCV) and development of progressive multifocal leukoencephalopathy (PML). To correlate natalizumab-induced phenotypic modifications of peripheral blood T-lymphocytes with JCV reactivation, JCV-specific antibodies (serum), JCV-DNA (blood and urine), CD49d expression and relative abundance of peripheral blood T-lymphocyte subsets were longitudinally assessed in 26 natalizumab-treated RRMS patients. Statistical analyses were performed using GraphPad Prism and R. Natalizumab treatment reduced CD49d expression on memory and effector subsets of peripheral blood T-lymphocytes. Moreover, accumulation of peripheral blood CD8+ memory and effector cells was observed after 12 and 24 months of treatment. CD4+ and CD8+ T-lymphocyte immune-activation was increased after 24 months of treatment. Higher percentages of CD8+ effectors were observed in subjects with detectable JCV-DNA. Natalizumab reduces CD49d expression on CD8+ T-lymphocyte memory and effector subsets, limiting their migration to the central nervous system and determining their accumulation in peripheral blood. Impairment of central nervous system immune surveillance and reactivation of latent JCV, can explain the increased risk of PML development in natalizumab-treated RRMS subjects.
Collapse
MESH Headings
- Adult
- Antibodies, Viral/blood
- DNA, Viral/analysis
- DNA, Viral/blood
- Female
- Humans
- JC Virus/drug effects
- JC Virus/physiology
- Leukoencephalopathy, Progressive Multifocal/complications
- Leukoencephalopathy, Progressive Multifocal/immunology
- Leukoencephalopathy, Progressive Multifocal/virology
- Male
- Multiple Sclerosis, Relapsing-Remitting/complications
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/therapy
- Multiple Sclerosis, Relapsing-Remitting/virology
- Natalizumab/adverse effects
- Natalizumab/pharmacology
- Phenotype
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Treatment Outcome
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Marco Iannetta
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Inserm, U1016, Institut Cochin, Paris, France
- * E-mail:
| | | | - Anna Bellizzi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Manuela Morreale
- Department of Medical and Surgical Sciences and Biotechnology, Neurovascular Diagnosis Unit, Section of Neurology, Sapienza University, Rome, Italy
- Department of Neurology and Psychiatry, Multiple Sclerosis Center, Sapienza University, Rome, Italy
| | - Simona Pontecorvo
- Department of Neurology and Psychiatry, Multiple Sclerosis Center, Sapienza University, Rome, Italy
| | - Alessandra D’Abramo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Elena Anzivino
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Sara Lo Menzo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Claudia D’Agostino
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | | | - Enrico Millefiorini
- Department of Neurology and Psychiatry, Multiple Sclerosis Center, Sapienza University, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Ada Francia
- Department of Neurology and Psychiatry, Multiple Sclerosis Center, Sapienza University, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| |
Collapse
|