1
|
Sheoran P, Saini G, Jangra M, Gahlaut A, Raj V. Immobilization of penicillinase on chitosan-modified gold electrodes for enhanced stability and potential biosensing applications. Prep Biochem Biotechnol 2025:1-11. [PMID: 40347098 DOI: 10.1080/10826068.2025.2502771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
In this research, penicillinase was isolated from Bacillus licheniformis by ammonium sulfate precipitation, dialysis, sephadex-25 chromatography and sodium dodecyl sulfate (SDS)-PAGE. The enzyme was then attached to a chitosan- modified gold (Au) electrode surface via covalent bonds using GA as the linking agent. The immobilized enzyme's characteristics were evaluated by determining various parameters including pH and temperature optima, enzyme activity retention, and reusability potential. The substrate Penicillin G was employed for these assessments. Post-immobilization analysis showed that while the optimal pH range remained constant at 6.5-7.5, the temperature for maximum enzyme activity increased from 34 °C to 38 °C compared to the enzyme in solution. It was found that the immobilized enzyme maintained around 80% of its initial activity after being kept at 4 °C for a period of 30 days. When compared to the enzyme in its free state, the immobilization method made it more stable and usable. Even after 14 consecutive reaction cycles, the immobilized enzyme retained 38% of its initial catalytic activity.
Collapse
Affiliation(s)
- Parneet Sheoran
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Geetanjali Saini
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Madhu Jangra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vikas Raj
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
2
|
Uehara T, Chatwin CL, Miller B, Edwards M, Stevenson A, Colombo J, Six DA, Daigle DM, Moeck G, Boyd SA, Pevear DC. Spectrum of cefepime-taniborbactam coverage against 190 β-lactamases defined in engineered isogenic Escherichia coli strains. Antimicrob Agents Chemother 2025; 69:e0169924. [PMID: 40167371 PMCID: PMC12057355 DOI: 10.1128/aac.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Cefepime-taniborbactam is a β-lactam/β-lactamase inhibitor combination in clinical development for the treatment of Enterobacterales and Pseudomonas infections, including carbapenem-resistant Enterobacterales and multidrug-resistant Pseudomonas aeruginosa. Taniborbactam is a novel cyclic boronate with direct inhibitory activity against clinically relevant Ambler class A, B, C, and D β-lactamases. To further characterize the spectrum of β-lactamase coverage by cefepime-taniborbactam, we constructed 190 isogenic strains of Escherichia coli that constitutively expressed a different β-lactamase. Synthetic codon-optimized genes encoding the mature periplasmic protein linked to the TEM-1 signal sequence were used for optimized expression and periplasmic localization of the β-lactamase. The repertoire of β-lactamases consisted of 50 Ambler class A, 34 class B (metallo), 48 class C, and 58 class D enzymes known to mediate β-lactam resistance in the clinical isolates of Enterobacterales and P. aeruginosa. Overall, in the 190 isogenic strains, the MIC50/MIC90 values were 8/128 µg/mL for cefepime and >128/>128 µg/mL for ceftazidime. Cefepime-taniborbactam (MIC50/MIC90 of 0.25/8 µg/mL) showed greater activity than ceftazidime-avibactam (MIC50/MIC90 of 4/>128 µg/mL) and similar activity to aztreonam-avibactam (MIC50/MIC90 of 0.5/4 µg/mL). Cefepime-taniborbactam inhibited strains overproducing metallo-β-lactamases, including clinically important NDM and VIM enzymes, whereas ceftazidime-avibactam showed no coverage. Among the 129 β-lactamase-overproducing strains with increased cefepime MIC ≥16-fold relative to the control strain, taniborbactam potentiated cefepime MIC by ≥8-fold for 113 strains overexpressing β-lactamases (42 Ambler class A, 24 B, 23 C, and 24 D). Cefepime-taniborbactam demonstrated broader activity relative to ceftazidime-avibactam and comparable activity with aztreonam-avibactam in the overall coverage of both serine- and metallo-β-lactamases from all four Ambler classes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jenna Colombo
- Venatorx Pharmaceuticals Inc, Malvern, Pennsylvania, USA
| | - David A. Six
- Venatorx Pharmaceuticals Inc, Malvern, Pennsylvania, USA
| | | | - Greg Moeck
- Venatorx Pharmaceuticals Inc, Malvern, Pennsylvania, USA
| | - Steven A. Boyd
- Venatorx Pharmaceuticals Inc, Malvern, Pennsylvania, USA
| | | |
Collapse
|
3
|
Bush K. Past, present, and future perspectives on aztreonam and avibactam. Expert Rev Anti Infect Ther 2025; 23:277-290. [PMID: 40011051 DOI: 10.1080/14787210.2025.2473047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Aztreonam is a monobactam antibiotic approved in 1986 to treat infections caused by aerobic Gram-negative bacteria, but, together with cephalosporins, lost clinical utility due to the emergence of extended-spectrum β-lactamases (ESBLs) and novel (serine) carbapenemases. Avibactam was the first in a novel non-β-lactam β-lactamase inhibitor class to effectively inhibit these enzymes. It has been approved in combination with ceftazidime to treat Gram-negative infections caused by bacteria that produce AmpC, ESBLs and serine carbapenemases, and with aztreonam to treat patients infected with metallo-β-lactamase-producing enteric bacteria. Combinations of avibactam with ceftazidime and/or aztreonam have been used successfully to treat enteric pathogens producing multiple classes of β-lactamases. AREAS COVERED Development of aztreonam, avibactam, and avibactam combinations are placed into a historical perspective, based on both preclinical and clinical data. A search of MEDLINE (Ovid) was used to identify relevant literature. EXPERT OPINION Avibactam combined with ceftazidime and aztreonam in either dual or triple combinations provides the opportunity to treat previously untreatable Gram-negative infections that produce multiple β-lactamases. Aztreonam combinations should be particularly attractive, due to stability to metallo-β-lactamase hydrolysis and its safety advantage in treating penicillin-allergic patients. Other inhibitor combinations in development may challenge these combinations.
Collapse
Affiliation(s)
- Karen Bush
- Biology Department, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Almufarriji FM, Alotaibi BS, Alamri AS, S Alkhalil S, Alwethaynani MS. Phytoconstituents from Artemisia annua medicinal plant as potent inhibitors targeting Salmonella SpvB: a molecular docking and dynamic study. J Biomol Struct Dyn 2025:1-14. [PMID: 40256876 DOI: 10.1080/07391102.2025.2492237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Salmonella, a genus with a global presence, is a leading cause of diarrheal diseases in both humans and animals. With over 2,400 distinct serotypes, most exhibiting minimal host specificity, Salmonella infection remains a significant public health issue. It poses a substantial economic burden on both developed and developing nations due to the costs associated with disease surveillance, prevention, and treatment. To address this global challenge, it is essential to explore cost-effective therapeutic interventions derived from medicinal plants. In this study, we targeted the Salmonella SpvB ATR domain for molecular docking of phytochemical compounds. A library of 392 phytochemical compounds from the Artemisia annua (Sweet wormwood) medicinal plant was utilized. In the initial screening, the top 20 phytochemical compounds were selected based on their high binding affinity toward SpvB. These 20 compounds underwent interaction analysis, revealing that two compounds, IMPHY004808 and IMPHY015047, formed crucial interactions. The IMPHY004808 compound bound at binding site residues ARG414, ARG471, LEU473, and GLU538, with residue SER501 present at the active site. Similarly, the IMPHY015047 compound formed bonds at binding site residues ARG471, ARG414, GLY472, and GLU538, while residue SER501 was present at the active site of SpvB. The trajectory analysis of 500 ns MD simulation, including deviation, fluctuation, compactness, surface area calculation, secondary structure element alterations, and hydrogen bond analysis, showed that the complexes were stable during the simulation time. Moreover, PCA with minimal vibration, FEL analysis and MMPBSA analysis strongly recommend that the complexes were stable and further validation with experimentation is needed.
Collapse
Affiliation(s)
- Fawaz M Almufarriji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Ahlam Saleh Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Maher S Alwethaynani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Kerek Á, Román I, Szabó Á, Kovács D, Kardos G, Kovács L, Jerzsele Á. Antibiotic resistance genes in Escherichia coli - literature review. Crit Rev Microbiol 2025:1-35. [PMID: 40249005 DOI: 10.1080/1040841x.2025.2492156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - István Román
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Dóra Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Gábor Kardos
- One Health Institute, University of Debrecen, Debrecen, Hungary
- National Public Health Center, Budapest, Hungary
- Department of Gerontology, Faculty of Health Sciences, University of Debrecen, Nyíregyháza, Hungary
| | - László Kovács
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, Budapest, Hungary
| |
Collapse
|
6
|
Pipová M, Jevinová P, Semjon B, Regecová I, Marcinčák S, Nagy J. Effect of feed supplementation with humic substances on phenotypic resistance profiles of Escherichia coli isolates from the ceca of broiler chickens. Poult Sci 2025; 104:105175. [PMID: 40286573 PMCID: PMC12056960 DOI: 10.1016/j.psj.2025.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Humic substances (HS), natural complex-forming feed additives, are believed to reduce the bioavailability of antimicrobials to the gut microbiome, thereby limiting the emergence and spread of antimicrobial resistance in the food chain. However, this hypothesis has not yet been adequately verified experimentally. Our study was focused on the isolation of Escherichia coli (E. coli) from the ceca of 80 broiler chickens bred for 37 d under controlled conditions. Chickens in the control and experimental groups (40 broilers each) were fed standard commercial feeds, but the diet for experimental chicken was permanently supplemented with HS (99.3% feed + 0.7% HS). After slaughter and evisceration at the end of fattening period, the cecal contents of all chickens were subjected to microbiological analysis aimed at the enumeration, isolation and genotypic identification of E. coli strains by the species-specific PCR method. In total, 58 E. coli strains from control chickens and 60 strains from HS-fed chickens were tested for resistance against 19 antimicrobials using the broth microdilution method based on minimum inhibitory concentration breakpoints. Resistance to at least one antimicrobial was detected in almost 90% of E. coli isolates from control chickens, but in only 68.33% of isolates from HS-fed broilers (P < 0.01). In the experimental group, a noticeable decrease in resistance rates for ampicillin (31.78%), trimethoprim (22.88%), sulfamethoxazol (20.86%), and tetracycline (19.71%) was observed. The effect for fluorochinolones was less pronounced (0.09 ≤ P < 0.90). Feed supplementation with HS also reduced the prevalence of multidrug resistance (20.0% vs. 43.1%; P < 0.01) and led to a complete elimination of co-resistance to six and more antimicrobial classes. Additionally, no extended-spectrum beta-lactamase production could be predicted for E. coli isolates from HS-fed broilers. This is probably the first experimental study demonstrating a direct beneficial effect of HS-supplemented diet on the phenotypic resistance profiles of E. coli isolates from the ceca of commercially raised broiler chickens, showing that HS as feed additives can effectively reduce the phenotypic expression of antimicrobial resistance in E. coli.
Collapse
Affiliation(s)
- Monika Pipová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic.
| | - Pavlína Jevinová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Boris Semjon
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Ivana Regecová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Slavomír Marcinčák
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Jozef Nagy
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| |
Collapse
|
7
|
Ahmed S, Das T, Nath C, Ahmed T, Ghosh K, Dhar PK, Herrero-Fresno A, Barua H, Biswas PK, Islam MZ, Olsen JE. Whole-genome characterization and global phylogenetic comparison of cefotaxime-resistant Escherichia coli isolated from broiler chickens. J Microbiol 2025; 63:e2412009. [PMID: 40313150 DOI: 10.71150/jm.2412009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/24/2025] [Indexed: 05/03/2025]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to public health, with the emergence of extended-spectrum beta-lactamases (ESBLs) in Enterobacteriaceae, particularly Escherichia coli, raising significant concerns. This study aims to elucidate the drivers of antimicrobial resistance, and the global spread of cefotaxime-resistant E. coli (CREC) strains. Whole-genome sequencing (WGS) was performed to explore genome-level characteristics, and phylogenetic analysis was conducted to compare twenty CREC strains from this study, which were isolated from broiler chicken farms in Bangladesh, with a global collection (n = 456) of CREC strains from multiple countries and hosts. The MIC analysis showed over 70% of strains isolated from broiler chickens exhibiting MIC values ≥ 256 mg/L for cefotaxime. Notably, 85% of the studied farms (17/20) tested positive for CREC by the end of the production cycle, with CREC counts increasing from 0.83 ± 1.75 log10 CFU/g feces on day 1 to 5.24 ± 0.72 log10 CFU/g feces by day 28. WGS revealed the presence of multiple resistance genes, including blaCTX-M, which was found in 30% of the strains. Phylogenetic comparison showed that the Bangladeshi strains were closely related to strains from diverse geographical regions and host species. This study provides a comprehensive understanding of the molecular epidemiology of CREC. The close phylogenetic relationships between Bangladeshi and global strains demonstrate the widespread presence of cefotaxime-resistant bacteria and emphasize the importance of monitoring AMR in food-producing animals to mitigate the spread of resistant strains.
Collapse
Affiliation(s)
- Shahana Ahmed
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Chandan Nath
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Tahia Ahmed
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Keya Ghosh
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Pangkaj Kumar Dhar
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Ana Herrero-Fresno
- Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Spain
| | - Himel Barua
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Paritosh Kumar Biswas
- Department of Microbiology and Veterinary Public Health, Chattogram Veterinary and Animal Sciences University, Bangladesh
| | - Md Zohorul Islam
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Gajic I, Tomic N, Lukovic B, Jovicevic M, Kekic D, Petrovic M, Jankovic M, Trudic A, Mitic Culafic D, Milenkovic M, Opavski N. A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics (Basel) 2025; 14:221. [PMID: 40149033 PMCID: PMC11939824 DOI: 10.3390/antibiotics14030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance poses a major public health challenge. The World Health Organization has identified 15 priority pathogens that require prompt development of new antibiotics. This review systematically evaluates the antibacterial resistance of the most significant bacterial pathogens, currently available treatment options, as well as complementary approaches for the management of infections caused by the most challenging multidrug-resistant (MDR) bacteria. For carbapenem-resistant Gram-negative bacteria, treatment options include combinations of beta-lactam antibiotics and beta-lactamase inhibitors, a novel siderophore cephalosporin, known as cefiderocol, as well as older antibiotics like polymixins and tigecycline. Treatment options for Gram-positive bacteria are vancomycin, daptomycin, linezolid, etc. Although the development of new antibiotics has stagnated, various agents with antibacterial properties are currently in clinical and preclinical trials. Non-antibiotic strategies encompass antibiotic potentiators, bacteriophage therapy, antivirulence therapeutics, antimicrobial peptides, antibacterial nanomaterials, host-directed therapy, vaccines, antibodies, plant-based products, repurposed drugs, as well as their combinations, including those used alongside antibiotics. Significant challenges exist in developing new antimicrobials, particularly related to scientific and technical issues, along with policy and economic factors. Currently, most of the alternative options are not part of routine treatment protocols. Conclusions and Future Directions: There is an urgent need to expedite the development of new strategies for treating infections caused by MDR bacteria. This requires a multidisciplinary approach that involves collaboration across research, healthcare, and regulatory bodies. Suggested approaches are crucial for addressing this challenge and should be backed by rational antibiotic use, enhanced infection control practices, and improved surveillance systems for emerging pathogens.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, 11000 Belgrade, Serbia;
| | - Milos Jovicevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, 11040 Belgrade, Serbia;
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| | - Anika Trudic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Institute for Pulmonary Diseases of Vojvodina, Sremska Kamenica, 21204 Novi Sad, Serbia
| | | | - Marina Milenkovic
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.J.); (D.K.); (M.J.)
| |
Collapse
|
9
|
Klaper K, Pfeifer Y, Heinrich L, Prax M, Krut O, Bekeredjian-Ding I, Wahl A, Fischer MA, Kaspar H, Borgmann S, Gerlach RG, Werner G. Enhanced invasion and survival of antibiotic- resistant Klebsiella pneumoniae pathotypes in host cells and strain-specific replication in blood. Front Cell Infect Microbiol 2025; 15:1522573. [PMID: 40028183 PMCID: PMC11868097 DOI: 10.3389/fcimb.2025.1522573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Background Klebsiella pneumoniae is one of the most important opportunistic pathogens causing healthcare-associated and community-acquired infections worldwide. In recent years, the increase in antibiotic resistance and infections caused by hypervirulent K. pneumoniae poses great public health concerns. In this study, host-pathogen interactions of different K. pneumoniae strains of human and animal origins were analyzed in microbiological, cell-biological and immunological experiments. Methods In vitro infection experiments using representatives of different K. pneumoniae pathotypes and various epithelial and macrophage cell lines were executed analyzing adhesion, invasion and intracellular replication. Experimental conditions involved normoxia and hypoxia. Furthermore, survival and growth of further K. pneumoniae isolates expressing defined siderophores in blood (platelet concentrates, serum) was investigated. All experiments were done in triplicate and statistically significant differences were determined. Results Significant differences in adhesion and invasion capability, phagocytosis resistance and intracellular replication were measured between different K. pneumoniae pathotypes. Especially, ESBL-producing K. pneumoniae isolates demonstrated increased invasion in host cell lines and survival in macrophages. A strong cytotoxic effect on intestinal cells was observed for hypervirulent K. pneumoniae. The results from our investigations of the growth behavior of K. pneumoniae in platelets and serum showed that siderophores and/or an enlarged capsule are not essential factors for the proliferation of (hypervirulent) K. pneumoniae strains in blood components. Conclusion Our in vitro experiments revealed new insights into the host-pathogen interactions of K. pneumoniae strains representing different pathovars and clonal lineages in different infectious contexts and hosts. While a clear limitation of our study is the limited strain set used for both infection and as potential host, the results are a further step for a better understanding of the pathogenicity of K. pneumoniae and its properties essential for different stages of colonization and infection. When developed further, these results may offer novel approaches for future therapeutics including novel "anti-virulence strategies".
Collapse
Affiliation(s)
- Kathleen Klaper
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Yvonne Pfeifer
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Lena Heinrich
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Marcel Prax
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | - Oleg Krut
- Division of Microbiology, Paul Ehrlich Institute, Langen, Germany
| | | | - Anika Wahl
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Martin A. Fischer
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Heike Kaspar
- Division of Antibiotic Resistance Monitoring, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Hospital Ingolstadt, Ingolstadt, Germany
| | - Roman G. Gerlach
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
10
|
Banerjee D, Rath SL, Darji SA, Mandal N. Mutations in V84I & A184V of blaTEM cluster plays a pivotal role in the dynamics of Ω-loop leading to genesis of IR-TEM. J Biomol Struct Dyn 2025; 43:1116-1128. [PMID: 38063029 DOI: 10.1080/07391102.2023.2291168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 01/16/2025]
Abstract
The Enterobacteriaceae family exhibits resistance to antibiotics by producing β-Lactamase. Mutations in β-Lactamase, have led to the generation of inhibitor resistant variants known as IR-TEM. In the present study, IR-TEM β-Lactamase of Enterobacter hormaechei and Enterobacter asburiae was compared. To investigate the mechanism behind the conferred mutation, we studied its interaction with Clavulanic acid, (β-Lactamase inhibitor) with different lineages of TEM and IR-TEM. We found that Clavulanic acid quickly left the binding pockets of both variants using molecular dynamics (MD) simulations. Interestingly, mutations at the V84I and A184V positions were found to drastically influence the protein dynamics. Mutating the residues at V84I and A184V positions by computational mutagenesis in Enterobacter hormaechei, it was observed that the residues on the Ω-loop as well as a few downstream residues were primarily involved in generating resistance towards inhibitors by conferring increased flexibility to the loop. This further strongly supports the notion that inhibitor resistance in β-Lactamase is conferred through allosteric regulation, wherein mutations in positions 84 and 184 may play an important role in regulating the movement of the Ω-loop. These two positions determine the lineage pattern between two clusters in TEM-1 and TEM-116. To date, no reports have been made regarding the importance of these mutations and their dynamics in Ω-loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Devjani Banerjee
- Department of Biotechnology, School of Sciences, GSFC University, Vadodara, India
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, India
| | - Siddhi A Darji
- Department of Biotechnology, School of Sciences, GSFC University, Vadodara, India
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Nabanita Mandal
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, India
| |
Collapse
|
11
|
Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M, Paxinou E, Kalles D, Verykios VS, Myrianthefs P, Feretzakis G. Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions. Antibiotics (Basel) 2024; 13:1052. [PMID: 39596745 PMCID: PMC11590962 DOI: 10.3390/antibiotics13111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The emergence of antimicrobial resistance (AMR) due to the misuse and overuse of antibiotics has become a critical threat to global public health. There is a dire need to forecast AMR to understand the underlying mechanisms of resistance for the development of effective interventions. This paper explores the capability of machine learning (ML) methods, particularly unsupervised learning methods, to enhance the understanding and prediction of AMR. It aims to determine the patterns from AMR gene data that are clinically relevant and, in public health, capable of informing strategies. Methods: We analyzed AMR gene data in the PanRes dataset by applying unsupervised learning techniques, namely K-means clustering and Principal Component Analysis (PCA). These techniques were applied to identify clusters based on gene length and distribution according to resistance class, offering insights into the resistance genes' structural and functional properties. Data preprocessing, such as filtering and normalization, was conducted prior to applying machine learning methods to ensure consistency and accuracy. Our methodology included the preprocessing of data and reduction of dimensionality to ensure that our models were both accurate and interpretable. Results: The unsupervised learning models highlighted distinct clusters of AMR genes, with significant patterns in gene length, including their associated resistance classes. Further dimensionality reduction by PCA allows for clearer visualizations of relationships among gene groupings. These patterns provide novel insights into the potential mechanisms of resistance, particularly the role of gene length in different resistance pathways. Conclusions: This study demonstrates the potential of ML, specifically unsupervised approaches, to enhance the understanding of AMR. The identified patterns in resistance genes could support clinical decision-making and inform public health interventions. However, challenges remain, particularly in integrating genomic data and ensuring model interpretability. Further research is needed to advance ML applications in AMR prediction and management.
Collapse
Affiliation(s)
- Aikaterini Sakagianni
- Intensive Care Unit, Sismanogelio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece;
| | - Christina Koufopoulou
- Anesthesiology Department, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vass. Sofias 76, 11528 Athens, Greece;
| | - Petros Koufopoulos
- Department of Internal Medicine, Sismanogleio General Hospital, 15126 Marousi, Greece;
| | - Sofia Kalantzi
- Department of Internal Medicine & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Dimitris Kalles
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Pavlos Myrianthefs
- Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| |
Collapse
|
12
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen PH, Raines K, Livny J, Shoresh N, Hung DT. Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics. Proc Natl Acad Sci U S A 2024; 121:e2409747121. [PMID: 39467118 PMCID: PMC11551328 DOI: 10.1073/pnas.2409747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
Affiliation(s)
- Keith P. Romano
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Josephine Bagnall
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Thulasi Warrier
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jaryd Sullivan
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kristina Ferrara
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Marek Orzechowski
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Phuong H. Nguyen
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kyra Raines
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jonathan Livny
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Noam Shoresh
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Deborah T. Hung
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
13
|
Yacoub HA, Mahmoud MM, Al-Hejin AM, Abujamel TS, Tabrez S, Abd-Elmaksoud S. Effect of Nk-lysin peptides on bacterial growth, MIC, antimicrobial resistance, and viral activities. Anim Biotechnol 2024; 35:2290520. [PMID: 38100547 DOI: 10.1080/10495398.2023.2290520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
NK-lysins from chicken, bovine and human are used as antiviral and antibacterial agents. Gram-negative and gram-positive microorganisms, including Streptococcus pyogenes, Streptococcus mutans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Shigella sonnei, Klebsiella pneumoniae and Salmonella typhimurium, are susceptible to NK-lysin treatment. The presence of dominant TEM-1 gene was noted in all untreated and treated bacteria, while TOHO-1 gene was absent in all bacteria. Importantly, β-lactamase genes CTX-M-1, CTX-M-8, and CTX-M-9 genes were detected in untreated bacterial strains; however, none of these were found in any bacterial strains following treatment with NK-lysin peptides. NK-lysin peptides are also used to test for inhibition of infectivity, which ranged from 50 to 90% depending on NK-lysin species. Chicken, bo vine and human NK-lysin peptides are demonstrated herein to have antibacterial activity and antiviral activity against Rotavirus (strain SA-11). On the basis of the comparison between these peptides, potent antiviral activity of bovine NK-lysin against Rotavirus (strain SA-11) is particularly evident, inhibiting infection by up to 90%. However, growth was also significantly inhibited by chicken and human NK-lysin peptides, restricted by 80 and 50%, respectively. This study provided a novel treatment using NK-lysin peptides to inhibit expression of β-lactamase genes in β-lactam antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Haitham A Yacoub
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Maged Mostafa Mahmoud
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Ahmed M Al-Hejin
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- Regerenative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (SA)
| | - Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Water Pollution Research Department, Environmental Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Gelalcha BD, Gelgie AE, Kerro Dego O. Antimicrobial resistance and prevalence of extended-spectrum beta-lactamase-producing Klebsiella species in East Tennessee dairy farms. Microbiol Spectr 2024; 12:e0353723. [PMID: 39240080 PMCID: PMC11448431 DOI: 10.1128/spectrum.03537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Klebsiella species commonly reside in dairy cattle guts and are consistently exposed to beta-lactam antibiotics, including ceftiofur, which are frequently used on the U.S. dairy farms. This may impose selection pressure and result in the emergence of extended-spectrum beta-lactamase (ESBL)-producing strains. However, information on the status and antimicrobial resistance (AMR) profile of ESBL-Klebsiella spp. in the U.S. dairy farms is largely unknown. This study aimed to determine the prevalence and AMR profile of ESBL-Klebsiella spp. and the factors affecting their occurrence in dairy cattle farms. Rectal fecal samples (n = 508) and manure, feed, and water samples (n = 64) were collected from 14 dairy farms in Tennessee. Samples were directly plated on CHROMagar ESBL, and presumptive Klebsiella spp. were confirmed using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was performed on the isolates against panels of 14 antimicrobial agents from 10 classes using minimum inhibitory concentration. Of 572 samples, 57 (10%) were positive for ESBL-Klebsiella spp. The fecal prevalence of ESBL-Klebsiella spp. was 7.2% (95% CI: 6.5-8.0). The herd-level fecal prevalence of ESBL-Klebsiella spp. was 35.7% (95% CI: 12.7-64.8). The fecal prevalence of ESBL-Klebsiella spp. was significantly higher in calves than in cows and higher in cows with higher parity (≥3) as compared to cows with low parity (P < 0.001). Most (96.5%, n = 57) ESBL-Klebsiella spp. were resistant to ceftriaxone. The highest level of acquired co-resistance to ceftriaxone in ESBL-Klebsiella spp. was to sulfisoxazole (66.7%; 38/57). About 19% of ESBL-Klebsiella spp. were multidrug resistant. The presence of ESBL-producing Klebsiella spp. in dairy cattle, feed, and water obtained from troughs could play a crucial epidemiological role in maintaining and spreading the bacteria on farms and serving as a point source of transmission. IMPORTANCE We collected 572 samples from dairy farms, including rectal feces, manure, feed, and water. We isolated and identified extended-spectrum beta-lactamase (ESBL)-Klebsiella spp. and conducted an antimicrobial susceptibility test and analyzed different variables that may be associated with ESBL-Klebsiella spp. in dairy farms. The results of our study shed light on how ESBL-Klebsiella spp. are maintained through fecal-oral routes in dairy farms and possibly exit from the farm into the environment. We determine the prevalence of ESBL-Klebsiella spp. and their antimicrobial susceptibility profiles, underscoring their potential as a vehicle for multiple resistance gene dissemination within dairy farm settings. We also collected data on variables affecting their occurrence and spread in dairy farms. These findings have significant implications in determining sources of community-acquired ESBL-Enterobacteriaceae infections and designing appropriate control measures to prevent their spread from food animal production systems to humans, animals, and environments.
Collapse
Affiliation(s)
- Benti Deresa Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Aga E Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Tsuji S, Gotoh K, Manabe T, Iio K, Fukushima S, Matsushita O, Hagiya H. Cefazolin inoculum effect in methicillin-susceptible Staphylococcus aureus clinical isolates. Diagn Microbiol Infect Dis 2024; 110:116399. [PMID: 38875894 DOI: 10.1016/j.diagmicrobio.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
We investigated the prevalence and characteristics of Cefazolin inoculum effect (CInE) among clinical MSSA isolates in Japan. Although 35.5 % (39 isolates) were positive for the blaZ gene, none met the phenotypic criteria for CInE. Our findings suggested a very low prevalence of CInE among MSSA isolates in our clinical setting.
Collapse
Affiliation(s)
- Shuma Tsuji
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Kazuyoshi Gotoh
- Department of Medical Laboratory Science, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Tadahiro Manabe
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Iio
- Microbiology Division, Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Shinnosuke Fukushima
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
16
|
Gyger J, Torrens G, Cava F, Bernhardt TG, Fumeaux C. A potential space-making role in cell wall biogenesis for SltB1and DacB revealed by a beta-lactamase induction phenotype in Pseudomonas aeruginosa. mBio 2024; 15:e0141924. [PMID: 38920394 PMCID: PMC11253642 DOI: 10.1128/mbio.01419-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Pseudomonas aeruginosa encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of ampC is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks. Mutants in dacB occur in beta-lactam-resistant clinical isolates of P. aeruginosa, but it has remained unclear why DacB inactivation promotes ampC induction. Similarly, the inactivation of lytic transglycosylase (LT) enzymes such as SltB1 that cut PG glycans has also been associated with ampC induction and beta-lactam resistance. Given that LT enzymes are capable of producing AMP products that serve as ampC inducers, this latter observation has been especially difficult to explain. Here, we show that ampC induction in sltB1 or dacB mutants requires another LT enzyme called MltG. In Escherichia coli, MltG has been implicated in the degradation of nascent PG strands produced upon beta-lactam treatment. Accordingly, in P. aeruginosa sltB1 and dacB mutants, we detected the MltG-dependent production of pentapeptide-containing AMP products that are signatures of nascent PG degradation. Our results therefore support a model in which SltB1 and DacB use their PG-cleaving activity to open space in the PG matrix for the insertion of new material. Thus, their inactivation mimics low-level beta-lactam treatment by reducing the efficiency of new PG insertion into the wall, causing the degradation of some nascent PG material by MltG to produce the ampC-inducing signal. IMPORTANCE Inducible beta-lactamases like the ampC system of Pseudomonas aeruginosa are a common determinant of beta-lactam resistance among gram-negative bacteria. The regulation of ampC is elegantly tuned to detect defects in cell wall synthesis caused by beta-lactam drugs. Studies of mutations causing ampC induction in the absence of drug therefore promise to reveal new insights into the process of cell wall biogenesis in addition to aiding our understanding of how resistance to beta-lactam antibiotics arises in the clinic. In this study, the ampC induction phenotype for mutants lacking a glycan-cleaving enzyme or an enzyme that cuts cell wall crosslinks was used to uncover a potential role for these enzymes in making space in the wall matrix for the insertion of new material during cell growth.
Collapse
Affiliation(s)
- Joël Gyger
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gabriel Torrens
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden
- Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden
| | - Thomas G. Bernhardt
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Coralie Fumeaux
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Gross R, Yelin I, Lázár V, Datta MS, Kishony R. Beta-lactamase dependent and independent evolutionary paths to high-level ampicillin resistance. Nat Commun 2024; 15:5383. [PMID: 38918379 PMCID: PMC11199616 DOI: 10.1038/s41467-024-49621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The incidence of beta-lactam resistance among clinical isolates is a major health concern. A key method to study the emergence of antibiotic resistance is adaptive laboratory evolution. However, in the case of the beta-lactam ampicillin, bacteria evolved in laboratory settings do not recapitulate clinical-like resistance levels, hindering efforts to identify major evolutionary paths and their dependency on genetic background. Here, we used the Microbial Evolution and Growth Arena (MEGA) plate to select ampicillin-resistant Escherichia coli mutants with varying degrees of resistance. Whole-genome sequencing of resistant isolates revealed that ampicillin resistance was acquired via a combination of single-point mutations and amplification of the gene encoding beta-lactamase AmpC. However, blocking AmpC-mediated resistance revealed latent adaptive pathways: strains deleted for ampC were able to adapt through combinations of changes in genes involved in multidrug resistance encoding efflux pumps, transcriptional regulators, and porins. Our results reveal that combinations of distinct genetic mutations, accessible at large population sizes, can drive high-level resistance to ampicillin even independently of beta-lactamases.
Collapse
Affiliation(s)
- Rotem Gross
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Viktória Lázár
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Manoshi Sen Datta
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- The California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Roy Kishony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Allam SA, Elnomrosy SM, Mohamed SM. Virulent-MDR-ESBL E. coli and Klebsiella pneumoniae report from North Sinai calves diarrhea and in vitro antimicrobial by Moringa oleifera. BMC Vet Res 2024; 20:259. [PMID: 38877453 PMCID: PMC11179377 DOI: 10.1186/s12917-024-04088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024] Open
Abstract
The health of calves has a significant impact on the production of cows and livestock. Some desert plants have pharmacological importance, as they can be used to reduce antibiotic resistance. Our hypothesis is designed to detect Virulent- Multidrug-Resistant and Extended- spectrum Beta- lactamase Enterobacteriaceae (Virulent-MDR-ESBL Enterobacteriaceae and to determine whether Moringa oleifera has antibacterial activity against the detected isolates. A total of 39 Enterobacteriaceae isolates from 28 diarrheic samples were collected from calves aged between 20 days and 20 months from 3 different flocks in North Sinai, Sahl-Eltina region, Egypt. E.coli 46% (18/39), O157 13% (5/39), Klebsiella pneumoniae 41% (16/39). MDR members accounted for 87%, while ESBL isolates accounted for 43%. The antibacterial activity is represented by microdilution. Minimum inhibition concentration (MIC) for the methanol extract of Moringa oleifera ranged from 2.5,5,10, and 25mg/ ml among E.coli isolates, and O157 was susceptible to (2.5mg/ ml), Klebsiella pneumoniae isolates were susceptible to (5-50mg/ ml). Analysis of the methanol extract revealed that ferulic acid was the dominant phenolic compound with a concentration of 29,832 parts per million (ppm). In silico docking study expected the active site of ferulic acid to act on the tyrosine bacterial enzyme through Pi-alkyl, Pi-anion, Carbon hydrogen bonds, and extra ionic attractive interactions with copper ions which can stabilize ferulic acid inside the targeted pocket Diverse virulent gene profiles were observed in E. coli. The Shiga toxin-producing Escherichia coli (STEC) was reported in 83% of the isolated E. coli, while the DNA gyrase (gyrA) was harbored in 100% of Klebsiella pneumoniae isolates. Various profiles of antibiotic resistance genes for both E. coli and Klebsiella pneumoniae isolates were distinguished. blaTEM genes were detected in 99% of E. coli and 100% of Klebsiella pneumoniae. Sequence analysis for E. coli strain DRC-North Sinai-Eg was placed in accession numbers (OP955786) for the Shiga toxin 2 gene (Stx2A), (OP997748) and (OP997749) for the Adhesion to host cell gene (Eae). For the hemolysine gene (hylA), the accession number was (OP946183). Klebsiella pneumoniae strain DRC-North Sinai-Eg was placed in (OP946180) for (gyrA). This study has proven the broad range of Moringa oliefera's antibacterial effects in vitro against the virulent-MDR- ESBL E. coli and Klebsiella pneumoniae isolated from North Sinai calves diarrhea. These are congruent with the disability effect on bacterial tyrosinase enzyme through docking study therefore, we recommend the usage of this desert plant as a prospective feed additive, we endorse this as an antibacterial new insight natural source and for the medication of considered pathogens with zoonotic impacts.
Collapse
Affiliation(s)
- Sahar A Allam
- Infectious Disease Unit, Animal and Poultry Health Department, Animal and Poultry Production Division, Desert Research Center, 1 Mataria Museum Street, Cairo, 11753, Egypt.
- Technology Incubator for Nano Agricultural Application, Desert Research Center, 1 Mataria Museum Street, Cairo, 11753, Egypt.
| | - Sara M Elnomrosy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Samy M Mohamed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research center, Al-Buhouth Street, Dokki, Giza, Egypt
| |
Collapse
|
19
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen P, Raines K, Livny J, Shoresh N, Hung D. Perturbation-Specific Transcriptional Mapping for unbiased target elucidation of antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590978. [PMID: 38712067 PMCID: PMC11071498 DOI: 10.1101/2024.04.25.590978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the post-genomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called Perturbation-Specific Transcriptional Mapping (PerSpecTM), in which large-throughput expression profiling of wildtype or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three new molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small molecule inhibition resemble those resulting from genetic depletion of essential targets by CRISPRi by PerSpecTM, demonstrating proof-of-concept that correlations between expression profiles of small molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
|
20
|
Aracil-Gisbert S, Fernández-De-Bobadilla MD, Guerra-Pinto N, Serrano-Calleja S, Pérez-Cobas AE, Soriano C, de Pablo R, Lanza VF, Pérez-Viso B, Reuters S, Hasman H, Cantón R, Baquero F, Coque TM. The ICU environment contributes to the endemicity of the " Serratia marcescens complex" in the hospital setting. mBio 2024; 15:e0305423. [PMID: 38564701 PMCID: PMC11077947 DOI: 10.1128/mbio.03054-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Serratia marcescens is an opportunistic pathogen historically associated with sudden outbreaks in intensive care units (ICUs) and the spread of carbapenem-resistant genes. However, the ecology of S. marcescens populations in the hospital ecosystem remains largely unknown. We combined epidemiological information of 1,432 Serratia spp. isolates collected from sinks of a large ICU that underwent demographic and operational changes (2019-2021) and 99 non-redundant outbreak/non-outbreak isolates from the same hospital (2003-2019) with 165 genomic data. These genomes were grouped into clades (1-4) and subclades (A and B) associated with distinct species: Serratia nematodiphila (1A), S. marcescens (1B), Serratia bockelmannii (2A), Serratia ureilytica (2B), S. marcescens/Serratia nevei (3), and S. nevei (4A and 4B). They may be classified into an S. marcescens complex (SMC) due to the similarity between/within subclades (average nucleotide identity >95%-98%), with clades 3 and 4 predominating in our study and publicly available databases. Chromosomal AmpC β-lactamase with unusual basal-like expression and prodigiosin-lacking species contrasted classical features of Serratia. We found persistent and coexisting clones in sinks of subclades 4A (ST92 and ST490) and 4B (ST424), clonally related to outbreak isolates carrying blaVIM-1 or blaOXA-48 on prevalent IncL/pB77-CPsm plasmids from our hospital since 2017. The distribution of SMC populations in ICU sinks and patients reflects how Serratia species acquire, maintain, and enable plasmid evolution in both "source" (permanent, sinks) and "sink" (transient, patients) hospital patches. The results contribute to understanding how water sinks serve as reservoirs of Enterobacterales clones and plasmids that enable the persistence of carbapenemase genes in healthcare settings, potentially leading to outbreaks and/or hospital-acquired infections.IMPORTANCEThe "hospital environment," including sinks and surfaces, is increasingly recognized as a reservoir for bacterial species, clones, and plasmids of high epidemiological concern. Available studies on Serratia epidemiology have focused mainly on outbreaks of multidrug-resistant species, overlooking local longitudinal analyses necessary for understanding the dynamics of opportunistic pathogens and antibiotic-resistant genes within the hospital setting. This long-term genomic comparative analysis of Serratia isolated from the ICU environment with isolates causing nosocomial infections and/or outbreaks within the same hospital revealed the coexistence and persistence of Serratia populations in water reservoirs. Moreover, predominant sink strains may acquire highly conserved and widely distributed plasmids carrying carbapenemase genes, such as the prevalent IncL-pB77-CPsm (pOXA48), persisting in ICU sinks for years. The work highlights the relevance of ICU environmental reservoirs in the endemicity of certain opportunistic pathogens and resistance mechanisms mainly confined to hospitals.
Collapse
Affiliation(s)
- Sonia Aracil-Gisbert
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Miguel D. Fernández-De-Bobadilla
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Natalia Guerra-Pinto
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
| | - Silvia Serrano-Calleja
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Cruz Soriano
- Intensive Medicine, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- University of Alcalá (UAH), Madrid, Spain
| | - Raúl de Pablo
- Intensive Medicine, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- University of Alcalá (UAH), Madrid, Spain
| | - Val F. Lanza
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
- Bioinformatics Unit, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Blanca Pérez-Viso
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Sandra Reuters
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Institute for Infection Prevention and Control, Medical Center–University of Freiburg, Freiburg, Germany
| | - Henrik Hasman
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Statens Serum Institut, Copenhagen, Denmark
| | - Rafael Cantón
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Fernando Baquero
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Biomedical Research Center Network of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M. Coque
- Microbiology, Ramón y Cajal University Hospital and Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
- Member of the ESCMID Study Group for Epidemiological Markers (ESGEM), Basel, Switzerland
- Member of the ESCMID Food- and Water-borne Infections Study Group (EFWISG), Basel, Switzerland
- Biomedical Research Center Network of Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
21
|
Bedore AM, Waters CM. Plasmid-free cheater cells commonly evolve during laboratory growth. Appl Environ Microbiol 2024; 90:e0231123. [PMID: 38446071 PMCID: PMC11022567 DOI: 10.1128/aem.02311-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.
Collapse
Affiliation(s)
- Amber M. Bedore
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
22
|
Jeong Y, Ahmad S, Irudayaraj J. Dynamic Effect of β-Lactam Antibiotic Inactivation Due to the Inter- and Intraspecies Interaction of Drug-Resistant Microbes. ACS Biomater Sci Eng 2024; 10:1461-1472. [PMID: 38315631 PMCID: PMC10936524 DOI: 10.1021/acsbiomaterials.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The presence of β-lactamase positive microorganisms imparts a pharmacological effect on a variety of organisms that can impact drug efficacy by influencing the function or composition of bacteria. Although studies to assess dynamic intra- and interspecies communication with bacterial communities exist, the efficacy of drug treatment and quantitative assessment of multiorganism response is not well understood due to the lack of technological advances that can be used to study coculture interactions in a dynamic format. In this study, we investigate how β-lactamase positive microorganisms can neutralize the effect of β-lactam antibiotics in a dynamic format at the inter- and intraspecies level using microbial bead technology. Three interactive models for the biological compartmentalization of organisms were demonstrated to evaluate the effect of β-lactam antibiotics on coculture systems. Our model at the intraspecies level attempts to mimic the biofilm matrix more closely as a community-level feature of microorganisms, which acknowledges the impact of nondrug-resistant species in shaping the dynamic response. In particular, the results of intraspecies studies are highly supportive of the biofilm mode of bacterial growth, which can provide structural support and protect the bacteria from an assault on host or environmental factors. Our findings also indicate that β-lactamase positive bacteria can neutralize the cytotoxic effect of β-lactam antibiotics at the interspecies level when cocultured with cancer cells. Results were validated using β-lactamase positive bacteria isolated from environmental niches, which can trigger phenotypical alteration of β-lactams when cocultured with other organisms. Our compartmentalization strategy acts as an independent ecosystem and provides a new avenue for multiscale studies to assess intra- and interspecies interactions.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Saeed Ahmad
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, University of Illinois
at Urbana−Champaign, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Carle
R. Woese Institute for Genomic Biology, Beckman Institute, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Key interaction networks: Identifying evolutionarily conserved non-covalent interaction networks across protein families. Protein Sci 2024; 33:e4911. [PMID: 38358258 PMCID: PMC10868456 DOI: 10.1002/pro.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Protein structure (and thus function) is dictated by non-covalent interaction networks. These can be highly evolutionarily conserved across protein families, the members of which can diverge in sequence and evolutionary history. Here we present KIN, a tool to identify and analyze conserved non-covalent interaction networks across evolutionarily related groups of proteins. KIN is available for download under a GNU General Public License, version 2, from https://www.github.com/kamerlinlab/KIN. KIN can operate on experimentally determined structures, predicted structures, or molecular dynamics trajectories, providing insight into both conserved and missing interactions across evolutionarily related proteins. This provides useful insight both into protein evolution, as well as a tool that can be exploited for protein engineering efforts. As a showcase system, we demonstrate applications of this tool to understanding the evolutionary-relevant conserved interaction networks across the class A β-lactamases.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Rory M. Crean
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| | - Peter M. Kasson
- Department of Molecular PhysiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Shina C. L. Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
24
|
Barceló IM, Escobar-Salom M, Jordana-Lluch E, Torrens G, Oliver A, Juan C. Filling knowledge gaps related to AmpC-dependent β-lactam resistance in Enterobacter cloacae. Sci Rep 2024; 14:189. [PMID: 38167986 PMCID: PMC10762043 DOI: 10.1038/s41598-023-50685-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Enterobacter cloacae starred different pioneer studies that enabled the development of a widely accepted model for the peptidoglycan metabolism-linked regulation of intrinsic class C cephalosporinases, highly conserved in different Gram-negatives. However, some mechanistic and fitness/virulence-related aspects of E. cloacae choromosomal AmpC-dependent resistance are not completely understood. The present study including knockout mutants, β-lactamase cloning, gene expression analysis, characterization of resistance phenotypes, and the Galleria mellonella infection model fills these gaps demonstrating that: (i) AmpC enzyme does not show any collateral activity impacting fitness/virulence; (ii) AmpC hyperproduction mediated by ampD inactivation does not entail any biological cost; (iii) alteration of peptidoglycan recycling alone or combined with AmpC hyperproduction causes no attenuation of E. cloacae virulence in contrast to other species; (iv) derepression of E. cloacae AmpC does not follow a stepwise dynamics linked to the sequential inactivation of AmpD amidase homologues as happens in Pseudomonas aeruginosa; (v) the enigmatic additional putative AmpC-type β-lactamase generally present in E. cloacae does not contribute to the classical cephalosporinase hyperproduction-based resistance, having a negligible impact on phenotypes even when hyperproduced from multicopy vector. This study reveals interesting particularities in the chromosomal AmpC-related behavior of E. cloacae that complete the knowledge on this top resistance mechanism.
Collapse
Affiliation(s)
- Isabel M Barceló
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Escobar-Salom
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
| | - Antonio Oliver
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Carlos Juan
- Health Research Institute of the Balearic Islands (IdISBa), 07010, Palma, Spain.
- Microbiology Department, University Hospital Son Espases (HUSE), 07010, Palma, Spain.
- Centro de Investigación Biomédica en Red, Área Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
25
|
Sodagari HR, Agrawal I, Yudhanto S, Varga C. Longitudinal analysis of differences and similarities in antimicrobial resistance among commensal Escherichia coli isolated from market swine and sows at slaughter in the United States of America, 2013-2019. Int J Food Microbiol 2023; 407:110388. [PMID: 37699314 DOI: 10.1016/j.ijfoodmicro.2023.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
The emergence of antimicrobial resistance in swine enteric bacteria poses a significant public health challenge. Our study evaluated publicly available data collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) between 2013 and 2019 at slaughter plants across the United States of America, focusing on commensal E. coli isolated from swine cecal contents originating from two distinct swine production systems: market hogs (n = 2090) and sows (n = 1147). In both production types, the highest pairwise correlations were detected among β-lactam antimicrobials, including resistance to amoxicillin-clavulanic acid, ceftriaxone, and cefoxitin, suggesting a co-selection for resistance. Compared to 2013, an increase in the rate of E. coli isolates that were resistant to β-lactam antimicrobials was higher in 2017, 2018, and 2019, and this increase was more pronounced in isolates obtained from market hogs. Differences in antimicrobial resistance between these two distinct swine production systems warrant production-type focused mitigation efforts.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Isha Agrawal
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Setyo Yudhanto
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
26
|
Rihacek M, Kuthanova M, Splichal Z, Adam V, Hrazdilova K, Vesely R, Zurek L, Cihalova K. Escherichia coli from Human Wounds: Analysis of Resistance to β-Lactams and Expression of RND Efflux Pumps. Infect Drug Resist 2023; 16:7365-7375. [PMID: 38050628 PMCID: PMC10693772 DOI: 10.2147/idr.s435622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 12/06/2023] Open
Abstract
Purpose Resistance of pathogenic strains of Escherichia coli to β-lactams, particularly to ampicillin, is on the rise and it is attributed to intrinsic and acquired mechanisms. One important factor contributing to resistance, together with primarily resistance mechanisms, is a mutation and/or an over-expression of the intrinsic efflux pumps in the resistance-nodulation-division (RND) superfamily. Among these efflux pumps, AcrA, AcrB, TolC, and AcrD play an important role in antimicrobial co-resistance, including resistance to β-lactams. Materials and Methods Twelve E. coli isolates obtained from patients' wounds and the control strain of E. coli ATCC 25922 were analyzed. The phenotypic resistance of these isolates to selected β-lactams was assessed by determination of the minimal inhibitory concentration. Additionally, the prevalence of β-lactamase genes (blaTEM, blaCTX-M, blaSHV, and blaAmpC) was screened by PCR. Real-time qPCR was used to determine the expression of the selected efflux pumps acrA, acrB, tolC, and acrD and the repressor acrR after the exposure of E. coli to ampicillin. Results Phenotypic resistance to β-lactams was detected in seven isolates, mainly to ampicillin and piperacillin. This was corroborated by the presence of at least one acquired bla gene in each of these isolates. Although E. coli strains varied in the expression of RND-family efflux pumps after the ampicillin exposure, their gene expression indicated that these pumps did not play a major role in the phenotypic resistance to ampicillin. Conclusion Each E. coli isolate displayed unique characteristics, differing in minimum inhibitory concentration (MIC) values, prevalence of acquired blaTEM and blaCTX-M genes, and expression of the RND-family pumps. This together demonstrates that these clinical isolates employed distinct intrinsic or acquired resistance pathways for their defense against ampicillin. The prevalence and spread of ampicillin resistant E. coli has to be monitored and the search for ampicillin alternatives is needed.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Michaela Kuthanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Hrazdilova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Radek Vesely
- Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital Brno, Brno, Czech Republic
- Department of Traumatology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
27
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
28
|
Nepalia A, Fernandes SE, Singh H, Rana S, Saini DK. Anti-microbial resistance and aging-A design for evolution. WIREs Mech Dis 2023; 15:e1626. [PMID: 37553220 DOI: 10.1002/wsbm.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
The emergence of resistance to anti-infective agents poses a significant threat to successfully treating infections caused by bacteria. Bacteria acquire random mutations due to exposure to environmental stresses, which may increase their fitness to other selection pressures. Interestingly, for bacteria, the frequency of anti-microbial resistance (AMR) seems to be increasing in tandem with the human lifespan. Based on evidence from previous literature, we speculate that increased levels of free radicals (Reactive Oxygen Species-ROS and Reactive Nitrosative Species-RNS), elevated inflammation, and the altered tissue microenvironment in aged individuals may drive pathogen mutagenesis. If these mutations result in the hyperactivation of efflux pumps or alteration in drug target binding sites, it could confer AMR, thus rendering antibiotic therapy ineffective while leading to the selection of novel drug-resistant variants. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Amrita Nepalia
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Sheryl Erica Fernandes
- Department of Developmental Biology and Genetics, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Shweta Rana
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research, New Delhi, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, and Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
29
|
Redha MA, Al Sweih N, Albert MJ. Multidrug-Resistant and Extensively Drug-Resistant Escherichia coli in Sewage in Kuwait: Their Implications. Microorganisms 2023; 11:2610. [PMID: 37894268 PMCID: PMC10609297 DOI: 10.3390/microorganisms11102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
In Kuwait, some sewage is discharged into the sea untreated, causing a health risk. Previously, we investigated the presence of pathogenic E. coli among the 140 isolates of E. coli cultured from the raw sewage from three sites in Kuwait. The aim of the current study was to characterize the antimicrobial resistance of these isolates and the implications of resistance. Susceptibility to 15 antibiotic classes was tested. Selected genes mediating resistance to cephalosporins and carbapenems were sought. ESBL and carbapenemase production were also determined. Two virulent global clones, ST131 and ST648, were sought. A total of 136 (97.1%), 14 (10.0%), 128 (91.4%), and 2 (1.4%) isolates were cephalosporin-resistant, carbapenem-resistant, multidrug-resistant (MDR), and extensively drug-resistant (XDR), respectively. Among the cephalosporin-resistant isolates, ampC, blaTEM, blaCTX-M, blaOXA-1, and blaCMY-2 were found. Eighteen (12.9%) samples were ESBL producers. All carbapenem-resistant isolates were negative for carbapenemase genes (blaOXA-48, blaIMP, blaGES, blaVIM, blaNDM, and blaKPC), and for carbapenemase production. Resistance rates in carbapenem-resistant isolates to many other antibiotics were significantly higher than in susceptible isolates. A total of four ST131 and ST648 isolates were detected. The presence of MDR and XDR E. coli and global clones in sewage poses a threat in treating E. coli infections.
Collapse
Affiliation(s)
| | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya 46300, Kuwait; (M.A.R.); (N.A.S.)
| |
Collapse
|
30
|
Huang C, Pham HQ, Zhu L, Wang R, Law OK, Lin SL, Nie QC, Zhang L, Wang X, Lau TCK. Comparative Analysis of Transcriptome and Proteome Revealed the Common Metabolic Pathways Induced by Prevalent ESBL Plasmids in Escherichia coli. Int J Mol Sci 2023; 24:14009. [PMID: 37762311 PMCID: PMC10531281 DOI: 10.3390/ijms241814009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance has emerged as one of the most significant threats to global public health. Plasmids, which are highly efficient self-replicating genetic vehicles, play a critical role in the dissemination of drug-resistant genes. Previous studies have mainly focused on drug-resistant genes only, often neglecting the complete functional role of multidrug-resistant (MDR) plasmids in bacteria. In this study, we conducted a comprehensive investigation of the transcriptomes and proteomes of Escherichia coli J53 transconjugants harboring six major MDR plasmids of different incompatibility (Inc) groups, which were clinically isolated from patients. The RNA-seq analysis revealed that MDR plasmids influenced the gene expression in the bacterial host, in particular, the genes related to metabolic pathways. A proteomic analysis demonstrated the plasmid-induced regulation of several metabolic pathways including anaerobic respiration and the utilization of various carbon sources such as serine, threonine, sialic acid, and galactarate. These findings suggested that MDR plasmids confer a growth advantage to bacterial hosts in the gut, leading to the expansion of plasmid-carrying bacteria over competitors without plasmids. Moreover, this study provided insights into the versatility of prevalent MDR plasmids in moderating the cellular gene network of bacteria, which could potentially be utilized in therapeutics development for bacteria carrying MDR plasmids.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Hoa-Quynh Pham
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Lina Zhu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Oi-Kwan Law
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Shu-Ling Lin
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Qi-Chang Nie
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Xin Wang
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong SAR, China; (C.H.); (H.-Q.P.); (L.Z.); (R.W.); (O.-K.L.); (S.-L.L.); (Q.-C.N.); (L.Z.)
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Liu E, Prinzi AM, Borjan J, Aitken SL, Bradford PA, Wright WF. #AMRrounds: a systematic educational approach for navigating bench to bedside antimicrobial resistance. JAC Antimicrob Resist 2023; 5:dlad097. [PMID: 37583473 PMCID: PMC10424884 DOI: 10.1093/jacamr/dlad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) continues to serve as a major global health crisis. Clinicians practising in this modern era are faced with ongoing challenges in the therapeutic management of patients suffering from antimicrobial-resistant infections. A strong educational understanding and synergistic application of clinical microbiology, infectious disease and pharmacological concepts can assist the adventuring clinician in the navigation of such cases. Important items include mobilizing laboratory testing for pathogen identification and susceptibility data, harnessing an understanding of intrinsic pathogen resistance, acknowledging epidemiological resistance trends, recognizing acquired AMR mechanisms, and consolidating these considerations when constructing an ideal pharmacological plan. In this article, we outline a novel framework by which to systematically approach clinical AMR, encourage AMR-related education and optimize therapeutic decision-making in AMR-related illnesses.
Collapse
Affiliation(s)
- Elaine Liu
- Division of Pharmacy and Division of Infectious Diseases, The Johns Hopkins Bayview Medical Center, 5200 Eastern Avenue, Baltimore, MD, USA
| | - Andrea M Prinzi
- US Medical Affairs, bioMérieux, Salt Lake City, UT 84104, USA
| | - Jovan Borjan
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel L Aitken
- Department of Pharmacy, Michigan Medicine, Ann Arbor, MI, USA
| | | | - William F Wright
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, USA
| |
Collapse
|
32
|
Hilbert DW, DeRyke CA, Motyl M, Hackel M, Young K. Relebactam restores susceptibility of resistant Pseudomonas aeruginosa and Enterobacterales and enhances imipenem activity against chromosomal AmpC-producing species: analysis of global SMART 2018-2020. BMC Microbiol 2023; 23:165. [PMID: 37312049 PMCID: PMC10262423 DOI: 10.1186/s12866-023-02864-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Carbapenem-resistant bacteria are an increasing problem in clinical practice; thus, it is important to identify β-lactamase inhibitors (e.g., relebactam) that can restore carbapenem susceptibility. We report analyses of relebactam enhancement of imipenem activity against both imipenem-nonsusceptible (NS) and imipenem-susceptible (S) Pseudomonas aeruginosa and Enterobacterales. Gram-negative bacterial isolates were collected for the ongoing Study for Monitoring Antimicrobial Resistance Trends global surveillance program. Clinical and Laboratory Standards Institute-defined broth microdilution minimum inhibitory concentrations (MIC) were used to determine the imipenem and imipenem/relebactam antibacterial susceptibilities of P. aeruginosa and Enterobacterales isolates. RESULTS Between 2018 and 2020, 36.2% of P. aeruginosa (N = 23,073) and 8.2% of Enterobacterales (N = 91,769) isolates were imipenem-NS. Relebactam restored imipenem susceptibility in 64.1% and 49.4% of imipenem-NS P. aeruginosa and Enterobacterales isolates, respectively. Restoration of susceptibility was largely observed among K. pneumoniae carbapenemase-producing Enterobacterales and carbapenemase-negative P. aeruginosa. Relebactam also caused a lowering of imipenem MIC among imipenem-S P. aeruginosa and Enterobacterales isolates from chromosomal Ambler class C β-lactamase (AmpC)-producing species. For both imipenem-NS and imipenem-S P. aeruginosa isolates, relebactam reduced the imipenem MIC mode from 16 μg/mL to 1 μg/mL and from 2 μg/mL to 0.5 μg/mL, respectively, compared with imipenem alone. CONCLUSIONS Relebactam restored imipenem susceptibility among nonsusceptible isolates of P. aeruginosa and Enterobacterales and enhanced imipenem susceptibility among susceptible isolates of P. aeruginosa and isolates from Enterobacterales species that can produce chromosomal AmpC. The reduced imipenem modal MIC values with relebactam may result in a higher probability of target attainment in patients.
Collapse
Affiliation(s)
| | | | | | - Meredith Hackel
- International Health Management Associates, Inc, Schaumburg, IL, USA
| | | |
Collapse
|
33
|
Karlowsky JA, Lob SH, Estabrook MA, Siddiqui F, DeRyke CA, Young K, Motyl MR, Sahm DF. Susceptibility profile and β-lactamase content of global Pseudomonas aeruginosa isolates resistant to ceftolozane/tazobactam and/or imipenem/relebactam-SMART 2016-21. JAC Antimicrob Resist 2023; 5:dlad080. [PMID: 37388237 PMCID: PMC10306085 DOI: 10.1093/jacamr/dlad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Objectives To determine susceptibility profiles and β-lactamase content for ceftolozane/tazobactam-resistant and imipenem/relebactam-resistant Pseudomonas aeruginosa isolates collected in eight global regions during 2016-21. Methods Broth microdilution MICs were interpreted using CLSI breakpoints. PCR to identify β-lactamase genes or WGS was performed on selected isolate subsets. Results Ceftolozane/tazobactam-resistant [from 0.6% (Australia/New Zealand) to 16.7% (Eastern Europe)] and imipenem/relebactam-resistant [from 1.3% (Australia/New Zealand) to 13.6% (Latin America)] P. aeruginosa varied by geographical region. Globally, 5.9% of isolates were both ceftolozane/tazobactam resistant and imipenem/relebactam resistant; 76% of these isolates carried MBLs. Most ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible isolates carried ESBLs (44%) or did not carry non-intrinsic (acquired) β-lactamases (49%); 95% of imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates did not carry non-intrinsic β-lactamases. Isolates that carried indicators of strong PDC (Pseudomonas-derived cephalosporinase) up-regulation without a mutation known to expand the spectrum of PDC, or non-intrinsic β-lactamases, showed an 8-fold increase in ceftolozane/tazobactam modal MIC; however, this rarely (3%) resulted in ceftolozane/tazobactam resistance. Isolates with a PDC mutation and an indicator for PDC upregulation were ceftolozane/tazobactam non-susceptible (MIC, ≥ 8 mg/L). MICs ranged widely (1 to >32 mg/L) for isolates with a PDC mutation and no positively identified indicator for PDC up-regulation. Imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible isolates without non-intrinsic β-lactamases frequently (91%) harboured genetic lesions implying OprD loss of function; however, this finding alone did not account for this phenotype. Among imipenem-non-susceptible isolates without non-intrinsic β-lactamases, implied OprD loss only shifted the distribution of imipenem/relebactam MICs up by 1-2 doubling dilutions, resulting in ∼10% imipenem/relebactam-resistant isolates. Conclusions P. aeruginosa with ceftolozane/tazobactam-resistant/imipenem/relebactam-susceptible and imipenem/relebactam-resistant/ceftolozane/tazobactam-susceptible phenotypes were uncommon and harboured diverse resistance determinants.
Collapse
|
34
|
Sodagari HR, Varga C. Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013-2019. Microorganisms 2023; 11:microorganisms11041033. [PMID: 37110456 PMCID: PMC10142105 DOI: 10.3390/microorganisms11041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in commensal and pathogenic enteric bacteria of swine is a public health threat. This study evaluated publicly available AMR surveillance data collected by the National Antimicrobial Resistance Monitoring System (NARMS) by assessing AMR patterns and temporal trends in commensal E. coli isolated from cecal samples of swine at slaughter across the United States. We applied the Mann-Kendall test (MKT) and a linear regression trend line to detect significant trends in the proportion of resistant isolates to individual antimicrobials over the study period. A Poisson regression model assessed differences among years in the number of antimicrobials to which an E. coli isolate was resistant. Among the 3237 E. coli isolates, a very high prevalence of resistance for tetracycline (67.62%), and high resistance for streptomycin (24.13%), and ampicillin (21.10%) were identified. The MKT and the linear trend line showed a significantly increasing temporal trend for amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, and trimethoprim-sulfamethoxazole. Compared to 2013 the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in the years 2017, 2018, and 2019. The increasing temporal trend of resistance to important antimicrobials for human medicine (e.g., third-generation cephalosporins) and the increase in multidrug resistance in the later years of the study are concerning and should be followed up by studies to identify sources and risk factors for the selection of AMR.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
35
|
Borka Balas R, Meliț LE, Mărginean CO. Current Worldwide Trends in Pediatric Helicobacter pylori Antimicrobial Resistance. CHILDREN (BASEL, SWITZERLAND) 2023; 10:403. [PMID: 36832532 PMCID: PMC9954810 DOI: 10.3390/children10020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Helicobacter pylori (H. pylori) has acquired several resistance mechanisms in order to escape the currently used eradication regimens such as mutations that impair the replication, recombination, and transcription of DNA; the antibiotics capability to interact with protein synthesis and ribosomal activity; the adequate redox state of bacterial cells; or the penicillin-binding proteins. The aim of this review was to identify the differences in pediatric H. pylori antimicrobial-resistance trends between continents and countries of the same continent. In Asian pediatric patients, the greatest antimicrobial resistance was found to metronidazole (>50%), probably due to its wide use for parasitic infections. Aside from the increased resistance to metronidazole, the reports from different Asian countries indicated also high resistance rates to clarithromycin, suggesting that ciprofloxacin-based eradication therapy and bismuth-based quadruple therapy might be optimal choices for the eradication of H. pylori in Asian pediatric population. The scarce evidence for America revealed that H. pylori strains display an increased resistance to clarithromycin (up to 79.6%), but not all studies agreed on this statement. Pediatric patients from Africa also presented the greatest resistance rate to metronidazole (91%), but the results in terms of amoxicillin remain contradictory. Nevertheless, the lowest resistance rates in most of the African studies were found for quinolones. Among European children, the most frequent antimicrobial resistance was also noticed for metronidazole and clarithromycin (up to 59% and 45%) but with a predominance for clarithromycin as compared to other continents. The differences in antibiotic use among continents and countries worldwide is clearly responsible for the discrepancies regarding H. pylori antimicrobial-resistance patterns, emphasizing the crucial role of global judicious antibiotic use in order to control the increasing resistance rates worldwide.
Collapse
Affiliation(s)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureș, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania
| | | |
Collapse
|
36
|
Girijan SK, Pillai D. Genetic diversity and prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in aquatic environments receiving untreated hospital effluents. JOURNAL OF WATER AND HEALTH 2023; 21:66-80. [PMID: 36705498 DOI: 10.2166/wh.2022.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The spread of extended-spectrum beta-lactamase (ESBL)-producing bacteria in the environment has been recognized as a challenge to public health. The aim of the present study was to assess the occurrence of ESBL-producing Escherichia coli and Klebsiella pneumoniae from selected water bodies receiving hospital effluents in Kerala, India. Nearly 69.8% of Enterobacteriaceae isolates were multi-drug resistant by the Kirby-Bauer disc diffusion method. The double disc synergy test was used to detect the ESBL production and the genes responsible for imparting resistance were detected by PCR. Conjugation experiments confirmed the mechanism of plasmid-mediated transfer of resistance. The prevalence of ESBL production in E. coli and K. pneumoniae was 49.2 and 46.8%, respectively. Among the ESBL-encoding genes, blaCTX-M was the most prevalent group followed by blaTEM, blaOXA, blaCMY, and blaSHV. The results suggest that healthcare settings are one of the key contributors to the spread of ESBL-producing bacteria, not only through cross-transmission and ingestion of antibiotics but also through the discharge of waste without a proper treatment, leading to harmful effects on the aquatic environment. The high prevalence of ESBL-producing Enterobacteriaceae with resistance genes in public water bodies even post-treatment poses a serious threat.
Collapse
Affiliation(s)
- Sneha Kalasseril Girijan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| |
Collapse
|
37
|
Araújo MRB, Sant'Anna LDO, Santos NNCD, Seabra LF, Santos LSD. Monitoring fluoroquinolone resistance among ESBL-positive and ESBL-negative Escherichia coli strains isolated from urinary tract infections: An alert for empirical treatment. Rev Soc Bras Med Trop 2023; 56:e0513. [PMID: 37075453 PMCID: PMC10109344 DOI: 10.1590/0037-8682-0513-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Bacterial resistance to extended-spectrum beta-lactamases (ESBL) is present worldwide. Empirical antibiotic therapy is often needed, and the use of fluoroquinolones, such as ciprofloxacin and norfloxacin, is common. This study aimed to analyze the urine cultures from 2,680 outpatients in January 2019, 2020, 2021, and 2022, with bacterial counts above 100,000 CFU/mL in which Escherichia coli was the etiological agent. METHODS We monitored the resistance of ESBL-positive and ESBL-negative strains to ciprofloxacin and norfloxacin and evaluated resistance rates. RESULTS Significantly higher fluoroquinolone resistance rates were observed among ESBL-positive strains in all years studied. Furthermore, a significant increase in the rate of fluoroquinolone resistance was observed between 2021 and 2022 in ESBL-positive and -negative strains, as well as from 2020 to 2021 among the ESBL-positive strains. CONCLUSIONS The data obtained in the present study showed a tendency towards an increase in fluoroquinolone resistance among ESBL-positive and -negative E. coli strains isolated from urine cultures in Brazil. Since empirical antibiotic therapy with fluoroquinolones is commonly used to treat diverse types of infections, such as community-acquired urinary tract infections, this work highlights the need for continuous monitoring of fluoroquinolone resistance among E. coli strains circulating in the community, which can mitigate the frequency of therapeutic failures and development of widespread multidrug-resistant strains.
Collapse
Affiliation(s)
| | - Lincoln de Oliveira Sant'Anna
- Universidade do Estado do Rio de Janeiro, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | | | - Luisa Ferreira Seabra
- Instituto Hermes Pardini, Núcleo Técnico Operacional, Microbiologia, Belo Horizonte, MG, Brasil
| | - Louisy Sanches Dos Santos
- Universidade do Estado do Rio de Janeiro, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
38
|
Carbapenem-Resistant Gram-Negative Fermenting and Non-Fermenting Rods Isolated from Hospital Patients in Poland-What Are They Susceptible to? Biomedicines 2022; 10:biomedicines10123049. [PMID: 36551805 PMCID: PMC9775024 DOI: 10.3390/biomedicines10123049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Gram-negative fermenting and non-fermenting bacteria are important etiological factors of nosocomial and community infections, especially those that produce carbapenemases. Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the most frequently-detected carbapenemase-producing microorganisms. The predominant type of resistance is metallo-β-lactamase (MBL). These bacteria are predominantly isolated from bronchial alveolar lavage, urine, and blood. Carbapenemase-producing Enterobacterales (CPE) strains are always multi-drug-resistant. This significantly limits the treatment options for this type of infection, extends the time of patient hospitalization, and increases the risk of a more severe and complicated disease course. Preventing the transmission of these microorganisms should be a major public health initiative. New antibiotics and treatment regimens offer hope against these infections.
Collapse
|
39
|
Hg(OAc)2/1,2,3-triazole-mediated efficient synthesis of Tazobactam. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Orabi A, Armanious W, Radwan IA, Girh ZMSA, Hammad E, Diab MS, Elbestawy AR. Genetic Correlation of Virulent Salmonella Serovars (Extended Spectrum β-Lactamases) Isolated from Broiler Chickens and Human: A Public Health Concern. Pathogens 2022; 11:1196. [PMID: 36297253 PMCID: PMC9610193 DOI: 10.3390/pathogens11101196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 10/29/2023] Open
Abstract
This study aimed to detect the virulent Salmonella serovars (including ESBLs producing) isolated from broiler chickens and humans. Three hundred broilers and sixty human fecal samples were bacteriologically examined. Thirty (10%) and fourteen (23.4%) Salmonella isolates were recovered from broiler and human samples, respectively. The most predominant serovar was S. enteritidis and S. typhimurium. All Salmonella isolates were confirmed by conventional PCR-based invA and ompA genes. Multidrug resistant (MDR) isolates were screened for the detection of adrA and csgD biofilm-associated genes, which were found in all isolated serovars except one S. typhimurium and 2 S. infantis of chicken isolates that were devoid of the adrA gene. Moreover, MDR isolates were screened for detection of seven resistance genes including ESBLs and other classes of resistance genes. Chicken isolates harbored blaTEM, int1, blaCTX and qnrS genes as 100, 27.8, 11.1 and 11.1%, respectively, while all human isolates harbored blaTEM, int1 and int3 genes. The genetic correlations between virulent Salmonella serovars (including antimicrobial resistance) avian and human origins were compared. In conclusion, the high prevalence of virulent ESBL producing Salmonella serovars in broilers and humans with genetic correlations between them might be zoonotic and public health hazards.
Collapse
Affiliation(s)
- Ahmed Orabi
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Wagih Armanious
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ismail A. Radwan
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Enas Hammad
- Agricultural Research Center (ARC), Animal Health Research Institute-Mansoura Provincial Lab (AHRI-Mansoura), Giza 12618, Egypt
| | - Mohamed S. Diab
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, New Valley University, El Kharga 72511, Egypt
| | - Ahmed R. Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
41
|
Ito R, Kawamura M, Sato T, Fujimura S. Cefmetazole Resistance Mechanism for Escherichia Coli Including ESBL-Producing Strains. Infect Drug Resist 2022; 15:5867-5878. [PMID: 36237294 PMCID: PMC9553235 DOI: 10.2147/idr.s382142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 12/19/2022] Open
Abstract
Purpose Cefmetazole (CMZ), a cephamycin antibiotic, is primarily used as a definitive therapy for Extended Spectrum β-Lactamase (ESBL)-producing Escherichia coli infections. However, the mechanism of CMZ resistance in E. coli is still unknown. To elucidate the resistance mechanism and to determine combined drugs for prevention of resistance acquisition. Methods Clinical isolates of 14 ESBL-producing E. coli and non-producing 12 isolates were used in in vitro testing of CMZ resistance acquisition. After 10-day of CMZ exposure (1st subculture), these strains were incubated in an antibacterial-free medium for 14-day. These strains were again exposed to CMZ for 10-day (2nd subculture) and confirmed for changes in MIC. For each strain detected after 1st subculture, each mRNA expression level of porin, chromosomal ampC, and drug-efflux pump was measured using real-time RT-PCR. Relebactam (REL) has the potency to recover antimicrobial activity against carbapenem-resistant Enterobacterales that has porin deficiency. REL was added to the CMZ dilution series, and MIC changes and those of porin were confirmed. Results Of these 26 strains, 15 strains (57.7%) acquired resistance after 1st subculture, but after passage culture on the antibacterial-free medium, 11 strains recovered susceptibility. These 11 strains showed resistance after 2nd subculture. The expression levels of ompF and ompC were significantly decreased in these strains (P<0.05). When REL was added, all strains suppressed resistance acquisition after 1st subculture. The mechanism was the activation of ompF. Conclusion Our results showed that the mRNA expression levels of genes encoding porin were decreased in the strains that acquired resistance due to CMZ exposure, and that ompF and ompC in particular were thought to be involved in the acquisition of resistance. The CMZ acquisition of resistance was also suppressed by the concomitant use of REL and actually suppressed the decrease in mRNA expression in ompF. It was confirmed that porin reactivated by REL.
Collapse
Affiliation(s)
- Ryota Ito
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan,Correspondence: Ryota Ito, Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan, Tel +81-22-727-0169, Fax +81-22-727-0176, Email
| | - Masato Kawamura
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| | - Takumi Sato
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| | - Shigeru Fujimura
- Tohoku Medical and Pharmaceutical University, Division of Clinical Infectious Diseases & Chemotherapy, Sendai, Miyagi, Japan
| |
Collapse
|
42
|
Vidya Raj CK, Venugopal J, Muthaiah M, Chadha VK, Brammacharry U, Swappna M, Sangeetha AV, Dhandapani SP, Kareedhi VR, Calivarathan L, Karthick M, Jayapal K. In-vitro anti-Mycobacterium tuberculosis effect of Eugenol. Indian J Tuberc 2022; 69:647-654. [PMID: 36460403 DOI: 10.1016/j.ijtb.2021.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND/OBJECTIVES Mycobacterium tuberculosis, the causative agent of tuberculosis has developed resistance to most of the available antimicrobials. Therefore research on the detection of new antimicrobials against Mycobacterium tuberculosis is needed urgently. Essential oils extracted from plants have been shown to have anti-Mycobacterium tuberculosis effect in in-vitro experiments. Essential oil contains many chemicals and any one or more than one chemical may have the anti-Mycobacterium tuberculosis effect. Eugenol is one such chemical in the essential oil and the anti-Mycobacterium tuberculosis effect of eugenol is investigated. METHODS The anti-Mycobacterium tuberculosis effect of eugenol was evaluated against H37Rv and twelve clinical isolates of Mycobacterium tuberculosis in the BD BACTEC MGIT instrument using different volumes of eugenol. RESULTS H37Rv and all the twelve clinical isolates of Mycobacterium tuberculosis were inhibited by eugenol. The minimal inhibitory concentration of H37Rv was 2.5 μl (2.67 mg) and those of the clinical isolates of Mycobacterium tuberculosis ranged from to 2.5 μl (2.67 mg) to 10 μl (10.68 mg). CONCLUSION Eugenol has anti-Mycobacterium tuberculosis effect in the in-vitro BD BACTEC MGIT method.
Collapse
Affiliation(s)
- C K Vidya Raj
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | - Jayapal Venugopal
- Mahatma Gandhi Medical College & Research Institute, Sri Balaji Vidyapeeth University (Grade A), Pillaiyar Kuppam, Puducherry, Tamil Nadu, 607 402, India.
| | - Muthuraj Muthaiah
- State TB Training & Demonstration Center, Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Puducherry, 605006, India
| | | | - Usharani Brammacharry
- Department of Genetics, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Tharamani, Chennai, 600113, India
| | - M Swappna
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - A V Sangeetha
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | - Senthil Pragash Dhandapani
- Central Leprosy Teaching & Research Institute, Ministry of Health & Family Welfare, Govt. of India, Chengalpattu, Tamil Nadu, 603001, India
| | | | | | | | | |
Collapse
|
43
|
Broad-Spectrum Inhibitors against Class A, B, and C Type β-Lactamases to Block the Hydrolysis against Antibiotics: Kinetics and Structural Characterization. Microbiol Spectr 2022; 10:e0045022. [PMID: 36069578 PMCID: PMC9603770 DOI: 10.1128/spectrum.00450-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The emergence of antibiotic resistance has led to a global crisis for the physician to handle infection control issues. All antibiotics, including colistin, have lost efficiency against emerging drug-resistant bacterial strains due to the production of metallo-β-lactamases (MBLs) and serine-β-lactamases (SBLs). Therefore, it is of the utmost importance to design inhibitors against these enzymes to block the hydrolytic action against antibiotics being used. Although various novel β-lactamase inhibitors are being authorized or are under clinical studies, the coverage of their activity spectrum does not include MDR organisms expressing multiple classes of β-lactamases at a single time. This study reports three novel broad-spectrum inhibitors effective against both SBLs and MBLs. Virtual screening, molecular docking, molecular dynamics simulations, and an in silico pharmacokinetic study were performed to identify the lead molecules with broad-spectrum ability to inhibit the hydrolysis of β-lactam. The selected compounds were further assessed by in vitro cell assays (MIC, 50% inhibitory concentration [IC50], kinetics, and fluorescence against class A, B, and C type β-lactamases) to confirm their efficacies. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to check the toxicity of screened lead molecules. All three selected inhibitors were found to reduce MIC and showed good affinity against all the SBLs and MBLs produced by class A, B, and C type β-lactamases. These nontoxic novel non-β-lactam broad-spectrum inhibitors bind to the active site residues of selected β-lactamases, which are crucial for β-lactam antibiotic hydrolysis. These inhibitors may be proposed as a future drug candidate in combination with antibiotics as a single formulation to control infection caused by resistant strains. Hence, this study plays a significant role in the cure of infections caused by antibiotic-resistant bacteria. IMPORTANCE Several inhibitors for usage in conjunction with antibiotics have been developed. However, to date, there is no commercially available broad-spectrum β-lactamase inhibitor that targets both MBLs and SBLs. Here, we showed three novel broad-spectrum inhibitors with promising results through computational techniques and in vitro studies. These inhibitors are effective against both SBLs and MBLs and hence could be used as future drug candidates to treat infections caused by multidrug-resistant bacteria producing both types of enzymes (SBLs and MBLs).
Collapse
|
44
|
Rigatto MH, Ramos F, Barros A, Pedroso S, Guasso I, Gonçalves L, Bergo P, Zavascki AP. Double-, single- and none-carbapenem-containing regimens for the treatment of carbapenem-resistant Enterobacterales (CRE) bloodstream infections: a retrospective cohort. J Antimicrob Chemother 2022; 77:3118-3125. [PMID: 36048569 DOI: 10.1093/jac/dkac292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the effect of double-, single- and none-carbapenem-containing antimicrobial regimens in the treatment of patients with carbapenem-resistant Enterobacterales (CRE) bloodstream infections (BSIs). METHODS We conducted a retrospective cohort study from 2013 to 2020 in two Brazilian hospitals. Patients ≥18 years old with CRE BSI were included and excluded if death or treatment duration for ≤48 h after BSI or non-Class A-producing carbapenemase isolates. We evaluated the impact of different carbapenem-containing regimens on 30 day mortality through a propensity score adjusted model and a Cox proportional hazards model. RESULTS Two-hundred and seventy-nine patients were included for analyses: 47 (16.9%), 149 (53.4%) and 83 (29.8%) were treated with double-, single- and none-carbapenem-containing regimens, respectively. One-hundred and seventeen (41.9%) patients died in 30 days. Treatment with a single-carbapenem regimen was associated with a lower risk of death in 30 days compared with therapies containing no carbapenem [adjusted HR (aHR) 0.66, 95% CI 0.44-0.99, P = 0.048], when adjusted for Charlson score and ICU admission at baseline, while double-carbapenem regimens were not associated with a lower risk of death (aHR 0.78, 95% CI 0.46-1.32, P = 0.35). Propensity score adjusted model results went in the same direction. CONCLUSIONS Double-carbapenem- was not superior to single-carbapenem-containing regimens in patients with CRE BSIs. Single-carbapenem-containing schemes were associated with a lower mortality risk.
Collapse
Affiliation(s)
- Maria Helena Rigatto
- Medical Sciences Post-Graduation Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Internal Medicine, Medical School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiano Ramos
- Medical Sciences Post-Graduation Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Infection Control Service, Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - Andressa Barros
- Medical Sciences Post-Graduation Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia Pedroso
- Infection Control Service, Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - Isabelli Guasso
- Infection Control Service, Hospital São Lucas da PUCRS, Porto Alegre, Brazil
| | - Luciana Gonçalves
- Pontifícia Universidade Católica do Rio Grande do Sul, Medical School, Porto Alegre, Brazil
| | - Pedro Bergo
- Pontifícia Universidade Católica do Rio Grande do Sul, Medical School, Porto Alegre, Brazil
| | - Alexandre P Zavascki
- Department of Internal Medicine, Medical School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
45
|
Stewart J, Judd LM, Jenney A, Holt KE, Wyres KL, Hawkey J. Epidemiology and genomic analysis of Klebsiella oxytoca from a single hospital network in Australia. BMC Infect Dis 2022; 22:704. [PMID: 36002802 PMCID: PMC9400251 DOI: 10.1186/s12879-022-07687-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Infections caused by Klebsiella oxytoca are the second most common cause of Klebsiella infections in humans. Most studies have focused on K. oxytoca outbreaks and few have examined the broader clinical context of K. oxytoca. METHODS Here, we collected all clinical isolates identified as K. oxytoca in a hospital microbiological diagnostic lab across a 15-month period (n = 239). Whole genome sequencing was performed on a subset of 92 isolates (all invasive, third-generation cephalosporin resistant (3GCR) and non-urinary isolates collected > 48 h after admission), including long-read sequencing on a further six isolates with extended-spectrum beta-lactamase or carbapenemase genes. RESULTS The majority of isolates were sensitive to antimicrobials, however 22 isolates were 3GCR, of which five were also carbapenem resistant. Genomic analyses showed those identified as K. oxytoca by the clinical laboratory actually encompassed four distinct species (K. oxytoca, Klebsiella michiganensis, Klebsiella grimontii and Klebsiella pasteurii), referred to as the K. oxytoca species complex (KoSC). There was significant diversity within the population, with only 10/67 multi-locus sequence types (STs) represented by more than one isolate. Strain transmission was rare, with only one likely event identified. Six isolates had extended spectrum beta-lactamase (blaSHV-12 and/or blaCTX-M-9) or carbapenemase (blaIMP-4) genes. One pair of K. michiganensis and K. pasteurii genomes carried identical blaIMP-4 IncL/M plasmids, indicative of plasmid transmission. CONCLUSION Whilst antimicrobial resistance was rare, the resistance plasmids were similar to those found in other Enterobacterales, demonstrating that KoSC has access to the same plasmid reservoir and thus there is potential for multi-drug resistance. Further genomic studies are required to improve our understanding of the KoSC population and facilitate investigation into the attributes of successful nosocomial isolates.
Collapse
Affiliation(s)
- James Stewart
- grid.413210.50000 0004 4669 2727Department of Infectious Diseases, Cairns Hospital, Cairns, QLD 4870 Australia
| | - Louise M. Judd
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004 Australia
| | - Adam Jenney
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004 Australia ,grid.1623.60000 0004 0432 511XMicrobiology Unit, Alfred Pathology Service, The Alfred Hospital Melbourne, Melbourne, VIC 3004 Australia
| | - Kathryn E. Holt
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004 Australia ,grid.8991.90000 0004 0425 469XDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Kelly L. Wyres
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004 Australia
| | - Jane Hawkey
- grid.1002.30000 0004 1936 7857Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC 3004 Australia
| |
Collapse
|
46
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
47
|
Sun F, Sun Y, Wang Y, Yuan Q, Xiong L, Feng W, Xia P. Role of Penicillin-Binding Protein 1b in the Biofilm Inhibitory Efficacy of Ceftazidime Against Escherichia coli. Curr Microbiol 2022; 79:271. [PMID: 35881255 DOI: 10.1007/s00284-022-02966-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Penicillin-binding proteins (PBPs) play an important role in bacterial biofilm formation and are the targets of β-lactam antibiotics. This study aimed to investigate the effect of the β-lactam antibiotic ceftazidime (CAZ) at subminimal inhibitory concentration (sub-MIC) on the biofilm formation of Escherichia coli by targeting PBPs. In this study, PBP1a (encoded by mrcA), PBP1b (encoded by mrcB) and PBP3 (encoded by ftsI), which have high affinity for CAZ, were deleted from the E. coli strain. The mrcB mutant showed lower adhesion, biofilm formation and swimming motility, whereas the knockout of mrcA or ftsI had no obvious influence on the biofilm-associated indicators mentioned above. After treatment with sub-MIC of CAZ, the adhesion, biofilm formation and swimming motility of the mrcB-mutant strain were not different or were slightly reduced compared with those of the untreated group. However, sub-MIC of CAZ still significantly inhibited these biofilm-associated indicators in mrcA- and ftsI-mutant strains. In addition, consistent with the bacterial motility results, the deletion of the mrcB gene reduced the flagellar numbers and the expression of flagellar structural genes, but flagellum-related indicators in the mrcB-mutant strain treated with CAZ were similar to those in the untreated group. Bioinformatic analysis showed that CAZ binds to Lys287, Lys274, Glu281, and Arg286 in PBP1b. Taken together, these results suggest that CAZ reduced flagellar synthesis and bacterial motility by binding with PBP1b and thereby inhibited the adhesion and biofilm formation of E. coli.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yixuan Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.,Department of Pharmacy, Chongqing Municipal People's Hospital, Chongqing, 400014, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30, Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
48
|
Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci 2022; 23:ijms23158088. [PMID: 35897667 PMCID: PMC9332259 DOI: 10.3390/ijms23158088] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
This paper discusses the mechanisms of S. aureus drug resistance including: (1) introduction. (2) resistance to beta-lactam antibiotics, with particular emphasis on the mec genes found in the Staphylococcaceae family, the structure and occurrence of SCCmec cassettes, as well as differences in the presence of some virulence genes and its expression in major epidemiological types and clones of HA-MRSA, CA-MRSA, and LA-MRSA strains. Other mechanisms of resistance to beta-lactam antibiotics will also be discussed, such as mutations in the gdpP gene, BORSA or MODSA phenotypes, as well as resistance to ceftobiprole and ceftaroline. (3) Resistance to glycopeptides (VRSA, VISA, hVISA strains, vancomycin tolerance). (4) Resistance to oxazolidinones (mutational and enzymatic resistance to linezolid). (5) Resistance to MLS-B (macrolides, lincosamides, ketolides, and streptogramin B). (6) Aminoglycosides and spectinomicin, including resistance genes, their regulation and localization (plasmids, transposons, class I integrons, SCCmec), and types and spectrum of enzymes that inactivate aminoglycosides. (7). Fluoroquinolones (8) Tetracyclines, including the mechanisms of active protection of the drug target site and active efflux of the drug from the bacterial cell. (9) Mupirocin. (10) Fusidic acid. (11) Daptomycin. (12) Resistance to other antibiotics and chemioterapeutics (e.g., streptogramins A, quinupristin/dalfopristin, chloramphenicol, rifampicin, fosfomycin, trimethoprim) (13) Molecular epidemiology of MRSA.
Collapse
|
49
|
AMRO MM, GÜLER E, SÜER K, GÜVENİR M. Which Phenotypic Method Is the Most Accurate for Detection of Extended – Spectrum β-Lactamases (ESBLs) in Escherichia coli ? CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.987433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: The aim of the study is to determine the Extended-Spectrum β-Lactamases (ESBLs) by three different phenotypic methods of the Escherichia coli (E. coli) strains that isolated from various clinical samples.
Methods: A total of 93 E. coli samples were isolated from hospitalized patients. Antibiotic susceptibility tests were done by automated system Phoenix 100 (Becton Dickinson, Sparks, MD, USA). ESBL production was tested by double disc synergy test (DDST), combined disc test (CDT) and three-dimensional test (TDT). All statistical analyses were done using statistical packages SPSS Demo Ver 22 (SPSS Inc. Chicago, IL, USA).
Results: In the investigation of ESBL production among E. coli species, 87 (93.5%) strains were ESBL positive by DDST, 73 (78.5%) strains were ESBL positive by CDT, 71 (76.3%) strains were ESBL positive by TDT. According to statistical analysis: There were statistical differences between DDST-CDT (p=
Collapse
|
50
|
Foudraine DE, Dekker LJM, Strepis N, Nispeling SJ, Raaphorst MN, Kloezen W, Colle P, Verbon A, Klaassen CHW, Luider TM, Goessens WHF. Using Targeted Liquid Chromatography-Tandem Mass Spectrometry to Rapidly Detect β-Lactam, Aminoglycoside, and Fluoroquinolone Resistance Mechanisms in Blood Cultures Growing E. coli or K. pneumoniae. Front Microbiol 2022; 13:887420. [PMID: 35814653 PMCID: PMC9257628 DOI: 10.3389/fmicb.2022.887420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/26/2022] Open
Abstract
New and rapid antimicrobial susceptibility/resistance testing methods are required for bacteria from positive blood cultures. In this study, a multiplex-targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed and validated for the detection of β-lactam, aminoglycoside, and fluoroquinolone resistance mechanisms in blood cultures growing Escherichia coli or Klebsiella pneumoniae complex. Selected targets were the β-lactamases SHV, TEM, OXA-1-like, CTX-M-1-like, CMY-2-like, chromosomal E. coli AmpC (cAmpC), OXA-48-like, NDM, VIM, and KPC; the aminoglycoside-modifying enzymes AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6′)-Ib, ANT(2′′)-I, and APH(3′)-VI; the 16S-RMTases ArmA, RmtB, RmtC, and RmtF; the quinolone resistance mechanisms QnrA, QnrB, AAC(6′)-Ib-cr; the wildtype quinolone resistance determining region of GyrA; and the E. coli porins OmpC and OmpF. The developed assay was evaluated using 100 prospectively collected positive blood cultures, and 148 negative blood culture samples spiked with isolates previously collected from blood cultures or isolates carrying less prevalent resistance mechanisms. The time to result was approximately 3 h. LC-MS/MS results were compared with whole-genome sequencing and antimicrobial susceptibility testing results. Overall, there was a high agreement between LC-MS/MS results and whole-genome sequencing results. In addition, the majority of susceptible and non-susceptible phenotypes were correctly predicted based on LC-MS/MS results. Exceptions were the predictions for ciprofloxacin and amoxicillin/clavulanic acid that matched with the phenotype in 85.9 and 63.7% of the isolates, respectively. Targeted LC-MS/MS based on parallel reaction monitoring can be applied for the rapid and accurate detection of various resistance mechanisms in blood cultures growing E. coli or K. pneumoniae complex.
Collapse
Affiliation(s)
- Dimard E. Foudraine
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
- *Correspondence: Dimard E. Foudraine,
| | - Lennard J. M. Dekker
- Department of Neurology, Neuro-Oncology Laboratory, Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Stan J. Nispeling
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Merel N. Raaphorst
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Wendy Kloezen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Piet Colle
- Da Vinci Laboratory Solutions, Rotterdam, Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Theo M. Luider
- Department of Neurology, Neuro-Oncology Laboratory, Clinical and Cancer Proteomics, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center (Erasmus MC), Rotterdam, Netherlands
| |
Collapse
|