1
|
Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnol Lett 2023; 45:1053-1072. [PMID: 37335426 DOI: 10.1007/s10529-023-03383-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 06/21/2023]
Abstract
Cancer is one of the leading causes of death and mortality in the world. There is an essential need to develop new drugs or therapeutic approaches to manage treatment-resistant cancers. Cancer immunotherapy is a type of cancer treatment that uses the power of the body's immune system to prevent, control, and eliminate cancer. One of the materials used as a vaccine in immunotherapy is DNA. The application of polymeric nanoparticles as carriers for DNA vaccines could be an effective therapeutic approach to activate immune responses and increase antigen presentation efficiency. Various materials have been used as polymeric nanoparticles, including: chitosan, poly (lactic-co-glycolic acid), Polyethylenimine, dendrimers, polypeptides, and polyesters. Application of these polymer nanoparticles has several advantages, including increased vaccine delivery, enhanced antigen presentation, adjuvant effects, and more sustainable induction of the immune system. Besides many clinical trials and commercial products that were developed based on polymer nanoparticles, there is still a need for more comprehensive studies to increase the DNA vaccine efficiency in cancer immunotherapy using this type of carrier.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houra Mobaleghol Eslam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Zare
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Momeneh Ghanaat
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Sekinehe Shokouhi Koushali
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lin WHW, Moran E, Adams RJ, Sievers RE, Hauer D, Godin S, Griffin DE. A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Sci Transl Med 2021; 12:12/537/eaax7799. [PMID: 32238577 DOI: 10.1126/scitranslmed.aax7799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Infection with wild-type (WT) measles virus (MeV) is an important cause of childhood mortality that leads to lifelong protective immunity in survivors. WT MeV and the live-attenuated MeV used in the measles vaccine (LAMV) are antigenically similar, but the determinants of attenuation are unknown, and protective immunity induced by LAMV is less robust than that induced by WT MeV. To identify factors that contribute to these differences, we compared virologic and immunologic responses after respiratory infection of rhesus macaques with WT MeV or LAMV. In infected macaques, WT MeV replicated efficiently in B and T lymphocytes with spreading throughout lymphoid tissues resulting in prolonged persistence of viral RNA. In contrast, LAMV replicated efficiently in the respiratory tract but displayed limited spread to lymphoid tissue or peripheral blood mononuclear cells. In vitro, WT MeV and LAMV replicated similarly in macaque primary respiratory epithelial cells and human lymphocytes, but LAMV-infected lymphocytes produced little virus. Plasma concentrations of interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), CCL2, CCL11, CXCL9, and CXCL11 increased in macaques after WT MeV but not LAMV infection. WT MeV infection induced more protective neutralizing, hemagglutinin-specific antibodies and bone marrow plasma cells than did LAMV infection, although numbers of MeV-specific IFN-γ- and IL-4-producing T cells were comparable. Therefore, MeV attenuation may involve altered viral replication in lymphoid tissue that limited spread and decreased the host antibody response, suggesting a link between lifelong protective immunity and the ability of WT MeV, but not LAMV, to spread in lymphocytes.
Collapse
Affiliation(s)
- Wen-Hsuan W Lin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eileen Moran
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Robert E Sievers
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Debra Hauer
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Abstract
My great-grandparents were immigrants from Sweden and settled as farmers in Iowa and Illinois. My father, the oldest of six children, was the first in his family to go to college and had careers as a petroleum geologist and an academic. My mother, the youngest of four children, had older siblings in education, and she focused on early childhood education. My childhood in Oklahoma with two younger sisters was happy and comfortable, and public school prepared me well. My career trajectory into virology did not involve much if any advance planning but was characterized by recognizing the fascinating puzzles of virus diseases, being in good places at the right time, taking advantage of opportunities as they presented themselves, and being surrounded by great mentors, colleagues, trainees, and family. Most of my career was spent studying two diseases caused by RNA viruses, alphavirus encephalomyelitis and measles, and was enriched with several leadership opportunities.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
4
|
Waning immunity and re-emergence of measles and mumps in the vaccine era. Curr Opin Virol 2020; 40:48-54. [PMID: 32634672 DOI: 10.1016/j.coviro.2020.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Vaccine-preventable diseases (VPD) including measles and mumps have been re-emerging in countries with sustained high vaccine coverage. For mumps, waning immunity has been recognized as a major contributor to recent outbreaks. Although unvaccinated individuals account for most cases in recent measles outbreaks, the role of immune waning remains unclear. Accumulating serological and epidemiological evidence suggests that natural immunity induced by infection may be more durable compared to vaccine-induced immunity. As the proportion of population immunity via vaccination gradually increases and boosting through natural exposures becomes rare, risk of outbreaks may increase. Mechanistic insights into the coupled immuno-epidemiological dynamics of waning and boosting will be important to understand optimal vaccination strategies to combat VPD re-emergence and achieve eradication.
Collapse
|
5
|
Abstract
Measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine. The current measles virus (MeV) vaccine was developed empirically by attenuation of wild-type (WT) MeV by in vitro passage in human and chicken cells and licensed in 1963. Additional passages led to further attenuation and the successful vaccine strains in widespread use today. Attenuation is associated with decreased replication in lymphoid tissue, but the molecular basis for this restriction has not been identified. The immune response is age dependent, inhibited by maternal antibody (Ab) and involves induction of both Ab and T cell responses that resemble the responses to WT MeV infection, but are lower in magnitude. Protective immunity is correlated with levels of neutralizing Ab, but the actual immunologic determinants of protection are not known. Because measles is highly transmissible, control requires high levels of population immunity. Delivery of the two doses of vaccine needed to achieve >90% immunity is accomplished by routine immunization of infants at 9-15 months of age followed by a second dose delivered before school entry or by periodic mass vaccination campaigns. Because delivery by injection creates hurdles to sustained high coverage, there are efforts to deliver MeV vaccine by inhalation. In addition, the safety record for the vaccine combined with advances in reverse genetics for negative strand viruses has expanded proposed uses for recombinant versions of measles vaccine as vectors for immunization against other infections and as oncolytic agents for a variety of tumors.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| |
Collapse
|
6
|
Affiliation(s)
- Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Yanhang Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236 Baidi Road, Nankai District, Tianjin 300192, China
| | - Chun Wang
- Department
of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo
Hall, 312 Church Street S. E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Griffin DE. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity. Viruses 2016; 8:v8100282. [PMID: 27754341 PMCID: PMC5086614 DOI: 10.3390/v8100282] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022] Open
Abstract
Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10–14 days. The first appearance of the disease is a 2–3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4+ and CD8+ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression. J Virol 2016; 90:5270-5279. [PMID: 26984727 DOI: 10.1128/jvi.00348-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved neutralizing responses induced in two small-animal models of MV immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV that incorporates additional H, suggests their value as potential alternative pediatric MV vaccines.
Collapse
|
9
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
10
|
Purwada A, Roy K, Singh A. Engineering vaccines and niches for immune modulation. Acta Biomater 2014; 10:1728-40. [PMID: 24373907 DOI: 10.1016/j.actbio.2013.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
Controlled modulation of immune response, especially the balance between immunostimulatory and immunosuppressive responses, is critical for a variety of clinical applications, including immunotherapies against cancer and infectious diseases, treatment of autoimmune disorders, transplant surgeries, regenerative medicine, prosthetic implants, etc. Our ability to precisely modify both innate and adaptive immune responses could provide new therapeutic directions in a variety of diseases. In the context of vaccines and immunotherapies, the interplay between antigen-presenting cells (e.g. dendritic cells and macrophages), B cells, T helper and killer subtypes, and regulatory T- and B-cell responses is critical for generating effective immunity against cancer, infectious diseases and autoimmune diseases. In recent years, immunoengineering has emerged as a new field that uses quantitative engineering tools to understand molecular-, cellular- and system-level interactions of the immune system and to develop design-driven approaches to control and modulate immune responses. Biomaterials are an integral part of this engineering toolbox and can exploit the intrinsic biological and mechanical cues of the immune system to directly modulate and train immune cells and direct their response to a particular phenotype. A large body of literature exists on strategies to evade or suppress the immune response in implants, transplantation and regenerative medicine. This review specifically focuses on the use of biomaterials for immunostimulation and controlled modulation, especially in the context of vaccines and immunotherapies against cancer, infectious diseases and autoimmune disorders. Bioengineering smart systems that can simultaneously deliver multiple bioactive agents in a controlled manner or can work as a niche for in situ priming and modulation of the immune system could significantly enhance the efficacy of next-generation immunotherapeutics. In this review, we describe our perspective on the important design aspects for the development of biomaterials that can actively modulate immune responses by stimulating receptor complexes and cells, and delivering multiple immunomodulatory biomolecules.
Collapse
|
11
|
Bolhassani A, Javanzad S, Saleh T, Hashemi M, Aghasadeghi MR, Sadat SM. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum Vaccin Immunother 2013; 10:321-32. [PMID: 24128651 PMCID: PMC4185908 DOI: 10.4161/hv.26796] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/06/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Shabnam Javanzad
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | - Tayebeh Saleh
- Department of Nanobiotechnology; Faculty of Biological Sciences; Tarbiat Modares University; Tehran, Iran
| | - Mehrdad Hashemi
- Department of genetics; Islamic Azad University; Tehran Medical Branch; Tehran, Iran
| | | | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| |
Collapse
|
12
|
Chen HW, Liu SJ, Li YS, Liu HH, Tsai JP, Chiang CY, Chen MY, Hwang CS, Huang CC, Hu HM, Chung HH, Wu SH, Chong P, Leng CH, Pan CH. A consensus envelope protein domain III can induce neutralizing antibody responses against serotype 2 of dengue virus in non-human primates. Arch Virol 2013; 158:1523-31. [PMID: 23456422 DOI: 10.1007/s00705-013-1639-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that vaccination with a subunit dengue vaccine containing a consensus envelope domain III with aluminum phosphate elicits neutralizing antibodies against all four serotypes of dengue virus in mice. In this study, we evaluated the immunogenicity of the subunit dengue vaccine in non-human primates. After vaccination, monkeys that received the subunit vaccine with aluminum phosphate developed a significantly strong and long-lasting antibody response. A specific T cell response with cytokine production was also induced, and this correlated with the antibody response. Additionally, neutralizing antibodies against serotype 2 were detected in two of three monkeys. The increase in serotype-2-specific antibody titers and avidity observed in these two monkeys suggested that a serotype-2-biased antibody response occurs. These data provide evidence that a protective neutralizing antibody response was successfully elicited in non-human primates by the dengue subunit vaccine with aluminum phosphate adjuvant.
Collapse
Affiliation(s)
- Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:205-10. [PMID: 23239799 DOI: 10.1128/cvi.00394-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.
Collapse
|
14
|
Mao S, Guo C, Shi Y, Li LC. Recent advances in polymeric microspheres for parenteral drug delivery--part 2. Expert Opin Drug Deliv 2012; 9:1209-23. [PMID: 22924745 DOI: 10.1517/17425247.2012.717926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Currently marketed microsphere products are manufactured with the use of organic solvents which have a negative impact on the environment and stability of biological molecules. With recent advances in fabrication technologies, solvent free methods have demonstrated potential for the preparation of microspheres. AREAS COVERED New technical advances recently achieved in solvent based microsphere manufacturing processes have allowed for major improvement in product quality and properties. Novel solvent free fabrication methods combined with newly functionalized biodegradable polymers have been explored for their application in the preparation of microspheres containing biological molecules. EXPERT OPINION Novel fabrication methods for microspheres have been recently reported but technical challenges and development risks remain high for scale up from bench to industrial commercialization. While the applications of microspheres for delivery of proteins, genes and vaccines have shown promise for clinical use, the approval of newly functionalized polymers as carriers may still face scrutiny on safety and biocompatibility, which can be key factors in securing the regulatory approval of the product.
Collapse
Affiliation(s)
- Shirui Mao
- Shenyang Pharmaceutical University, School of Pharmacy, China
| | | | | | | |
Collapse
|
15
|
Kolk A, Haczek C, Koch C, Vogt S, Kullmer M, Pautke C, Deppe H, Plank C. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating. Biomaterials 2011; 32:6850-9. [PMID: 21741701 DOI: 10.1016/j.biomaterials.2011.05.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/25/2011] [Indexed: 01/01/2023]
Abstract
Bioactive implants are promising tools in regenerative medicine. Here we describe a versatile procedure for preparing a gene-activated matrix on titanium. Lyophilized copolymer-protected gene vectors (COPROGs) suspended in poly(d,l-lactide) (PDLLA) solutions in ethyl acetate were used to varnish solid surfaces. The gene-activated PDLLA surfaces were first established on polypropylene 96-well plates. Vector release from these surfaces in aqueous buffer, cell viability and gene transfer efficiency to NIH 3T3 fibroblasts was strongly dependent on the vector dose and its ratio to PDLLA film thickness. A detailed analysis of these relationships allowed establishing correlations which can be used to calculate suitable combinations of COPROGs and PDLLA yielding optimal gene transfer efficiency. This was verified with COPROG-activated PDLLA coatings on titanium foils. HEK 293 and mesenchymal stem cells expressed the BMP-2 gene comprised in the gene-activated surface in a manner that was consistent with the predicted dose-response and toxicity profiles found in NIH 3T3 cells. The systematic procedure presented here for identifying optimal coating compositions can be applied to any combination of vector type and coating material.
Collapse
Affiliation(s)
- Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Bavaria, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Barnett SW, Burke B, Sun Y, Kan E, Legg H, Lian Y, Bost K, Zhou F, Goodsell A, Zur Megede J, Polo J, Donnelly J, Ulmer J, Otten GR, Miller CJ, Vajdy M, Srivastava IK. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 2010; 84:5975-85. [PMID: 20392857 PMCID: PMC2876657 DOI: 10.1128/jvi.02533-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/18/2010] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Collapse
Affiliation(s)
- Susan W Barnett
- Novartis Vaccines and Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bergen MJ, Pan CH, Greer CE, Legg HS, Polo JM, Griffin DE. Comparison of the immune responses induced by chimeric alphavirus-vectored and formalin-inactivated alum-precipitated measles vaccines in mice. PLoS One 2010; 5:e10297. [PMID: 20421972 PMCID: PMC2858653 DOI: 10.1371/journal.pone.0010297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/25/2010] [Indexed: 02/07/2023] Open
Abstract
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-gamma and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.
Collapse
Affiliation(s)
- M. Jeff Bergen
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Catherine E. Greer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Harold S. Legg
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - John M. Polo
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Diane E. Griffin
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Pan CH, Greer CE, Hauer D, Legg HS, Lee EY, Bergen MJ, Lau B, Adams RJ, Polo JM, Griffin DE. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. J Virol 2010; 84:3798-807. [PMID: 20130066 PMCID: PMC2849488 DOI: 10.1128/jvi.01566-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022] Open
Abstract
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-gamma)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-gamma-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Catherine E. Greer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Harold S. Legg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - M. Jeff Bergen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Brandyn Lau
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Robert J. Adams
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - John M. Polo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| |
Collapse
|
19
|
Nguyen DN, Green JJ, Chan JM, Longer R, Anderson DG. Polymeric Materials for Gene Delivery and DNA Vaccination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:847-867. [PMID: 28413262 PMCID: PMC5391878 DOI: 10.1002/adma.200801478] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gene delivery holds great potential for the treatment of many different diseases. Vaccination with DNA holds particular promise, and may provide a solution to many technical challenges that hinder traditional vaccine systems including rapid development and production and induction of robust cell-mediated immune responses. However, few candidate DNA vaccines have progressed past preclinical development and none have been approved for human use. This Review focuses on the recent progress and challenges facing materials design for nonviral DNA vaccine drug delivery systems. In particular, we highlight work on new polymeric materials and their effects on protective immune activation, gene delivery, and current efforts to optimize polymeric delivery systems for DNA vaccination.
Collapse
Affiliation(s)
- David N Nguyen
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Jordan J Green
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Juliana M Chan
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Robert Longer
- Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Ave, E25 Room 342, Cambridge, MA 02139 (USA)
| |
Collapse
|
20
|
Plotkin SA. Sang Froid in a time of trouble: is a vaccine against HIV possible? J Int AIDS Soc 2009; 12:2. [PMID: 19187552 PMCID: PMC2647531 DOI: 10.1186/1758-2652-12-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/02/2009] [Indexed: 12/11/2022] Open
Abstract
Since the announcement of the STEP trial results in the past months, we have heard many sober pronouncements on the possibility of an HIV vaccine. On the other hand, optimistic quotations have been liberally used, from Shakespeare's Henry V's "Once more unto the breach, dear friends" to Winston Churchill's definition of success as "going from one failure to another with no loss of enthusiasm". I will forgo optimistic quotations for the phrase "Sang Froid", which translates literally from the French as "cold blood"; what it really means is to avoid panic when things look bad, to step back and coolly evaluate the situation. This is not to counsel easy optimism or to fly in face of the facts, but I believe that while the situation is serious, it is not desperate.I should stipulate at the outset that I am neither an immunologist nor an expert in HIV, but someone who has spent his life in vaccine development. What I will try to do is to provide a point of view from that experience.There is no doubt that the results of STEP were disappointing: not only did the vaccine fail to control viral load, but may have adversely affected susceptibility to infection. But HIV is not the only vaccine to experience difficulties; what lessons can we glean from prior vaccine development?
Collapse
|
21
|
de Vries RD, Stittelaar KJ, Osterhaus ADME, de Swart RL. Measles vaccination: new strategies and formulations. Expert Rev Vaccines 2008; 7:1215-23. [PMID: 18844595 DOI: 10.1586/14760584.7.8.1215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measles is a highly contagious viral disease. With 1 million deaths reported in 1996, measles was the leading cause of vaccine-preventable deaths. However, in recent years, significant progress has been made in measles control, reducing deaths attributed to measles to 454,000 in 2004 and 242,000 in 2006. The main strategy behind this reduction has been the improvement of vaccination coverage and implementation of a second opportunity for immunization with the live-attenuated measles vaccine. The Measles Initiative, a partnership between the American Red Cross, CDC, UNICEF, WHO and UN Foundation, has had a significant role in this achievement. Here, we provide an overview of old and new vaccination strategies, and discuss changes in the route of administration of the existing live-attenuated vaccine, the development of new-generation nonreplicating measles virus vaccine candidates and attempts to use recombinant measles virus as a vector for vaccination against other pathogens.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Abstract
Isolation of measles virus in tissue culture by Enders and colleagues in the 1960s led to the development of the first measles vaccines. An inactivated vaccine provided only short-term protection and induced poor T cell responses and antibody that did not undergo affinity maturation. The response to this vaccine primed for atypical measles, a more severe form of measles, and was withdrawn. A live attenuated virus vaccine has been highly successful in protection from measles and in elimination of endemic measles virus transmission with the use of two doses. This vaccine is administered by injection between 9 and 15 months of age. Measles control would be facilitated if infants could be immunized at a younger age, if the vaccine were thermostable, and if delivery did not require a needle and syringe. To these ends, new vaccines are under development using macaques as an animal model and various combinations of the H, F, and N viral proteins. Promising studies have been reported using DNA vaccines, subunit vaccines, and virus-vectored vaccines.
Collapse
Affiliation(s)
- D E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St. Rm E5132 Baltimore, MD 21205, USA.
| | | |
Collapse
|
23
|
Pan CH, Jimenez GS, Nair N, Wei Q, Adams RJ, Polack FP, Rolland A, Vilalta A, Griffin DE. Use of Vaxfectin adjuvant with DNA vaccine encoding the measles virus hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques against measles virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1214-21. [PMID: 18524884 PMCID: PMC2519314 DOI: 10.1128/cvi.00120-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/06/2008] [Accepted: 05/21/2008] [Indexed: 11/20/2022]
Abstract
A measles virus vaccine for infants under 6 months of age would help control measles. DNA vaccines hold promise, but none has provided full protection from challenge. Codon-optimized plasmid DNAs encoding the measles virus hemagglutinin and fusion glycoproteins were formulated with the cationic lipid-based adjuvant Vaxfectin. In mice, antibody and gamma interferon (IFN-gamma) production were increased by two- to threefold. In macaques, juveniles vaccinated at 0 and 28 days with 500 microg of DNA intradermally or with 1 mg intramuscularly developed sustained neutralizing antibody and H- and F-specific IFN-gamma responses. Infant monkeys developed sustained neutralizing antibody and T cells secreting IFN-gamma and interleukin-4. Twelve to 15 months after vaccination, vaccinated monkeys were protected from an intratracheal challenge: viremia was undetectable by cocultivation and rashes did not appear, while two naïve monkeys developed viremia and rashes. The use of Vaxfectin-formulated DNA is a promising approach to the development of a measles vaccine for young infants.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|