1
|
Reciprocal Inhibition of Immunogenic Performance in Mice of Two Potent DNA Immunogens Targeting HCV-Related Liver Cancer. Microorganisms 2021; 9:microorganisms9051073. [PMID: 34067686 PMCID: PMC8156932 DOI: 10.3390/microorganisms9051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic HCV infection and associated liver cancer impose a heavy burden on the healthcare system. Direct acting antivirals eliminate HCV, unless it is drug resistant, and partially reverse liver disease, but they cannot cure HCV-related cancer. A possible remedy could be a multi-component immunotherapeutic vaccine targeting both HCV-infected and malignant cells, but also those not infected with HCV. To meet this need we developed a two-component DNA vaccine based on the highly conserved core protein of HCV to target HCV-infected cells, and a renowned tumor-associated antigen telomerase reverse transcriptase (TERT) based on the rat TERT, to target malignant cells. Their synthetic genes were expression-optimized, and HCV core was truncated after aa 152 (Core152opt) to delete the domain interfering with immunogenicity. Core152opt and TERT DNA were highly immunogenic in BALB/c mice, inducing IFN-γ/IL-2/TNF-α response of CD4+ and CD8+ T cells. Additionally, DNA-immunization with TERT enhanced cellular immune response against luciferase encoded by a co-delivered plasmid (Luc DNA). However, DNA-immunization with Core152opt and TERT mix resulted in abrogation of immune response against both components. A loss of bioluminescence signal after co-delivery of TERT and Luc DNA into mice indicated that TERT affects the in vivo expression of luciferase directed by the immediate early cytomegalovirus and interferon-β promoters. Panel of mutant TERT variants was created and tested for their expression effects. TERT with deleted N-terminal nucleoli localization signal and mutations abrogating telomerase activity still suppressed the IFN-β driven Luc expression, while the inactivated reverse transcriptase domain of TERT and its analogue, enzymatically active HIV-1 reverse transcriptase, exerted only weak suppressive effects, implying that suppression relied on the presence of the full-length/nearly full-length TERT, but not its enzymatic activity. The effect(s) could be due to interference of the ectopically expressed xenogeneic rat TERT with biogenesis of mRNA, ribosomes and protein translation in murine cells, affecting the expression of immunogens. HCV core can aggravate this effect, leading to early apoptosis of co-expressing cells, preventing the induction of immune response.
Collapse
|
2
|
Designing an HCV diagnostic kit for common genotypes of the virus in Iran based on conserved regions of core, NS3-protease, NS4A/B, and NS5A/B antigens: an in silico approach. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00566-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Bahrami AA, Bandehpour M, Kazemi B, Bozorgmehr M, Mosaffa N, Chegeni R. Assessment of a poly-epitope candidate vaccine against Hepatitis B, C, and poliovirus in interaction with monocyte-derived dendritic cells: An ex-vivo study. Hum Immunol 2020; 81:218-227. [PMID: 32113655 DOI: 10.1016/j.humimm.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Design and application of epitope-based polyvalent vaccines have recently garnered attention as an efficient alternative for conventional vaccines. We previously have reported the in silico design of HHP antigen which encompasses the immune-dominant epitopes of Hepatitis B surface antigen (HBsAg), Hepatitis C core protein (HCVcp) and Poliovirus viral proteins (VPs). It has been shown that the HHP has desirable conformation to expose the epitopes, high antigenicity and other desired physicochemical and immunological properties. To confirm the accuracy of these predictions, the ex-vivo immunogenicity of the HHP was assessed. The HHP gene was chemically synthesized in pET28a and expressed in E. coli (BL21). The expressed protein was purified and its immunological potency was evaluated on dendritic cells (DCs) as antigen presenting cells (APCs). Functional analysis was assessed in co-cultivation of autologous T-cells with matured DCs (mDCs). T-cell activation, proliferation and cytokines secretion were evaluated using flowcytometry and ELISA methods. Our results indicated that the HHP could induce the DC maturation. The mDCs were able to trigger T-cell activation and proliferation. In silico design and ex-vivo confirmation of immunological potential could pave the way to introduce efficient immunogens for further analysis. The ability of HHP in DC maturation and T-cell activation makes it an amenable vaccine candidate for further in-vivo studies.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| |
Collapse
|
4
|
Nucleic acid vaccines for hepatitis B and C virus. INFECTION GENETICS AND EVOLUTION 2019; 75:103968. [PMID: 31325609 DOI: 10.1016/j.meegid.2019.103968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections accounts for an important global health problem affecting over 250 million people all around the world. They can cause acute, transient and chronic infections in the human liver. Chronic infection of liver can lead to its failure or cancer. To deal with this problem, alternative approaches or strategies to inhibit these infections have already been started. DNA and mRNA-based vaccination will increase the efficacy and reduce toxicity in patients with Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. Gene vaccines represent a promising alternative to conventional vaccine approaches because of their high potency, capacity for rapid development, low-cost manufacture and safe administration. MRNA-based vaccination is a method to elicit potent antigen-specific humoral and cell-mediated immune responses with a superior safety profile compared with DNA vaccines. Exploring the intricacies of these pathways can potentially help the researchers to explore newer vaccines. In this study, DNA and mRNA-based vaccination are introduced as an approach to treat Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections. DNA and mRNA-based vaccines as one of the most successful therapeutics are introduced and the clinical outcomes of their exploitation are explained.
Collapse
|
5
|
Jansons J, Sominskaya I, Petrakova N, Starodubova ES, Smirnova OA, Alekseeva E, Bruvere R, Eliseeva O, Skrastina D, Kashuba E, Mihailova M, Kochetkov SN, Ivanov AV, Isaguliants MG. The Immunogenicity in Mice of HCV Core Delivered as DNA Is Modulated by Its Capacity to Induce Oxidative Stress and Oxidative Stress Response. Cells 2019; 8:208. [PMID: 30823485 PMCID: PMC6468923 DOI: 10.3390/cells8030208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
HCV core is an attractive HCV vaccine target, however, clinical or preclinical trials of core-based vaccines showed little success. We aimed to delineate what restricts its immunogenicity and improve immunogenic performance in mice. We designed plasmids encoding full-length HCV 1b core and its variants truncated after amino acids (aa) 60, 98, 152, 173, or up to aa 36 using virus-derived or synthetic polynucleotides (core191/60/98/152/173/36_191v or core152s DNA, respectively). We assessed their level of expression, route of degradation, ability to trigger the production of reactive oxygen species/ROS, and to activate the components of the Nrf2/ARE antioxidant defense pathway heme oxygenase 1/HO-1 and NAD(P)H: quinone oxidoreductase/Nqo-1. All core variants with the intact N-terminus induced production of ROS, and up-regulated expression of HO-1 and Nqo-1. The capacity of core variants to induce ROS and up-regulate HO-1 and Nqo-1 expression predetermined their immunogenicity in DNA-immunized BALB/c and C57BL/6 mice. The most immunogenic was core 152s, expressed at a modest level and inducing moderate oxidative stress and oxidative stress response. Thus, immunogenicity of HCV core is shaped by its ability to induce ROS and oxidative stress response. These considerations are important in understanding the mechanisms of viral suppression of cellular immune response and in HCV vaccine design.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Natalia Petrakova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Elizaveta S Starodubova
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ekaterina Alekseeva
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Ruta Bruvere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Olesja Eliseeva
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
| | - Dace Skrastina
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- RE Kavetsky Institite of Experimental Pathology, Oncology and Radiobiology, The National Academy of Sciences of Ukraine, 03022 Kyiv, Ukraine.
| | - Marija Mihailova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Maria G Isaguliants
- Department of Pathology, Riga Stradins University, LV-1007 Riga, Latvia.
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
- N.F. Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia.
- MP Chumakov Center for Research and Development of Immune and Biological Preparations of RAS, 108819 Moscow, Russia.
| |
Collapse
|
6
|
Chernykh E, Leplina O, Oleynik E, Tikhonova M, Tyrinova T, Starostina N, Ostanin A. Immunotherapy with interferon-α-induced dendritic cells for chronic HCV infection (the results of pilot clinical trial). Immunol Res 2019; 66:31-43. [PMID: 29164490 DOI: 10.1007/s12026-017-8967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The key role of T cells in hepatitis C virus (HCV) elimination and the ability of dendritic cells (DCs) to induce antiviral T cell responses suggest that DC vaccines could be a promising approach in the treatment of chronic HCV infection. The aim of our study was to evaluate, whether immunotherapy with DCs is safe and elicits anti-HCV T cell responses. Ten patients with HCV (genotype 1) were vaccinated with monocyte-derived DCs, generated in the presence of IFN-α (IFN-DCs) and pulsed with recombinant HCV Core and NS3 proteins. Treatment schedule included four subcutaneous vaccinations with 1 week interval and six vaccinations with month interval. No serious adverse events or an increase in hepatitis C biochemical activity were registered after vaccination. Using ex vivo assays for the detection of proliferative responses, IFN-γ production and CD8+ degranulation have shown that immunotherapy elicited antigen-specific responses in all patients although individual heterogeneity existed within their types, magnitude, and timing. Core/NS3-specific proliferative response and CD8+ T cell degranulation have already been registered after the first course of vaccination. Of note, Core-specific responses had higher magnitude. The appearance of antigen-specific IFN-γ responses was registered after the second vaccination course. Vaccination did not cause Th2 response and expansion of the CD4+CD25+CD127- regulatory T cells. Generated immune responses failed to provide virus elimination. Nevertheless, there were inverse correlations between viral load and NS3-specific proliferation (R S = 0.62; p = 0.05) and IFN-γ secretion (R S = - 0.82; p = 0.001) at 6-month post-treatment period. Immunotherapy with IFN-DCs was safe and elicited HCV-specific T cell responses which were insufficient to eliminate viruses but could be implicated in the restriction of viral replication.
Collapse
Affiliation(s)
- Elena Chernykh
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Olga Leplina
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia.
| | - Ekaterina Oleynik
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Marina Tikhonova
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Tamara Tyrinova
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| | - Natalia Starostina
- Department of the Clinic of Immunopathology of Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Alexandr Ostanin
- Laboratory of Cellular Immunotherapy, Institute of Fundamental and Clinical Immunology, 630099, Novosibirsk, Yadrintsevskaya str., 14, Russia
| |
Collapse
|
7
|
Mohammadzadeh S, Roohvand F, Ajdary S, Ehsani P, Hatef Salmanian A. Heterologous Expression of Hepatitis C Virus Core Protein in Oil Seeds of Brassica napus L. Jundishapur J Microbiol 2015; 8:e25462. [PMID: 26855744 PMCID: PMC4735835 DOI: 10.5812/jjm.25462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatitis c virus (HCV), prevalent among 3% of the world population, is a major worldwide public health concern and an effective vaccination could help to overcome this problem. Plant seeds as low-cost vaccine expression platforms are highly desirable to produce antigens. Objectives: The present study was aimed at investigating the possible expression of recombinant HCV core protein, as a leading HCV vaccine candidate, in canola (Brassica napus) plant seeds in order to be used as an effective immunogen for vaccine researches. Materials and Methods: A codon-optimized gene harboring the Kozak sequence, 6 × His-tag, HCVcp (1 - 122 residues) and KDEL (Lys-Asp-Glu-Leu) peptide in tandem was designed and expressed under the control of the seed specific promoter, fatty acid elongase 1 (FAE1), to accumulate the recombinant protein in canola (B. napus L.) seeds. Transgenic lines were screened and the presence of the transgene was confirmed in the T0 plants by polymerase chain reaction (PCR). The quantity and quality of the HCV core protein (HCVcp) in transgenic seeds were evaluated by enzyme-linked immunosorbent assay (ELISA) and western blot, respectively. Results: Western blot analysis using anti-His antibody confirmed the presence of a 15 kDa protein in the seeds of T1 transgenic lines. The amount of antigenic protein accumulated in the seeds of these transgenic lines was up to 0.05% of the total soluble protein (TSP). Conclusions: The canola oilseeds could provide a useful expression system to produce HCV core protein as a vaccine candidate.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Soheila Ajdary
- Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Molecular Biology Department, Pasteur Institute of Iran, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| | - Ali Hatef Salmanian
- Agricultural Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
- Corresponding authors: Parastoo Ehsani, Molecular Biology Department, Pasteur Institute of Iran, P. O. Box: 1316943551, Tehran, IR Iran. Tel/Fax: +98-2164112219, E-mail: ; Ali Hatef Salmanian, Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, P. O. Box: 14965-161, Tehran, IR Iran. Tel: +98-2144580365, Fax: +98-2144580395, E-mail:
| |
Collapse
|
8
|
Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R, Khanahmad H, Soleimanjahi H, Budkowska A, Roohvand F. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res 2015; 4:13. [PMID: 25625119 PMCID: PMC4300588 DOI: 10.4103/2277-9175.148296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022] Open
Abstract
Background: Fusion of Hepatitis B virus surface antigen (HBsAg) to a DNA construct might be considered as a strategy to enhance cellular and cytotoxic T-lymphocytes (CTL) responses of a Hepatitis C Virus core protein (HCVcp)-based DNA vaccine comparable to that of adjuvanted protein (subunit) immunization. Materials and Methods: pCHCORE vector harboring coding sequence of HBsAg and HCVcp (amino acids 2-120) in tandem within the pCDNA3.1 backbone was constructed. The corresponding recombinant HCVcp was also expressed and purified in Escherichia coli. Mice were immunized either by adjuvanted HCVcp (pluronic acid + protein) or by pCHCORE vector primed/protein boosted immunization regimen. The cellular immune responses (proliferation, In vivo CTL assay and IFN-γ/IL-4 ELISpot) against a strong and dominant H2-d restricted, CD8+-epitopic peptide (C39) (core 39-48; RRGPRLGVRA) of HCVcp were compared in immunized animals. Result: Proper expression of the fused protein by pCHCORE in transiently transfected HEK 293T cells and in the expected size (around 50 kDa) was confirmed by western blotting. The immunization results indicated that the pCHCORE shifted the immune responses pathway to Th1 by enhancing the IFN-γ cytokine level much higher than protein immunization while the proliferative and CTL responses were comparable (or slightly in favor of DNA immunization). Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine) immunization.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production, Pasteur Institute of Iran, Karaj, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Medical School, Tarbiat Moderes University (TMU), Tehran, Iran
| | - Agata Budkowska
- Department of Virology, Unit of Hepacivirus and Innate Immunity, Pasteur Institute, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Mohammadzadeh S, Khabiri A, Roohvand F, Memarnejadian A, Salmanian AH, Ajdary S, Ehsani P. Enhanced-Transient Expression of Hepatitis C Virus Core Protein in Nicotiana tabacum, a Protein With Potential Clinical Applications. HEPATITIS MONTHLY 2014; 14:e20524. [PMID: 25598788 PMCID: PMC4286711 DOI: 10.5812/hepatmon.20524] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) is major cause of liver cirrhosis in humans. HCV capsid (core) protein (HCVcp) is a highly demanded antigen for various diagnostic, immunization and pathogenesis studies. Plants are considered as an expression system for producing safe and inexpensive biopharmaceutical proteins. Although invention of transgenic (stable) tobacco plants expressing HCVcp with proper antigenic properties was recently reported, no data for "transient-expression" that is currently the method of choice for rapid, simple and lower-priced protein expression in plants is available for HCVcp. OBJECTIVES The purpose of this study was to design a highly codon-optimized HCVcp gene for construction of an efficient transient-plant expression system for production of HCVcp with proper antigenic properties in a regional tobacco plant (Iranian Jafarabadi-cultivar) by evaluation of different classes of vectors and suppression of gene-silencing in tobacco. MATERIALS AND METHODS A codon-optimized gene encoding the Kozak sequence, 6xHis-tag, HCVcp (1-122) and KDEL peptide in tandem (from N- to C-terminal) was designed and inserted into potato virus-X (PVX) and classic pBI121 binary vectors in separate cloning reactions. The resulted recombinant plasmids were transferred into Agrobacterium tumefaciens and vacuum infiltrated into tobacco leaves. The effect of gene silencing suppressor P19 protein derived from tomato bushy stunt virus on the expression yield of HCVcp by each construct was also evaluated by co-infiltration in separate groups. The expressed HCVcp was evaluated by dot and western blotting and ELISA assays. RESULTS The codon-optimized gene had an increased adaptation index value (from 0.65 to 0.85) and reduced GC content (from 62.62 to 51.05) in tobacco and removed the possible deleterious effect of "GGTAAG" splice site in native HCVcp. Blotting assays via specific antibodies confirmed the expression of the 15 kDa HCVcp. The expression level of HCVcp was enhanced by 4-5 times in P19 co-agroinfiltrated plants with better outcomes for PVX, compared to pBI121 vector (0.022% versus 0.019% of the total soluble protein). The plant-derived HCVcp (pHCVcp) could properly identify the HCVcp antibody in HCV-infected human sera compared to Escherichia coli-derived HCVcp (eHCVcp), indicating its potential for diagnostic/immunization applications. CONCLUSIONS By employment of gene optimization strategies, use of viral-based vectors and suppression of plant-derived gene silencing effect, efficient transient expression of HCVcp in tobacco with proper antigenic properties could be possible.
Collapse
Affiliation(s)
- Sara Mohammadzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Alireza Khabiri
- Department of Mycology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Arash Memarnejadian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, IR Iran
| | - Ali Hatef Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, IR Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, IR Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
10
|
Aguilar-Noriega D, Alvarez-Lajonchere L, Brown E, Santana FL, Dubuisson J, Wychowski C, Guerra I, Martínez-Donato G, Pérez A, Amador-Cañizares Y, Dueñas-Carrera S. A chimeric protein encompassing hepatitis C virus epitopes is able to elicit both humoral and cell-mediated immune responses in mice. Biotechnol Appl Biochem 2014; 61:627-36. [PMID: 24575938 DOI: 10.1002/bab.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) infection is a worldwide health problem. Vaccines against this pathogen are not available and advances in this field are limited because of the high genetic variability of the virus, inaccessibility of animal models, and incomplete definition of immunological correlates of protection. In the present work, a chimeric protein, Eq1, encompassing HCV amino acid regions from structural antigens, was generated. Eq1 was expressed in GC-366 bacterial cells. After cell disruption, Eq1 was purified from the insoluble fraction by sequential steps of differential solubilization and metal chelating affinity chromatography. Eq1 was specifically recognized by anti-HCV positive human sera. Moreover, immunization of BALB/c mice with different doses of Eq1 formulated either in Alum or Freund's incomplete adjuvant elicited both humoral- and cellular-specific immune responses. Doses of 20 µg of Eq1 induced the strongest cell-mediated immune responses and only the formulation of this dose in Alum elicited a neutralizing antibody response against heterologous cell culture HCV. All these data together indicate that Eq1 is immunogenic in mice and might be an interesting component of vaccine candidates against HCV infection.
Collapse
|
11
|
Llanes MS, Palacios NS, Piccione M, Ruiz MG, Layana C. [Molecular aspects of the antiviral response against hepatitis C virus implicated in vaccines development]. Enferm Infecc Microbiol Clin 2014; 33:273-80. [PMID: 24529681 DOI: 10.1016/j.eimc.2013.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Hepatitis C is a contagious liver disease caused by hepacivirus of the Flaviviridae family. It has a RNA genome, a unique highly variable molecule. It encodes ten proteins which are necessary to infect cells and multiply. Replication occurs only in hepatocytes. Because of its wide genomic variability and the absence of symptoms, it is difficult to make an early diagnosis and successful treatment. In this review we analyze the molecular mechanism by which the virus infects the hepatocytes and causes the disease. We focused the analysis on different therapies, with the possibility of improving treatment with the use of new specific vaccines. We highlight the use of new therapies based on nucleic acids, mainly DNA vectors. In the near future, once this treatment is adequately evaluated in clinical trials, and the costs are calculated, it could be a very beneficial alternative to conventional methods.
Collapse
Affiliation(s)
- María Soledad Llanes
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Soledad Palacios
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Piccione
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - María Guillermina Ruiz
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Carla Layana
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Yazdanian M, Memarnejadian A, Mahdavi M, Sadat SM, Motevali F, Vahabpour R, Khanahmad H, Siadat SD, Aghasadeghi MR, Roohvand F. Immunization of Mice by BCG Formulated HCV Core Protein Elicited Higher Th1-Oriented Responses Compared to Pluronic-F127 Copolymer. HEPATITIS MONTHLY 2013; 13:e14178. [PMID: 24348641 PMCID: PMC3842517 DOI: 10.5812/hepatmon.14178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/14/2013] [Accepted: 09/25/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND A supreme vaccine for Hepatitis C virus (HCV) infection should elicit strong Th1-oriented cellular responses. In the absence of a Th1-specific adjuvant, immunizations by protein antigens generally induce Th2-type and weak cellular responses. OBJECTIVES To evaluate the adjuvant effect of BCG in comparison with nonionic copolymer-Pluronic F127 (F127) as a classic adjuvant in the formulation of HCV core protein (HCVcp) as a candidate vaccine for induction of Th1 immune responses. MATERIALS AND METHODS Expression of N-terminally His-Tagged HCVcp (1-122) by pIVEX2.4a-core vector harboring the corresponding gene under the control of arabinose-inducible (araBAD) promoter was achieved in BL21-AI strain of E.coli and purified through application of nitrilotriacetic acid (Ni-NTA) chromatography. Mice were immunized subcutaneously (s.c.) in base of the tail with 100 μl of immunogen (F127+HCVcp or BCG+HCVcp; 5 μgHCVcp/mouse/dose) or control formulations (PBS, BCG, F127) at weeks 0, 3, 6. Total and subtypes of IgG, as well as cellular immune responses (Proliferation, In vivo CTL and IFN-γ/IL-4 ELISpot assays against a strong and dominant H2-d restricted, CD8+-epitopic peptide, core 39-48; RRGPRLGVRA of HCVcp) were compared in each group of immunized animals. RESULTS Expression and purification of core protein around the expected size (21 kDa) was confirmed by Western blotting. The HCVcp + BCG vaccinated mice showed significantly higher lymphocyte proliferation and IFN-γ production but lower levels of cell lysis (45% versus 62% in CTL assay) than the HCVcp+F127 immunized animals. "Besides, total anti-core IgG and IgG1 levels were significantly higher in HCVcp + F127 immunized mice as compared to HCVcp + BCG vaccinated animals, indicating relatively higher efficacy of F127 for the stimulation of humoral and Th2-oriented immune responses". CONCLUSIONS Results showed that HCVcp + BCG induced a moderate CTL and mixed Th1/Th2 immune responses with higher levels of cell proliferation and IFN-γ secretion, indicating that BCG may have a better outcome when formulated in HCVcp-based subunit vaccines.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Mehdi Mahdavi
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Mehdi Sadat
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | - Fatemeh Motevali
- Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran, IR Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production Complex, Pasteur Institute of Iran, Karaj, IR Iran
| | | | | | - Farzin Roohvand
- Virology Department, Pasteur Institute of Iran, Tehran, IR Iran
| |
Collapse
|
13
|
Zhai YZ, Wang Y, Feng GH. Granulocyte-macrophage colony-stimulating factor genetic adjuvant enhances the immune stimulatory effects of plasmid DNA encoding the hepatitis C virus core protein. Shijie Huaren Xiaohua Zazhi 2012; 20:3424-3430. [DOI: 10.11569/wcjd.v20.i35.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) genetic adjuvant on immune response induced by plasmid DNA encoding the hepatitis C virus (HCV) core (C) protein.
METHODS: The gene encoding the HCV C protein was amplified by PCR from HCV 1b genotype and inserted into the pUC119 vector. The HCV C gene was then subcloned into the pCMH6K eukaryotic vector, and the resulting plasmid was named pCMH6K/HCV-C. The recombinant vector was confirmed by restriction enzyme analysis and DNA sequencing, and transfected into China hamster ovary (CHO) cells with Lipofectamine 2000. Distribution of the HCV C protein in transfected CHO cells was detected by immunofluorescence. Balb/c mice were vaccinated with the recombinant plasmid with or without the GM-CSF gene. HCV C-specific antibody in serum was measured by ELISA. The changes in T lymphocyte subsets and levels of Th cell intracellular cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4) in splenic cell suspension from immunized mice were evaluated by flow cytometric analysis. CTL activity was assessed by LDH assay.
RESULTS: Restrict enzyme digestion and DNA sequencing indicated that the recombinant pCMH6K/HCV-C was successfully constructed. The expression of plasmid-encoded protein was mainly distributed in membrane and scarcely in cytoplasm of transfected CHO cells. The percentage of CD4+ T cells in spleen cells in the pCMH6K/HCV-C+pGM-CSF co-vaccination group was significantly higher than those in other groups (all P < 0.05). The percentage of CD8+ T cells showed no significant differences among each group (P > 0.05). CTL activity induced by GM-CSF DNA co-vaccination was significantly higher than that immunized with the same amount of other naked DNA (P < 0.05). The ratio of IFN-γ to IL-4 in spleen cells from GM-CSF DNA co-vaccination group was significantly higher than those in other groups (all P < 0.05).
CONCLUSION: GM-CSF DNA could enhance the immune stimulatory effects of HCV DNA vaccine and induce Th1-type immune response.
Collapse
|
14
|
Zhu W, Wu C, Deng W, Pei R, Wang Y, Cao L, Qin B, Lu M, Chen X. Inhibition of the HCV core protein on the immune response to HBV surface antigen and on HBV gene expression and replication in vivo. PLoS One 2012; 7:e45146. [PMID: 23024803 PMCID: PMC3443233 DOI: 10.1371/journal.pone.0045146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
The hepatitis C virus (HCV) core protein is a multifunctional protein that can interfere with the induction of an immune response. It has been reported that the HCV core protein inhibits HBV replication in vitro. In this study, we test the effect of the HCV core gene on the priming of the immune response to hepatitis B surface antigen (HBsAg) and on the replication of HBV in vivo. Our results showed that the full-length HCV core gene inhibits the induction of an immune response to the heterogeneous antigen, HBsAg, at the site of inoculation when HCV core (pC191) and HBsAg (pHBsAg) expression plasmids are co-administered as DNA vaccines into BALB/c mice. The observed interference effect of the HCV core occurs in the priming stage and is limited to the DNA form of the HBsAg antigen, but not to the protein form. The HCV core reduces the protective effect of the HBsAg when the HBsAg and the HCV core are co-administered as vaccines in an HBV hydrodynamic mouse model because the HCV core induces immune tolerance to the heterogeneous HBsAg DNA antigen. These results suggest that HCV core may play an important role in viral persistence by the attenuation of host immune responses to different antigens. We further tested whether the HCV core interfered with the priming of the immune response in hepatocytes via the hydrodynamic co-injection of an HBV replication-competent plasmid and an HCV core plasmid. The HCV core inhibited HBV replication and antigen expression in both BALB/c (H-2d) and C57BL/6 (H-2b) mice, the mouse models of acute and chronic hepatitis B virus infections. Thus, the HCV core inhibits the induction of a specific immune response to an HBsAg DNA vaccine. However, HCV C also interferes with HBV gene expression and replication in vivo, as observed in patients with coinfection.
Collapse
Affiliation(s)
- Wenbo Zhu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XC)
| | - Wanyu Deng
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjun Pei
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Liang Cao
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Qin
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mengji Lu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Institute of Virology, University Hospital of Essen, Essen, Germany
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
15
|
Hosseini SY, Sabahi F, Moazzeni SM, Modarressi MH, Saberi Firoozi M, Ravanshad M. Construction and preparation of three recombinant adenoviruses expressing truncated NS3 and core genes of hepatitis C virus for vaccine purposes. HEPATITIS MONTHLY 2012; 12:e6130. [PMID: 23087750 PMCID: PMC3475015 DOI: 10.5812/hepatmon.6130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/06/2012] [Accepted: 06/26/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND In spite of dozens of clinical trials to establish effective therapeutic and/or preventive vaccine to resolve HCV infection, no real vaccine has been proved to date. Genetic vaccines based on replication-defective adenoviruses have proved to elicit strong and long lasting T-cell responses against a number of viral antigens and are even currently being used for vaccine trials in humans. According to the controversy in the immune modulatory effects of both core and NS3 full length genes, it seemed more practical to employ some parts of these HCV proteins for vaccine design. OBJECTIVES To generate recombinant Adenoviral vectors containing new overlapping-truncated region of NS3 gene or both the N- and C-terminal deleted parts of core gene, as well as a fusion fragment derived from both of them. MATERIALS AND METHODS The corresponding transfer vectors expressing truncated fragments of core, NS3 or a fusion fragment of both genes were prepared. The integrity and sequence of the transfer vectors were confirmed, and followed by experiments involving homologous recombination between them and the adenovirus backbone plasmid in the bacterial host. Recombinant Ad-pNS3, Ad-pCore and Ad-pNS3pCore viruses were prepared by transfection of these new recombined constructs into 293 packaging cell lines. The virus titer was then calculated by an immunohistochemistry based method. The RT-PCR, Real-Time PCR and western blotting were used to evaluate gene expression by all recombinant constructs. The production of complete virion particles was evaluated by detailed electron microscopy in addition to the appearance of typical cytopathic effects (CPE) and GFP expression patterns in 293 cells. The RT-PCR and GFP detection were employed to monitor the integrity as well as infectivity potency of the viral particles in Hep-G2 cells. RESULTS RT-PCR, Real-Time PCR or western blotting confirmed expression of truncated fragment of NS3, core or a fusion fragment of theirs by newly constructed Ad-pNS3, Ad-pCore, Ad- pNS3pCore particles. Electron microscopy, which revealed many adenovirus-like particles and characteristics of CPE in infected cells in addition to GFP detection, confirmed the infectivity, potency and integrity of recombinant adenoviral particles. CONCLUSIONS These adenoviruses expressing novel fragments of NS3 and core genes may be suitable tools to overcome shortcomings associated with full gene expression in the setting of HCV vaccine therapy.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- Department of Virology, Tarbiat Modares University, Tehran, IR Iran
- Gastroentero -Hepatology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Farzaneh Sabahi
- Department of Virology, Tarbiat Modares University, Tehran, IR Iran
| | | | | | - Mehdi Saberi Firoozi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
| | | |
Collapse
|
16
|
Ip PP, Nijman HW, Wilschut J, Daemen T. Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Res 2012; 96:36-50. [PMID: 22841700 DOI: 10.1016/j.antiviral.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 12/12/2022]
Abstract
Approximately 170 million people worldwide are chronic carriers of Hepatitis C virus (HCV). To date, there is no prophylactic vaccine available against HCV. The standard-of-care therapy for HCV infection involves a combination of pegylated interferon-α and ribavirin. This therapy, which is commonly associated with side effects, has a curative rate varying from 43% (HCV genotype 1) to 80% (HCV genotype 2). In 2011, two direct-acting antiviral agents, telaprevir and boceprevir, were approved by the US Food and drug Administration and are now being used in combination with standard-of-care therapy in selected patients infected with HCV genotype 1. Although both drugs are promising, resulting in a shortening of therapy, these drugs also induce additional side effects and have reduced efficacy in patients who did not respond to standard-of-care previously. An alternative approach would be to treat HCV by stimulating the immune system with a therapeutic vaccine ideally aimed at (i) the eradication of HCV-infected cells and (ii) neutralization of infectious HCV particles. The challenge is to develop therapeutic vaccination strategies that are either at least as effective as antiviral drugs but with lower side effects, or vaccines that, when combined with antiviral drugs, can circumvent long-term use of these drugs thereby reducing their side effects. In this review, we summarize and discuss recent preclinical developments in the area of therapeutic vaccination against chronic HCV infection. Although neutralizing antibodies have been described to exert protective immunity, clinical studies on the induction of neutralizing antibodies in therapeutic settings are limited. Therefore, we will primarily discuss therapeutic vaccines which aim to induce effective cellular immune response against HCV.
Collapse
Affiliation(s)
- Peng Peng Ip
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen, University Medical Center Groningen, The Netherlands
| | | | | | | |
Collapse
|