1
|
Das B, Datta S, Vanlalhmuaka, Reddy PVB. Comprehensive evaluation on progressive development strategies in DENV surveillance and monitoring infection rate among vector population. J Vector Borne Dis 2024; 61:327-339. [PMID: 39374492 DOI: 10.4103/jvbd.jvbd_86_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/05/2024] [Indexed: 10/09/2024] Open
Abstract
The elevated rise in dengue infection rate has been a health burden worldwide and it will continue to impact global health for years to come. Accumulated literature holds accountable the geographical expansion of the mosquito species transmitting the dengue virus DENV. The frequency of this viral disease outbreaks has increased rapidly in the recent years, owing to various geo-climatic and anthropological activities. Due to scarcity of any effective control measures, there has been a continuous traceable rise in mortality and morbidity rates. However, it has been reported that the spate of incidences is directly related to density of the virus infected vector (mosquito) population in a given region. In such a scenario, systems capable of detecting virus infected vector population would aid in estimating prediction of outbreak, as well as provide time to deploy suitable management strategies for vector control, and to break the vector-human transmission chain. This would also help in identifying areas, where much improvement is needed for vector management. To this context, we illustrate an exhaustive overview of both gold standards and as well as emerging advents for sensitive and specific mosquito population strategized viral detection technologies. We summarize the cutting-edge technologies and the challenges faced in pioneering to field application. Regardless the proven popularity of the gold standards for detection purpose, they offer certain limitations. Thus with the surge in the infection rate globally, approaches for development of newer advancements and technique upgradation to arrest the infection escalation and for early detection as a part of vector management should be prioritized.
Collapse
Affiliation(s)
- Bidisha Das
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
- Department of Life Science & Bio-Informatics, Assam University Diphu Campus, Diphu, Assam, India
| | - Sibnarayan Datta
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | - Vanlalhmuaka
- Entomology and Biothreat Management Division, Defence Research Laboratory, Tezpur, Assam, India
| | | |
Collapse
|
2
|
Gonçalves AAM, Ribeiro AJ, Resende CAA, Couto CAP, Gandra IB, Dos Santos Barcelos IC, da Silva JO, Machado JM, Silva KA, Silva LS, Dos Santos M, da Silva Lopes L, de Faria MT, Pereira SP, Xavier SR, Aragão MM, Candida-Puma MA, de Oliveira ICM, Souza AA, Nogueira LM, da Paz MC, Coelho EAF, Giunchetti RC, de Freitas SM, Chávez-Fumagalli MA, Nagem RAP, Galdino AS. Recombinant multiepitope proteins expressed in Escherichia coli cells and their potential for immunodiagnosis. Microb Cell Fact 2024; 23:145. [PMID: 38778337 PMCID: PMC11110257 DOI: 10.1186/s12934-024-02418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Anna Julia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Isabelle Caroline Dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Jonatas Oliveira da Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Líria Souza Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Michelli Dos Santos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Matheus Motta Aragão
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mayron Antonio Candida-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | | | - Amanda Araujo Souza
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Lais Moreira Nogueira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Mariana Campos da Paz
- Bioactives and Nanobiotechnology Laboratory, Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, 30130-100, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, National Institute of Science and Technology on Tropical Diseases (INCT-DT), Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Sonia Maria de Freitas
- Biophysics Laboratory, Institute of Biological Sciences, Department of Cell Biology, University of Brasilia, Brasília, 70910-900, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, 04000, Peru
| | - Ronaldo Alves Pinto Nagem
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Midwest Campus, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
3
|
da Silva IBN, de Moraes Rodrigues J, Batista RCG, Gomes VDS, Chacon CDS, Almeida MDS, de Araujo TS, Ortiz da Silva B, Castiñeiras TMPP, Ferreira Junior ODC, Carneiro FA, Montero-Lomeli M. Development and assessment of a multiepitope synthetic antigen for the diagnosis of Dengue virus infection. Braz J Infect Dis 2024; 28:103746. [PMID: 38703788 PMCID: PMC11096929 DOI: 10.1016/j.bjid.2024.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Immunodiagnostic tests for detecting dengue virus infections encounter challenges related to cross-reactivity with other related flaviviruses. Our research focuses on the development of a synthetic multiepitope antigen tailored for dengue immunodiagnostics. Selected dengue epitopes involved structural linearity and dissimilarity from the proteomes of Zika and Yellow fever viruses which served for computationally modeling the three-dimensional protein structure, resulting in the design of two proteins: rDME-C and rDME-BR. Both proteins consist of seven epitopes, separated by the GPGPG linker, and a carboxy-terminal 6 × -histidine tag. The molecular weights of the final proteins rDME-C and rDME-BR are 16.83 kDa and 16.80 kDa, respectively, both with an isoelectric point of 6.35. The distinguishing factor between the two proteins lies in the origin of their epitope sequences, where rDME-C is based on the reference dengue proteome, while rDME-BR utilizes sequences from prevalent Dengue genotypes in Brazil from 2008 to 2019. PyMol analysis revealed exposure of epitopes in the secondary structure. Successful expression of the antigens was achieved in soluble form and fluorescence experiments indicated a disordered structure. In subsequent testing, rDME-BR and rDME-C antigens were assessed using an indirect Elisa protocol against Dengue infected serum, previously examined with a commercial diagnostic test. Optimal concentrations for antigens were determined at 10 µg/mL for rDME-BR and 30 µg/mL for rDME-C, with serum dilutions ranging from 1:50 to 1:100. Both antigens effectively detected IgM and IgG antibodies in Dengue fever patients, with rDME-BR exhibiting higher sensitivity. Our in-house test showed a sensitivity of 77.3 % and 82.6 % and a specificity of 89.4 % and 71.4 % for rDME-C and rDEM-BR antigens. No cross-reactivity was observed with serum from Zika-infected mice but with COVID-19 serum samples. Our findings underscore the utility of synthetic biology in crafting Dengue-specific multiepitope proteins and hold promise for precise clinical diagnosis and monitoring responses to emerging Dengue vaccines.
Collapse
Affiliation(s)
- Isis Botelho Nunes da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Juliano de Moraes Rodrigues
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Ramon Cid Gismonti Batista
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Vivian Dos Santos Gomes
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Clarissa de Souza Chacon
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil
| | - Marcius da Silva Almeida
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia Estrutural e Bioimagem, Plataforma Avançada de Biomoléculas, Rio de Janeiro, RJ, Brazil
| | - Talita Stelling de Araujo
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia Estrutural e Bioimagem, Plataforma Avançada de Biomoléculas, Rio de Janeiro, RJ, Brazil
| | - Bianca Ortiz da Silva
- Universidade Federal do Rio de Janeiro, Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Rio de Janeiro, RJ, Brazil
| | - Terezinha Marta Pereira Pinto Castiñeiras
- Universidade Federal do Rio de Janeiro, Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Departamento de Doenças Infecciosas e Parasitárias, Rio de Janeiro, RJ, Brazil
| | - Orlando da Costa Ferreira Junior
- Universidade Federal do Rio de Janeiro, Núcleo de Enfrentamento e Estudos de Doenças Infecciosas Emergentes e Reemergentes (NEEDIER), Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Biologia, Laboratório de Virologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Fabiana Avila Carneiro
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Núcleo de Pesquisa (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, RJ, Brazil
| | - Monica Montero-Lomeli
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Silva KA, Ribeiro AJ, Gandra IB, Resende CAA, da Silva Lopes L, Couto CAP, de Araujo Freire V, Barcelos ICS, Pereira SP, Xavier SR, da Paz MC, Giunchetti RC, Chávez-Fumagalli MA, Gonçalves AAM, Coelho EAF, Galdino AS. A Review on the use of Synthetic and Recombinant Antigens for the Immunodiagnosis of Tegumentary Leishmaniasis. Curr Med Chem 2024; 31:4763-4780. [PMID: 38509682 PMCID: PMC11348456 DOI: 10.2174/0109298673298705240311114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Improving the diagnostic technology used to detect tegumentary leishmaniasis (TL) is essential in view of it being a widespread, often neglected tropical disease, with cases reported from the Southern United States to Northern Argentina. Recombinant proteins, recombinant multiepitope proteins, and synthetic peptides have been extensively researched and used in disease diagnosis. One of the benefits of applying these antigens is a measurable increase in sensitivity and specificity, which improves test accuracy. The present review aims to describe the use of these antigens and their diagnostic effectiveness. With that in mind, a bibliographic survey was conducted on the PudMed platform using the search terms "tegumentary leishmaniasis" AND "diagno", revealing that recombinant proteins have been described and evaluated for their value in TL diagnosis since the 1990s. However, there was a spike in the number of publications using all of the antigens between 2013 and 2022, confirming an expansion in research efforts to improve diagnosis. Moreover, all of the studies involving different antigens had promising results, including improved sensitivity and specificity. These data recognize the importance of doing research with new technologies focused on developing quick, more effective diagnostic kits as early diagnosis facilitates treatment.
Collapse
Affiliation(s)
- Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Anna Júlia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carlos Ananias Aparecido Resende
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Lucas da Silva Lopes
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Carolina Alves Petit Couto
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Verônica de Araujo Freire
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Isabelle Caroline Santos Barcelos
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sabrina Paula Pereira
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Sandra Rodrigues Xavier
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Mariana Campos da Paz
- Laboratório de Bioativos e Nanobiotecnologia, Universidade Federal de São João Del-Rei, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brasil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Ana Alice Maia Gonçalves
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, 30130-100, Minas Gerais, Brasil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Departamento de Bioquímica, Universidade Federal de Sao Joao Del-Rei (UFSJ), Campus Centro Oeste, Divinópolis, 35501-296, Minas Gerais, Brasil
| |
Collapse
|
5
|
Pereira SS, Andreata-Santos R, de Castro-Amarante MF, Venceslau-Carvalho AA, Sales NS, Silva MDO, Alves RPDS, Jungmann P, Ferreira LCDS. Multi-epitope Antigen for Specific Serological Detection of Dengue Viruses. Viruses 2023; 15:1936. [PMID: 37766342 PMCID: PMC10535193 DOI: 10.3390/v15091936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Dengue is an infectious disease of global health concern that continues to require surveillance. Serological testing has been used to investigate dengue-infected patients, but specificity is affected by the co-circulation of ZIKA virus (ZIKV), which shares extensive antigen similarities. The goal of this study was the development of a specific dengue virus (DENV) IgG ELISA based on a multi-epitope NS1-based antigen for antibody detection. The multi-epitope protein (T-ΔNS1), derived from a fragment of the NS1-protein of the four DENV serotypes, was expressed in Escherichia coli and purified via affinity chromatography. The antigenicity and specificity were evaluated with sera of mice infected with DENV-1-4 or ZIKV or after immunization with the recombinant ΔNS1 proteins. The performance of the T-ΔNS1-based IgG ELISA was also determined with human serum samples. The results demonstrate that the DENV T-ΔNS1 was specifically recognized by the serum IgG of dengue-infected mice or humans but showed no or reduced reactivity with ZIKV-infected subjects. Based on the available set of clinical samples, the ELISA based on the DENV T-ΔNS1 achieved 77.42% sensitivity and 88.57% specificity. The results indicate that the T-ΔNS1 antigen is a promising candidate for the development of specific serological analysis.
Collapse
Affiliation(s)
- Samuel Santos Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
| | - Maria Fernanda de Castro-Amarante
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil
| | - Aléxia Adrianne Venceslau-Carvalho
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil
| | - Natiely Silva Sales
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
| | - Mariângela de Oliveira Silva
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
| | - Rúbens Prince dos Santos Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
| | - Patrícia Jungmann
- General Pathology, Universidade de Pernambuco, Recife 50100-130, Brazil;
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo 05508-000, Brazil; (S.S.P.); (R.A.-S.); (M.F.d.C.-A.); (A.A.V.-C.); (N.S.S.); (M.d.O.S.); (R.P.d.S.A.)
- Institut Pasteur de São Paulo, São Paulo 05508-020, Brazil
| |
Collapse
|
6
|
Su M, Zheng G, Xu X, Song H. Antigen epitopes of animal coronaviruses: a mini-review. ANIMAL DISEASES 2023; 3:14. [PMID: 37220551 PMCID: PMC10189233 DOI: 10.1186/s44149-023-00080-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023] Open
Abstract
Coronaviruses are widespread in nature and can infect mammals and poultry, making them a public health concern. Globally, prevention and control of emerging and re-emerging animal coronaviruses is a great challenge. The mechanisms of virus-mediated immune responses have important implications for research on virus prevention and control. The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lymphocytes, playing an important role in antiviral immune responses. Thus, it can shed light on the development of diagnostic methods and novel vaccines. Here, we have reviewed advances in animal coronavirus antigenic epitope research, aiming to provide a reference for the prevention and control of animal and human coronaviruses. Supplementary Information The online version contains supplementary material available at 10.1186/s44149-023-00080-0.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Guanghui Zheng
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| | - Houhui Song
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang, A&F University, 666 Wusu Street, Lin’an District, Hangzhou, 311300 Zhejiang Province China
| |
Collapse
|
7
|
Machado JM, Pereira IAG, Maia ACG, Francisco MFC, Nogueira LM, Gandra IB, Ribeiro AJ, Silva KA, Resende CAA, da Silva JO, dos Santos M, Gonçalves AAM, Tavares GDSV, Chávez-Fumagalli MA, Campos-da-Paz M, Giunchetti RC, Rocha MODC, Chaves AT, Coelho EAF, Galdino AS. Proof of Concept of a Novel Multiepitope Recombinant Protein for the Serodiagnosis of Patients with Chagas Disease. Pathogens 2023; 12:312. [PMID: 36839584 PMCID: PMC9965379 DOI: 10.3390/pathogens12020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Chagas disease remains a neglected disease that is considered to be a public health problem. The early diagnosis of cases is important to improve the prognosis of infected patients and prevent transmission. Serological tests are the method of choice for diagnosis. However, two serological tests are currently recommended to confirm positive cases. In this sense, more sensitive and specific serological tests need to be developed to overcome these current diagnosis problems. This study aimed to develop a new recombinant multiepitope protein for the diagnosis of Chagas disease, hereafter named rTC. The rTC was constructed based on amino acid sequences from different combinations of Trypanosoma cruzi antigens in the same polypeptide and tested using an enzyme-linked immunosorbent assay (ELISA) to detect different types of Chagas disease. rTC was able to discriminate between indeterminate (IND) and cardiac (CARD) cases and cross-reactive diseases, as well as healthy samples, with 98.28% sensitivity and 96.67% specificity, respectively. These data suggest that rTC has the potential to be tested in future studies against a larger serological panel for the diagnosis of Chagas disease.
Collapse
Affiliation(s)
- Juliana Martins Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Isabela Amorim Gonçalves Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ana Clara Gontijo Maia
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Lais Moreira Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Isadora Braga Gandra
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Anna Julia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Kamila Alves Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Jonatas Oliveira da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Michelli dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | - Ana Alice Maia Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Mariana Campos-da-Paz
- Laboratório de NanoBiotecnologia & Bioativos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, Divinópolis 355901-296, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Ana Thereza Chaves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| |
Collapse
|
8
|
Liu C, Pan Y, Chen J, Liu J, Hou Y, Shan Y. Quantitative detection of Ganodermati lucidum immunomodulatory protein-8 by a peptide-antigen-antibody sandwich ELISA. J Microbiol Methods 2022; 199:106518. [PMID: 35700851 DOI: 10.1016/j.mimet.2022.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
In order to rapidly determine the concentration of recombinant Ganoderma lucidum immunomodulatory protein-8 (rLZ-8) at a lower cost, a peptide-antigen-antibody sandwich ELISA method was developed based on a dodecapeptide LTPHKHHKHLHA with higher affinity for rLZ-8, which was identified from phage display after four rounds of screening. The binding mode between rLZ-8 and the peptide ligand was further simulated and revealed by molecular docking. Standard addition and repetitive testing were carried out to evaluate the accuracy, reproducibility and feasibility of the developed ELISA detection method. The method based on this peptide ligand was then successfully applied in the quantitative determination of rLZ-8 concentrations in fermentation broth. In summary, the peptide-antigen-antibody sandwich ELISA method developed here could be conveniently applied in the detection of rLZ-8 during fermentation and might provide new insights for the detection of other specific proteins.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jia Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yue Hou
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China.
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Souza M, Machado J, da Silva J, Ramos L, Nogueira L, Ribeiro P, Dias D, Santos J, Santos JC, Nóbrega Y, Souza A, Freitas S, da Paz MC, Felipe M, Torres F, Galdino A. Rational design and evaluation of the recombinant multiepitope protein for serodiagnosis of rubella. Curr Pharm Biotechnol 2021; 23:1094-1100. [PMID: 34493182 DOI: 10.2174/1389201022666210907170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rubella is an infection caused by rubella virus (RV) and is generally regarded as a mild childhood disease. The disease continues to be of public health importance mainly because when the infection is acquired during early pregnancy it often results in fetal abnormalities, which are classified as congenital rubella syndrome (CRS). An accurate diagnosis for rubella is thus of pivotal importance for proper treatment. OBJECTIVE To produce a recombinant multiepitope protein (rMERUB) for the diagnosis of rubella, based on conserved immunodominant epitopes of glycoprotein E1 and E2. METHODS A synthetic gene was designed and cloned into vector pET21a with a 6xHis tag at the C-terminal for affinity purification and overexpressed in Escherichia coli cells. Biophysical analysis of rMERUB was performed by circular dichroism. Biological activity was assessed using an in-house ELISA assay. RESULTS Expression in Escherichia coli showed a ~22 kDa protein that was purified and used to perform structural assays and an IgG ELISA. Structural analyses reveal rMERUB has a β leaf pattern that promotes the exposure of epitopes, thus allowing antibody recognition. Evaluation of 33 samples (22=positive; 11=negative) was performed using in-house ELISA and this was compared with a commercial kit. The sensitivity was 100% (95% CI: 85-100) and specificity 90.91% (95% CI: 62-99). Excellent agreement (Kappa index = 0.9) was obtained between ELISA assays. CONCLUSIONS The careful choice of epitopes and the high epitope density, coupled with simple-step purification, pinpoints rMERUB as a promising alternative for rubella diagnosis, with potential for the development of a diagnostic kit.
Collapse
Affiliation(s)
- Marilen Souza
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Juliana Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Jonatas da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Luana Ramos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Lais Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Patrícia Ribeiro
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Daniel Dias
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - Josiane Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| | - José Carlos Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Yanna Nóbrega
- Laboratório de Doenças Imunogenéticase Crônico-degenerativas, Faculdade de Saúde, Departamento de Ciências Farmacêuticas, Universidade de Brasília. Brazil
| | - Amanda Souza
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Sonia Freitas
- Laboratório de Biofísica, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília. Brazil
| | - Mariana Campos da Paz
- Laboratório de Nanobiotecnologia & Biativos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, Divinópolis, MG, 35501-296. Brazil
| | - Maria Felipe
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Fernando Torres
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brasília, DF. Brazil
| | - Alexsandro Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, campus Centro-Oeste Dona Lindu, 35501-296, Divinópolis, MG. Brazil
| |
Collapse
|
10
|
Wei S, Shi D, Wu H, Sun H, Chen J, Feng L, Su M, Sun D. Identification of a novel B cell epitope on the nucleocapsid protein of porcine deltacoronavirus. Virus Res 2021; 302:198497. [PMID: 34217778 PMCID: PMC8481650 DOI: 10.1016/j.virusres.2021.198497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes vomiting, diarrhea, dehydration, and even death of piglets, resulting in significant losses to the pig industry worldwide. However, the epitopes of PDCoV remain largely unknown. In this study, a monoclonal antibody (mAb) against the PDCoV nucleocapsid (N) protein, termed 9G1, was prepared using the lymphocyte hybridoma technique, and was identified as a type IgG1 with a κ light chain and reacted with the native N protein of PDCoV. Furthermore, the epitope recognized by the 9G1 mAb was subjected to western blot and an ELISA using truncated recombinant proteins and synthetic polypeptides of the PDCoV N protein. The results indicate that 9G1 mAb recognized the epitope, G59TPIPPSYAFYY70 (EP-9G1), a novel linear B cell epitope of the PDCoV N protein. A comparison analysis revealed that the EP-9G1 epitope was highly conserved among PDCoV strains, in which four residues (G59-F68YY70) were observed among different coronavirus genera. These data demonstrate that the EP-9G1 epitope identified in this study provides some basic information for further characterization of the antigenic structure of the PDCoV N protein and has potential use for developing diagnostic reagents for PDCoV.
Collapse
Affiliation(s)
- Shan Wei
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Haoyang Wu
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haibo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Mingjun Su
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
11
|
Lopes-Luz L, Junqueira IC, da Silveira LA, de Melo Pereira BR, da Silva LA, Ribeiro BM, Nagata T. Dengue and Zika virus multi-epitope antigen expression in insect cells. Mol Biol Rep 2020; 47:7333-7340. [PMID: 32997310 DOI: 10.1007/s11033-020-05772-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Dengue virus and Zika virus are arthropod-borne flaviviruses that cause millions of infections worldwide. The co-circulation of both viruses makes serological diagnosis difficult as they share high amino acid similarities in viral proteins. Antigens are one of the key reagents in the differential diagnosis of these viruses through the detection of IgG antibodies in serological assays during the convalescent-phase of infections. Here, we report the expression of Dengue virus (DENV) and Zika virus (ZIKV) antigens containing non-conserved and immunodominant amino acid sequences using the baculovirus expression vector system in insect cells. We designed DENV and ZIKV antigens based on the domain III of the E protein (EDIII) after analyzing previously reported epitopes and by multiple alignment of the most important flaviviruses. The ZIKV and DENV multi-epitope genes were designed as tandem repeats or impaired repeats separated by tetra- or hexa-glycine linkers. The biochemical analyses revealed adequate expression of the antigens. Then, the obtained multi-epitope antigens were semi-purified in a sucrose gradient and tested using patients' sera collected during the convalescent-phase that were previously diagnosed positive for anti-DENV and -ZIKV IgG antibodies. The optimal serum dilution was 1:200, and the mean absorbance values in the preliminary tests show that multi-epitope antigens have been recognized by human sera. The production of both antigens using the multi-epitope strategy in the eukaryotic system and based on the EDIII regions provide a proof of concept for the use of antigens in the differentiation between DENV and ZIKV.
Collapse
Affiliation(s)
- Leonardo Lopes-Luz
- Campus Colemar Natal E Silva, Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-450, Brazil
| | - Isabela Cinquini Junqueira
- Faculdade de Farmácia, Campus Colemar Natal E Silva, Universidade Federal de Goiás, Goiânia, GO, 74605-170, Brazil
| | - Lucimeire Antonelli da Silveira
- Campus Colemar Natal E Silva, Instituto de Patologia Tropical E Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74605-450, Brazil
| | | | - Leonardo Assis da Silva
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
12
|
Ribeiro PAF, Souza MQ, Dias DS, Álvares ACM, Nogueira LM, Machado JM, Dos Santos JC, Godoi RR, Nobrega YKM, Campos-da-Paz M, de Freitas SM, Felipe MSS, Torres FAG, Galdino AS. A Custom-Designed Recombinant Multiepitope Protein for Human Cytomegalovirus Diagnosis. Recent Pat Biotechnol 2019; 13:316-328. [PMID: 31333134 DOI: 10.2174/1872208313666190716093911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/17/2019] [Accepted: 07/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Human Cytomegalovirus (HCMV) has infected more than 90% of the world population and its prevalence can be related to the individuals geographical and socialeconomic status. Serological tests based on ELISA are pivotal for HCMV diagnosis. Due to the lack of standardization in the production/purification of antigens from viral preparations, ELISA tests are based on several recombinant proteins or peptides. As an alternative, multiepitope proteins may be employed. OBJECTIVE In this work, we developed a recombinant multiepitope protein (rMEHCMV) for HCMV diagnosis based on conserved and immunodominant epitopes derived from tegument (pp150, pp65 and pp28), glycoprotein gB (pp38) and DNA polymerase subunit (pp52) of HCMV. METHODS The rMEHCMV gene was synthesized de novo and overexpressed in Escherichia coli cells. The recombinant protein was purified to homogeneity using a Ni-NTA column. Biophysical analysis of recombinant protein was performed by circular dichroism. A preliminary biological activity test was performed using 12 positive human sera samples by using an in-house IgG ELISA. The following patents database were consulted: Espacenet, Google Patents and the National Institute of Intellectual Property (INPI, Brazil). RESULTS The recombinant multiepitope protein was successfully expressed in E. coli. The structural data obtained by circular dichroism spectroscopy showed that rMEHCMV is structurally disordered. An in-house IgG ELISA test with rMEHCMV was successfully used to recognized IgG from human serum samples. CONCLUSION Together, our results show that rMEHCMV should be considered as a potential antigenic target for HCMV diagnosis.
Collapse
Affiliation(s)
- Patrícia A F Ribeiro
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Marilen Q Souza
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Daniel S Dias
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Alice C M Álvares
- Laboratorio de Biofisica, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Laís M Nogueira
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Juliana M Machado
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - José C Dos Santos
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Renato R Godoi
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Yanna K M Nobrega
- Laboratorio de Doencas Imunogeneticas e Cronico-degenerativas, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Mariana Campos-da-Paz
- Laboratorio de Nanobiotecnologia, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| | - Sonia M de Freitas
- Laboratorio de Biofisica, Universidade de Brasilia, Brasilia, DF, 70910-900, Brazil
| | - Maria S S Felipe
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Fernando A G Torres
- Departamento de Biologia Celular, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Alexsandro S Galdino
- Laboratorio de Biotecnologia de Microrganismos, Universidade Federal de Sao Joao Del-Rei, Divinopolis, MG, 35501-296, Brazil
| |
Collapse
|
13
|
Khalili S, Rasaee MJ, Mousavi SL, Amani J, Jahangiri A, Borna H. In silico Prediction and in vitro Verification of a Novel Multi-Epitope Antigen for HBV Detection. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2018. [DOI: 10.3103/s0891416817040097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Smith ME, Targovnik AM, Cerezo J, Morales MA, Miranda MV, Talou JR. Integrated process for the purification and immobilization of the envelope protein domain III of dengue virus type 2 expressed in Rachiplusia nu larvae and its potential application in a diagnostic assay. Protein Expr Purif 2016; 131:76-84. [PMID: 27888023 DOI: 10.1016/j.pep.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
Dengue incidence has grown dramatically in the last years, with about 40% of the world population at risk of infection. Recently, a vaccine developed by Sanofi Pasteur has been registered, but only in a few countries. Moreover, specific antiviral drugs are not available. Thus, an efficient and accurate diagnosis is important for disease management. To develop a low-cost immunoassay for dengue diagnosis, in the present study we expressed the envelope protein domain III of dengue virus type 2 in Rachiplusia nu larvae by infection with a recombinant baculovirus. The antigen was expressed as a fusion to hydrophobin I (DomIIIHFBI) to easily purify it by an aqueous two-phase system (ATPS) and to efficiently immobilize it in immunoassay plates. A high level of recombinant DomIIIHFBI was obtained in R. nu, where yields reached 4.5 mg per g of larva. Also, we were able to purify DomIIIHFBI by an ATPS with 2% of Triton X-114, reaching a yield of 73% and purity higher than 80% in a single purification step. The recombinant DomIIIHFBI was efficiently immobilized in hydrophobic surface plates. The immunoassay we developed with the immobilized antigen was able to detect IgG specific for dengue virus type 2 in serum samples and not for other serotypes.
Collapse
Affiliation(s)
- María Emilia Smith
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Alexandra Marisa Targovnik
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julieta Cerezo
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Alejandra Morales
- Laboratorio de Arbovirus, Instituto Nacional de Enfermedades Virales Humanas (INEVH) "Dr. Julio I. Maiztegui"- ANLIS, Monteagudo 2510, 2700, Pergamino, Buenos Aires, Argentina.
| | - María Victoria Miranda
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julián Rodríguez Talou
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Ding MD, Wang HN, Cao HP, Fan WQ, Ma BC, Xu PW, Zhang AY, Yang X. Development of a multi-epitope antigen of S protein-based ELISA for antibodies detection against infectious bronchitis virus. Biosci Biotechnol Biochem 2015; 79:1287-95. [DOI: 10.1080/09168451.2015.1025692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
An indirect enzyme-linked immunosorbent assay (ELISA) method based on a novel multi-epitope antigen of S protein (SE) was developed for antibodies detection against infectious bronchitis virus (IBV). The multi-epitope antigen SE protein was designed by arranging three S gene fragments (166–247 aa, S1 gene; 501–515 aa, S1 gene; 8–30 aa, S2 gene) in tandem. It was identified to be approximately 32 kDa as a His-tagged fusion protein and can bind IBV positive serum by western blot analysis. The conditions of the SE-ELISA method were optimized. The optimal concentration of the coating antigen SE was 3.689 μg/mL and the dilution of the primary antibodies was identified as 1:1000 using a checkerboard titration. The cut-off OD450 value was established at 0.332. The relative sensitivity and specificity between the SE-ELISA and IDEXX ELISA kit were 92.38 and 89.83%, respectively, with an accuracy of 91.46%. This assay is sensitive and specific for detection of antibodies against IBV.
Collapse
Affiliation(s)
- Meng-die Ding
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Hong-ning Wang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Hai-peng Cao
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Wen-qiao Fan
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Bing-cun Ma
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Peng-wei Xu
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - An-yun Zhang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| | - Xin Yang
- School of Life Science, Sichuan University, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, “985 Project” Science Innovative Platform for Resource and Environment Protection of Southwestern China, Chengdu, China
| |
Collapse
|
16
|
Zhang B, Salieb-Beugelaar GB, Nigo MM, Weidmann M, Hunziker P. Diagnosing dengue virus infection: rapid tests and the role of micro/nanotechnologies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1745-61. [PMID: 26093055 DOI: 10.1016/j.nano.2015.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Due to the progressive spread of the dengue virus and a rising incidence of dengue disease, its rapid diagnosis is important for developing countries and of increasing relevance for countries in temperate climates. Recent advances in bioelectronics, micro- and nanofabrication technologies have led to new miniaturized point-of-care devices and analytical platforms suited for rapid detection of infections. Starting from the available tests for dengue diagnosis, this review examines emerging rapid, micro/nanotechnologies-based tools, including label-free biosensor methods, microarray and microfluidic platforms, which hold significant potential, but still need further development and evaluation. The epidemiological and clinical setting as key determinants for selecting the best analytical strategy in patients presenting with fever is then discussed. This review is aimed at the clinicians and microbiologists to deepen understanding and enhance application of dengue diagnostics, and also serves as knowledge base for researchers and test developers to overcome the challenges posed by this disease. FROM THE CLINICAL EDITOR Dengue disease remains a significant problem in many developing countries. Unfortunately rapid diagnosis with easy and low cost tests for this disease is currently still not realized. In this comprehensive review, the authors highlighted recent advances in nanotechnology which would enable development in this field, which would result in beneficial outcomes to the population.
Collapse
Affiliation(s)
- Bei Zhang
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland.
| | - Georgette B Salieb-Beugelaar
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; CLINAM-European Foundation for Clinical Nanomedicine, Basel, Switzerland.
| | - Maurice Mutro Nigo
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; Institut Supérieur des Techniques Médicales-NYANKUNDE, Bunia, Congo.
| | | | - Patrick Hunziker
- Nanomedicine Research Laboratory, Medical Intensive Care Clinic, University Hospital Basel, Basel, Switzerland; CLINAM-European Foundation for Clinical Nanomedicine, Basel, Switzerland.
| |
Collapse
|
17
|
Singh AK, Shrivastava S, Kumar S, Pal V, Gopalan N. Batch Fermentation of Recombinant Burkholderia Intracellular Motility A Protein in Escherichia coli for the Diagnosis of Equine Glanders. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2014.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Braconi CT, Ardisson-Araújo DMP, Leme AFP, Oliveira JVDC, Pauletti BA, Garcia-Maruniak A, Ribeiro BM, Maruniak JE, Zanotto PMDA. Proteomic analyses of baculovirus Anticarsia gemmatalis multiple nucleopolyhedrovirus budded and occluded virus. J Gen Virol 2014; 95:980-989. [PMID: 24443474 DOI: 10.1099/vir.0.061127-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra- and inter-host spread, respectively. Since the 1980s, several countries have been using Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, A. gemmatalis. The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI- quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery.
Collapse
Affiliation(s)
- Carla Torres Braconi
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute - ICB II, University of São Paulo - USP, Brazil
| | | | - Adriana Franco Paes Leme
- Laboratory of Mass Spectrometry, Brazilian Biosciences National Laboratory - LNBio - CNPEM, Campinas - SP, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute - ICB II, University of São Paulo - USP, Brazil
| | - Bianca Alves Pauletti
- Laboratory of Mass Spectrometry, Brazilian Biosciences National Laboratory - LNBio - CNPEM, Campinas - SP, Brazil
| | - Alejandra Garcia-Maruniak
- Insect Virology Laboratory, Entomology and Nematology Department, 970 Natural Area Dr., University of Florida, Gainesville, FL 32611, USA
| | | | - James E Maruniak
- Insect Virology Laboratory, Entomology and Nematology Department, 970 Natural Area Dr., University of Florida, Gainesville, FL 32611, USA
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute - ICB II, University of São Paulo - USP, Brazil
| |
Collapse
|
19
|
Khan M, Dhanwani R, Kumar JS, Rao PVL, Parida M. Comparative evaluation of the diagnostic potential of recombinant envelope proteins and native cell culture purified viral antigens of Chikungunya virus. J Med Virol 2013; 86:1169-75. [PMID: 24105844 DOI: 10.1002/jmv.23752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2013] [Indexed: 11/10/2022]
Abstract
Despite the fact that Chikungunya resurgence is associated with epidemic of unprecedented magnitude, there are challenges in the field of its clinical diagnosis. However, serological tests in an ELISA format provide a rapid tool for the diagnosis of Chikungunya infection. Indeed, ELISAs based on recombinant proteins hold a great promise as these methods are cost effective and are free from the risk of handling biohazardous material. In this study, the performance of recombinant CHIKV antigens was compared in various ELISA formats for the diagnosis of Chikungunya. Two recombinant antigens derived from the envelope proteins of Chikungunya virus were prepared and evaluated by comparing their competence for detecting circulating antibodies in serum samples of patients infected with CHIKV using MAC-ELISA and indirect IgM-ELISA. The efficacy of the recombinant antigens was also compared with the native antigen. The indirect antibody capture IgM microplate ELISA revealed ≥90% concordance with the native antigen in detecting the CHIKV specific IgM antibodies whereas the recombinant antigen based MAC-ELISA showed 100% specificity. The recombinant antigens used in this study were effective and reliable targets for the diagnosis of CHIKV infection and also provide an alternative for native antigen use which is potentially biohazardous.
Collapse
Affiliation(s)
- Mohsin Khan
- Division of Virology, Defence Research and Development Establishment, Gwalior, 474002, India
| | | | | | | | | |
Collapse
|
20
|
Maldaner FR, Aragão FJL, dos Santos FB, Franco OL, da Rocha Queiroz Lima M, de Oliveira Resende R, Vasques RM, Nagata T. Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Appl Microbiol Biotechnol 2013; 97:5721-9. [PMID: 23615743 DOI: 10.1007/s00253-013-4918-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
Dengue virus causes about 100 million cases of dengue disease per year in the world. Laboratory diagnosis is done mainly by serological techniques, which in many cases use crude virus extracts that may cause cross-reactions to other flaviviruses. These undesirable cross-reactions can be reduced or eliminated by using recombinant proteins based on restricted epitopes. Aiming to decrease flaviviral cross-reactions and non-specific interactions in dengue serological assays, a plant expression system was chosen for recombinant antigen production as a reliable and inexpensive dengue diagnostic tool. In the present report, the lettuce plastid transformation system was applied to achieve efficient and stable tetra-epitope peptide antigen production, and its reactivity was evaluated. For this purpose, one putative epitope at positions 34 to 57 of E protein within the junction site of domains I and II of dengue virus (DENV) 1 to 4 serotypes linked by glycine linkers was expressed in lettuce chloroplasts. The potential immunoreactivity for the four DENV serotypes was evaluated using sera from patients of positive and negative dengue cases. Results indicated an overall sensitivity of 71.7% and specificity of 100%. No cross-reactions with the sera of yellow fever-positive or healthy individuals vaccinated against yellow fever were observed. This novel approach may provide an alternative system for the large-scale production of dengue recombinant antigens useful for serodiagnosis.
Collapse
Affiliation(s)
- Franciele Roberta Maldaner
- Departamento de Patologia Molecular, Universidade de Brasília, 70910-900 Brasília, Federal District, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gupta N, Srivastava S, Jain A, Chaturvedi UC. Dengue in India. Indian J Med Res 2012; 136:373-90. [PMID: 23041731 PMCID: PMC3510884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue virus belongs to family Flaviviridae, having four serotypes that spread by the bite of infected Aedes mosquitoes. It causes a wide spectrum of illness from mild asymptomatic illness to severe fatal dengue haemorrhagic fever/dengue shock syndrome (DHF/DSS). Approximately 2.5 billion people live in dengue-risk regions with about 100 million new cases each year worldwide. The cumulative dengue diseases burden has attained an unprecedented proportion in recent times with sharp increase in the size of human population at risk. Dengue disease presents highly complex pathophysiological, economic and ecologic problems. In India, the first epidemic of clinical dengue-like illness was recorded in Madras (now Chennai) in 1780 and the first virologically proved epidemic of dengue fever (DF) occurred in Calcutta (now Kolkata) and Eastern Coast of India in 1963-1964. During the last 50 years a large number of physicians have treated and described dengue disease in India, but the scientific studies addressing various problems of dengue disease have been carried out at limited number of centres. Achievements of Indian scientists are considerable; however, a lot remain to be achieved for creating an impact. This paper briefly reviews the extent of work done by various groups of scientists in this country.
Collapse
Affiliation(s)
| | | | - Amita Jain
- Department of Microbiology, KG Medical University, Lucknow, India
| | - Umesh C. Chaturvedi
- Indian Council of Medical Research, New Delhi, India,Reprint requests: Prof. U.C. Chaturvedi, 201-Annapurna Apartments, No.1, Bishop Rocky Street, Faizabad Road, Lucknow 226 007, India e-mail:
| |
Collapse
|
22
|
Hynote ED, Mervine PC, Stricker RB. Clinical evidence for rapid transmission of Lyme disease following a tickbite. Diagn Microbiol Infect Dis 2011; 72:188-92. [PMID: 22104184 DOI: 10.1016/j.diagmicrobio.2011.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 01/01/2023]
Abstract
Lyme disease transmission to humans by Ixodes ticks is thought to require at least 36-48 h of tick attachment. We describe 3 cases in which transmission of Borrelia burgdorferi, the spirochetal agent of Lyme disease, appears to have occurred in less than 24 h based on the degree of tick engorgement, clinical signs of acute infection, and immunologic evidence of acute Lyme disease. Health care providers and individuals exposed to ticks should be aware that transmission of Lyme disease may occur more rapidly than animal models suggest. A diagnosis of Lyme disease should not be ruled out based on a short tick attachment time in a subject with clinical evidence of B. burgdorferi infection.
Collapse
Affiliation(s)
- Eleanor D Hynote
- International Lyme and Associated Diseases Society1, Bethesda, MD 20827-1461, USA
| | | | | |
Collapse
|
23
|
Abstract
Global incidence of dengue has increased considerably over the past decade. Dengue fever (DF) is a self-limiting disease; however, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are fatal. Since there is no therapy and vaccine against dengue, timely diagnosis is therefore necessary for patient management. Laboratory diagnosis is carried out by virus isolation, demonstration of viral antigen, presence of viral nucleic acid, and antibodies. Further, recombinant dengue envelope protein can be used to detect specific antibodies, both IgG and IgM against all four serotypes of virus using an E. coli vector. The purified protein can then be used for detection of dengue specific IgG or IgM antibodies in patient serum with higher sensitivity and specificity, than that of traditional assays. Molecular detection can be accomplished by a one-step, single-tube, rapid, multiplex, RT-PCR for serotype determination. Despite many advantages of the modern techniques, isolation of virus is still considered as "gold-standard" in dengue diagnosis.
Collapse
|
24
|
Inexpensive designer antigen for anti-HIV antibody detection with high sensitivity and specificity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:335-41. [PMID: 20089793 DOI: 10.1128/cvi.00283-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel recombinant multiepitope protein (MEP) has been designed that consists of four linear, immunodominant, and phylogenetically conserved epitopes, taken from human immunodeficiency virus (HIV)-encoded antigens that are used in many third-generation immunoassay kits. This HIV-MEP has been evaluated for its diagnostic potential in the detection of anti-HIV antibodies in human sera. A synthetic MEP gene encoding these epitopes, joined by flexible peptide linkers in a single open reading frame, was designed and overexpressed in Escherichia coli. The recombinant HIV-MEP was purified using a single affinity step, yielding >20 mg pure protein/liter culture, and used as the coating antigen in an in-house immunoassay. Bound anti-HIV antibodies were detected by highly sensitive time-resolved fluorometry, using europium(III) chelate-labeled anti-human antibody. The sensitivity and specificity of the HIV-MEP were evaluated using Boston Biomedica worldwide HIV performance, HIV seroconversion, and viral coinfection panels and were found to be comparable with those of commercially available anti-HIV enzyme immunoassay (EIA) kits. The careful choice of epitopes, high epitope density, and an E. coli-based expression system, coupled with a simple purification protocol and the use of europium(III) chelate-labeled tracer, provide the capability for the development of an inexpensive diagnostic test with high degrees of sensitivity and specificity.
Collapse
|
25
|
Amin N, Aguilar A, Chamacho F, Vázquez Y, Pupo M, Ramirez JC, Izquierdo L, Dafhnis F, Stott DI, Perez EM, Acosta A. Identification of Dengue-specific B-Cell Epitopes by Phage-display Random Peptide Library. Malays J Med Sci 2009; 16:4-14. [PMID: 22135507 PMCID: PMC3216131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/30/2009] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Dengue is the most important human viral disease transmitted by arthropod vectors. The availability of random peptide libraries (RPL) displayed on phage has provided a powerful tool for selecting sequences that mimic epitopes from microorganisms that are useful for diagnostic and vaccine development purposes. In this paper, we describe peptides that resemble the antigenic structure of B-cell epitopes of dengue virus identified from a phage-peptide library using human sera containing polyclonal antibodies against dengue virus. MATERIALS AND METHODS Eighteen phage clones were isolated from the phage-display peptide library, J404, by affinity selection using human antisera against dengue virus type 3. These clones were tested for reactivity by ELISA with a panel of hyperimmune ascitic fluids (HAFs) containing antibodies either against all four dengue serotypes, West Nile virus (WNV) or Eastern equine encephalitis virus (EEEV) with control ascitic fluid (NAF) used as a negative control. RESULTS Eight clones were recognized by HAFs against the four dengue serotypes, of which four significantly inhibited binding of anti-dengue antibodies to the virus. Two peptides with similar sequences to regions of NS3 and NS4B non-structural dengue virus proteins were identified. CONCLUSION Our results suggest that these peptides could be used for the development of diagnostic tools for the detection of dengue virus infection and for a potential vaccine against this pathogen.
Collapse
Affiliation(s)
- Nevis Amin
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Alicia Aguilar
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Frank Chamacho
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Yaime Vázquez
- Laboratory of Arbovirus. Department of Virology. Pedro Kourí Institute (IPK)
| | - Maritza Pupo
- Laboratory of Arbovirus. Department of Virology. Pedro Kourí Institute (IPK)
| | - Juan Carlos Ramirez
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Luis Izquierdo
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Felix Dafhnis
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - David Ian Stott
- Glasgow Biomedical Research Centre. University of Glasgow,120 University Place, Glasgow G12 8TA, Scotland, U.K
| | - Ela Maria Perez
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| | - Armando Acosta
- Molecular Virology Department, Research Vicepresidency, Finlay Institute. Ave 27, No 19805, Havana City, Cuba
| |
Collapse
|
26
|
Tripathi NK, Shrivastva A, Biswal KC, Rao PL. METHODS: Optimization of culture medium for production of recombinant dengue protein inEscherichia coli. Ind Biotechnol (New Rochelle N Y) 2009. [DOI: 10.1089/ind.2009.3.179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale-up Facility, Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, India
| | - Ambuj Shrivastva
- Bioprocess Scale-up Facility, Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India
| | - Karttik C. Biswal
- Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, India
| | - P.V. Lakshmana Rao
- Bioprocess Scale-up Facility, Defence Research and Development Establishment, Jhansi Road, Gwalior-474002, India
| |
Collapse
|
27
|
Vazquez Y, Pupo-Antúnez M, Vazquez SV, Capó V, Torres G, Caballero Y, Sánchez A, Limonta D, Alvarez M, Guzmán MG. Monoclonal antibody to dengue capsid protein: its application in dengue studies. MAbs 2009; 1:157-62. [PMID: 20061827 DOI: 10.4161/mabs.1.2.7908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are considered the most important arthropod-borne viral diseases in terms of morbidity and mortality. The emergency and severity of dengue (Den) infections increase the necessity of an early, quick and effective dengue laboratory diagnostic. Viral isolation is considered a gold standard for diagnosis of dengue infection using monoclonal antibodies (mAbs) as a tool for determining serotype specificity. Alternatives have been used to improve sensitivity and time to dengue diagnosis. Based on the early expression of dengue C protein in the life cycle, we focused our study on the application of an anti-dengue 2 virus capsid protein mAb in dengue diagnosis. The kinetic expression of dengue-2 capsid in mosquito cells and its immuno-localization in experimentally infected suckling albin Swiss (OF-1) mice brain tissues was established. The results demonstrate the possible utility of this mAb in early dengue diagnosis versus traditional isolation. In addition, a preliminary study of an enzyme immunoassay method using 8H8 mAb for specific detection of dengue C protein antigen was performed, making possible recombinant C protein quantification. The results suggest that detection of dengue capsid protein could be useful in the diagnosis of early dengue infection.
Collapse
Affiliation(s)
- Y Vazquez
- Department of Virology, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Pedro Kourí Tropical Medicine Institute, Habana, Cuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The relationship of this country with dengue has been long and intense. The ?rst recorded epidemic of clinically dengue-like illness occurred at Madras in 1780 and the dengue virus was isolated for the ?rst time almost simultaneously in Japan and Calcutta in 1943-1944. After the ?rst virologically proved epidemic of dengue fever along the East Coast of India in 1963-1964, it spread to allover the country.The ?rst full-blown epidemic of the severe form of the illness,the dengue haemorrhagic fever/dengue shock syndrome occurred in North India in 1996. Aedes aegypti is the vector for transmission of the disease. Vaccines or antiviral drugs are not available for dengue viruses; the only effective way to prevent epidemic degure fever/dengue haemorrhagic fever (DF/DHF) is to control the mosquito vector, Aedes aegypti and prevent its bite. This country has few virus laboratories and some of them have done excellent work in the area of molecular epidemiology,immunopathology and vaccine development. Selected work done in this country on the problems of dengue is presented here.
Collapse
Affiliation(s)
- U C Chaturvedi
- Department of Microbiology, CSM Medical University, Lucknow 226 003, India.
| | | |
Collapse
|
29
|
Abhyankar AV, Bhargava R, Jana AM, Sahni AK, Rao PVL. Production and characterization of monoclonal antibody specific to recombinant dengue multi-epitope protein. Hybridoma (Larchmt) 2008; 27:191-8. [PMID: 18582213 DOI: 10.1089/hyb.2008.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Monoclonal antibodies against novel dengue recombinant protein were produced following immunization of Balb/c mice with recombinant dengue multi-epitope protein (r-DMEP) expressed in Escherichia coli vector and purified in a single-step chromatography system. Antigenicity of r-DMEP was evaluated by dot enzyme immunoassay. Mice were immunized intraperitoneally with five doses each of 100 microg of this novel antigen at 1-week intervals and a final intravenous booster dose prior to the fusion. Hybridomas resulted from fusion of myeloma cells and splenocytes using PEG-1500 as an additive. Selection of the hybrids was done using HAT medium, and the hybrids thus selected were finally screened qualitatively and quantitatively by dot and plate immunoassays, respectively. Five antibody secretory hybrid clones exhibited specific reactivity against r-DMEP by dot-ELISA, whereas a lone clone was found to be cross-reactive with Japanese encephalitis virus (JEV). Monoclonal antibodies (MAbs) specific to r-DME protein recognized the envelope and non-structural epitopes by Western blot analysis. These MAbs were further checked for their diagnostic efficacy using dengue suspected clinical samples and found overall sensitivity and specificity for DRDE dipstick ELISA. MAb-based dipstick ELISA results were 85%, 75% and 85%, 90%, respectively.
Collapse
|
30
|
Lazaro-Olán L, Mellado-Sánchez G, García-Cordero J, Escobar-Gutiérrez A, Santos-Argumedo L, Gutiérrez-Castañeda B, Cedillo-Barrón L. Analysis of antibody response in human dengue patients from the Mexican coast using recombinant antigens. Vector Borne Zoonotic Dis 2008; 8:69-79. [PMID: 18279077 DOI: 10.1089/vbz.2007.0117] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to evaluate the feasibility of using recombinant dengue proteins to discriminate between acute dengue infections versus uninfected dengue samples. Dengue virus proteins E, NS1, NS3, and NS4B were cloned as fusion proteins and expressed in Escherichia coli. Recombinant products were tested in 100 serum samples obtained from acute dengue fever cases collected from 3 states of Mexico where dengue is endemic. Sera from 75 healthy individuals living in nonendemic areas for dengue were used as a control group. In sera from the dengue patients group, antibody responses to E protein were demonstrated in 91% of cases and NS1 protein was recognized to various extents (99%) within the first 7 days of infection. The antibody responses to NS3 and NS4B were frequently of low magnitude. Consistent negative antibody responses to all proteins were found in sera from the control group. These data suggest that the glutathione-S-transferase (GST)-dengue fusion proteins may be feasible antigens for a sensitive and specific serological assay.
Collapse
Affiliation(s)
- L Lazaro-Olán
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, IPN, México DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Hapugoda MD, Batra G, Abeyewickreme W, Swaminathan S, Khanna N. Single antigen detects both immunoglobulin M (IgM) and IgG antibodies elicited by all four dengue virus serotypes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1505-14. [PMID: 17898184 PMCID: PMC2168164 DOI: 10.1128/cvi.00145-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The resurgence of dengue (DEN) virus infections in the last few decades coupled with the lack of a preventive vaccine and specific antiviral drugs has jointly contributed to making this a significant global public health problem. Currently, symptomatic supportive treatment and fluid replacement therapy are the only means available to minimize DEN-induced mortality. As the clinical symptoms associated with DEN virus infections are indistinguishable from those of many other viral, bacterial, and parasitic infections, specific diagnostic tests assume critical importance in the unequivocal identification of DEN virus infections. We have designed a novel chimeric antigen based on envelope domain III (EDIII), a critical antigenic region of the major structural protein of DEN viruses. We fused EDIIIs corresponding to each of the four DEN virus serotypes using pentaglycyl linkers, overexpressed the resultant tetravalent chimeric protein in Escherichia coli, and affinity purified it in high yields, obtaining approximately 30 mg protein of >95% purity per liter of culture. We show that this tetravalent antigen could specifically recognize anti-DEN virus antibodies of both the immunoglobulin M (IgM) and IgG classes. Using a large panel of IgM antibody capture-enzyme-linked immunosorbent assay- and hemagglutination inhibition-confirmed DEN virus-infected and uninfected patient sera (n = 289), we demonstrate that this tetravalent antigen can function as a diagnostic tool of high sensitivity and specificity.
Collapse
Affiliation(s)
- Menaka D Hapugoda
- Recombinant Gene Products Group, International Centre for Genetic Engineering and Biotechnology, P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
32
|
Dos Santos FB, Nogueira RMR, Lima MRQ, De Simone TS, Schatzmayr HG, Lemes EMB, Harris E, Miagostovich MP. Recombinant polypeptide antigen-based immunoglobulin G enzyme-linked immunosorbent assay for serodiagnosis of dengue. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:641-3. [PMID: 17392435 PMCID: PMC1865637 DOI: 10.1128/cvi.00474-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed an indirect enzyme-linked immunosorbent assay for detection of anti-dengue virus (DENV) immunoglobulin G antibodies using four recombinant DENV envelope polypeptides as antigens, which demonstrated a sensitivity of 89.4% and a specificity of 93.3%. These easily produced antigens are a feasible, cost-effective alternative for generating reagents for dengue serological tests.
Collapse
Affiliation(s)
- Flavia B Dos Santos
- Flavivirus Laboratory-Department of Virology, Oswaldo Cruz Institute/FIOCRUZ, Av Brasil, 4365, Manguinhos, Rio de Janeiro 21045-360, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|