1
|
Srivashtav V, Verma D, Kansara R, Jha S, Singh A. Effect of cadmium toxicity on growth, physiochemical parameters and antioxidant system of castor seedlings. Heliyon 2024; 10:e36536. [PMID: 39262939 PMCID: PMC11388685 DOI: 10.1016/j.heliyon.2024.e36536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
The research was aimed to determine the potential impact of cadmium contamination on Ricinus communis. The glucose-6-phosphate dehydrogenase (G6PDH) activity in the root was highest when exposed to 0.2 mM of Cd, with an increase of 15.63 % and 14.48 % at 0 and 24 h, respectively, compared to its control. However, citrate synthase (CS) activity declined in leaves, in contrast, to root, i.e., 12.22 % at 48 h of Cd stress. Isocitrate dehydrogenase (ICDH) activity was maximum in leaves at 0.2 mM of Cd at 0 and 24 h, i.e., 12.36 % and 13.08 % respectively, and later decreased in activity was seen in roots and leaves as the Cd stress increased. Moreover, the level of malate dehydrogenase (MDH) declined in leaves as the Cd level increased, while activity increased in roots at 0.4 mM of Cd i.e., 17.21 %, 17.52 %, and 10.53 % at 0, 24, and 48 h respectively. The important metabolite, glutathione level in the roots of SKP 84 was higher than in the leaf extract. A decline in biomass of up to 28.70 % and 30.91 % and plant length of up to 20.80 % and 26.10 % in shoot and roots, respectively, tolerance index was maximum at 0.2 mM, i.e., 98.62 % was seen. The leaves had 35.40 % catalase (CAT) activity, while the roots had 78.26 % guaiacol peroxidase (GPX) activity at 0.6 mM of Cd. At 0.2 mM of Cd, the maximum activity of ascorbate peroxidase (APX) was observed, with 67.32 % and 62.85 % activity in roots and leaves respectively. However, a reduction in the SOD activity was seen as the Cd stress increased. Increased Cd levels decreased chlorophyll but increased MDA and proline content in leaves at 0.8 mM of Cd, i.e., 82.92 % and 21.7 %, respectively. It indicated that R. communis SKP 84, a fusarium wilt resistance line, is also tolerant to Cd and can be used for phytoremediation in Cd-contaminated areas.
Collapse
Affiliation(s)
- Vishal Srivashtav
- Plant Biotechnology Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, U.P, India
| | - Deepika Verma
- Plant Biotechnology Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, U.P, India
| | - Rohan Kansara
- Food Quality Testing Laboratory, N.M. College of Agriculture, Navsari Agricultural University, Navsari, 396450, Gujarat, India
| | - Sanjay Jha
- Department of Plant Molecular Biology and Biotechnology, ASPEE Shakilam Agricultural Biotech Institute, Navsari Agricultural University, Athwa Farm, Surat, 395007, Gujarat, India
| | - Abhinav Singh
- Department of Agricultural Statistics, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, 231001, U.P, India
| |
Collapse
|
2
|
Jung KW, Lee SH, Lee KT, Bahn YS. Sensing and responding to host-derived stress signals: lessons from fungal meningitis pathogen. Curr Opin Microbiol 2024; 80:102514. [PMID: 39024914 DOI: 10.1016/j.mib.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
The sophisticated ability of living organisms to sense and respond to external stimuli is critical for survival. This is particularly true for fungal pathogens, where the capacity to adapt and proliferate within a host is essential. To this end, signaling pathways, whether evolutionarily conserved or unique, have been refined through interactions with the host. Cryptococcus neoformans, an opportunistic fungal pathogen, is responsible for over 190,000 cases and an estimated 147,000 annual deaths globally. Extensive research over the past decades has shed light on the signaling pathways underpinning the pathogenicity of C. neoformans, as well as the host's responses during infection. In this context, we delineate the regulatory mechanisms employed by C. neoformans to detect and react to stresses derived from the host.
Collapse
Affiliation(s)
- Kwang-Woo Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, Republic of Korea
| | - Seung-Heon Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea.
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Rakhmanova TI, Sekova VY, Gessler NN, Isakova EP, Deryabina YI, Popova TN, Shurubor YI, Krasnikov BF. Kinetic and Regulatory Properties of Yarrowia lipolytica Aconitate Hydratase as a Model-Indicator of Cell Redox State under pH Stress. Int J Mol Sci 2023; 24:ijms24087670. [PMID: 37108831 PMCID: PMC10143702 DOI: 10.3390/ijms24087670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
This paper presents an analysis of the regulation activity of the partially purified preparations of cellular aconitate hydratase (AH) on the yeast Yarrowia lipolytica cultivated at extreme pH. As a result of purification, enzyme preparations were obtained from cells grown on media at pH 4.0, 5.5, and 9.0, purified by 48-, 46-, and 51-fold and having a specific activity of 0.43, 0.55 and 0.36 E/mg protein, respectively. The kinetic parameters of preparations from cells cultured at extreme pH demonstrated: (1) an increase in the affinity for citrate and isocitrate; and (2) a shift in the pH optima to the acidic and alkaline side in accordance with the modulation of the medium pH. The regulatory properties of the enzyme from cells subjected to alkaline stress showed increased sensitivity to Fe2+ ions and high peroxide resistance. Reduced glutathione (GSH) stimulated AH, while oxidized glutathione (GSSG) inhibited AH. A more pronounced effect of both GSH and GSSG was noted for the enzyme obtained from cells grown at pH 5.5. The data obtained provide new approaches to the use of Y. lipolytica as a model of eukaryotic cells demonstrating the development of a stress-induced pathology and to conducting a detailed analysis of enzymatic activity for its correction.
Collapse
Affiliation(s)
- Tatyana I Rakhmanova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Tatyana N Popova
- Department of Medical Biochemistry and Microbiology, Biology and Soil Science Faculty, Voronezh State University, Universitetskaya pl., 1, 394000 Voronezh, Russia
| | - Yevgeniya I Shurubor
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| | - Boris F Krasnikov
- Centre for Strategic Planning of FMBA of the Russian Federation, Pogodinskaya St., Bld.10, 119121 Moscow, Russia
| |
Collapse
|
4
|
M S, N RP, Rajendrasozhan S. Bacterial redox response factors in the management of environmental oxidative stress. World J Microbiol Biotechnol 2022; 39:11. [PMID: 36369499 DOI: 10.1007/s11274-022-03456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bacteria evolved to survive in the available environmental chemosphere via several cellular mechanisms. A rich pool of antioxidants and stress regulators plays a significant role in the survival of bacteria in unfavorable environmental conditions. Most of the microbes exhibit resistant phenomena in toxic environment niches. Naturally, bacteria possess efficient thioredoxin reductase, glutaredoxin, and peroxiredoxin redox systems to handle environmental oxidative stress. Further, an array of transcriptional regulators senses the oxidative stress conditions. Transcription regulators, such as OxyR, SoxRS, PerR, UspA, SsrB, MarA, OhrR, SarZ, etc., sense and transduce bacterial oxidative stress responses. The redox-sensitive transcription regulators continuously recycle the utilized antioxidant enzymes during oxidative stress. These regulators promote the expression of antioxidant enzymes such as superoxide dismutase, catalase, and peroxides that overcome oxidative insults. Therefore, the transcriptional regulations maintain steady-state activities of antioxidant enzymes representing the resistance against host cell/environmental oxidative insults. Further, the redox system provides reducing equivalents to synthesize biomolecules, thereby contributing to cellular repair mechanisms. The inactive transcriptional regulators in the undisturbed cells are activated by oxidative stress. The oxidized transcriptional regulators modulate the expression of antioxidant and cellular repair enzymes to survive in extreme environmental conditions. Therefore, targeting these antioxidant systems and response regulators could alter cellular redox homeostasis. This review presents the mechanisms of different redox systems that favor bacterial survival in extreme environmental oxidative stress conditions.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India.
| | | |
Collapse
|
5
|
Jezewski AJ, Beattie SR, Alden KM, Krysan DJ. Gluconate Kinase Is Required for Gluconate Assimilation and Sporulation in Cryptococcus neoformans. Microbiol Spectr 2022; 10:e0030122. [PMID: 35412378 PMCID: PMC9045243 DOI: 10.1128/spectrum.00301-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/19/2022] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans is an environmental yeast and an opportunistic human pathogen. The ability to cause disease depends on the ability to adapt to the human host. Previous studies implicated infectivity-related kinase 3 (IRK3, CNAG_03048) as required for establishing an infection. We genetically and biochemically characterized IRK3 as a gluconate kinase and propose the name GNK1. This metabolic enzyme utilizes gluconate to produce 6-phosphogluconate as part of the alternative oxidative phase of the pentose phosphate pathway (AOXPPP). The presence of GNK1 confirms that the AOXPPP is present and able to compensate for loss of the traditional OXPPP, providing an explanation for its nonessentiality. C. neoformans can utilize gluconate as an alternative carbon source in a GNK1-dependent manner. In our efforts to understand the role of GNK1 in host adaptation and virulence, we found that GNK1-deficient mutants have variable virulence and carbon dioxide tolerance across multiple strains, suggesting that second site mutations frequently interact with GNK1 deletion mutations. In our effort to isolate these genetic loci by backcrossing experiments, we discovered that GNK1-deficient strains are unable to sporulate. These data suggest that gluconate metabolism is critical for sporulation of C. neoformans. IMPORTANCE Cryptococcus neoformans is a fungal pathogen that contributes to nearly 180,000 deaths annually. We characterized a gene named GNK1 that appears to interact with other genetic loci involved with the ability of C. neoformans to act as a pathogen. While these interacting genetic loci remain elusive, we discovered that GNK1 plays roles in both metabolism and mating/sporulation. Further interrogation of the mechanistic role for GNK1 in sexual reproduction may uncover a larger network of genes that are important for host adaptation and virulence.
Collapse
Affiliation(s)
- Andrew J. Jezewski
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katy M. Alden
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Damian J. Krysan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Vasconcelos CI, Cronemberger-Andrade A, Souza-Melo N, Maricato JT, Xander P, Batista WL, Soares RP, Schenkman S, Torrecilhas AC. Stress Induces Release of Extracellular Vesicles by Trypanosoma cruzi Trypomastigotes. J Immunol Res 2021; 2021:2939693. [PMID: 34604391 PMCID: PMC8486533 DOI: 10.1155/2021/2939693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
All extracellular forms of Trypanosoma cruzi, the causative agent of Chagas disease, release extracellular vesicles (EVs) containing major surface molecules of the parasite. EV release depends on several mechanisms (internal and external). However, most of the environmental conditions affecting this phenomenon are still unknown. In this work, we evaluated EV release under different stress conditions and their ability to be internalized by the parasites. In addition, we investigated whether the release conditions would affect their immunomodulatory properties in preactivated bone marrow-derived macrophages (BMDM). Sodium azide and methyl-cyclo-β-dextrin (CDB) reduced EV release, indicating that this phenomenon relies on membrane organization. EV release was increased at low temperatures (4°C) and acidic conditions (pH 5.0). Under this pH, trypomastigotes differentiated into amastigotes. EVs are rapidly liberated and reabsorbed by the trypomastigotes in a concentration-dependent manner. Nitrosative stress caused by sodium nitrite in acid medium or S-nitrosoglutathione also stimulated the secretion of EVs. EVs released under all stress conditions also maintained their proinflammatory activity and increased the expression of iNOS, Arg 1, IL-12, and IL-23 genes in IFN-γ and LPS preactivated BMDM. In conclusion, our results suggest a budding mechanism of release, dependent on the membrane structure and parasite integrity. Stress conditions did not affect functional properties of EVs during interaction with host cells. EV release variations under stress conditions may be a physiological response against environmental changes.
Collapse
Affiliation(s)
- Camilla Ioshida Vasconcelos
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - A Cronemberger-Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo, 669, 04039-032 São Paulo, Brazil
| | - Juliana Terzi Maricato
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Botucatu, 862, 04023-062 São Paulo, Brazil
| | - Patrícia Xander
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| | - Rodrigo Pedro Soares
- Instituto René Rachou/FIOCRUZ-MG, Av. Augusto de Lima, 1715, 30190-009 Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo, 669, 04039-032 São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau, 210, 09913-030, Diadema, São Paulo, Brazil
| |
Collapse
|
7
|
You M, Xu J. What Are the Best Parents for Hybrid Progeny? An Investigation into the Human Pathogenic Fungus Cryptococcus. J Fungi (Basel) 2021; 7:jof7040299. [PMID: 33920829 PMCID: PMC8071107 DOI: 10.3390/jof7040299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Hybridization between more divergent organisms is likely to generate progeny with more novel genetic interactions and genetic variations. However, the relationship between parental genetic divergence and progeny phenotypic variation remains largely unknown. Here, using strains of the human pathogenic Cryptococcus, we investigated the patterns of such a relationship. Twenty-two strains with up to 15% sequence divergence were mated. Progeny were genotyped at 16 loci. Parental strains and their progeny were phenotyped for growth ability at two temperatures, melanin production at seven conditions, and susceptibility to the antifungal drug fluconazole. We observed three patterns of relationships between parents and progeny for each phenotypic trait, including (i) similar to one of the parents, (ii) intermediate between the parents, and (iii) outside the parental phenotypic range. We found that as genetic distance increases between parental strains, progeny showed increased fluconazole resistance and growth at 37 °C but decreased melanin production under various oxidative and nitrosative stresses. Our findings demonstrate that, depending on the traits, both evolutionarily more similar strains and more divergent strains may be better parents to generate progeny with hybrid vigor. Together, the results indicate the enormous potential of Cryptococcus hybrids in their evolution and adaptation to diverse conditions.
Collapse
|
8
|
Abstract
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalactan
Collapse
Affiliation(s)
- Oscar Zaragoza
- a Mycology Reference Laboratory National Centre for Microbiology , Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo , Madrid , Spain
| |
Collapse
|
9
|
Label-Free Proteomic Analysis of Flavohemoglobin Deleted Strain of Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF PROTEOMICS 2016; 2016:8302423. [PMID: 26881076 PMCID: PMC4737026 DOI: 10.1155/2016/8302423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
Yeast flavohemoglobin, YHb, encoded by the nuclear gene YHB1, has been implicated in the nitrosative stress responses in Saccharomyces cerevisiae. It is still unclear how S. cerevisiae can withstand this NO level in the absence of flavohemoglobin. To better understand the physiological function of flavohemoglobin in yeast, in the present study a label-free differential proteomics study has been carried out in wild-type and YHB1 deleted strains of S. cerevisiae grown under fermentative conditions. From the analysis, 417 proteins in Y190 and 392 proteins in ΔYHB1 were identified with high confidence. Interestingly, among the differentially expressed identified proteins, 40 proteins were found to be downregulated whereas 41 were found to be upregulated in ΔYHB1 strain of S. cerevisiae (p value < 0.05). The differentially expressed proteins were also classified according to gene ontology (GO) terms. The most enriched and significant GO terms included nitrogen compound biosynthesis, amino acid biosynthesis, translational regulation, and protein folding. Interactions of differentially expressed proteins were generated using Search Tool for the Retrieval of Interacting Genes (STRING) database. This is the first report which offers a more complete view of the proteome changes in S. cerevisiae in the absence of flavohemoglobin.
Collapse
|
10
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
11
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
12
|
Upadhya R, Campbell LT, Donlin MJ, Aurora R, Lodge JK. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress. PLoS One 2013; 8:e55110. [PMID: 23383070 PMCID: PMC3557267 DOI: 10.1371/journal.pone.0055110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/18/2012] [Indexed: 01/08/2023] Open
Abstract
The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2)O(2)) at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2)O(2). We determined the kinetics of H(2)O(2) breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2)O(2) breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2)O(2) treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2)O(2). These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans.
Collapse
Affiliation(s)
- Rajendra Upadhya
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Leona T. Campbell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maureen J. Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jennifer K. Lodge
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gomes DF, Batista JSDS, Schiavon AL, Andrade DS, Hungria M. Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress. BMC Microbiol 2012; 12:84. [PMID: 22647150 PMCID: PMC3502158 DOI: 10.1186/1471-2180-12-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 05/30/2012] [Indexed: 12/15/2022] Open
Abstract
Background Rhizobium tropici strain PRF 81 (= SEMIA 4080) has been used in commercial inoculants for application to common-bean crops in Brazil since 1998, due to its high efficiency in fixing nitrogen, competitiveness against indigenous rhizobial populations and capacity to adapt to stressful tropical conditions, representing a key alternative to application of N-fertilizers. The objective of our study was to obtain an overview of adaptive responses to heat stress of strain PRF 81, by analyzing differentially expressed proteins when the bacterium is grown at 28°C and 35°C. Results Two-dimensional gel electrophoresis (2DE) revealed up-regulation of fifty-nine spots that were identified by MALDI-TOF/TOF-TOF. Differentially expressed proteins were associated with the functional COG categories of metabolism, cellular processes and signaling, information storage and processing. Among the up-regulated proteins, we found some related to conserved heat responses, such as molecular chaperones DnaK and GroEL, and other related proteins, such as translation factors EF-Tu, EF-G, EF-Ts and IF2. Interestingly, several oxidative stress-responsive proteins were also up-regulated, and these results reveal the diversity of adaptation mechanisms presented by this thermotolerant strain, suggesting a cross-talk between heat and oxidative stresses. Conclusions Our data provide valuable protein-expression information relevant to the ongoing genome sequencing of strain PRF 81, and contributes to our still-poor knowledge of the molecular determinants of the thermotolerance exhibited by R. tropici species.
Collapse
|
14
|
Aroor AR, Roy LJ, Restrepo RJ, Mooney BP, Shukla SD. A proteomic analysis of liver after ethanol binge in chronically ethanol treated rats. Proteome Sci 2012; 10:29. [PMID: 22545783 PMCID: PMC3504578 DOI: 10.1186/1477-5956-10-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/30/2012] [Indexed: 12/16/2022] Open
Abstract
Background Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. Results The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-binge. Ethanol binge alone in control rats had no effect on this protein suggesting its possible role in increased susceptibility to injury by binge after chonic ethanol treatment. A protein spot, in which both cytosolic isocitrate dehydrogenase (IDH1) and glutamine synthetase (GS) were identified, showed a small decrease after chronic ethanol binge but western blot demonstrated significant decrease only for glutamine synthetase in chronic ethanol treated rats. The level of gluathione S-transferase mu isoform (GSTM1) increased after chronic ethanol but was lower after chronic ethanol-binge compared to chronic ethanol treatment. The protein levels of the basic form of protein disulfide isomerase associated protein 3 (PDIA3) were significantly decreased and the acidic forms were increased after chronic ethanol- binge but not in chronic ethanol treated rats or ethanol binge in control rats. The significant changes in proteome profile in chronic ethanol binge were accompanied by a marked increase in liver injury as evidenced by enhanced steatosis, necrosis, increased 4-hydroxynonenal labeled proteins, CYP2E1 expression, and decreased histone H2AX phosphorylation. Conclusions Given the role of CA3, IDH1 and GST in oxidative stress; PDIA3 in protein quality control, apoptosis and DNA repair and decreased glutamine synthetase as a sensitive marker of pericentral liver injury this proteome study of chronic ethanol-binge rat model identifies these proteins for the first time as molecular targets with potential role in progression of liver injury by binge ethanol drinking.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology & Physiology, University of Missouri, Columbia, MO 65212, USA.
| | | | | | | | | |
Collapse
|
15
|
The CovS/CovR acid response regulator is required for intracellular survival of group B Streptococcus in macrophages. Infect Immun 2012; 80:1650-61. [PMID: 22331428 DOI: 10.1128/iai.05443-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and septicemia. The ability of this organism to survive inside phagocytic cells is poorly understood but thought to be an important step for the establishment of disease in the host. Here, we demonstrate that GBS shows prolonged survival within J774 macrophages and that the capacity to survive is not significantly changed across a diverse range of strains representing different serotypes, multilocus sequence types (MLST), and sites of clinical isolation. Using staining for the lysosome-associated membrane protein (LAMP) and by pharmacological inhibition of phagosome acidification, we demonstrate that streptococci reside in a phagosome and that acidification of the phagosome is required for GBS to survive intracellularly. Moreover, we show that the GBS two-component system CovS/CovR, which is the major acid response regulator in this organism, is required for survival inside the phagosome.
Collapse
|
16
|
Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. mBio 2011; 2:e00103-11. [PMID: 21652778 PMCID: PMC3110414 DOI: 10.1128/mbio.00103-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cryptococcus neoformans is an important fungal pathogen of immunocompromised individuals, with a close relative, Cryptococcus gattii, emerging as a serious threat for the immunocompetent. During initial infection, C. neoformans colonizes the airspaces of the lungs, resulting in pneumonia, and subsequently migrates to the central nervous system (CNS). We sought to understand fungal carbon utilization during colonization of these fundamentally different niches within the host, in particular the roles of gluconeogenesis and glycolysis. We created mutants at key points in the gluconeogenesis/glycolysis metabolic pathways that are restricted for growth on lactate and glucose, respectively. A phosphoenolpyruvate carboxykinase mutant (the pck1∆ mutant), blocked for entry of 2- and 3-carbon substrates into gluconeogenesis and attenuated for virulence in a murine inhalation model, showed wild-type (WT) persistence in a rabbit cerebrospinal fluid (CSF) model of cryptococcosis. Conversely, both the pyruvate kinase (pyk1∆) and the hexose kinase I and II (hxk1∆/hxk2∆) mutants, which show impaired glucose utilization, exhibited severely attenuated virulence in the murine inhalation model of cryptococcosis and decreased persistence in the CNS in both the rabbit CSF and the murine inhalation models while displaying adequate persistence in the lungs of mice. These data suggest that glucose utilization is critical for virulence of C. neoformans and persistence of the yeast in the CNS. Cryptococcus neoformans is an emerging fungal pathogen of humans and is responsible for approximately 625,000 deaths annually among those suffering from HIV infection/AIDS. The ability of this fungus to persist in the host, coupled with its propensity to colonize the CNS, makes the understanding of nutrient acquisition in the host a primary concern. In this study, we report a requirement of glucose utilization for virulence of C. neoformans that is separate from its role in ATP production in the pathogen. Furthermore, we show that inhibition of glycolysis is a viable antifungal drug target, and impaired ATP production via the PYK1 deletion may serve as a model for dormant/chronic fungal infection in the host. Taken together, these results demonstrate the critical importance of understanding basic metabolic processes of the fungus in the context of host-pathogen interactions.
Collapse
|
17
|
Foyer CH, Noctor G, Hodges M. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1467-82. [PMID: 21282329 DOI: 10.1093/jxb/erq453] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Considerable advances in our understanding of the control of mitochondrial metabolism and its interactions with nitrogen metabolism and associated carbon/nitrogen interactions have occurred in recent years, particularly highlighting important roles in cellular redox homeostasis. The tricarboxylic acid (TCA) cycle is a central metabolic hub for the interacting pathways of respiration, nitrogen assimilation, and photorespiration, with components that show considerable flexibility in relation to adaptations to the different functions of mitochondria in photosynthetic and non-photosynthetic cells. By comparison, the operation of the oxidative pentose phosphate pathway appears to represent a significant limitation to nitrogen assimilation in non-photosynthetic tissues. Valuable new insights have been gained concerning the roles of the different enzymes involved in the production of 2-oxoglutarate (2-OG) for ammonia assimilation, yielding an improved understanding of the crucial role of cellular energy balance as a broker of co-ordinate regulation. Taken together with new information on the mechanisms that co-ordinate the expression of genes involved in organellar functions, including energy metabolism, and the potential for exploiting the existing flexibility for NAD(P)H utilization in the respiratory electron transport chain to drive nitrogen assimilation, the evidence that mitochondrial metabolism and machinery are potential novel targets for the enhancement of nitrogen use efficiency (NUE) is explored.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Shoemaker JD. One-step metabolomics: carbohydrates, organic and amino acids quantified in a single procedure. J Vis Exp 2010:2014. [PMID: 20613709 PMCID: PMC3156063 DOI: 10.3791/2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Every infant born in the US is now screened for up to 42 rare genetic disorders called "inborn errors of metabolism". The screening method is based on tandem mass spectrometry and quantifies acylcarnitines as a screen for organic acidemias and also measures amino acids. All states also perform enzymatic testing for carbohydrate disorders such as galactosemia. Because the results can be non-specific, follow-up testing of positive results is required using a more definitive method. The present report describes the "urease" method of sample preparation for inborn error screening. Crystalline urease enzyme is used to remove urea from body fluids which permits most other water-soluble metabolites to be dehydrated and derivatized for gas chromatography in a single procedure. Dehydration by evaporation in a nitrogen stream is facilitated by adding acetonitrile and methylene chloride. Then, trimethylsilylation takes place in the presence of a unique catalyst, triethylammonium trifluoroacetate. Automated injection and chromatography is followed by macro-driven custom quantification of 192 metabolites and semi-quantification of every major component using specialized libraries of mass spectra of TMS derivatized biological compounds. The analysis may be performed on the widely-used Chemstation platform using the macros and libraries available from the author. In our laboratory, over 16,000 patient samples have been analyzed using the method with a diagnostic yield of about 17%--that is, 17% of the samples results reveal findings that should be acted upon by the ordering physician. Included in these are over 180 confirmed inborn errors, of which about 38% could not have been diagnosed using previous methods.
Collapse
Affiliation(s)
- James D Shoemaker
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, USA.
| |
Collapse
|