1
|
Sparvoli D, Delabre J, Penarete‐Vargas DM, Kumar Mageswaran S, Tsypin LM, Heckendorn J, Theveny L, Maynadier M, Mendonça Cova M, Berry‐Sterkers L, Guérin A, Dubremetz J, Urbach S, Striepen B, Turkewitz AP, Chang Y, Lebrun M. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma. EMBO J 2022; 41:e111158. [PMID: 36245278 PMCID: PMC9670195 DOI: 10.15252/embj.2022111158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Jason Delabre
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | | | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lev M Tsypin
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Justine Heckendorn
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Liam Theveny
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Marjorie Maynadier
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Laurence Berry‐Sterkers
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Amandine Guérin
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jean‐François Dubremetz
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| | - Serge Urbach
- IGFUniversité de Montpellier, CNRS, INSERMMontpellierFrance
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
| | - Yi‐Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Maryse Lebrun
- Laboratory of Pathogen Host InteractionsUMR 5235 CNRS, Université de MontpellierMontpellierFrance
| |
Collapse
|
2
|
Marugan-Hernandez V, Sanchez-Arsuaga G, Vaughan S, Burrell A, Tomley FM. Do All Coccidia Follow the Same Trafficking Rules? Life (Basel) 2021; 11:life11090909. [PMID: 34575057 PMCID: PMC8465013 DOI: 10.3390/life11090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023] Open
Abstract
The Coccidia are a subclass of the Apicomplexa and include several genera of protozoan parasites that cause important diseases in humans and animals, with Toxoplasma gondii becoming the ‘model organism’ for research into the coccidian molecular and cellular processes. The amenability to the cultivation of T. gondii tachyzoites and the wide availability of molecular tools for this parasite have revealed many mechanisms related to their cellular trafficking and roles of parasite secretory organelles, which are critical in parasite-host interaction. Nevertheless, the extrapolation of the T. gondii mechanisms described in tachyzoites to other coccidian parasites should be done carefully. In this review, we considered published data from Eimeria parasites, a coccidian genus comprising thousands of species whose infections have important consequences in livestock and poultry. These studies suggest that the Coccidia possess both shared and diversified mechanisms of protein trafficking and secretion potentially linked to their lifecycles. Whereas trafficking and secretion appear to be well conversed prior to and during host-cell invasion, important differences emerge once endogenous development commences. Therefore, further studies to validate the mechanisms described in T. gondii tachyzoites should be performed across a broader range of coccidians (including T. gondii sporozoites). In addition, further genus-specific research regarding important disease-causing Coccidia is needed to unveil the individual molecular mechanisms of pathogenesis related to their specific lifecycles and hosts.
Collapse
Affiliation(s)
- Virginia Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
- Correspondence: ; Tel.: +44-(0)-17-0766-9445
| | - Gonzalo Sanchez-Arsuaga
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK;
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK;
| | - Fiona M. Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms AL9 7TA, UK; (G.S.-A.); (F.M.T.)
| |
Collapse
|
3
|
Aquilini E, Cova MM, Mageswaran SK, Dos Santos Pacheco N, Sparvoli D, Penarete-Vargas DM, Najm R, Graindorge A, Suarez C, Maynadier M, Berry-Sterkers L, Urbach S, Fahy PR, Guérin AN, Striepen B, Dubremetz JF, Chang YW, Turkewitz AP, Lebrun M. An Alveolata secretory machinery adapted to parasite host cell invasion. Nat Microbiol 2021; 6:425-434. [PMID: 33495622 PMCID: PMC8886610 DOI: 10.1038/s41564-020-00854-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.
Collapse
Affiliation(s)
- Eleonora Aquilini
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Dos Santos Pacheco
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | | | - Rania Najm
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Arnault Graindorge
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Catherine Suarez
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marjorie Maynadier
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Laurence Berry-Sterkers
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Pilar Ruga Fahy
- Pôle Facultaire de Microscopie Ultrastructurale, Geneva, Switzerland
| | - Amandine N Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France.
| |
Collapse
|
4
|
Stasic AJ, Chasen NM, Dykes EJ, Vella SA, Asady B, Starai VJ, Moreno SNJ. The Toxoplasma Vacuolar H +-ATPase Regulates Intracellular pH and Impacts the Maturation of Essential Secretory Proteins. Cell Rep 2020; 27:2132-2146.e7. [PMID: 31091451 PMCID: PMC6760873 DOI: 10.1016/j.celrep.2019.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Vacuolar-proton ATPases (V-ATPases) are conserved complexes that couple the hydrolysis of ATP to the pumping of protons across membranes. V-ATPases are known to play diverse roles in cellular physiology. We studied the Toxoplasma gondii V-ATPase complex and discovered a dual role of the pump in protecting parasites against ionic stress and in the maturation of secretory proteins in endosomal-like compartments. Toxoplasma V-ATPase subunits localize to the plasma membrane and to acidic vesicles, and characterization of conditional mutants of the a1 subunit highlighted the functionality of the complex at both locations. Microneme and rhoptry proteins are required for invasion and modulation of host cells, and they traffic via endosome-like compartments in which proteolytic maturation occurs. We show that the V-ATPase supports the maturation of rhoptry and microneme proteins, and their maturases, during their traffic to their corresponding organelles. This work underscores a role for V-ATPases in regulating virulence pathways. Stasic et al. characterize the function of the vacuolar proton ATPase in the life cycle of Toxoplasma gondii, a widespread parasite that infects almost one-third of the world’s population. The work presents molecular evidence of the pump’s role in the synthesis of virulence factors of a highly successful pathogen.
Collapse
Affiliation(s)
- Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Nathan M Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Eric J Dykes
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602-7400, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602-7400, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-7400, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602-7400, USA.
| |
Collapse
|
5
|
Florentin A, Cobb DW, Kudyba HM, Muralidharan V. Directing traffic: Chaperone-mediated protein transport in malaria parasites. Cell Microbiol 2020; 22:e13215. [PMID: 32388921 PMCID: PMC7282954 DOI: 10.1111/cmi.13215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The ability of eukaryotic parasites from the phylum Apicomplexa to cause devastating diseases is predicated upon their ability to maintain faithful and precise protein trafficking mechanisms. Their parasitic life cycle depends on the trafficking of effector proteins to the infected host cell, transport of proteins to several critical organelles required for survival, as well as transport of parasite and host proteins to the digestive organelles to generate the building blocks for parasite growth. Several recent studies have shed light on the molecular mechanisms parasites utilise to transform the infected host cells, transport proteins to essential metabolic organelles and for biogenesis of organelles required for continuation of their life cycle. Here, we review key pathways of protein transport originating and branching from the endoplasmic reticulum, focusing on the essential roles of chaperones in these processes. Further, we highlight key gaps in our knowledge that prevents us from building a holistic view of protein trafficking in these deadly human pathogens.
Collapse
Affiliation(s)
- Anat Florentin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - David W Cobb
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Heather M Kudyba
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Venugopal K, Marion S. Secretory organelle trafficking in Toxoplasma gondii: A long story for a short travel. Int J Med Microbiol 2018; 308:751-760. [DOI: 10.1016/j.ijmm.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
|
7
|
Guérin A, El Hajj H, Penarete-Vargas D, Besteiro S, Lebrun M. RON4 L1 is a new member of the moving junction complex in Toxoplasma gondii. Sci Rep 2017; 7:17907. [PMID: 29263399 PMCID: PMC5738351 DOI: 10.1038/s41598-017-18010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/05/2017] [Indexed: 12/02/2022] Open
Abstract
Apicomplexa parasites, including Toxoplasma and Plasmodium species, possess a unique invasion mechanism that involves a tight apposition between the parasite and the host plasma membranes, called “moving junction” (MJ). The MJ is formed by the assembly of the microneme protein AMA1, exposed at the surface of the parasite, and the parasite rhoptry neck (RON) protein RON2, exposed at the surface of the host cell. In the host cell, RON2 is associated with three additional parasite RON proteins, RON4, RON5 and RON8. Here we describe RON4L1, an additional member of the MJ complex in Toxoplasma. RON4L1 displays some sequence similarity with RON4 and is cleaved at the C-terminal end before reaching the rhoptry neck. Upon secretion during invasion, RON4L1 is associated with MJ and targeted to the cytosolic face of the host membrane. We generated a RON4L1 knock-out cell line and showed that it is not essential for the lytic cycle in vitro, although mutant parasites kill mice less efficiently. Similarly to RON8, RON4L1 is a coccidian-specific protein and its traffic to the MJ is not affected in absence of RON2, RON4 and RON5, suggesting the co-existence of independent MJ complexes in tachyzoite of Toxoplasma.
Collapse
Affiliation(s)
- Amandine Guérin
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, 1107 2020, Lebanon
| | | | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, 34095, Montpellier, France.
| |
Collapse
|
8
|
Lentini G, El Hajj H, Papoin J, Fall G, Pfaff AW, Tawil N, Braun-Breton C, Lebrun M. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice. PLoS One 2017; 12:e0189556. [PMID: 29244879 PMCID: PMC5731766 DOI: 10.1371/journal.pone.0189556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP), a rhoptry protein homologous to High temperature requirement A (HtrA) or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.
Collapse
Affiliation(s)
- Gaelle Lentini
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Hiba El Hajj
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Julien Papoin
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Gamou Fall
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
| | - Alexander W. Pfaff
- Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Nadim Tawil
- Department of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon
| | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
9
|
Marugan-Hernandez V, Long E, Blake D, Crouch C, Tomley F. Eimeria tenella protein trafficking: differential regulation of secretion versus surface tethering during the life cycle. Sci Rep 2017; 7:4557. [PMID: 28676667 PMCID: PMC5496917 DOI: 10.1038/s41598-017-04049-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Eimeria spp. are intracellular parasites that have a major impact on poultry. Effective live vaccines are available and the development of reverse genetic technologies has raised the prospect of using Eimeria spp. as recombinant vectors to express additional immunoprotective antigens. To study the ability of Eimeria to secrete foreign antigens or display them on the surface of the sporozoite, transiently transfected populations of E. tenella expressing the fluorescent protein mCherry, linked to endogenous signal peptide (SP) and glycophosphatidylinositol-anchor (GPI) sequences, were examined. The SP from microneme protein EtMIC2 (SP2) allowed efficient trafficking of mCherry to cytoplasmic vesicles and following the C-terminal addition of a GPI-anchor (from surface antigen EtSAG1) mCherry was expressed on the sporozoite surface. In stable transgenic populations, mCherry fused to SP2 was secreted into the sporocyst cavity of the oocysts and after excystation, secretion was detected in culture supernatants but not into the parasitophorous vacuole after invasion. When the GPI was incorporated, mCherry was observed on the sporozites surface and in the supernatant of invading sporozoites. The proven secretion and surface exposure of mCherry suggests that antigen fusions with SP2 and GPI of EtSAG1 may be promising candidates to examine induction of protective immunity against heterologous pathogens.
Collapse
Affiliation(s)
- V Marugan-Hernandez
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK.
| | - E Long
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - D Blake
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| | - C Crouch
- MSD Animal Health, Walton Manor, Milton Keynes, MK7 7AJ, UK
| | - F Tomley
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, AL9 7TA, UK
| |
Collapse
|
10
|
Venugopal K, Werkmeister E, Barois N, Saliou JM, Poncet A, Huot L, Sindikubwabo F, Hakimi MA, Langsley G, Lafont F, Marion S. Dual role of the Toxoplasma gondii clathrin adaptor AP1 in the sorting of rhoptry and microneme proteins and in parasite division. PLoS Pathog 2017; 13:e1006331. [PMID: 28430827 PMCID: PMC5415223 DOI: 10.1371/journal.ppat.1006331] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/03/2017] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory system, which efficiently assembles de novo micronemes and rhoptries during parasite replication. These apical secretory organelles release their contents into host cells promoting parasite invasion and survival. Using a CreLox-based inducible knock-out strategy and the ddFKBP over-expression system, we unraveled novel functions of the clathrin adaptor complex TgAP1. First, our data indicate that AP1 in T. gondii likely functions as a conserved heterotetrameric complex composed of the four subunits γ, β, μ1, σ1 and interacts with known regulators of clathrin-mediated vesicular budding such as the unique ENTH-domain containing protein, which we named Epsin-like protein (TgEpsL). Disruption of the μ1 subunit resulted in the mis-sorting of microneme proteins at the level of the Trans-Golgi-Network (TGN). Furthermore, we demonstrated that TgAP1 regulates rhoptry biogenesis by activating rhoptry protein exit from the TGN, but also participates in the post-Golgi maturation process of preROP compartments into apically anchored club-shaped mature organelles. For this latter activity, our data indicate a specific functional relationship between TgAP1 and the Rab5A-positive endosome-like compartment. In addition, we unraveled an original role for TgAP1 in the regulation of parasite division. APμ1-depleted parasites undergo normal daughter cell budding and basal complex assembly but fail to segregate at the end of cytokinesis. The phylum Apicomplexa comprises a large group of obligate intracellular parasites of wide human and agricultural significance. Most notable are Plasmodium, the causative agent of malaria, and Toxoplasma gondii, one of the most common human parasites, responsible for disease of the developing fetus and immune-compromised individuals. Apicomplexa are characterized by the presence of an apical complex consisting of secretory organelles named micronemes (MIC) and rhoptries (ROP). MIC and ROP proteins, released upon host cell recognition, are essential for host cell invasion and parasite survival. After invasion, these organelles are neo-synthesized at each parasite replication cycle. In our study, we demonstrate a crucial role for the T. gondii clathrin adaptor complex AP1 in the vesicular transport of neo-synthesized MIC and ROP proteins, thereby regulating mature apical organelle formation. In addition, we unravel an original role for TgAP1 in the late stages of the parasite division process during daughter cell segregation. Therefore, our study provides new insights into key regulatory mechanisms of the vesicular trafficking system essential for host invasion and intracellular survival of Toxoplasma gondii.
Collapse
Affiliation(s)
- Kannan Venugopal
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Elisabeth Werkmeister
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Nicolas Barois
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jean-Michel Saliou
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Anais Poncet
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Ludovic Huot
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Fabien Sindikubwabo
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Mohamed Ali Hakimi
- IAB, Team Host-pathogen interactions & immunity to infection, Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Grenoble, France
| | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes-Sorbonne Paris Cité, France. Inserm U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Frank Lafont
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Sabrina Marion
- Centre d'Infection et d'Immunité de Lille, Université de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
11
|
Liu Q, Li FC, Zhou CX, Zhu XQ. Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 2017; 176:89-98. [PMID: 28286325 DOI: 10.1016/j.exppara.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii microneme proteins (TgMICs), secreted by micronemes upon contact with host cells, are reported to play important roles in multiple stages of the T. gondii life cycle, including parasite motility, invasion, intracellular survival, and egress from host cells. Meanwhile, during these processes, TgMICs participate in many protein-protein and protein-carbohydrate interactions, such as undergoing proteolytic maturation, binding to aldolase, engaging the host cell receptors and forming the moving junction (MJ), relying on different types of ectodomains, transmembrane (TM) domains and cytoplasmic domains (CDs). In this review, we summarize the research advances in protein-protein and protein-carbohydrate interactions related to TgMICs, and their intimate associations with corresponding biological processes during T. gondii infection, which will contribute to an improved understanding of the molecular pathogenesis of T. gondii infection, and provide a basis for developing effective control strategies against T. gondii.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| | - Fa-Cai Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China.
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| |
Collapse
|
12
|
Graindorge A, Frénal K, Jacot D, Salamun J, Marq JB, Soldati-Favre D. The Conoid Associated Motor MyoH Is Indispensable for Toxoplasma gondii Entry and Exit from Host Cells. PLoS Pathog 2016; 12:e1005388. [PMID: 26760042 PMCID: PMC4711953 DOI: 10.1371/journal.ppat.1005388] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/23/2022] Open
Abstract
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion. The Apicomplexa phylum groups important pathogens that infect humans and animals. Host cell invasion and egress from infected cells are key events in the lytic cycle of these obligate intracellular parasites. Host cell entry is powered by gliding motility and initiated by the discharge of apical secretory organelles at the site of contact with the host cell. Anchored to the parasite pellicle, the glideosome composed of myosin A and the gliding associated proteins is the molecular machine which translocates the secreted adhesins from the apical to the posterior pole of the parasite and hence propels the parasite into the host cell. Toxoplasma gondii exhibits a helical form of gliding motility and as member of the coccidian-subgroup of Apicomplexa possesses an apical organelle called the conoid, which protrudes during invasion and egress and consists in helically organized polymer of tubulin fibers. We have deciphered here the function of a novel myosin associated to the microtubules composing the conoid. Myosin H is essential and prerequisite for motility, invasion and egress from infected cells. This unusual motor links actin- and tubulin-based cytoskeletons and uncovers a direct role of the conoid in motility and invasion.
Collapse
Affiliation(s)
- Arnault Graindorge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karine Frénal
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean Baptiste Marq
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
13
|
Mueller C, Samoo A, Hammoudi PM, Klages N, Kallio JP, Kursula I, Soldati-Favre D. Structural and functional dissection of Toxoplasma gondii armadillo repeats only protein (TgARO). J Cell Sci 2016; 129:1031-45. [DOI: 10.1242/jcs.177386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/07/2016] [Indexed: 02/03/2023] Open
Abstract
Rhoptries are club-shaped, regulated secretory organelles that cluster at the apical pole of apicomplexan parasites. Their discharge is essential for invasion and the establishment of an intracellular lifestyle. Little is known about rhoptry biogenesis and recycling during parasite division. In Toxoplasma gondii, positioning of rhoptries involves the armadillo repeats only protein (TgARO) and myosin F (TgMyoF). Here, we show that two TgARO partners, ARO interacting protein (TgAIP) and adenylate cyclase β (TgACβ) localize to a rhoptry subcompartment. In absence of TgAIP, TgACβ disappears from the rhoptries. By assessing the contribution of each TgARO armadillo (ARM) repeat, we provide evidence that TgARO is multifunctional, participating not only in positioning but also in clustering of rhoptries. Structural analyses show that TgARO resembles the myosin-binding domain of the myosin chaperone UNC-45. A conserved patch of aromatic and acidic residues denotes the putative TgMyoF-binding site, and the overall arrangement of the ARM repeats explains the dramatic consequences of deleting each of them. Lastly, Plasmodium falciparum ARO functionally complements TgARO depletion and interacts with the same partners, highlighting the conservation of rhoptry biogenesis in Apicomplexa.
Collapse
Affiliation(s)
- Christina Mueller
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Atta Samoo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | - Juha Pekka Kallio
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, 90014 Oulu, Finland
- Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg, Germany
- German Electron Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Yang D, Liu J, Hao P, Wang J, Lei T, Shan D, Liu Q. MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum. Parasitol Res 2015; 114:3791-9. [PMID: 26141436 DOI: 10.1007/s00436-015-4609-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Abstract
Microneme protein 3 (MIC3) is an important adhesion molecule expressed by Toxoplasma gondii and Neospora caninum that plays a crucial role in invasion. In our study, we found that recombinant TgMIC3 (rTgMIC3) was recognized by both T. gondii-reactive sera and hyper-immune serum against N. caninum. Polyclonal antibodies against TgMIC3 reacted with N. caninum by western blot and immunofluorescence assay (IFA). These results indicate that MIC3 is a novel cross-reactive antigen expressed in N. caninum and T. gondii. To evaluate the immune-protective effect of TgMIC3, we created the eukaryotic expression vector pcDNA3.1-TgMIC3, transfected this vector into HEK293T cells by lipofection, and evaluated TgMIC3 expression in HEK293T cells using western blot and IFA. Then, groups of BALB/c mice were immunized with recombinant TgMIC3 protein, pcDNA3.1-TgMIC3, or two-vaccine immunization. The mice were challenged with T. gondii RH or N. caninum Nc-1 tachyzoites 14 days after the final immunization. The survival time of T. gondii-infected mice was recorded, and the parasite burden in the brain of N. caninum-infected mice 30 days post-infection was measured using real-time PCR. The results demonstrated that mice immunized with TgMIC3-based vaccines elicited high antibody titers. After parasitic challenge, mice immunized with pcDNA-TgMIC3 exhibited prolonged survival when infected with T. gondii tachyzoites and a lower parasitic burden in the brains of mice challenged with N. caninum tachyzoites. These results demonstrate that TgMIC3 is a cross-protective antigen expressed in T. gondii and N. caninum and could elicit some protection against toxoplasmosis and neosporosis.
Collapse
Affiliation(s)
- Daoyu Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, Yin H. Research advances in microneme protein 3 of Toxoplasma gondii. Parasit Vectors 2015; 8:384. [PMID: 26194005 PMCID: PMC4509771 DOI: 10.1186/s13071-015-1001-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/09/2015] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite. It has extensive host populations and is prevalent globally; T. gondii infection can cause a zoonotic parasitic disease. Microneme protein 3 (MIC3) is a secreted protein that is expressed in all stages of the T. gondii life cycle. It has strong immunoreactivity and plays an important role in the recognition, adhesion and invasion of host cells by T. gondii. This article reviews the molecular structure of MIC3, its role in the invasion of host cells by parasites, its relationship with parasite virulence, and its induction of immune protection to lay a solid foundation for an in-depth study of potential diagnostic agents and vaccines for preventing toxoplasmosis.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
16
|
Li W, Liu J, Wang J, Fu Y, Nan H, Liu Q. Identification and characterization of a microneme protein (NcMIC6) in Neospora caninum. Parasitol Res 2015; 114:2893-902. [DOI: 10.1007/s00436-015-4490-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/19/2015] [Indexed: 11/29/2022]
|
17
|
Rugarabamu G, Marq JB, Guérin A, Lebrun M, Soldati-Favre D. Distinct contribution of Toxoplasma gondii rhomboid proteases 4 and 5 to micronemal protein protease 1 activity during invasion. Mol Microbiol 2015; 97:244-62. [PMID: 25846828 DOI: 10.1111/mmi.13021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 10/23/2022]
Abstract
Host cell entry by the Apicomplexa is associated with the sequential secretion of invasion factors from specialized apical organelles. Secretion of micronemal proteins (MICs) complexes by Toxoplasma gondii facilitates parasite gliding motility, host cell attachment and entry, as well as egress from infected cells. The shedding of MICs during these steps is mediated by micronemal protein proteases MPP1, MPP2 and MPP3. The constitutive activity of MPP1 leads to the cleavage of transmembrane MICs and is linked to the surface rhomboid protease 4 (ROM4) and possibly to rhomboid protease 5 (ROM5). To determine their importance and respective contribution to MPP1 activity, in this study ROM4 and ROM5 genes were abrogated using Cre-recombinase and CRISPR-Cas9 nuclease, respectively, and shown to be dispensable for parasite survival. Parasites lacking ROM4 predominantly engage in twirling motility and exhibit enhanced attachment and impaired invasion, whereas intracellular growth and egress is not affected. The substrates MIC2 and MIC6 are not cleaved in rom4-ko parasites, in contrast, intramembrane cleavage of AMA1 is reduced but not completely abolished. Shedding of MICs and invasion are not altered in the absence of ROM5; however, this protease responsible for the residual cleavage of AMA1 is able to cleave other AMA family members and exhibits a detectable contribution to invasion in the absence of ROM4.
Collapse
Affiliation(s)
- George Rugarabamu
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Amandine Guérin
- UMR 5235 CNRS, Université de Montpellier 2, 34095, Montpellier, France
| | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, 34095, Montpellier, France
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 Rue Michel-Servet, 1211, Geneva 4, Switzerland
| |
Collapse
|
18
|
Daher W, Morlon-Guyot J, Sheiner L, Lentini G, Berry L, Tawk L, Dubremetz JF, Wengelnik K, Striepen B, Lebrun M. Lipid kinases are essential for apicoplast homeostasis in Toxoplasma gondii. Cell Microbiol 2014; 17:559-78. [PMID: 25329540 DOI: 10.1111/cmi.12383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/26/2014] [Accepted: 10/10/2014] [Indexed: 12/25/2022]
Abstract
Phosphoinositides regulate numerous cellular processes by recruiting cytosolic effector proteins and acting as membrane signalling entities. The cellular metabolism and localization of phosphoinositides are tightly regulated by distinct lipid kinases and phosphatases. Here, we identify and characterize a unique phosphatidylinositol 3 kinase (PI3K) in Toxoplasma gondii, a protozoan parasite belonging to the phylum Apicomplexa. Conditional depletion of this enzyme and subsequently of its product, PI(3)P, drastically alters the morphology and inheritance of the apicoplast, an endosymbiotic organelle of algal origin that is a unique feature of many Apicomplexa. We searched the T. gondii genome for PI(3)P-binding proteins and identified in total six PX and FYVE domain-containing proteins including a PIKfyve lipid kinase, which phosphorylates PI(3)P into PI(3,5)P2 . Although depletion of putative PI(3)P-binding proteins shows that they are not essential for parasite growth and apicoplast biology, conditional disruption of PIKfyve induces enlarged apicoplasts, as observed upon loss of PI(3)P. A similar defect of apicoplast homeostasis was also observed by knocking down the PIKfyve regulatory protein ArPIKfyve, suggesting that in T. gondii, PI(3)P-related function for the apicoplast might mainly be to serve as a precursor for the synthesis of PI(3,5)P2 . Accordingly, PI3K is conserved in all apicomplexan parasites whereas PIKfyve and ArPIKfyve are absent in Cryptosporidium species that lack an apicoplast, supporting a direct role of PI(3,5)P2 in apicoplast homeostasis. This study enriches the already diverse functions attributed to PI(3,5)P2 in eukaryotic cells and highlights these parasite lipid kinases as potential drug targets.
Collapse
Affiliation(s)
- Wassim Daher
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier 1 et 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A nuclear factor of high mobility group box protein in Toxoplasma gondii. PLoS One 2014; 9:e111993. [PMID: 25369210 PMCID: PMC4219823 DOI: 10.1371/journal.pone.0111993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host-parasite interactions for T. gondii infection.
Collapse
|
20
|
Lentini G, Kong-Hap M, El Hajj H, Francia M, Claudet C, Striepen B, Dubremetz JF, Lebrun M. Identification and characterization of Toxoplasma SIP, a conserved apicomplexan cytoskeleton protein involved in maintaining the shape, motility and virulence of the parasite. Cell Microbiol 2014; 17:62-78. [PMID: 25088010 DOI: 10.1111/cmi.12337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 12/30/2022]
Abstract
Apicomplexa possess a complex pellicle that is composed of a plasma membrane and a closely apposed inner membrane complex (IMC) that serves as a support for the actin-myosin motor required for motility and host cell invasion. The IMC consists of longitudinal plates of flattened vesicles, fused together and lined on the cytoplasmic side by a subpellicular network of intermediate filament-like proteins. The spatial organization of the IMC has been well described by electron microscopy, but its composition and molecular organization is largely unknown. Here, we identify a novel protein of the IMC cytoskeletal network in Toxoplasma gondii, called TgSIP, and conserved among apicomplexan parasites. To finely pinpoint the localization of TgSIP, we used structured illumination super-resolution microscopy and revealed that it likely decorates the transverse sutures of the plates and the basal end of the IMC. This suggests that TgSIP might contribute to the organization or physical connection among the different components of the IMC. We generated a T.gondii SIP deletion mutant and showed that parasites lacking TgSIP are significantly shorter than wild-type parasites and show defects in gliding motility, invasion and reduced infectivity in mice.
Collapse
Affiliation(s)
- Gaelle Lentini
- UMR 5235 CNRS, Université de Montpellier 1 and 2, 34095, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Evolutionary repurposing of endosomal systems for apical organelle biogenesis in Toxoplasma gondii. Int J Parasitol 2014; 44:133-8. [DOI: 10.1016/j.ijpara.2013.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022]
|
22
|
Tomavo S, Slomianny C, Meissner M, Carruthers VB. Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion. PLoS Pathog 2013; 9:e1003629. [PMID: 24204248 PMCID: PMC3812028 DOI: 10.1371/journal.ppat.1003629] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles.
Collapse
Affiliation(s)
- Stanislas Tomavo
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, Lille, France
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
23
|
Morlon-Guyot J, Berry L, Chen CT, Gubbels MJ, Lebrun M, Daher W. The Toxoplasma gondii calcium-dependent protein kinase 7 is involved in early steps of parasite division and is crucial for parasite survival. Cell Microbiol 2013; 16:95-114. [PMID: 24011186 DOI: 10.1111/cmi.12186] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022]
Abstract
Apicomplexan parasites express various calcium-dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock-down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7-depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium-dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.
Collapse
Affiliation(s)
- Juliette Morlon-Guyot
- Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, Université de Montpellier I et II, Montpellier, France
| | | | | | | | | | | |
Collapse
|
24
|
Amerizadeh A, Khoo BY, Teh AY, Golkar M, Abdul Karim IZ, Osman S, Yunus MH, Noordin R. Identification and real-time expression analysis of selected Toxoplasma gondii in-vivo induced antigens recognized by IgG and IgM in sera of acute toxoplasmosis patients. BMC Infect Dis 2013; 13:287. [PMID: 23800344 PMCID: PMC3695809 DOI: 10.1186/1471-2334-13-287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular zoonotic parasite of the phylum Apicomplexa which infects a wide range of warm-blooded animals, including humans. In this study in-vivo induced antigens of this parasite was investigated using in-vivo induced antigen technology (IVIAT) and pooled sera from patients with serological evidence of acute infection. METHODS The pooled sera was first pre-absorbed against three different preparations of antigens from in-vitro-grown cells of each T. gondii and E. coli XL1-Blue MRF', subsequently it was used to screen T. gondii cDNA phage expression library. Positive clones from each group were subjected to quantitative real-time PCR expression analysis on mRNA of in-vivo and in-vitro grown parasites. RESULTS A total of 29 reactive clones from each IgM and IgG immunoscreenings were found to have high homology to T. gondii genes. Quantitative real-time PCR expression analysis showed that 20 IgM-detected genes and 11 IgG-detected genes were up-regulated in-vivo relative to their expression levels in-vitro. These included genes encoding micronemes, sterol-regulatory element binding protein site, SRS34A, MIC2-associated protein M2AP, nucleoredoxin, protein phosphatase 2C and several hypothetical proteins. A hypothetical protein (GenBank accession no. 7899266) detected by IgG had the highest in-vivo over in-vitro fold change of 499.86; while another up-regulated hypothetical protein (GenBank accession no. 7898829) recognized by IgM showed high sensitivity (90%) and moderate specificity (70%) in detecting T. gondii antibodies when tested with 20 individual serum samples. CONCLUSION The highly up-regulated genes and the corresponding proteins, in particular the hypothetical proteins, may be useful in further studies on understanding the disease pathogenesis and as potential vaccine candidates.
Collapse
Affiliation(s)
- Atefeh Amerizadeh
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao G, Zhou A, Lv G, Meng M, Sun M, Bai Y, Han Y, Wang L, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. Toxoplasma gondii cathepsin proteases are undeveloped prominent vaccine antigens against toxoplasmosis. BMC Infect Dis 2013; 13:207. [PMID: 23651838 PMCID: PMC3659040 DOI: 10.1186/1471-2334-13-207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/01/2013] [Indexed: 12/31/2022] Open
Abstract
Background Toxoplasma gondii, an obligate intracellular apicomplexan parasite, infects a wide range of warm-blooded animals including humans. T. gondii expresses five members of the C1 family of cysteine proteases, including cathepsin B-like (TgCPB) and cathepsin L-like (TgCPL) proteins. TgCPB is involved in ROP protein maturation and parasite invasion, whereas TgCPL contributes to proteolytic maturation of proTgM2AP and proTgMIC3. TgCPL is also associated with the residual body in the parasitophorous vacuole after cell division has occurred. Both of these proteases are potential therapeutic targets in T. gondii. The aim of this study was to investigate TgCPB and TgCPL for their potential as DNA vaccines against T. gondii. Methods Using bioinformatics approaches, we analyzed TgCPB and TgCPL proteins and identified several linear-B cell epitopes and potential Th-cell epitopes in them. Based on these results, we assembled two single-gene constructs (TgCPB and TgCPL) and a multi-gene construct (pTgCPB/TgCPL) with which to immunize BALB/c mice and test their effectiveness as DNA vaccines. Results TgCPB and TgCPL vaccines elicited strong humoral and cellular immune responses in mice, both of which were Th-1 cell mediated. In addition, all of the vaccines protected the mice against infection with virulent T. gondii RH tachyzoites, with the multi-gene vaccine (pTgCPB/TgCPL) providing the highest level of protection. Conclusions T. gondii CPB and CPL proteases are strong candidates for development as novel DNA vaccines.
Collapse
Affiliation(s)
- Guanghui Zhao
- Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, P R China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kremer K, Kamin D, Rittweger E, Wilkes J, Flammer H, Mahler S, Heng J, Tonkin CJ, Langsley G, Hell SW, Carruthers VB, Ferguson DJP, Meissner M. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog 2013; 9:e1003213. [PMID: 23505371 PMCID: PMC3591302 DOI: 10.1371/journal.ppat.1003213] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/10/2013] [Indexed: 12/20/2022] Open
Abstract
The basic organisation of the endomembrane system is conserved in all eukaryotes and comparative genome analyses provides compelling evidence that the endomembrane system of the last common eukaryotic ancestor (LCEA) is complex with many genes required for regulated traffic being present. Although apicomplexan parasites, causative agents of severe human and animal diseases, appear to have only a basic set of trafficking factors such as Rab-GTPases, they evolved unique secretory organelles (micronemes, rhoptries and dense granules) that are sequentially secreted during invasion of the host cell. In order to define the secretory pathway of apicomplexans, we performed an overexpression screen of Rabs in Toxoplasma gondii and identified Rab5A and Rab5C as important regulators of traffic to micronemes and rhoptries. Intriguingly, we found that not all microneme proteins traffic depends on functional Rab5A and Rab5C, indicating the existence of redundant microneme targeting pathways. Using two-colour super-resolution stimulated emission depletion (STED) we verified distinct localisations of independent microneme proteins and demonstrate that micronemal organelles are organised in distinct subsets or subcompartments. Our results suggest that apicomplexan parasites modify classical regulators of the endocytic system to carryout essential parasite-specific roles in the biogenesis of their unique secretory organelles. Eukaryotic cells evolved a highly complex endomembrane system, consisting of secretory and endocytic organelles. In the case of apicomplexan parasites unique secretory organelles have evolved that are essential for the invasion of the host cell. Surprisingly these protozoans show a paucity of trafficking factors, such as Rabs and it appears that they lost several factors involved in endocytosis. Here, we demonstrate that Rab5A and Rab5C, normally involved in endocytic uptake, actually regulate secretion in Toxoplasma gondii, since functional ablation of Rab5A or Rab5C results in aberrant transport of proteins to specialised secretory organelles called micronemes and rhoptries. Furthermore, we demonstrate that independent transport routes to micronemes exist indicating that apicomplexans have remodelled Rab5-mediated vesicular traffic into a secretory system that is essential for host cell invasion.
Collapse
Affiliation(s)
- Katrin Kremer
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Dirk Kamin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Eva Rittweger
- German Cancer Research Center/BioQuant, Heidelberg, Germany
| | - Jonathan Wilkes
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Halley Flammer
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - Sabine Mahler
- Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Joanne Heng
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | - Gordon Langsley
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Institut Cochin, Inserm, U567, CNRS, UMR 8104, Faculté de Médecine Paris V – Hôpital Cochin, Paris, France
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, United States of America
| | - David J. P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Markus Meissner
- Institute of Infection, Immunity and Inflammation, Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
28
|
Identification of Toxoplasma gondii in-vivo induced antigens by cDNA library immunoscreening with chronic toxoplasmosis sera. Microb Pathog 2012; 54:60-6. [PMID: 23044055 DOI: 10.1016/j.micpath.2012.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/01/2012] [Accepted: 09/16/2012] [Indexed: 11/22/2022]
Abstract
Toxoplasmosis is an infection caused by the parasite Toxoplasma gondii. Chronically-infected individuals with a compromised immune system are at risk for reactivation of the disease. In-vivo induced antigen technology (IVIAT) is a promising method for the identification of antigens expressed in-vivo. The aim of the present study was to apply IVIAT to identify antigens which are expressed in-vivo during T. gondii infection using sera from individuals with chronic toxoplasmosis. Forty serum samples were pooled, pre-adsorped against three different preparations of antigens, from each in-vitro grown T. gondii and Escherichia coli XLBlue MRF', and then used to screen a T. gondii cDNA expression library. Sequencing of DNA inserts from positive clones showed eight open reading frames with high homology to T. gondii genes. Expression analysis using quantitative real-time PCR showed that SAG1-related sequence 3 (SRS3) and two hypothetical genes were up-regulated in-vivo relative to their expression levels in-vitro. These three proteins also showed high sensitivity and specificity when tested with individual serum samples. Five other proteins namely M16 domain peptidase, microneme protein, elongation factor 1-alpha, pre-mRNA-splicing factor and small nuclear ribonucleoprotein F had lower RNA expression in-vivo as compared to in-vitro. SRS3 and the two hypothetical proteins warrant further investigation into their roles in the pathogenesis of toxoplasmosis.
Collapse
|
29
|
Azzouz N, Kamena F, Laurino P, Kikkeri R, Mercier C, Cesbron-Delauw MF, Dubremetz JF, De Cola L, Seeberger PH. Toxoplasma gondii secretory proteins bind to sulfated heparin structures. Glycobiology 2012; 23:106-20. [DOI: 10.1093/glycob/cws134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
30
|
Gaji RY, Flammer HP, Carruthers VB. Forward targeting of Toxoplasma gondii proproteins to the micronemes involves conserved aliphatic amino acids. Traffic 2011; 12:840-53. [PMID: 21438967 DOI: 10.1111/j.1600-0854.2011.01192.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like other apicomplexan parasites, Toxoplasma gondii actively invades host cells using a combination of secretory proteins and an acto-myosin motor system. Micronemes are the first set of proteins secreted during invasion that play an essential role in host cell entry. Many microneme proteins (MICs) function in protein complexes, and each complex contains at least one protein that displays a cleavable propeptide. Although MIC propeptides have been implicated in forward targeting to micronemes, the specific amino acids involved have not been identified. It was also not known if the propeptide has a general function in MICs trafficking in T. gondii and other apicomplexans. Here we show that propeptide domains are extensively interchangeable between T. gondii MICs and also with that of Eimeria tenella MIC5 (EtMIC5), suggesting a common mechanism of function. We also performed N-terminal deletion and mutational analysis of M2AP and MIC5 propeptides to show that a valine at position +3 (relative to signal peptidase cleavage) of proM2AP and a leucine at position +1 of proMIC5 are crucial for targeting to micronemes. Valine and leucine are closely related amino acids with similar side chains, implying a similar mode of function, a notion that was confirmed by correct trafficking of TgM2AP-V/L and TgMIC5-L/V substitution mutants. Propeptides of AMA1, MIC3 and EtMIC5 have valine or leucine at or near the N-termini and mutagenesis of these conserved residues validated their role in microneme trafficking. Collectively, our findings suggest that discrete, aliphatic residues at the extreme N-termini of proMICs facilitate trafficking to the micronemes.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
31
|
Dou Z, Carruthers VB. Cathepsin proteases in Toxoplasma gondii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:49-61. [PMID: 21660658 DOI: 10.1007/978-1-4419-8414-2_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine proteases are important for the growth and survival of apicomplexan parasites that infect humans. The apicomplexan Toxoplasma gondii expresses five members of the C1 family of cysteine proteases, including one cathepsin L-like (TgCPL), one cathepsin B-like (TgCPB) and three cathepsin C-like (TgCPC1, 2 and 3) proteases. Recent genetic, biochemical and structural studies reveal that cathepsins function in microneme and rhoptry protein maturation, host cell invasion, replication and nutrient acquisition. here, we review the key features and roles of T. gondii cathepsins and discuss the therapeutic potential for specific inhibitor development.
Collapse
Affiliation(s)
- Zhicheng Dou
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | | |
Collapse
|
32
|
A new thrombospondin-related anonymous protein homologue in Neospora caninum (NcMIC2-like1). Parasitology 2010; 138:287-97. [DOI: 10.1017/s0031182010001290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYNeospora caninum is an Apicomplexan protozoan that has the dog as a definitive host and cattle (among other animals) as intermediate hosts. It causes encephalopathy in dogs and abortion in cows, with significant loss in worldwide livestock. As any Apicomplexan, the parasite invades the cells using proteins contained in the phylum-specific organelles, like the micronemes, rhoptries and dense granules. The aim of this study was the characterization of a homologue (denominated NcMIC2-like1) of N. caninum thrombospondin-related anonymous protein (NcMIC2), a micronemal protein previously shown to be involved in the attachment and connection with the intracellular motor responsible for the active process of invasion. A polyclonal antiserum raised against the recombinant NcMIC2-like1 functional core (thrombospondin and integrin domains) recognized the native form of NcMIC2-like1, inhibited the in vitro invasion process and localized NcMIC2-like1 at the apical complex of the parasite by confocal immunofluorescence, indicating its micronemal localization. The new molecule, NcMIC2-like1, has features that differentiates it from NcMIC2 in a substantial way to be considered a homologue†.
Collapse
|
33
|
Sheiner L, Santos JM, Klages N, Parussini F, Jemmely N, Friedrich N, Ward GE, Soldati-Favre D. Toxoplasma gondii transmembrane microneme proteins and their modular design. Mol Microbiol 2010; 77:912-29. [PMID: 20545864 DOI: 10.1111/j.1365-2958.2010.07255.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM-MICs). Toxoplasma gondii possesses functionally non-redundant MIC complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM-MICs are released onto the parasite's surface as complexes capable of interacting with host cell receptors. Additionally, TgMIC2 simultaneously connects to the actomyosin system via binding to aldolase. During invasion these adhesive complexes are shed from the surface notably via intramembrane cleavage of the TM-MICs by a rhomboid protease. Some TM-MICs act as escorters and assure trafficking of the complexes to the micronemes. We have investigated the properties of TgMIC6, TgMIC8, TgMIC8.2, TgAMA1 and the new micronemal protein TgMIC16 with respect to interaction with aldolase, susceptibility to rhomboid cleavage and presence of trafficking signals. We conclude that several TM-MICs lack targeting information within their C-terminal domains, indicating that trafficking depends on yet unidentified proteins interacting with their ectodomains. Most TM-MICs serve as substrates for a rhomboid protease and some of them are able to bind to aldolase. We also show that the residues responsible for binding to aldolase are essential for TgAMA1 but dispensable for TgMIC6 function during invasion.
Collapse
Affiliation(s)
- Lilach Sheiner
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Joana M Santos
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Fabiola Parussini
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Noelle Jemmely
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Nikolas Friedrich
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Gary E Ward
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
34
|
Characterization of a novel thrombospondin-related protein in Toxoplasma gondii. Parasitol Int 2010; 59:211-6. [DOI: 10.1016/j.parint.2010.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/17/2022]
|
35
|
Sialic acids: key determinants for invasion by the Apicomplexa. Int J Parasitol 2010; 40:1145-54. [PMID: 20430033 DOI: 10.1016/j.ijpara.2010.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/20/2022]
Abstract
Sialic acids are ubiquitously found on the surface of all vertebrate cells at the extremities of glycan chains and widely exploited by viruses and bacteria to enter host cells. Carbohydrate-bearing receptors are equally important for host cell invasion by the obligate intracellular protozoan parasites of the phylum Apicomplexa. Host cell entry is an active process relying crucially on proteins that engage with receptors on the host cell surface and promote adhesion and internalisation. Assembly into complexes, proteolytic processing and oligomerization are important requirements for the functionality of these adhesins. The combination of adhesive proteins with varying stringency in specificity confers some flexibility to the parasite in face of receptor heterogeneity and immune pressure. Sialic acids are now recognised to critically contribute to selective host cell recognition by various species of the phylum.
Collapse
|
36
|
Parussini F, Coppens I, Shah PP, Diamond SL, Carruthers VB. Cathepsin L occupies a vacuolar compartment and is a protein maturase within the endo/exocytic system of Toxoplasma gondii. Mol Microbiol 2010; 76:1340-57. [PMID: 20444089 DOI: 10.1111/j.1365-2958.2010.07181.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regulated exocytosis allows the timely delivery of proteins and other macromolecules precisely when they are needed to fulfil their functions. The intracellular parasite Toxoplasma gondii has one of the most extensive regulated exocytic systems among all unicellular organisms, yet the basis of protein trafficking and proteolytic modification in this system is poorly understood. We demonstrate that a parasite cathepsin protease, TgCPL, occupies a newly recognized vacuolar compartment (VAC) that undergoes dynamic fragmentation during T. gondii replication. We also provide evidence that within the VAC or late endosome this protease mediates the proteolytic maturation of proproteins targeted to micronemes, regulated secretory organelles that deliver adhesive proteins to the parasite surface during cell invasion. Our findings suggest that processing of microneme precursors occurs within intermediate endocytic compartments within the exocytic system, indicating an extensive convergence of the endocytic and exocytic pathways in this human parasite.
Collapse
Affiliation(s)
- Fabiola Parussini
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
37
|
Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009; 5:e1000309. [PMID: 19247437 PMCID: PMC2642630 DOI: 10.1371/journal.ppat.1000309] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 01/23/2009] [Indexed: 11/19/2022] Open
Abstract
One of the most conserved features of the invasion process in Apicomplexa parasites is the formation of a moving junction (MJ) between the apex of the parasite and the host cell membrane that moves along the parasite and serves as support to propel it inside the host cell. The MJ was, up to a recent period, completely unknown at the molecular level. Recently, proteins originated from two distinct post-Golgi specialised secretory organelles, the micronemes (for AMA1) and the neck of the rhoptries (for RON2/RON4/RON5 proteins), have been shown to form a complex. AMA1 and RON4 in particular, have been localised to the MJ during invasion. Using biochemical approaches, we have identified RON8 as an additional member of the complex. We also demonstrated that all RON proteins are present at the MJ during invasion. Using metabolic labelling and immunoprecipitation, we showed that RON2 and AMA1 were able to interact in the absence of the other members. We also discovered that all MJ proteins are subjected to proteolytic maturation during trafficking to their respective organelles and that they could associate as non-mature forms in vitro. Finally, whereas AMA1 has previously been shown to be inserted into the parasite membrane upon secretion, we demonstrated, using differential permeabilization and loading of RON-specific antibodies into the host cell, that the RON complex is targeted to the host cell membrane, where RON4/5/8 remain associated with the cytoplasmic face. Globally, these results point toward a model of MJ organization where the parasite would be secreting and inserting interacting components on either side of the MJ, both at the host and at its own plasma membranes. A unique feature of apicomplexan parasites is the formation of an intimate contact between the apex of the parasite and the host cell membrane called the moving junction that moves along the parasite during invasion. Proteins originated from two distinct secretory organelles, the microneme for AMA1 and the rhoptry neck for RON2/4/5 proteins, are associated to form the junction. Here, we have furthered the characterization of the MJ complex by describing RON8, an additional protein component. AMA1 has previously been shown to be inserted into the parasite membrane upon secretion. Our study demonstrates that all the RON proteins are translocated into the host cell, where RON4/5/8 remain associated with the cytoplasmic face of the host cell plasma membrane. Furthermore, we identified a privileged interaction between transmembrane MJ proteins AMA1 and RON2 in vitro. Overall, this led us to propose the first model describing the putative MJ organisation at the interface between the host cell and Toxoplasma. In this original concept, the parasite would export its own receptor (RON2) and ligand (AMA1) on either side of the MJ.
Collapse
Affiliation(s)
| | | | - Joël Poncet
- UMR CNRS 5203, INSERM U661, Université de Montpellier 1 and 2, Montpelier, France
| | | | - Maryse Lebrun
- UMR 5235 CNRS, Université de Montpellier 2, Montpelier, France
- * E-mail:
| |
Collapse
|
38
|
Breinich MS, Ferguson DJ, Foth BJ, van Dooren GG, Lebrun M, Quon DV, Striepen B, Bradley PJ, Frischknecht F, Carruthers VB, Meissner M. A dynamin is required for the biogenesis of secretory organelles in Toxoplasma gondii. Curr Biol 2009; 19:277-86. [PMID: 19217293 PMCID: PMC3941470 DOI: 10.1016/j.cub.2009.01.039] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 12/29/2022]
Abstract
BACKGROUND Apicomplexans contain only a core set of factors involved in vesicular traffic. Yet these obligate intracellular parasites evolved a set of unique secretory organelles (micronemes, rhoptries, and dense granules) that are required for invasion and modulation of the host cell. Apicomplexa replicate by budding from or within a single mother cell, and secretory organelles are synthesized de novo at the final stage of division. To date, the molecular basis for their biogenesis is unknown. RESULTS We demonstrate that the apicomplexan dynamin-related protein B (DrpB) belongs to an alveolate specific family of dynamins that is expanded in ciliates. DrpB accumulates in a cytoplasmic region close to the Golgi that breaks up during replication and reforms after assembly of the daughter cells. Conditional ablation of DrpB function results in mature daughter parasites that are devoid of micronemes and rhoptries. In the absence of these organelles, invasion-related secretory proteins are mistargeted to the constitutive secretory pathway. Mutant parasites are able to replicate but are unable to escape from or invade into host cells. CONCLUSIONS DrpB is the essential mechanoenzyme for the biogenesis of secretory organelles in Apicomplexa. We suggest that DrpB is required during replication to generate vesicles for the regulated secretory pathway that form the unique secretory organelles. Our study supports a role of an alveolate-specific dynamin that was required for the evolution of novel, secretory organelles. In the case of Apicomplexa, these organelles further evolved to enable a parasitic lifestyle.
Collapse
Affiliation(s)
- Manuela S. Breinich
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| | - David J.P. Ferguson
- Nuffield Department of Pathology, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Bernardo J. Foth
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Giel G. van Dooren
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, 30602, GA, USA
| | - Maryse Lebrun
- INSERM, UMR 55235 CNRS, Université de Montpellier 2, CP 107, Place Eugène Bataillon, 34090 Montpellier, France
| | - Doris V. Quon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA 90095-1489 USA
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, 30602, GA, USA
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA 90095-1489 USA
| | - Friedrich Frischknecht
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| | - Vernon B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA
| | - Markus Meissner
- Hygiene Institute, Department of Parasitology, Heidelberg University School of Medicine, Heidelberg, Germany
| |
Collapse
|
39
|
Sawmynaden K, Saouros S, Friedrich N, Marchant J, Simpson P, Bleijlevens B, Blackman MJ, Soldati-Favre D, Matthews S. Structural insights into microneme protein assembly reveal a new mode of EGF domain recognition. EMBO Rep 2008; 9:1149-55. [PMID: 18818666 DOI: 10.1038/embor.2008.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/09/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii, a member of the phylum Apicomplexa that includes Plasmodium spp., is one of the most widespread parasites and the causative agent of toxoplasmosis. Adhesive complexes composed of microneme proteins (MICs) are secreted onto the parasite surface from intracellular stores and fulfil crucial roles in host-cell recognition, attachment and penetration. Here, we report the high-resolution solution structure of a complex between two crucial MICs, TgMIC6 and TgMIC1. Furthermore, we identify two analogous interaction sites within separate epidermal growth factor-like (EGF) domains of TgMIC6-EGF2 and EGF3-and confirm that both interactions are functional for the recognition of host cell receptor in the parasite, using immunofluorescence and invasion assays. The nature of this new mode of recognition of the EGF domain and its abundance in apicomplexan surface proteins suggest a more generalized means of constructing functional assemblies by using EGF domains with highly specific receptor-binding properties.
Collapse
Affiliation(s)
- Kovilen Sawmynaden
- Division of Molecular Biosciences, Imperial College London, Exhibition Road, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|