1
|
Long-term survive of Aliarcobacter butzleri in two models symbiotic interaction with Acanthamoeba castellanii. Arch Microbiol 2022; 204:610. [DOI: 10.1007/s00203-022-03223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
|
2
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
3
|
Urakawa N, Uno K, Sato Y, Higashiyama T, Sasaki N. Rapid Selective Proliferation of Mitochondria during Zygote Maturation in the Uniparental Inheritance of <i>Physarum polycephalum</i>. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Naoki Urakawa
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Kakishi Uno
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences
| | - Yoshikatsu Sato
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Narie Sasaki
- Institute for Human Life Innovation, Ochanomizu University
| |
Collapse
|
4
|
Rosenbusch KE, Oun A, Sanislav O, Lay ST, Keizer-Gunnink I, Annesley SJ, Fisher PR, Dolga AM, Kortholt A. A Conserved Role for LRRK2 and Roco Proteins in the Regulation of Mitochondrial Activity. Front Cell Dev Biol 2021; 9:734554. [PMID: 34568343 PMCID: PMC8455996 DOI: 10.3389/fcell.2021.734554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease world-wide. Mutations in the multidomain protein Leucine Rich Repeat Kinase 2 (LRRK2) are the most frequent cause of hereditary PD. Furthermore, recent data suggest that independent of mutations, increased kinase activity of LRRK2 plays an essential role in PD pathogenesis. Isolated mitochondria of tissue samples from PD patients carrying LRRK2 mutations display a significant impairment of mitochondrial function. However, due to the complexity of the mitochondrial signaling network, the role of LRRK2 in mitochondrial metabolism is still not well understood. Previously we have shown that D. discoideum Roco4 is a suitable model to study the activation mechanism of LRRK2 in vivo. To get more insight in the LRRK2 pathways regulating mitochondrial activity we used this Roco4 model system in combination with murine RAW macrophages. Here we show that both Dictyostelium roco4 knockout and cells expressing PD-mutants show behavioral and developmental phenotypes that are characteristic for mitochondrial impairment. Mitochondrial activity measured by Seahorse technology revealed that the basal respiration of D. discoideum roco4- cells is significantly increased compared to the WT strain, while the basal and maximal respiration values of cells overexpressing Roco4 are reduced compared to the WT strain. Consistently, LRRK2 KO RAW 264.7 cells exhibit higher maximal mitochondrial respiration activity compared to the LRRK2 parental RAW264.7 cells. Measurement on isolated mitochondria from LRRK2 KO and parental RAW 264.7 cells revealed no difference in activity compared to the parental cells. Furthermore, neither D. discoideum roco4- nor LRRK2 KO RAW 264.7 showed a difference in either the number or the morphology of mitochondria compared to their respective parental strains. This suggests that the observed effects on the mitochondrial respiratory in cells are indirect and that LRRK2/Roco proteins most likely require other cytosolic cofactors to elicit mitochondrial effects.
Collapse
Affiliation(s)
| | - Asmaa Oun
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Oana Sanislav
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sui T Lay
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Ineke Keizer-Gunnink
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Sarah J Annesley
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Paul R Fisher
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Amalia M Dolga
- Groningen Research Institute of Pharmacy (GRIP), Molecular Pharmacology XB10, Groningen, Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen, Netherlands.,Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
5
|
Romanova N, Niemann T, Greiner JFW, Kaltschmidt B, Kaltschmidt C, Noll T. Hyperosmolality in CHO culture: Effects on cellular behavior and morphology. Biotechnol Bioeng 2021; 118:2348-2359. [PMID: 33751545 DOI: 10.1002/bit.27747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 01/02/2023]
Abstract
Exposure of Chinese hamster ovary cells (CHO) to highly concentrated feed solution during fed-batch cultivation is known to result in an unphysiological osmolality increase (>300 mOsm/kg), affecting cell physiology and morphology. Extending previous observation on osmotic adaptation, the present study investigates for the first time potential effects of hyperosmolality on CHO cells on both population and single-cell level. We intentionally exposed CHO cells to hyperosmolality of up to 545 mOsm/kg during fed-batch cultivation. In concordance with existing research data, hyperosmolality-exposed CHO cells showed a nearly triplicated volume accompanied by ablation of proliferation. On the molecular level, we observed a strong hyperosmolality-dependent increase in mitochondrial activity in CHO cells compared to control. In contrast to mitochondrial activity, hyperosmolality-dependent proliferation arrest of CHO cells was not accompanied by DNA accumulation or caspase-3/7-mediated apoptosis. Notably, we demonstrate for the first time a formation of up to eight multiple, small nuclei in single hyperosmolality-stressed CHO cells. The here presented observations reveal previously unknown hyperosmolality-dependent morphological changes in CHO cells and support existing data on the osmotic response in mammalian cells.
Collapse
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Tarek Niemann
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, Universitaetsstrasse 25, Bielefeld, 33615, Germany
| | - Thomas Noll
- Cell Culture Technology, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
6
|
Jin M, Wang Y, Wang Y, Li Y, Wang G, Liu X, Xue Y, Liu Z, Li C. Protective Effects Oncorneal Endothelium During Intracameral Irrigation Using N-(2)-l-alanyl-l-Glutamine. Front Pharmacol 2020; 11:369. [PMID: 32292346 PMCID: PMC7118711 DOI: 10.3389/fphar.2020.00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Corneal endothelial disease is a global sight-threatening disease, and corneal transplantation using donor corneas remains the sole therapeutic option. A previous work demonstrated that N (2)-alanyl-glutamine (Ala-Gln) protected against apoptosis and cellular stress, and maintained intestinal tissue integrity. In this pursuit, the present study aimed to examine the effect of Ala-Gln in the protection of the corneal endothelium and expand its range of potential clinical applications. Mice in the control group were intracamerally irrigated with Ringers lactate injection, whereas those in the experimental group were irrigated with Ringers lactate injection containing Ala-Gln. The mean intraocular pressure increased to 44 ± 3.5 mm Hg during intracameral irrigation (normal range 10.2 ± 0.4 mmHg). In vivo confocal microscopy results showed that the addition of Ala-Gln protected the morphology, structure, and density of the corneal endothelial cells. Optical Coherence Tomography (OCT) measurements showed that corneal thickness was not significantly different between the two groups, because of the immediate corneal edema after irrigation, but the addition of Ala-Gln obviously promoted the recovery of the corneal edema. Scanning electron microscopy indicated that the corneal endothelial cells were severely ruptured and exfoliated in the Ringer’s group accompanied with cellular edema, when compared with the Ala-Gln group. The intracameral irrigation using Ala-Gln protected the structure and expression of cytoskeleton and Na-K-ATPase, which exhibited a regular distribution and significantly increased expression in comparison to Ringer’s group. Furthermore, Ala-Gln maintained the mitochondrial morphology and increased the activity of mitochondria. Moreover, transmission electron microscopy showed that intracameral irrigation of Ala-Gln reversed the ultrastructural changes induced by the acute ocular hypertension in mice. Our study demonstrates that the intracameral irrigation of Ala-Gln effectively maintained the corneal endothelial pump function and barrier function by protecting the mitochondrial function and preventing the rearrangement of cytoskeleton in acute ocular hypertension in mice.
Collapse
Affiliation(s)
- Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixin Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yunpeng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Guoliang Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xuezhi Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zuguo Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| |
Collapse
|
7
|
The FtsZ Homolog, FszB, Inhibits Mitochondrial Dynamics in Dictyostelium discoideum. Cells 2019; 9:cells9010064. [PMID: 31881789 PMCID: PMC7016976 DOI: 10.3390/cells9010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Dictyostelium discoideum is a well-established mitochondrial model system for both disease and dynamics, yet we still do not understand the actual mechanism of mitochondrial dynamics in this system. The FtsZ proteins are known to mediate membrane remodeling events such as cytokinesis in bacteria and fission of chloroplasts; D. discoideum has two FtsZ proteins, FszA and FszB. To determine the role of these proteins in mitochondrial dynamics we overexpressed FszB-GFP and determined its effect on fission, fusion, and motility in the presence of intact and disrupted cytoskeletal filaments. Here we show that overexpression of FszB-GFP decreases mitochondrial dynamics and suggest that actin may play a positive role driving fission in the context of excessive inhibition by overexpressed FszB-GFP.
Collapse
|
8
|
Medina G, Leyán P, da Silva CV, Flores-Martin S, Manosalva C, Fernández H. Intra-amoebic localization of Arcobacter butzleri as an endocytobiont of Acanthamoeba castellanii. Arch Microbiol 2019; 201:1447-1452. [PMID: 31302710 DOI: 10.1007/s00203-019-01699-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Acanthamoeba castellanii is a free-living amoeba found mainly in humid environments and Arcobacter butzleri is an emerging zoonotic pathogen, both can establish in vitro endosymbiotic relationships in the absence of bacterial replication. We analyzed the localization of A. butzleri within A. castellanii establishing their association with endoplasmic reticulum vesicles and mitochondria. Through confocal microscopy, we observed that during the early stages of endosymbiosis, there is not colocalization between amoebic vacuoles containing A. butzleri and mitochondria or ER vesicles of A. castellanii. Considering that energy production of this bacterium occurs via metabolism of amino acids or the tricarboxylic acid cycle, these results contribute to explain the absence of bacterial replication, since A. butzleri would not have access to the nutrients found in endoplasmic reticulum vesicles and mitochondria. In addition, we observe that A. butzleri induces significantly the actin polymerization of A. castellanii during the early stages of endosymbiosis.
Collapse
Affiliation(s)
- G Medina
- Faculty of Health Sciences, Department of Diagnostic Processes and Evaluation, Universidad Católica de Temuco, PO. BOX 15-D, Temuco, Chile.
| | - P Leyán
- Faculty of Health Sciences, Department of Diagnostic Processes and Evaluation, Universidad Católica de Temuco, PO. BOX 15-D, Temuco, Chile
| | - C Viera da Silva
- Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Av. Amazonas, Bloco 6T, Campus Umuarama, CEP, Uberlândia, MG, 38400-902, Brazil
| | - S Flores-Martin
- Institute of Clinical Microbiology,Faculty of Medicine, Universidad Austral de Chile, PO. BOX 567, Valdivia, Chile
| | - C Manosalva
- Institute of Pharmacy, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - H Fernández
- Institute of Clinical Microbiology,Faculty of Medicine, Universidad Austral de Chile, PO. BOX 567, Valdivia, Chile
| |
Collapse
|
9
|
Chen C, Cao L, Yang Y, Porter KJ, Osteryoung KW. ARC3 Activation by PARC6 Promotes FtsZ-Ring Remodeling at the Chloroplast Division Site. THE PLANT CELL 2019; 31:862-885. [PMID: 30824505 PMCID: PMC6501610 DOI: 10.1105/tpc.18.00948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 05/29/2023]
Abstract
Chloroplast division is initiated by assembly of the stromal Z ring, composed of cytoskeletal Filamenting temperature-sensitive Z (FtsZ) proteins. Midplastid Z-ring positioning is governed by the chloroplast Min (Minicell) system, which inhibits Z-ring assembly everywhere except the division site. The central Min-system player is the FtsZ-assembly inhibitor ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3). Here, we report Arabidopsis (Arabidopsis thaliana) chloroplasts contain two pools of ARC3: one distributed throughout the stroma, which presumably fully inhibits Z-ring assembly at nondivision sites, and the other localized to a midplastid ring-like structure. We show that ARC3 is recruited to the middle of the plastid by the inner envelope membrane protein PARALOG OF ARC6 (PARC6). ARC3 bears a C-terminal Membrane Occupation and Recognition Nexus (MORN) domain; previous yeast two-hybrid experiments with full-length and MORN-truncated ARC3 showed the MORN domain mediates ARC3-PARC6 interaction but prevents ARC3-FtsZ interaction. Using yeast three-hybrid experiments, we demonstrate that the MORN-dependent ARC3-PARC6 interaction enables full-length ARC3 to bind FtsZ. The resulting PARC6/ARC3/FtsZ complex enhances the dynamics of Z rings reconstituted in a heterologous system. Our findings lead to a model whereby activation of midplastid-localized ARC3 by PARC6 facilitates Z-ring remodeling during chloroplast division by promoting Z-ring dynamics and reveal a novel function for MORN domains in regulating protein-protein interactions.
Collapse
|
10
|
A method for visualizing fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum. Biotechniques 2019; 66:65-71. [DOI: 10.2144/btn-2018-0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester [DPBA]) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies, and report the first method for use of DPBA in this eukaryotic model microbe and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies.
Collapse
|
11
|
Harman A, Barth C. The Dictyostelium discoideum homologue of Twinkle, Twm1, is a mitochondrial DNA helicase, an active primase and promotes mitochondrial DNA replication. BMC Mol Biol 2018; 19:12. [PMID: 30563453 PMCID: PMC6299598 DOI: 10.1186/s12867-018-0114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/07/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND DNA replication requires contributions from various proteins, such as DNA helicases; in mitochondria Twinkle is important for maintaining and replicating mitochondrial DNA. Twinkle helicases are predicted to also possess primase activity, as has been shown in plants; however this activity appears to have been lost in metazoans. Given this, the study of Twinkle in other organisms is required to better understand the evolution of this family and the roles it performs within mitochondria. RESULTS Here we describe the characterization of a Twinkle homologue, Twm1, in the amoeba Dictyostelium discoideum, a model organism for mitochondrial genetics and disease. We show that Twm1 is important for mitochondrial function as it maintains mitochondrial DNA copy number in vivo. Twm1 is a helicase which unwinds DNA resembling open forks, although it can act upon substrates with a single 3' overhang, albeit less efficiently. Furthermore, unlike human Twinkle, Twm1 has primase activity in vitro. Finally, using a novel in bacterio approach, we demonstrated that Twm1 promotes DNA replication. CONCLUSIONS We conclude that Twm1 is a replicative mitochondrial DNA helicase which is capable of priming DNA for replication. Our results also suggest that non-metazoan Twinkle could function in the initiation of mitochondrial DNA replication. While further work is required, this study has illuminated several alternative processes of mitochondrial DNA maintenance which might also be performed by the Twinkle family of helicases.
Collapse
Affiliation(s)
- Ashley Harman
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
- Present Address: Cell Biology Unit, Children’s Medical Research Institute, University of Sydney, Westmead, NSW Australia
| | - Christian Barth
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
12
|
Zhitomirsky B, Farber H, Assaraf YG. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance. J Cell Mol Med 2018; 22:2131-2141. [PMID: 29377455 PMCID: PMC5867146 DOI: 10.1111/jcmm.13485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023] Open
Abstract
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).
Collapse
Affiliation(s)
- Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hodaya Farber
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
TerBush AD, MacCready JS, Chen C, Ducat DC, Osteryoung KW. Conserved Dynamics of Chloroplast Cytoskeletal FtsZ Proteins Across Photosynthetic Lineages. PLANT PHYSIOLOGY 2018; 176:295-306. [PMID: 28814573 PMCID: PMC5761766 DOI: 10.1104/pp.17.00558] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/13/2017] [Indexed: 05/08/2023]
Abstract
The cytoskeletal Filamenting temperature-sensitive Z (FtsZ) ring is critical for cell division in bacteria and chloroplast division in photosynthetic eukaryotes. While bacterial FtsZ rings are composed of a single FtsZ, except in the basal glaucophytes, chloroplast division involves two heteropolymer-forming FtsZ isoforms: FtsZ1 and FtsZ2 in the green lineage and FtsZA and FtsZB in red algae. FtsZ1 and FtsZB probably arose by duplication of the more ancestral FtsZ2 and FtsZA, respectively. We expressed fluorescent fusions of FtsZ from diverse photosynthetic organisms in a heterologous system to compare their intrinsic assembly and dynamic properties. FtsZ2 and FtsZA filaments were morphologically distinct from FtsZ1 and FtsZB filaments. When coexpressed, FtsZ pairs from plants and algae colocalized, consistent with heteropolymerization. Fluorescence recovery after photobleaching experiments demonstrated that subunit exchange was greater from FtsZ1 and FtsZB filaments than from FtsZ2 and FtsZA filaments and that FtsZ1 and FtsZB increased turnover of FtsZ2 and FtsZA, respectively, from heteropolymers. GTPase activity was essential only for turnover of FtsZ2 and FtsZA filaments. Cyanobacterial and glaucophyte FtsZ properties mostly resembled those of FtsZ2 and FtsZA, though the glaucophyte protein exhibited some hybrid features. Our results demonstrate that the more ancestral FtsZ2 and FtsZA have retained functional attributes of their common FtsZ ancestor, while eukaryotic-specific FtsZ1 and FtsZB acquired new but similar dynamic properties, possibly through convergent evolution. Our findings suggest that the evolution of a second FtsZ that could copolymerize with the more ancestral form to enhance FtsZ-ring dynamics may have been essential for plastid evolution in the green and red photosynthetic lineages.
Collapse
Affiliation(s)
- Allan D TerBush
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Biochemistry and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824
| | - Joshua S MacCready
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Microbiology and Molecular Genetics Graduate Program, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Daniel C Ducat
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
14
|
Chen C, MacCready JS, Ducat DC, Osteryoung KW. The Molecular Machinery of Chloroplast Division. PLANT PHYSIOLOGY 2018; 176:138-151. [PMID: 29079653 PMCID: PMC5761817 DOI: 10.1104/pp.17.01272] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/09/2017] [Indexed: 05/17/2023]
Abstract
Recent studies advance understanding of the mechanisms, spatial control, and regulation of chloroplast division, but many questions remain.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Daniel C Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | | |
Collapse
|
15
|
Woods LC, Berbusse GW, Naylor K. Microtubules Are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility-in Dictyostelium discoideum. Front Cell Dev Biol 2016; 4:19. [PMID: 27047941 PMCID: PMC4801864 DOI: 10.3389/fcell.2016.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/03/2016] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.
Collapse
Affiliation(s)
- Laken C. Woods
- Department of Biology, University of Central ArkansasConway, AR, USA
| | - Gregory W. Berbusse
- Interdisciplinary Biomedical Sciences, University of Arkansas for Medical SciencesLittle Rock, AR, USA
| | - Kari Naylor
- Department of Biology, University of Central ArkansasConway, AR, USA
| |
Collapse
|
16
|
An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci U S A 2015; 112:10239-46. [PMID: 25831547 DOI: 10.1073/pnas.1421392112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
Collapse
|
17
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
18
|
Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta Gen Subj 2013; 1840:1413-32. [PMID: 24161926 DOI: 10.1016/j.bbagen.2013.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/05/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. SCOPE OF REVIEW This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. MAJOR CONCLUSIONS Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. GENERAL SIGNIFICANCE Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- S J Annesley
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S Chen
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - L M Francione
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - O Sanislav
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - A J Chavan
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C Farah
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S W De Piazza
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C L Storey
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - J Ilievska
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S G Fernando
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P K Smith
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S T Lay
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P R Fisher
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086.
| |
Collapse
|
19
|
Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum. Int J Genomics 2013; 2013:586498. [PMID: 23998118 PMCID: PMC3753752 DOI: 10.1155/2013/586498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.
Collapse
|
20
|
TerBush AD, Yoshida Y, Osteryoung KW. FtsZ in chloroplast division: structure, function and evolution. Curr Opin Cell Biol 2013; 25:461-70. [DOI: 10.1016/j.ceb.2013.04.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/06/2013] [Accepted: 04/23/2013] [Indexed: 11/30/2022]
|
21
|
Manna S, Le P, Barth C. A unique mitochondrial transcription factor B protein in Dictyostelium discoideum. PLoS One 2013; 8:e70614. [PMID: 23923009 PMCID: PMC3724811 DOI: 10.1371/journal.pone.0070614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
Unlike their bacteriophage homologs, mitochondrial RNA polymerases require the assistance of transcription factors in order to transcribe mitochondrial DNA efficiently. The transcription factor A family has been shown to be important for transcription of the human mitochondrial DNA, with some of its regulatory activity located in its extended C-terminal tail. The mitochondrial transcription factor B family often has functions not only in transcription, but also in mitochondrial rRNA modification, a hallmark of its α-proteobacterial origin. We have identified and characterised a mitochondrial transcription factor B homolog in the soil dwelling cellular slime mould Dictyostelium discoideum, an organism widely established as a model for studying eukaryotic cell biology. Using in bacterio functional assays, we demonstrate that the mitochondrial transcription factor B homolog not only functions as a mitochondrial transcription factor, but that it also has a role in rRNA methylation. Additionally, we show that the transcriptional activation properties of the D. discoideum protein are located in its extended C-terminal tail, a feature not seen before in the mitochondrial transcription factor B family, but reminiscent of the human mitochondrial transcription factor A. This report contributes to our current understanding of the complexities of mitochondrial transcription, and its evolution in eukaryotes.
Collapse
Affiliation(s)
- Sam Manna
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Phuong Le
- Tokyo Metropolitan University, Department of Biological Science, Tokyo, Japan
| | - Christian Barth
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
22
|
van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 2013; 5:5/6/a011072. [PMID: 23732471 DOI: 10.1101/cshperspect.a011072] [Citation(s) in RCA: 589] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a healthy mitochondrial network. In addition, mitochondrial fission and fusion play prominent roles in disease-related processes such as apoptosis and mitophagy. Three members of the Dynamin family are key components of the fission and fusion machineries. Their functions are controlled by different sets of adaptor proteins on the surface of mitochondria and by a range of regulatory processes. Here, we review what is known about these proteins and the processes that regulate their actions.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
23
|
Carilla-Latorre S, Annesley SJ, Muñoz-Braceras S, Fisher PR, Escalante R. Ndufaf5 deficiency in the Dictyostelium model: new roles in autophagy and development. Mol Biol Cell 2013; 24:1519-28. [PMID: 23536703 PMCID: PMC3655813 DOI: 10.1091/mbc.e12-11-0796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ndufaf5 is a conserved protein mutated in patients with mitochondrial complex I (CI) disease. A Dictyostelium model lacking functional Ndufaf5 provides new insights into the cytopathology of the disease, including a specific CI deficiency, AMPK-independent defects in growth and development, and a connection with autophagy. Ndufaf5 (also known as C20orf7) is a mitochondrial complex I (CI) assembly factor whose mutations lead to human mitochondrial disease. Little is known about the function of the protein and the cytopathological consequences of the mutations. Disruption of Dictyostelium Ndufaf5 leads to CI deficiency and defects in growth and development. The predicted sequence of Ndufaf5 contains a putative methyltransferase domain. Site-directed mutagenesis indicates that the methyltransferase motif is essential for its function. Pathological mutations were recreated in the Dictyostelium protein and expressed in the mutant background. These proteins were unable to complement the phenotypes, which further validates Dictyostelium as a model of the disease. Chronic activation of AMP-activated protein kinase (AMPK) has been proposed to play a role in Dictyostelium and human cytopathology in mitochondrial diseases. However, inhibition of the expression of AMPK gene in the Ndufaf5-null mutant does not rescue the phenotypes associated with the lack of Ndufaf5, suggesting that novel AMPK-independent pathways are responsible for Ndufaf5 cytopathology. Of interest, the Ndufaf5-deficient strain shows an increase in autophagy. This phenomenon was also observed in a Dictyostelium mutant lacking MidA (C2orf56/PRO1853/Ndufaf7), another CI assembly factor, suggesting that autophagy activation might be a common feature in mitochondrial CI dysfunction.
Collapse
Affiliation(s)
- Sergio Carilla-Latorre
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Schimmel BG, Berbusse GW, Naylor K. Mitochondrial fission and fusion in Dictyostelium discoideum: a search for proteins involved in membrane dynamics. BMC Res Notes 2012; 5:505. [PMID: 22980139 PMCID: PMC3492061 DOI: 10.1186/1756-0500-5-505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mitochondrial morphology is maintained by two distinct membrane events -fission and fusion. Altering these conserved processes can disrupt mitochondrial morphology and distribution, thereby disrupting the organelle's functionality and impeding cellular function. In higher eukaryotes, these processes are mediated by a family of dynamin-related proteins (DRP's). In the lower eukaryotes, for instance Dictyostelium discoideum, mitochondrial fission and fusion have been implicated but not yet established. To understand the overall mechanism of these dynamics across organisms, we developed an assay to identify fission and fusion events in Dictyostelium and to assess the involvement of the mitochondrial proteins, MidA, CluA, and two DRP's, DymA and DymB. FINDINGS Using laser scanning confocal microscopy we show, for the first time, that lower eukaryotes mediate mitochondrial fission and fusion. In Dictyostelium, these processes are balanced, occurring approximately 1 event/minute. Quantification of the rates in midA-, cluA-, dymA-, or dymB- strains established that MidA appears to play an indirect role in the regulation of fission and fusion, while the DRP's are not essential for these processes. Rates of fission and fusion were significantly reduced in cluA-cells, indicating that CluA is necessary for maintaining both fission and fusion. CONCLUSIONS We have successfully demonstrated that Dictyostelium mitochondria undergo the dynamic processes of fission and fusion. The classical mediators of membrane dynamics - the DRP's - are not necessary for these dynamics, whereas CluA is necessary for both processes. This work contributes to our overall understanding of mitochondrial dynamics and ultimately will provide additional insight into mitochondrial disease.
Collapse
Affiliation(s)
- Brixey G Schimmel
- Biology Department, University of Central Arkansas, Conway, AR 72035, USA
| | | | | |
Collapse
|
25
|
Structure, regulation, and evolution of the plastid division machinery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:115-53. [PMID: 22017975 DOI: 10.1016/b978-0-12-386035-4.00004-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes. The division complex has retained certain components of the cyanobacterial division complex along with components developed by the host cell. Based on the information on the division complex at the molecular level, we are beginning to understand how the division complex has evolved and how it is assembled, constricted, and regulated in the host cell. This chapter reviews the current understanding of the plastid division machinery and some of the questions that will be addressed in the near future.
Collapse
|
26
|
Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR. The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 2010; 22:120-30. [PMID: 21129494 DOI: 10.1016/j.semcdb.2010.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.
Collapse
|
27
|
Dictyostelium dynamin B modulates cytoskeletal structures and membranous organelles. Cell Mol Life Sci 2010; 68:2751-67. [PMID: 21086149 PMCID: PMC3142549 DOI: 10.1007/s00018-010-0590-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 11/30/2022]
Abstract
Dictyostelium discoideum cells produce five dynamin family proteins. Here, we show that dynamin B is the only member of this group of proteins that is initially produced as a preprotein and requires processing by mitochondrial proteases for formation of the mature protein. Our results show that dynamin B-depletion affects many aspects of cell motility, cell-cell and cell-surface adhesion, resistance to osmotic shock, and fatty acid metabolism. The mature form of dynamin B mediates a wide range and unique combination of functions. Dynamin B affects events at the plasma membrane, peroxisomes, the contractile vacuole system, components of the actin-based cytoskeleton, and cell adhesion sites. The modulating effect of dynamin B on the activity of the contractile vacuole system is unique for the Dictyostelium system. Other functions displayed by dynamin B are commonly associated with either classical dynamins or dynamin-related proteins.
Collapse
|
28
|
Mitochondrial fission and fusion and their roles in the heart. J Mol Med (Berl) 2010; 88:971-9. [PMID: 20835916 DOI: 10.1007/s00109-010-0674-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 12/23/2022]
Abstract
Mitochondria are dynamic organelles that usually exist in extensive and interconnected networks that undergo constant remodeling through fission and fusion. These processes are governed by distinct sets of proteins whose mechanism and regulation we are only beginning to fully understand. Early studies on mitochondrial dynamics were performed in yeast and simple mammalian cell culture models that allowed easy visualization of these intricate networks. Equipped with this core understanding, the field is now expanding into more complex systems. Cardiac cells are a particularly interesting example because they have unique energetic and spatial demands that make the study of their mitochondria both challenging and potentially very fruitful. This review will provide an overview of mitochondrial fission and fusion as well as recent developments in the understanding of these processes in the heart.
Collapse
|
29
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
30
|
Abstract
In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondrial fission and fusion also actively participate in apoptosis induction. This review will cover the recent advances and presents competing models on how the mitochondrial fission and fusion machinery may intersect apoptosis pathways.
Collapse
Affiliation(s)
- Der-Fen Suen
- Biochemistry Section, Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
31
|
Abstract
We present a physical mechanism to describe initiation of the contractile ring during cell division. The model couples the membrane curvature with the contractile forces produced by protein clusters attached to the membrane. These protein clusters are mobile on the membrane and possess either an isotropic or an anisotropic spontaneous curvature. Our results show that under these conditions the contraction force gives rise to an instability that corresponds in a closed cellular system to the initiation of the contractile ring. We find a quantization of this process at distinct length-scales, which we compare to available data for different types of eukaryote cells.
Collapse
|
32
|
Nishida K, Yagisawa F, Kuroiwa H, Yoshida Y, Kuroiwa T. WD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae. Proc Natl Acad Sci U S A 2007; 104:4736-41. [PMID: 17360593 PMCID: PMC1838669 DOI: 10.1073/pnas.0609364104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are not produced de novo but are maintained by division. Mitochondrial division is a coordinated process of positioning and constriction of the division site and fission of double membranes, in which dynamin-related protein is believed to mediate outer membrane fission. Part of the mitochondrial division machinery was purified from M phase-arrested Cyanidioschyzon merolae cells through biochemical fractionation. The dynamin-related protein Dnm1 was one of the two major proteins in the purified fraction and was accompanied by a newly identified protein CMR185C, named Mda1. Mda1 contained a predictable coiled-coil region and WD40 repeats, similarly to Mdv1 and Caf4 in yeasts. Immunofluorescence and immunoelectron microscopy showed that Mda1 localizes as a medial belt or ring on the mitochondrial outer surface throughout the division. The ring formation of Mda1 followed the plane of the ring of FtsZ, a protein that resides in the matrix. Dnm1 consistently colocalized with Mda1 only in the late stages of division. Mda1 protein was expressed through S to M phases and was phosphorylated specifically in M phase when Mda1 transformed from belt into foci and became colocalizing with Dnm1. Dephosphorylation of Mda1 in vitro increased its sedimentation coefficient, suggesting conformational changes of the macromolecule. Disassembly of the purified mitochondrial division machinery was performed by adding GTP to independently release Dnm1, suggesting that Mda1 forms a stable homo-oligomer by itself as a core structure of the mitochondrial division machinery.
Collapse
Affiliation(s)
- Keiji Nishida
- Laboratory of Cell Biology, Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.
| | | | | | | | | |
Collapse
|
33
|
Bokko PB, Francione L, Bandala-Sanchez E, Ahmed AU, Annesley SJ, Huang X, Khurana T, Kimmel AR, Fisher PR. Diverse cytopathologies in mitochondrial disease are caused by AMP-activated protein kinase signaling. Mol Biol Cell 2007; 18:1874-86. [PMID: 17332500 PMCID: PMC1855013 DOI: 10.1091/mbc.e06-09-0881] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complex cytopathology of mitochondrial diseases is usually attributed to insufficient ATP. AMP-activated protein kinase (AMPK) is a highly sensitive cellular energy sensor that is stimulated by ATP-depleting stresses. By antisense-inhibiting chaperonin 60 expression, we produced mitochondrially diseased strains with gene dose-dependent defects in phototaxis, growth, and multicellular morphogenesis. Mitochondrial disease was phenocopied in a gene dose-dependent manner by overexpressing a constitutively active AMPK alpha subunit (AMPKalphaT). The aberrant phenotypes in mitochondrially diseased strains were suppressed completely by antisense-inhibiting AMPKalpha expression. Phagocytosis and macropinocytosis, although energy consuming, were unaffected by mitochondrial disease and AMPKalpha expression levels. Consistent with the role of AMPK in energy homeostasis, mitochondrial "mass" and ATP levels were reduced by AMPKalpha antisense inhibition and increased by AMPKalphaT overexpression, but they were near normal in mitochondrially diseased cells. We also found that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, a pharmacological AMPK activator in mammalian cells, mimics mitochondrial disease in impairing Dictyostelium phototaxis and that AMPKalpha antisense-inhibited cells were resistant to this effect. The results show that diverse cytopathologies in Dictyostelium mitochondrial disease are caused by chronic AMPK signaling not by insufficient ATP.
Collapse
Affiliation(s)
- Paul B. Bokko
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| | - Lisa Francione
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| | - Esther Bandala-Sanchez
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| | - Afsar U. Ahmed
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| | - Sarah J. Annesley
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| | - Xiuli Huang
- National Institutes of Health, Bethesda, MD 20892
| | | | | | - Paul R. Fisher
- *Department of Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia; and
| |
Collapse
|
34
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|
35
|
Abstract
Eukaryotic cells maintain the overall shape of their mitochondria by balancing the opposing processes of mitochondrial fusion and fission. Unbalanced fission leads to mitochondrial fragmentation, and unbalanced fusion leads to mitochondrial elongation. Moreover, these processes control not only the shape but also the function of mitochondria. Mitochondrial dynamics allows mitochondria to interact with each other; without such dynamics, the mitochondrial population consists of autonomous organelles that have impaired function. Key components of the mitochondrial fusion and fission machinery have been identified, allowing initial dissection of their mechanisms of action. These components play important roles in mitochondrial function and development as well as programmed cell death. Disruption of the fusion machinery leads to neurodegenerative disease.
Collapse
Affiliation(s)
- David C Chan
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| |
Collapse
|
36
|
Ahmed AU, Beech PL, Lay ST, Gilson PR, Fisher PR. Import-associated translational inhibition: novel in vivo evidence for cotranslational protein import into Dictyostelium discoideum mitochondria. EUKARYOTIC CELL 2006; 5:1314-27. [PMID: 16896215 PMCID: PMC1539133 DOI: 10.1128/ec.00386-05] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/29/2006] [Indexed: 11/20/2022]
Abstract
To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [(35)S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.
Collapse
Affiliation(s)
- Afsar U Ahmed
- Department of Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
37
|
Kuroiwa T, Nishida K, Yoshida Y, Fujiwara T, Mori T, Kuroiwa H, Misumi O. Structure, function and evolution of the mitochondrial division apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:510-21. [PMID: 16690143 DOI: 10.1016/j.bbamcr.2006.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/18/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Mitochondria are derived from free-living alpha-proteobacteria that were engulfed by eukaryotic host cells through the process of endosymbiosis, and therefore have their own DNA which is organized using basic proteins to form organelle nuclei (nucleoids). Mitochondria divide and are split amongst the daughter cells during cell proliferation. Their division can be separated into two main events: division of the mitochondrial nuclei and division of the matrix (the so-called mitochondrial division, or mitochondriokinesis). In this review, we first focus on the cytogenetical relationships between mitochondrial nuclear division and mitochondriokinesis. Mitochondriokinesis occurs after mitochondrial nuclear division, similar to bacterial cytokinesis. We then describe the fine structure and dynamics of the mitochondrial division ring (MD ring) as a basic morphological background for mitochondriokinesis. Electron microscopy studies first identified a small electron-dense MD ring in the cytoplasm at the constriction sites of dividing mitochondria in the slime mold Physarum polycephalum, and then two large MD rings (with outer cytoplasmic and inner matrix sides) in the red alga Cyanidioschyzon merolae. Now MD rings have been found in all eukaryotes. In the third section, we describe the relationships between the MD ring and the FtsZ ring descended from ancestral bacteria. Other than the GTPase, FtsZ, mitochondria have lost most of the proteins required for bacterial cytokinesis as a consequence of endosymbiosis. The FtsZ protein forms an electron transparent ring (FtsZ or Z ring) in the matrix inside the inner MD ring. For the fourth section, we describe the dynamic association between the outer MD ring with a ring composed of the eukaryote-specific GTPase dynamin. Recent studies have revealed that eukaryote-specific GTPase dynamins form an electron transparent ring between the outer membrane and the MD ring. Thus, mitochondriokinesis is thought to be controlled by a mitochondrial division (MD) apparatus including a dynamic trio, namely the FtsZ, MD and dynamin rings, which consist of a chimera of rings from bacteria and eukaryotes in primitive organisms. Since the genes for the MD ring and dynamin rings are not found in the prokaryotic genome, the host genomes may make these rings to actively control mitochondrial division. In the fifth part, we focus on the dynamic changes in the formation and disassembly of the FtsZ, MD and dynamin rings. FtsZ rings are digested during a later period of mitochondrial division and then finally the MD and dynamin ring apparatuses pinched off the daughter mitochondria, supporting the idea that the host genomes are responsible for the ultimate control of mitochondrial division. We discuss the evolution, from the original vesicle division (VD) apparatuses to VD apparatuses including classical dynamin rings and MD apparatuses. It is likely that the MD apparatuses involving the dynamic trio evolved into the plastid division (PD) apparatus in Bikonta, while in Opisthokonta, the MD apparatus was simplified during evolution and may have branched into the mitochondrial fusion apparatus. Finally, we describe the possibility of intact isolation of large MD/PD apparatuses, the identification of all their proteins and their related genes using C. merolae genome information and TOF-MS analyses. These results will assist in elucidating the universal mechanism and evolution of MD, PD and VD apparatuses.
Collapse
Affiliation(s)
- Tsuneyoshi Kuroiwa
- Laboratory of Cell Biology and Frontier Project Life's Adaptation Strategies of Environmental Change, Department of Life Sciences, College of Science, Rikkyo University, 3-34-1 Nishiikebukuro, Toshima-ku, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Torija P, Vicente JJ, Rodrigues TB, Robles A, Cerdán S, Sastre L, Calvo RM, Escalante R. Functional genomics in Dictyostelium: MidA, a new conserved protein, is required for mitochondrial function and development. J Cell Sci 2006; 119:1154-64. [PMID: 16507593 DOI: 10.1242/jcs.02819] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic sequencing has revealed a large number of evolutionary conserved genes of unknown function. In the absence of characterized functional domains, the discovery of the role of these genes must rely on experimental approaches. We have selected 30 Dictyostelium discoideum genes of unknown function that showed high similarity to uncharacterized human genes and were absent in the complete proteomes from Saccharomyces cerevisiae and S. pombe. No putative functional motifs were found in their predicted encoded proteins. Eighteen genes were successfully knocked-out and three of them showed obvious phenotypes. A detailed analysis of one of them, midA, is presented in this report. Disruption of midA in Dictyostelium leads to pleiotropic defects. Cell size, growth rate, phagocytosis and macropinocytosis were affected in the mutant. During development, midA- cells showed an enhanced tendency to remain at the slug stage, and spore viability was compromised. The expression of MidA fused to GFP in midA- strain rescued the phenotype and the fused protein was located in the mitochondria. Although cellular oxygen consumption, mitochondrial content and mitochondrial membrane potential were similar to wild type, the amount of ATP was significantly reduced in the mutant suggesting a mitochondrial dysfunction. Metabolomic analysis by natural-abundance 13C-nuclear magnetic resonance has shown the lack of glycogen accumulation during growth. During starvation, mutant cells accumulated higher levels of ammonia, which inhibited normal development. We hypothesize that the lack of MidA reduces mitochondrial ATP synthetic capacity and this has an impact in some but not all energy-dependent cellular processes. This work exemplifies the potential of Dictyostelium as a model system for functional genomic studies.
Collapse
Affiliation(s)
- Patricia Torija
- Instituto de Investigaciones Biomédicas Alberto Sols. C.S.I.C./U.A.M., Calle Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Logan DC. Plant mitochondrial dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:430-41. [PMID: 16545471 DOI: 10.1016/j.bbamcr.2006.01.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 12/23/2005] [Accepted: 01/10/2006] [Indexed: 01/05/2023]
Abstract
Higher plant mitochondria are dynamic, pleomorphic organelles. The higher plant chondriome (all mitochondria in a cell collectively) is typically composed of numerous, physically discrete, mitochondria. However, frequent inter-mitochondrial fusion, enabling the mixing and recombination of mtDNA, ensures that the higher plant chondriome functions, at least genetically, as a discontinuous whole. Nothing is known about the genes controlling mitochondrial fusion in plants; there are no plant homologues of most of the genes known to be involved in fusion in other organisms. In contrast, the mitochondrial fission apparatus is generally conserved. Higher plant mitochondria use dynamin-like and Fis-type proteins for division; like yeast and animals, higher plants have lost the mitochondrial-specific form of the prokaryote-derived protein, FtsZ. In addition to being providers of energy for life, mitochondria provide a trigger for death. The role of mitochondrial dynamics in the initiation and promulgation of cell death is conserved in higher plants although there are specific differences in the genes and mechanisms involved relative to other higher eukaryotes.
Collapse
Affiliation(s)
- David C Logan
- School of Biology, Sir Harold Mitchell Building, University of St. Andrews, St Andrews, Fife, KY16 9TH Scotland, UK.
| |
Collapse
|
40
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|
41
|
Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:27-94. [PMID: 17098054 DOI: 10.1016/s0074-7696(06)53002-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.
Collapse
Affiliation(s)
- Elizabeth Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
42
|
Abstract
Binary fission of many prokaryotes as well as some eukaryotic organelles depends on the FtsZ protein, which self-assembles into a membrane-associated ring structure early in the division process. FtsZ is homologous to tubulin, the building block of the microtubule cytoskeleton in eukaryotes. Recent advances in genomics and cell-imaging techniques have paved the way for the remarkable progress in our understanding of fission in bacteria and organelles.
Collapse
Affiliation(s)
- William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, Texas 77030, USA.
| |
Collapse
|
43
|
Miyagishima SY. Origin and evolution of the chloroplast division machinery. JOURNAL OF PLANT RESEARCH 2005; 118:295-306. [PMID: 16143878 DOI: 10.1007/s10265-005-0226-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 05/04/2023]
Abstract
Chloroplasts were originally established in eukaryotes by the endosymbiosis of a cyanobacterium; they then spread through diversification of the eukaryotic hosts and subsequent engulfment of eukaryotic algae by previously nonphotosynthetic eukaryotes. The continuity of chloroplasts is maintained by division of preexisting chloroplasts. Like their ancestors, chloroplasts use a bacterial division system based on the FtsZ ring and some associated factors, all of which are now encoded in the host nuclear genome. The majority of bacterial division factors are absent from chloroplasts and several new factors have been added by the eukaryotic host. For example, the ftsZ gene has been duplicated and modified, plastid-dividing (PD) rings were most likely added by the eukaryotic host, and a member of the dynamin family of proteins evolved to regulate chloroplast division. The identification of several additional proteins involved in the division process, along with data from diverse lineages of organisms, our current knowledge of mitochondrial division, and the mining of genomic sequence data have enabled us to begin to understand the universality and evolution of the division system. The principal features of the chloroplast division system thus far identified are conserved across several lineages, including those with secondary chloroplasts, and may reflect primeval features of mitochondrial division.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Department of Plant Biology, Michigan State University, East Lansing, 48824, USA.
| |
Collapse
|
44
|
Marrington R, Small E, Rodger A, Dafforn TR, Addinall SG. FtsZ fiber bundling is triggered by a conformational change in bound GTP. J Biol Chem 2004; 279:48821-9. [PMID: 15328358 DOI: 10.1074/jbc.m404944200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymer formation by the essential FtsZ protein plays a crucial role in the cytokinesis of most prokaryotes. Lateral associations between these FtsZ polymers to form bundles or sheets are widely predicted to be extremely important for FtsZ function in vivo. We have carried out a study in vitro of FtsZ polymer formation and bundling using linear dichroism (LD) to assess structural properties of the polymers. We demonstrate proof-of-principle experiments to show that LD can be used as a technique to follow FtsZ polymerization, and we present the LD spectra of FtsZ polymers. Our subsequent examination of FtsZ polymer bundling induced by calcium reveals a substantial increase in the LD signal indicative of increased polymer length and rigidity. We also detect a specific conformational change in the guanine moiety associated with bundling, whereas the conformation and configuration of the FtsZ monomers within the polymer remain largely unchanged. We demonstrate that other divalent cations can induce this conformational change in FtsZ-bound GTP coincident with polymer bundling. Therefore, we present "flipping" of the guanine moiety in FtsZ-bound GTP as a mechanism that explains the link between reduced GTPase activity, increased polymer stability, and polymer bundling.
Collapse
Affiliation(s)
- Rachel Marrington
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, School of Biological Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T. Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 2004; 52:843-9. [PMID: 15208351 DOI: 10.1369/jhc.4c6315.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the mitochondria of primitive eukaryotes, FtsZ and dynamin are part of the machinery involved in division of the inner and outer membranes, respectively. These genes also commonly function in the same manner during chloroplast division. In this study, a relationship between the localization of the inner and outer division machinery was directly shown for the first time. Triple immunofluorescent labeling was performed in the red alga Cyanidioschyzon merolae by a device using narrow bandpass filter sets and bright photostable dyes. FtsZ (CmFtsZ1) and dynamin (CmDnm1) localizations were examined simultaneously throughout the mitochondrial division cycle with an alternative mitochondrial marker protein, the mitochondrial translation elongation factor EF-Tu, whose localization was also shown to be identical to the mitochondrial matrix. FtsZ and dynamin did not necessarily co-localize when both were recruited to the mitochondrial constriction site, indicating that inner and outer dividing machineries are not in tight association during the late stage of division.
Collapse
Affiliation(s)
- Keiji Nishida
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Toshima-ku, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Motta MCM, Picchi GFA, Palmié-Peixoto IV, Rocha MR, de Carvalho TMU, Morgado-Diaz J, de Souza W, Goldenberg S, Fragoso SP. The Microtubule Analog Protein, FtsZ, in the Endosymbiont of Trypanosomatid Protozoa. J Eukaryot Microbiol 2004; 51:394-401. [PMID: 15352321 DOI: 10.1111/j.1550-7408.2004.tb00386.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Blastocrithidia culicis and Crithidia deanei are trypanosomatids that harbor an endosymbiotic bacterium in their cytoplasm. In prokaryotes, numerous proteins are essential for cell division, such as FtsZ, which is encoded by filament-forming temperature-sensitive (fts) genes. FtsZ is the prokaryotic homolog of eukaryotic tubulin and is present in bacteria and archaea, and has also been identified in mitochondria and chloroplasts. FtsZ plays a key role in the initiation of cytokinesis. It self-assembles into the Z ring, which establishes the division plane during septation. In this study, immunoblotting analysis using a FtsZ polyclonal antibody, revealed a 40-kDa band characteristic of FtsZ in endosymbiont fractions and in whole trypanosomatid homogenates, but not in whole cell extracts of aposymbiotic strains. Confocal microscopy and ultrastructural analysis revealed a specific and dispersed labeling over the endosymbiont. Bars and ring-like structures, which are suggestive of the presence of Z-rings, were never observed, even during the division of the symbiont. This peculiar distribution of FtsZ may represent an arrangement of cytoskeleton protein intermediate between prokaryotic and eukaryotic cells. The endosymbiont ftsz gene was completely sequenced after amplification of DNA from symbiont-bearing trypanosomatids or from pure endosymbiont fractions, using PCR and specific primers. The sequences obtained from the endosymbionts from C. deanei and B. culicis were very similar, and were most closely related to bacteria from the genus Pseudomonas.
Collapse
Affiliation(s)
- Maria Cristina M Motta
- Instituto de Biofísica Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|