1
|
Liu J, Kong Y, Pan J, Qiao M, Ruan X, Wang Y. Biodegradation of crude oil by newly enriched biosurfactant-producing bacterial consortium. Enzyme Microb Technol 2025; 187:110635. [PMID: 40139014 DOI: 10.1016/j.enzmictec.2025.110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Crude oil contamination in different environmental media is a global environmental problem, biodegradation is a potential, environmentally friendly method for remediating this pollutant. In the present study, a biosurfactant-producing and crude oil degrading bacterial consortium (S1) was enriched from a contaminated soil, and its degradation efficiency of crude oil in solution and soil under the optimum conditions was studied. The results showed that the predominant species of S1 were Pseudomonadaceae and Alcaligenaceae. S1 could produce surfactant, with the maximum content of 2.27 g/L, which was identified as rhamnolipids. The optimal pH, temperature, and (NH4)2SO4 concentration for crude oil degradation were 7.0, 40 °C, and 3 g/L, respectively, with the maximum degradation efficiency of 51.51 % after 7 days incubation. Plackett-Burman experiment and response surface methodology demonstrated that Cu, Co, and Zn could significantly promote the degradation of crude oil, with their optimum concentration of 0.36, 0.88, and 0.60 mg/L, respectively. Under the optimum conditions, the highest crude oil degradation efficiency reached 53.23 % within 7 days. Kinetic analysis showed that the first-order reaction kinetic was suitable for describing the degradation of crude oil by S1, with a half-life of 4.57 days. Furthermore, S1 also could degrade the crude oil in soil efficiently, with the maximum degradation efficiency of 60.34 % within 56 days. These results indicate that S1 has great potential for practical application in remediation of crude oil contamination.
Collapse
Affiliation(s)
- Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Junchao Pan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Mengjiao Qiao
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Xinling Ruan
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Osiewacz HD. Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System. Antioxid Redox Signal 2024; 40:948-967. [PMID: 38019044 DOI: 10.1089/ars.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.
Collapse
|
3
|
Sordaria macrospora Sterile Mutant pro34 Is Impaired in Respiratory Complex I Assembly. J Fungi (Basel) 2022; 8:jof8101015. [PMID: 36294581 PMCID: PMC9605262 DOI: 10.3390/jof8101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of fruiting bodies is a highly regulated process that requires the coordinated formation of different cell types. By analyzing developmental mutants, many developmental factors have already been identified. Yet, a complete understanding of fruiting body formation is still lacking. In this study, we analyzed developmental mutant pro34 of the filamentous ascomycete Sordaria macrospora. Genome sequencing revealed a deletion in the pro34 gene encoding a putative mitochondrial complex I assembly factor homologous to Neurospora crassa CIA84. We show that PRO34 is required for fast vegetative growth, fruiting body and ascospore formation. The pro34 transcript undergoes adenosine to inosine editing, a process correlated with sexual development in fruiting body-forming ascomycetes. Fluorescence microscopy and western blot analysis showed that PRO34 is a mitochondrial protein, and blue-native PAGE revealed that the pro34 mutant lacks mitochondrial complex I. Inhibitor experiments revealed that pro34 respires via complexes III and IV, but also shows induction of alternative oxidase, a shunt pathway to bypass complexes III and IV. We discuss the hypothesis that alternative oxidase is induced to prevent retrograde electron transport to complex I intermediates, thereby protecting from oxidative stress.
Collapse
|
4
|
Hamann A, Osiewacz HD. To die or not to die - How mitochondrial processes affect lifespan of Podospora anserina. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148568. [PMID: 35533726 DOI: 10.1016/j.bbabio.2022.148568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
The filamentous ascomycete Podospora anserina is a well-established model system to study organismic aging. Its senescence syndrome has been investigated for more than fifty years and turned out to have a strong mitochondrial etiology. Several different mitochondrial pathways were demonstrated to affect aging and lifespan. Here, we present an update of the literature focusing on the cooperative interplay between different processes.
Collapse
Affiliation(s)
- Andrea Hamann
- Institute of Molecular Biosciences, J. W. Goethe University, Frankfurt am Main, Germany.
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, J. W. Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
6
|
Warnsmann V, Meisterknecht J, Wittig I, Osiewacz HD. Aging of Podospora anserina Leads to Alterations of OXPHOS and the Induction of Non-Mitochondrial Salvage Pathways. Cells 2021; 10:cells10123319. [PMID: 34943827 PMCID: PMC8699231 DOI: 10.3390/cells10123319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023] Open
Abstract
The accumulation of functionally impaired mitochondria is a key event in aging. Previous works with the fungal aging model Podospora anserina demonstrated pronounced age-dependent changes of mitochondrial morphology and ultrastructure, as well as alterations of transcript and protein levels, including individual proteins of the oxidative phosphorylation (OXPHOS). The identified protein changes do not reflect the level of the whole protein complexes as they function in-vivo. In the present study, we investigated in detail the age-dependent changes of assembled mitochondrial protein complexes, using complexome profiling. We observed pronounced age-depen-dent alterations of the OXPHOS complexes, including the loss of mitochondrial respiratory supercomplexes (mtRSCs) and a reduction in the abundance of complex I and complex IV. Additionally, we identified a switch from the standard complex IV-dependent respiration to an alternative respiration during the aging of the P. anserina wild type. Interestingly, we identified proteasome components, as well as endoplasmic reticulum (ER) proteins, for which the recruitment to mitochondria appeared to be increased in the mitochondria of older cultures. Overall, our data demonstrate pronounced age-dependent alterations of the protein complexes involved in energy transduction and suggest the induction of different non-mitochondrial salvage pathways, to counteract the age-dependent mitochondrial impairments which occur during aging.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jana Meisterknecht
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe-University, Theodor-Stein-Kai 7, 60590 Frankfurt am Main, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Osiewacz HD, Schürmanns L. A Network of Pathways Controlling Cellular Homeostasis Affects the Onset of Senescence in Podospora anserina. J Fungi (Basel) 2021; 7:jof7040263. [PMID: 33807190 PMCID: PMC8065454 DOI: 10.3390/jof7040263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 01/07/2023] Open
Abstract
Research on Podospora anserina unraveled a network of molecular pathways affecting biological aging. In particular, a number of pathways active in the control of mitochondria were identified on different levels. A long-known key process active during aging of P. anserina is the age-related reorganization of the mitochondrial DNA (mtDNA). Mechanisms involved in the stabilization of the mtDNA lead to lifespan extension. Another critical issue is to balance mitochondrial levels of reactive oxygen species (ROS). This is important because ROS are essential signaling molecules, but at increased levels cause molecular damage. At a higher level of the network, mechanisms are active in the repair of damaged compounds. However, if damage passes critical limits, the corresponding pathways are overwhelmed and impaired molecules as well as those present in excess are degraded by specific enzymes or via different forms of autophagy. Subsequently, degraded units need to be replaced by novel functional ones. The corresponding processes are dependent on the availability of intact genetic information. Although a number of different pathways involved in the control of cellular homeostasis were uncovered in the past, certainly many more exist. In addition, the signaling pathways involved in the control and coordination of the underlying pathways are only initially understood. In some cases, like the induction of autophagy, ROS are active. Additionally, sensing and signaling the energetic status of the organism plays a key role. The precise mechanisms involved are elusive and remain to be elucidated.
Collapse
|
8
|
Tong X, Zhang H, Wang F, Xue Z, Cao J, Peng C, Guo J. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2020; 8:e8379. [PMID: 31988806 PMCID: PMC6970007 DOI: 10.7717/peerj.8379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is a highly valued fungus that has been used as traditional Asian medicine. This fungus is one of the most important sources of income for the nomadic populations of the Tibetan Plateau. With global warming and excessive collection, the wild O. sinensis resources declined dramatically. The cultivation of O. sinensis hasn’t been fully operational due to the unclear genetic basis of the fruiting body development. Here, our study conducted pairwise comparisons between transcriptomes acquired from different growth stages of O. sinensis including asexual mycelium (CM), developing fruiting body (DF) and mature fruiting body (FB). All RNA-Seq reads were aligned to the genome of O. sinensis CO18 prior to comparative analyses. Cluster analysis showed that the expression profiles of FB and DF were highly similar compared to CM. Alternative splicing analysis (AS) revealed that the stage-specific splicing genes may have important functions in the development of fruiting body. Functional enrichment analyses showed that differentially expressed genes (DEGs) were enriched in protein synthesis and baseline metabolism during fruiting body development, indicating that more protein and energy might be required for fruiting body development. In addition, some fruiting body development-associated genes impacted by ecological factors were up-regulated in FB samples, such as the nucleoside diphosphate kinase gene (ndk), β subunit of the fatty acid synthase gene (cel-2) and the superoxide dismutase gene (sod). Moreover, the expression levels of several cytoskeletons genes were significantly altered during all these growth stages, suggesting that these genes play crucial roles in both vegetative growth and the fruiting body development. Quantitative PCR (qPCR) was used to validate the gene expression profile and the results supported the accuracy of the RNA-Seq and DEGs analysis. Our study offers a novel perspective to understand the underlying growth stage-specific molecular differences and the biology of O. sinensis fruiting body development.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengyao Xue
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Boilan E, Winant V, Dumortier E, ElMoualij B, Quatresooz P, Osiewacz HD, Debacq-Chainiaux F, Toussaint O. Role of Prion protein in premature senescence of human fibroblasts. Mech Ageing Dev 2017; 170:106-113. [PMID: 28800967 DOI: 10.1016/j.mad.2017.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/29/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023]
Abstract
Prion protein (PrP) is essentially known for its capacity to induce neurodegenerative prion diseases in mammals caused by a conformational change in its normal cellular isoform (PrPC) into an infectious and disease-associated misfolded form, called scrapie isoform (PrPSc). Although its sequence is highly conserved, less information is available on its physiological role under normal conditions. However, increasing evidence supports a role for PrPC in the cellular response to oxidative stress. In the present study, a new link between PrP and senescence is highlighted. The role of PrP in premature senescence induced by copper was investigated. WI-38 human fibroblasts were incubated with copper sulfate (CuSO4) to trigger premature senescence. This induced an increase of PrP mRNA level, an increase of protein abundance of the normal form of PrP and a nuclear localization of the protein. Knockdown of PrP expression using specific small interfering RNA (siRNA) gave rise to appearance of several biomarkers of senescence as a senescent morphology, an increase of senescence associated β-galactosidase activity and a decrease of the cellular proliferative potential. Overall these data suggest that PrP protects cells against premature senescence induced by copper.
Collapse
Affiliation(s)
- Emmanuelle Boilan
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium.
| | - Virginie Winant
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Elise Dumortier
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | | | | | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium.
| | - Olivier Toussaint
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| |
Collapse
|
10
|
Knuppertz L, Warnsmann V, Hamann A, Grimm C, Osiewacz HD. Stress-dependent opposing roles for mitophagy in aging of the ascomycete Podospora anserina. Autophagy 2017; 13:1037-1052. [PMID: 28368682 PMCID: PMC5486364 DOI: 10.1080/15548627.2017.1303021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial dysfunction is causatively linked to organismal aging and the development of degenerative diseases. Here we describe stress-dependent opposing roles of mitophagy, the selective autophagic degradation of mitochondria, in aging and life-span control. We report that the ablation of the mitochondrial superoxide dismutase which is involved in reactive oxygen species (ROS) balancing, does not affect life span of the fungal aging model Podospora anserina, although superoxide levels are strongly increased and complex I-dependent respiration is impaired. This unexpected phenotype depends on functional autophagy, particularly mitophagy, which is upregulated during aging of this mutant. It identifies mitophagy as a prosurvival response involved in the control of mitohormesis, the well-known beneficial effect of mild mitochondrial oxidative stress. In contrast, excessive superoxide stress turns mitophagy to a prodeath pathway and leads to accelerated aging. Overall our data uncover mitophagy as a dynamic pathway that specifically responds to different levels of mitochondrial oxidative stress and thereby affects organismal aging.
Collapse
Affiliation(s)
- Laura Knuppertz
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Verena Warnsmann
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Andrea Hamann
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Carolin Grimm
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| | - Heinz D Osiewacz
- a Institute of Molecular Biosciences and Cluster of Excellence 'Macromolecular Complexes' , Department of Biosciences , J. W. Goethe University , Frankfurt , Germany
| |
Collapse
|
11
|
Regulation of Aerobic Energy Metabolism in Podospora anserina by Two Paralogous Genes Encoding Structurally Different c-Subunits of ATP Synthase. PLoS Genet 2016; 12:e1006161. [PMID: 27442014 PMCID: PMC4956034 DOI: 10.1371/journal.pgen.1006161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/10/2016] [Indexed: 01/24/2023] Open
Abstract
Most of the ATP in living cells is produced by an F-type ATP synthase. This enzyme uses the energy of a transmembrane electrochemical proton gradient to synthesize ATP from ADP and inorganic phosphate. Proton movements across the membrane domain (FO) of the ATP synthase drive the rotation of a ring of 8–15 c-subunits, which induces conformational changes in the catalytic part (F1) of the enzyme that ultimately promote ATP synthesis. Two paralogous nuclear genes, called Atp9-5 and Atp9-7, encode structurally different c-subunits in the filamentous fungus Podospora anserina. We have in this study identified differences in the expression pattern for the two genes that correlate with the mitotic activity of cells in vegetative mycelia: Atp9-7 is transcriptionally active in non-proliferating (stationary) cells while Atp9-5 is expressed in the cells at the extremity (apex) of filaments that divide and are responsible for mycelium growth. When active, the Atp9-5 gene sustains a much higher rate of c-subunit synthesis than Atp9-7. We further show that the ATP9-7 and ATP9-5 proteins have antagonist effects on the longevity of P. anserina. Finally, we provide evidence that the ATP9-5 protein sustains a higher rate of mitochondrial ATP synthesis and yield in ATP molecules per electron transferred to oxygen than the c-subunit encoded by Atp9-7. These findings reveal that the c-subunit genes play a key role in the modulation of ATP synthase production and activity along the life cycle of P. anserina. Such a degree of sophistication for regulating aerobic energy metabolism has not been described before. In mitochondria, the ATP synthase (also referred to as complex V) catalyzes the late steps of oxidative phosphorylation (OXPHOS), which is a process that provides aerobic eukaryotes with most of their energy requirements by generating adenosine triphosphate (ATP) molecules. While the structure and mechanism of ATP synthase are mostly well established, much remains to be learned about how cells and tissues modulate the production and activity of this enzyme. Herein we report the existence in the filamentous fungus Podospora anserina of a two-pronged energy regulatory mechanism that involves two nuclear genes (Atp9-5 and Atp9-7) that encode structurally different c-subunits of ATP synthase. This system enables a proper production of ATP synthase and optimizes the rate of ATP synthesis in mitochondria along the rather complex life cycle of this fungus.
Collapse
|
12
|
Rogov AG, Zvyagilskaya RA. Physiological role of alternative oxidase (from yeasts to plants). BIOCHEMISTRY (MOSCOW) 2016; 80:400-7. [PMID: 25869356 DOI: 10.1134/s0006297915040021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondria of all so far studied organisms, with the exception of Archaea, mammals, some yeasts, and protists, contain, along with the classical phosphorylating cytochrome pathway, a so-called cyanide-insensitive alternative oxidase (AOX) localized on the matrix side of the mitochondrial inner membrane, and electron transport through which is not coupled with ATP synthesis and energy accumulation. Mechanisms underlying plentiful functions of AOX in organisms at various levels of organization ranging from yeasts to plants are considered. First and foremost, AOX provides a chance of cell survival after inhibiting the terminal components of the main respiratory chain or losing the ability to synthesize these components. The vitally important role of AOX is obvious in thermogenesis of thermogenic plant organs where it becomes the only terminal oxidase with a very high activity, and the energy of substrate oxidation by this respiratory pathway is converted into heat, thus promoting evaporation of volatile substances attracting pollinating insects. AOX plays a fundamentally significant role in alleviating or preventing oxidative stress, thus ensuring the defense against a wide range of stresses and adverse environmental conditions, such as changes in temperature and light intensities, osmotic stress, drought, and attack by incompatible strains of bacterial pathogens, phytopathogens, or their elicitors. Participation of AOX in pathogen survival during its existence inside the host, in antivirus defense, as well as in metabolic rearrangements in plants during embryogenesis and cell differentiation is described. Examples are given to demonstrate that AOX might be an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | |
Collapse
|
13
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
14
|
RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model. Sci Rep 2015. [PMID: 26220011 PMCID: PMC4518240 DOI: 10.1038/srep12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharomyces cerevisiae respiratory supercomplex factors 1 and 2 (termed PaRCF1 and PaRCF2) on mtRSC formation, fitness and lifespan. Whereas PaRCF2’s role seems negligible, ablation of PaRCF1 alters size of monomeric complex IV, reduces the abundance of complex IV-containing supercomplexes, negatively affects vital functions and shortens lifespan. PaRcf1 overexpression slightly prolongs lifespan, though without appreciably influencing ETC organization. Overall, our results identify PaRCF1 as necessary yet not sufficient for mtRSC formation and demonstrate that PaRCF1-dependent stability of complex IV and associated supercomplexes is highly relevant for maintenance of the healthy lifespan in a eukaryotic model organism.
Collapse
|
15
|
Dahan J, Tcherkez G, Macherel D, Benamar A, Belcram K, Quadrado M, Arnal N, Mireau H. Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 gene leads to cytochrome c oxidase depletion and reorchestrated respiratory metabolism in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1788-802. [PMID: 25301889 PMCID: PMC4256860 DOI: 10.1104/pp.114.248526] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/09/2014] [Indexed: 05/20/2023]
Abstract
Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis.
Collapse
Affiliation(s)
- Jennifer Dahan
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Guillaume Tcherkez
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - David Macherel
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Abdelilah Benamar
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Katia Belcram
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Martine Quadrado
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Nadège Arnal
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| | - Hakim Mireau
- AgroParisTech and Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, F-78000 Versailles, France (J.D., K.B., M.Q., N.A., H.M.);Institut de Biologie des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8618, and Plateforme Métabolisme-Métabolome, Institut Fédératif de Recherche 87, Université Paris-Sud, 91405 Orsay cedex, France (G.T.);Institut Universitaire de France, 75005 Paris, France (G.T.); andUniversité d'Angers, Unité Mixte de Recherche 1345, Institut de Recherche en Horticulture et Semences, Angers 49045, France (D.M., A.B.)
| |
Collapse
|
16
|
Bernhardt D, Hamann A, Osiewacz HD. The role of mitochondria in fungal aging. Curr Opin Microbiol 2014; 22:1-7. [PMID: 25299751 DOI: 10.1016/j.mib.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Time-dependent impairments of mitochondrial function play a key role in biological aging. Work on fungal aging models has been instrumental in unraveling basic mechanisms leading to mitochondrial dysfunction and the identification of different pathways active in keeping mitochondria 'healthy' over time. Pathways including those involved in reactive oxygen scavenging, repair of damage, proteostasis, mitochondrial dynamics, and biogenesis, are interconnected and part of a complex quality control system. The individual components of this network are limited in capacity. However, if the capacity of one pathway is overwhelmed, another one may be activated. The mechanisms controlling the underlying cross-talk are poorly understood and subject of intensive investigation.
Collapse
Affiliation(s)
- Dominik Bernhardt
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J.W. Goethe University, Frankfurt, Germany.
| |
Collapse
|
17
|
Grimm C, Böhl L, Osiewacz HD. Overexpression of Pa_1_10620 encoding a mitochondrial Podospora anserina protein with homology to superoxide dismutases and ribosomal proteins leads to lifespan extension. Curr Genet 2014; 61:73-86. [PMID: 25151510 DOI: 10.1007/s00294-014-0446-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
Abstract
In biological systems, reactive oxygen species (ROS) represent 'double edged swords': as signaling molecules they are essential for proper development, as reactive agents they cause molecular damage and adverse effects like degeneration and aging. A well-coordinated control of ROS is therefore of key importance. Superoxide dismutases (SODs) are enzymes active in the detoxification of superoxide. The number of isoforms of these proteins varies among species. Here we report the characterization of the putative protein encoded by Pa_1_10620 that has been previously annotated to code for a mitochondrial ribosomal protein but shares also sequence domains with SODs. We report that the gene is transcribed in P. anserina cultures of all ages and that the encoded protein localizes to mitochondria. In strains overexpressing Pa_1_10620 in a genetic background in which PaSod3, the mitochondrial MnSOD of P. anserina, is deleted, no SOD activity could be identified in isolated mitochondria. However, overexpression of the gene leads to lifespan extension suggesting a pro-survival function of the protein in P. anserina.
Collapse
Affiliation(s)
- Carolin Grimm
- Faculty for Biosciences and Cluster of Excellence Frankfurt 'Macromolecular Complexes', Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
18
|
Wiemer M, Osiewacz HD. Effect of paraquat-induced oxidative stress on gene expression and aging of the filamentous ascomycete Podospora anserina. MICROBIAL CELL 2014; 1:225-240. [PMID: 28357247 PMCID: PMC5349155 DOI: 10.15698/mic2014.07.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aging of biological systems is influenced by various factors, conditions and
processes. Among others, processes allowing organisms to deal with various types
of stress are of key importance. In particular, oxidative stress as the result
of the generation of reactive oxygen species (ROS) at the mitochondrial
respiratory chain and the accumulation of ROS-induced molecular damage has been
strongly linked to aging. Here we view the impact of ROS from a different angle:
their role in the control of gene expression. We report a genome-wide
transcriptome analysis of the fungal aging model Podospora anserina
grown on medium containing paraquat (PQ). This treatment leads to an
increased cellular generation and release of H2O2, a
reduced growth rate, and a decrease in lifespan. The combined challenge by PQ
and copper has a synergistic negative effect on growth and lifespan. The data
from the transcriptome analysis of the wild type cultivated under PQ-stress and
their comparison to those of a longitudinal aging study as well as of a
copper-uptake longevity mutant of P. anserina revealed that
PQ-stress leads to the up-regulation of transcripts coding for components
involved in mitochondrial remodeling. PQ also affects the expression of
copper-regulated genes suggesting an increase of cytoplasmic copper levels as it
has been demonstrated earlier to occur during aging of P.
anserina and during senescence of human fibroblasts. This effect
may result from the induction of the mitochondrial permeability transition pore
via PQ-induced ROS, leading to programmed cell death as part of an evolutionary
conserved mechanism involved in biological aging and lifespan control.
Collapse
Affiliation(s)
- Matthias Wiemer
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD. Identification of autophagy as a longevity-assurance mechanism in the aging model Podospora anserina. Autophagy 2014; 10:822-34. [PMID: 24584154 PMCID: PMC5119060 DOI: 10.4161/auto.28148] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022] Open
Abstract
The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different pathways, including those involved in the control of respiration, ROS generation and scavenging, DNA maintenance, proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging and life span. Here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of EGFP to the fungal LC3 homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-dependent degradation of a PaSOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. In contrast, this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for this fungus. Collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another surveillance pathway in the complex network of pathways affecting aging and development. These findings provide perspectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| | - Francesco Pampaloni
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Ernst Stelzer
- Physical Biology Group; Buchmann Institute of Molecular Life Sciences; Cluster of Excellence Frankfurt Macromolecular Complexes; Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes; Department of Biosciences; J W Goethe University; Frankfurt, Germany
| |
Collapse
|
20
|
The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 2014; 10:e1004040. [PMID: 24415947 PMCID: PMC3886904 DOI: 10.1371/journal.pgen.1004040] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection. Both fungal pathogens and their host plants respond to light, which represents an important environmental cue. Unlike plants using light for energy generation, filamentous fungi use light, or its absence, as a general signal for orientation (night/day, underground/on the surface). Therefore, dependent on the ecological niche of the fungus, light may control the development of reproductive structures (photomorphogenesis), the dispersal of propagules (phototropism of reproductive structures) and the circadian rhythm. As in other organisms, fungi have to protect themselves against the detrimental effects of light, i.e. the damage to macromolecules by emerging singlet oxygen. Adaptive responses are the accumulation of pigments, especially in the reproductive and survival structures such as spores, sclerotia and fruiting bodies. Light is sensed by fungal photoreceptors leading to quick responses on the transcriptional level, and is furthermore considered to result in the accumulation of reactive oxygen species (ROS). In this study, we provide evidence that an unbalanced ROS homoeostasis (generation outweighs detoxification) caused by the deletion of the light-responsive transcription factor BcLTF1 impairs the ability of the necrotrophic pathogen Botrytis cinerea to grow in the presence of additional oxidative stress arising during illumination or during infection of the host.
Collapse
|
21
|
Abstract
Podospora anserina is an extensively studied model organism to unravel the mechanism of organismal aging. This filamentous fungus is short-lived and accessible to experimentation. Aging and lifespan are controlled by genetic and environmental traits and, in this model, have a strong mitochondrial etiology. Here, we describe methods and protocols to manipulate and study the aging process in P. anserina at different levels including biochemistry, cell biology, genetics, and physiology.
Collapse
|
22
|
Kudryavtseva OA, Kamzolkina OV, Mazheika IS, Sellem C. A mitochondrial respiratory mutant of Podospora anserina obtained by short-term submerged cultivation of senescent mycelium. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Servos J, Hamann A, Grimm C, Osiewacz HD. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development. PLoS One 2012; 7:e49292. [PMID: 23152891 PMCID: PMC3495915 DOI: 10.1371/journal.pone.0049292] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS) and of adenosine triphosphate (ATP). We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to explain the underlying mechanisms controlling complex biological processes like aging and development.
Collapse
Affiliation(s)
- Jörg Servos
- Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Andrea Hamann
- Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Carolin Grimm
- Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences & Cluster of Excellence ‘Macromolecular Complexes’, Johann Wolfgang Goethe University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
24
|
Weil A, Luce K, Dröse S, Wittig I, Brandt U, Osiewacz HD. Unmasking a temperature-dependent effect of the P. anserina i-AAA protease on aging and development. Cell Cycle 2011; 10:4280-90. [PMID: 22134244 PMCID: PMC3272260 DOI: 10.4161/cc.10.24.18560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 12/15/2022] Open
Abstract
Different molecular pathways involved in maintaining mitochondrial function are of fundamental importance to control cellular homeostasis. Mitochondrial i-AAA protease is part of such a surveillance system and PaIAP is the putative ortholog in the fungal aging model Podospora anserina. Here we investigated the role of PaIAP in aging and development. Deletion of the gene encoding PaIAP resulted in a specific phenotype. When incubated at 27°C, spore germination and fruiting body formation are not different from that of the corresponding wild-type strain. Unexpectedly, the lifespan of the deletion strain is strongly increased. In contrast, cultivation at an elevated temperature of 37°C leads to impairments in spore germination and fruiting body formation, and to a reduced lifespan. The higher PaIAP abundance in wild-type strains of the fungus grown at elevated temperature and the phenotype of the deletion strain unmasks a temperature-related role of the protein. The protease appears to be part of a molecular system that has evolved to allow survival under changing temperatures as they characteristically occur in nature.
Collapse
Affiliation(s)
- Andrea Weil
- Goethe University, Faculty for Biosciences & Cluster of Excellence Macromolecular Complexes Frankfurt, Institute of Molecular Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Zintel S, Bernhardt D, Rogowska-Wrzesinska A, Osiewacz HD. PaCATB, a secreted catalase protecting Podospora anserina against exogenous oxidative stress. Aging (Albany NY) 2011; 3:768-781. [PMID: 21865610 PMCID: PMC3184978 DOI: 10.18632/aging.100360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
A differential mass spectrometry analysis of secreted proteins from juvenile and senescent Podospora anserina cultures revealed age-related differences in protein profiles. Among other proteins with decreased abundance in the secretome of senescent cultures a catalase, termed PaCATB, was identified. Genetic modulation of the abundance of PaCATB identified differential effects on the phenotype of the corresponding strains. Deletion of PaCatB resulted in decreased resistance, over-expression in increased resistance against hydrogen peroxide. While the lifespan of the genetically modified strains was found to be unaffected under standard growth conditions, increased exogenous hydrogen peroxide stress in the growth medium markedly reduced the lifespan of the PaCatB deletion strain but extended the lifespan of PaCatB over-expressors. Overall our data identify a component of the secretome of P. anserina as a new effective factor to cope with environmental stress, stress that under natural conditions is constantly applied on organisms and influences aging processes.
Collapse
Affiliation(s)
- Sandra Zintel
- Institute of Molecular Biosciences and ‘Cluster of Excellence Macromolecular Complexes’, Department of Biosciences, J.W. Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dominik Bernhardt
- Institute of Molecular Biosciences and ‘Cluster of Excellence Macromolecular Complexes’, Department of Biosciences, J.W. Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campus 55, DK-5230 Odense M, Denmark
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences and ‘Cluster of Excellence Macromolecular Complexes’, Department of Biosciences, J.W. Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Scheckhuber CQ, Mack SJ, Strobel I, Ricciardi F, Gispert S, Osiewacz HD. Modulation of the glyoxalase system in the aging model Podospora anserina: effects on growth and lifespan. Aging (Albany NY) 2011; 2:969-80. [PMID: 21212464 PMCID: PMC3034185 DOI: 10.18632/aging.100251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The eukaryotic glyoxalase system consists of two enzymatic components, glyoxalase I (lactoylglutathione lyase) and glyoxalase II (hydroxyacylglutathione hydrolase). These enzymes are dedicated to the removal of toxic α-oxoaldehydes like methylglyoxal (MG). MG is formed as a by-product of glycolysis and MG toxicity results from its damaging capability leading to modifications of proteins, lipids and nucleic acids. An efficient removal of MG appears to be essential to ensure cellular functionality and viability. Here we study the effects of the genetic modulation of genes encoding the components of the glyoxalase system in the filamentous ascomycete and aging model Podospora anserina. Overexpression of PaGlo1 leads to a lifespan reduction on glucose rich medium, probably due to depletion of reduced glutathione. Deletion of PaGlo1 leads to hypersensitivity against MG added to the growth medium. A beneficial effect on lifespan is observed when both PaGlo1 and PaGlo2 are overexpressed and the corresponding strains are grown on media containing increased glucose concentrations. Notably, the double mutant has a ‘healthy’ phenotype without physiological impairments. Moreover, PaGlo1/PaGlo2_OEx strains are not long-lived on media containing standard glucose concentrations suggesting a tight correlation between the efficiency and capacity to remove MG within the cell, the level of available glucose and lifespan. Overall, our results identify the up-regulation of both components of the glyoxalase system as an effective intervention to increase lifespan in P. anserina.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Molecular Developmental Biology, Goethe University, D-60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Scheckhuber CQ, Houthoofd K, Weil AC, Werner A, De Vreese A, Vanfleteren JR, Osiewacz HD. Alternative oxidase dependent respiration leads to an increased mitochondrial content in two long-lived mutants of the aging model Podospora anserina. PLoS One 2011; 6:e16620. [PMID: 21305036 PMCID: PMC3029406 DOI: 10.1371/journal.pone.0016620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/07/2011] [Indexed: 01/29/2023] Open
Abstract
The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Faculty for Biosciences, Molecular Developmental Biology, Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Brust D, Daum B, Breunig C, Hamann A, Kühlbrandt W, Osiewacz HD. Cyclophilin D links programmed cell death and organismal aging in Podospora anserina. Aging Cell 2010; 9:761-75. [PMID: 20626725 DOI: 10.1111/j.1474-9726.2010.00609.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cyclophilin D (CYPD) is a mitochondrial peptidyl prolyl-cis,trans-isomerase involved in opening of the mitochondrial permeability transition pore (mPTP). CYPD abundance increases during aging in mammalian tissues and in the aging model organism Podospora anserina. Here, we show that treatment of the P. anserina wild-type with low concentrations of the cyclophilin inhibitor cyclosporin A (CSA) extends lifespan. Transgenic strains overexpressing PaCypD are characterized by reduced stress tolerance, suffer from pronounced mitochondrial dysfunction and are characterized by accelerated aging and induction of cell death. Treatment with CSA leads to correction of mitochondrial function and lifespan to that of the wild-type. In contrast, PaCypD deletion strains are not affected by CSA within the investigated concentration range and show increased resistance against inducers of oxidative stress and cell death. Our data provide a mechanistic link between programmed cell death (PCD) and organismal aging and bear implications for the potential use of CSA to intervene into biologic aging.
Collapse
Affiliation(s)
- Diana Brust
- Johann Wolfgang Goethe University, Institute of Molecular Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Osiewacz HD, Brust D, Hamann A, Kunstmann B, Luce K, Müller-Ohldach M, Scheckhuber CQ, Servos J, Strobel I. Mitochondrial pathways governing stress resistance, life, and death in the fungal aging model Podospora anserina. Ann N Y Acad Sci 2010; 1197:54-66. [PMID: 20536834 DOI: 10.1111/j.1749-6632.2010.05190.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Work from more than 50 years of research has unraveled a number of molecular pathways that are involved in controlling aging of the fungal model system Podospora anserina. Early research revealed that wild-type strain aging is linked to gross reorganization of the mitochondrial DNA. Later it was shown that aging of P. anserina does also take place, although at a slower pace, when the wild-type specific mitochondrial DNA rearrangements do not occur. Now it is clear that a network of different pathways is involved in the control of aging. Branches of these pathways appear to be connected and constitute a hierarchical system of responses. Although cross talk between the individual pathways seems to be fundamental in the coordination of the overall system, the precise underlying interactions remain to be unraveled. Such a systematic approach aims at a holistic understanding of the process of biological aging, the ultimate goal of modern systems biology.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brust D, Hamann A, Osiewacz HD. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension. Curr Genet 2010; 56:225-35. [PMID: 20306265 DOI: 10.1007/s00294-010-0295-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 01/08/2023]
Abstract
Wild-type strains of the ascomycete Podospora anserina are characterized by a limited lifespan. Mitochondria play a central role in this ageing process raising the question of whether apoptosis-like processes, which are also connected to mitochondrial function, are involved in the control of the final stage in the fungal life cycle. While a role of two metacaspases in apoptosis and lifespan control was recently demonstrated in P. anserina, virtually nothing is known about the function of the protein family of apoptosis-inducing factors (AIFs). Here we report data about proteins belonging to this family. We demonstrate that the cytosolic members PaAIF1 and PaAMID1 do not affect lifespan. In contrast, loss of PaAIF2 and PaAMID2, which both were localized to mitochondria, are characterized by a significantly increased ROS tolerance and a prolonged lifespan. In addition, deletion of PaAmid2 severely affects sporogenesis. These data identify components of a caspase-independent molecular pathway to be involved in developmental processes and in the induction of programmed cell death in the senescent stage of P. anserina.
Collapse
Affiliation(s)
- Diana Brust
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
31
|
Zintel S, Schwitalla D, Luce K, Hamann A, Osiewacz HD. Increasing mitochondrial superoxide dismutase abundance leads to impairments in protein quality control and ROS scavenging systems and to lifespan shortening. Exp Gerontol 2010; 45:525-32. [PMID: 20080171 DOI: 10.1016/j.exger.2010.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/17/2009] [Accepted: 01/08/2010] [Indexed: 12/15/2022]
Abstract
The fungal aging model Podospora anserina contains three superoxide dismutases (SODs) in different cellular compartments. While PaSOD1 represents the Cu/Zn isoform located in the cytoplasm and in the mitochondrial inter-membrane space, PaSOD2 localizes to the perinuclear ER. PaSOD3, a protein with a manganese binding domain and a mitochondrial targeting sequence (MTS) is the mitochondrial SOD. Over-expression of PaSod3 leads to lifespan reduction and increased sensitivity against paraquat and hydrogen peroxide. The negative effects of PaSod3 over-expression correlate with a strong reduction in the abundance of mitochondrial peroxiredoxin, PaPRX1, and the matrix protease PaCLPP disclosing impairments of mitochondrial quality control and ROS scavenging pathways in PaSod3 over-expressors. Deletion of PaSod3 leads to increased paraquat sensitivity while hydrogen peroxide sensitivity and lifespan are not significantly changed when compared to the wild-type strain. These latter characteristics are unexpected and challenge the 'mitochondrial free radical theory of aging'.
Collapse
Affiliation(s)
- Sandra Zintel
- Institute of Molecular Biosciences and Cluster of Excellence Macromolecular Complexes, Department of Biosciences, J.W. Goethe-University, Max-von-Laue-Strasse 9, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
32
|
Scheckhuber CQ, Mitterbauer R, Osiewacz HD. Molecular basis of and interference into degenerative processes in fungi: potential relevance for improving biotechnological performance of microorganisms. Appl Microbiol Biotechnol 2009; 85:27-35. [PMID: 19714326 DOI: 10.1007/s00253-009-2205-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/12/2009] [Accepted: 08/12/2009] [Indexed: 12/20/2022]
Abstract
Biological systems, from simple microorganisms to humans, are characterized by time-dependent degenerative processes which lead to reduced fitness, disabilities, severe diseases, and, finally, death. These processes are under genetic control but also influenced by environmental conditions and by stochastic processes. Studying the mechanistic basis of degenerative processes in the filamentous ascomycete Podospora anserina and in other systems demonstrated that mitochondria play a key role in the expression of degenerative phenotypes and unraveled a number of underlying molecular pathways. Reactive oxygen species (ROS) which are mainly, but not exclusively, formed at the mitochondrial respiratory chain are crucial players in this network. While being essential for signaling processes and development, ROS are, at the same time, a potential danger because they lead to molecular damage and degeneration. Fortunately, a number of interacting pathways including ROS scavenging, DNA and protein repair, protein degradation, and mitochondrial fission and fusion are involved in keeping cellular damage low. If these pathways are overwhelmed by extensive damage, programmed cell death is induced. The current knowledge of this hierarchical system of mitochondrial quality control, although still incomplete, appears now to be ready for the development of strategies effective in interventions into those pathways leading to degeneration and loss of performance also in microorganisms used in biotechnology. Very promising interdisciplinary interactions and collaborations involving academic and industrial research teams can be envisioned to arise which bear a great potential, in particular, when system biology approaches are used to understand relevant networks of pathways in a holistic way.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Institute of Molecular Biosciences, Faculty for Biosciences and Cluster of Excellence Macromolecular Complexes, Johann Wolfgang Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
33
|
Suppression of mitochondrial DNA instability of autosomal dominant forms of progressive external ophthalmoplegia-associated ANT1 mutations in Podospora anserina. Genetics 2009; 183:861-71. [PMID: 19687137 DOI: 10.1534/genetics.109.107813] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintenance and expression of mitochondrial DNA (mtDNA) are essential for the cell and the organism. In humans, several mutations in the adenine nucleotide translocase gene ANT1 are associated with multiple mtDNA deletions and autosomal dominant forms of progressive external ophthalmoplegia (adPEO). The mechanisms underlying the mtDNA instability are still obscure. A current hypothesis proposes that these pathogenic mutations primarily uncouple the mitochondrial inner membrane, which secondarily causes mtDNA instability. Here we show that the three adPEO-associated mutations equivalent to A114P, L98P, and V289M introduced into the Podospora anserina ANT1 ortholog dominantly cause severe growth defects, decreased reactive oxygen species production (ROS), decreased mitochondrial inner membrane potential (Deltapsi), and accumulation of large-scale mtDNA deletions leading to premature death. Interestingly, we show that, at least for the adPEO-type M106P and A121P mutant alleles, the associated mtDNA instability cannot be attributed only to a reduced membrane potential or to an increased ROS level since it can be suppressed without restoration of the Deltapsi or modification of the ROS production. Suppression of mtDNA instability due to the M106P and A121P mutations was obtained by an allele of the rmp1 gene involved in nucleo-mitochondrial cross- talk and also by an allele of the AS1 gene encoding a cytosolic ribosomal protein. In contrast, the mtDNA instability caused by the S296M mutation was not suppressed by these alleles.
Collapse
|
34
|
Luce K, Osiewacz HD. Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 2009; 11:852-8. [PMID: 19543272 DOI: 10.1038/ncb1893] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/19/2009] [Indexed: 01/24/2023]
Abstract
Degradation of damaged proteins by members of the protein quality control system is of fundamental importance in maintaining cellular homeostasis. In mitochondria, organelles which both generate and are targets of reactive oxygen species (ROS), a number of membrane bound and soluble proteases are essential components of this system. Here we describe the regulation of Podospora anserina LON (PaLON) levels, an AAA(+) family serine protease localized in the matrix fraction of mitochondria. Constitutive overexpression of PaLon results in transgenic strains of the fungal ageing model P. anserina showing increased ATP-dependent serine protease activity. These strains display lower levels of carbonylated (aconitase) and carboxymethylated proteins, reduced secretion of hydrogen peroxide and a higher resistance against exogenous oxidative stress. Moreover, they are characterized by an extended lifespan without impairment of vital functions such as respiration, growth and fertility. The reported genetic manipulation proved to be a successful intervention in organismal ageing and it led to an increase in the healthy lifespan, the healthspan, of P. anserina.
Collapse
Affiliation(s)
- Karin Luce
- Johann Wolfgang Goethe University, Institute of Molecular Biosciences, Frankfurt, Germany
| | | |
Collapse
|
35
|
Soerensen M, Gredilla R, Müller-Ohldach M, Werner A, Bohr VA, Osiewacz HD, Stevnsner T. A potential impact of DNA repair on ageing and lifespan in the ageing model organism Podospora anserina: decrease in mitochondrial DNA repair activity during ageing. Mech Ageing Dev 2009; 130:487-96. [PMID: 19486911 DOI: 10.1016/j.mad.2009.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/21/2009] [Indexed: 12/21/2022]
Abstract
The free radical theory of ageing states that ROS play a key role in age-related decrease in mitochondrial function via the damage of mitochondrial DNA (mtDNA), proteins and lipids. In the sexually reproducing ascomycete Podospora anserina ageing is, as in other eukaryotes, associated with mtDNA instability and mitochondrial dysfunction. Part of the mtDNA instabilities may arise due to accumulation of ROS induced mtDNA lesions, which, as previously suggested for mammals, may be caused by an age-related decrease in base excision repair (BER). Alignments of known BER protein sequences with the P. anserina genome revealed high homology. We report for the first time the presence of BER activities in P. anserina mitochondrial extracts. DNA glycosylase activities decrease with age, suggesting that the increased mtDNA instability with age may be caused by decreased ability to repair mtDNA damage and hence contribute to ageing and lifespan control in this ageing model. Additionally, we find low DNA glycosylase activities in the long-lived mutants grisea and DeltaPaCox17::ble, which are characterized by low mitochondrial ROS generation. Overall, our data identify a potential role of mtDNA repair in controlling ageing and life span in P. anserina, a mechanism possibly regulated in response to ROS levels.
Collapse
Affiliation(s)
- Mette Soerensen
- Danish Centre for Molecular Gerontology and Danish Aging Research Center, Aarhus University, Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Scheckhuber CQ, Grief J, Boilan E, Luce K, Debacq-Chainiaux F, Rittmeyer C, Gredilla R, Kolbesen BO, Toussaint O, Osiewacz HD. Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts. PLoS One 2009; 4:e4919. [PMID: 19305496 PMCID: PMC2654708 DOI: 10.1371/journal.pone.0004919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/11/2009] [Indexed: 12/14/2022] Open
Abstract
In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans.
Collapse
Affiliation(s)
- Christian Q. Scheckhuber
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Jürgen Grief
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Emmanuelle Boilan
- Research Unit on Cellular Biology, University of Namur, Namur, Belgium
| | - Karin Luce
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | - Claudia Rittmeyer
- Institute of Inorganic Chemistry/Analytical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Ricardo Gredilla
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Bernd O. Kolbesen
- Institute of Inorganic Chemistry/Analytical Chemistry, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Olivier Toussaint
- Research Unit on Cellular Biology, University of Namur, Namur, Belgium
| | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
37
|
Strobel I, Breitenbach J, Scheckhuber CQ, Osiewacz HD, Sandmann G. Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet 2009; 55:175-84. [PMID: 19277665 DOI: 10.1007/s00294-009-0235-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 02/08/2023]
Abstract
Carotenoids have been identified in the fungus Podospora anserina and a parallel pathway to neurosporene and beta-carotene was established. Three genes for the beta-carotene branch have been cloned and their function elucidated. They correspond to the al-1, al-2 and al-3 genes from Neurospora crassa. They were individually and in combinations over-expressed in P. anserina in order to modify the carotenoid composition qualitatively and quantitatively. In the resulting transformants, carotenoid synthesis was up to eightfold increased and several intermediates of the pathway together with special cyclic carotenoids, beta-zeacarotene and 7,8-dihydro-beta-carotene, accumulated. All transformants with an over-expressed al-2 gene (encoding a phytoene synthase and a lycopene cyclase) displayed up to 31% prolonged life span.
Collapse
Affiliation(s)
- Ingmar Strobel
- Department of Biological Sciences and Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, J. W. Goethe University, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
38
|
Kunstmann B, Osiewacz HD. The S-adenosylmethionine dependent O-methyltransferase PaMTH1: a longevity assurance factor protecting Podospora anserina against oxidative stress. Aging (Albany NY) 2009; 1:328-34. [PMID: 20157520 PMCID: PMC2806012 DOI: 10.18632/aging.100029] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/02/2009] [Indexed: 12/12/2022]
Abstract
PaMTH1 is an O-methyltransferase catalysing the methylation of vicinal hydroxyl groups of polyphenols. The protein accumulates during ageing of Podospora anserina in both the cytosol and in the mitochondrial matrix. The construction and characterisation of a PaMth1 deletion strain provided additional evidence about the function of the protein in the protection against metal induced oxidative stress. Deletion of PaMth1 was found to lead to a decreased resistance against exogenous oxidative stress and to a shortened lifespan suggesting a role of PaMTH1 as a longevity assurance factor in a new molecular pathway involved in lifespan control.
Collapse
Affiliation(s)
- Birgit Kunstmann
- Department of Biological Sciences & Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
39
|
Maas MFPM, Krause F, Dencher NA, Sainsard-Chanet A. Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. J Mol Biol 2008; 387:259-69. [PMID: 19111556 DOI: 10.1016/j.jmb.2008.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/08/2008] [Accepted: 12/10/2008] [Indexed: 11/29/2022]
Abstract
The functional relevance of respiratory supercomplexes in various eukaryotes including mammals, plants, and fungi is hitherto poorly elucidated. However, substantial evidence indicates as a major role the assembly and/or stabilization of mammalian complex I by supercomplex formation with complexes III and IV. Here, we demonstrate by using native electrophoresis that the long-lived Podospora anserina mutant Cyc1-1, respiring exclusively via the alternative oxidase (AOX), lacks an assembled complex III and possesses complex I partially assembled with complex IV into a supercomplex. This resembles the situation in complex-IV-deficient mutants displaying a corresponding phenotype but possessing I-III supercomplexes instead, suggesting that either complex III or complex IV is in a redundant manner necessary for assembly/stabilization of complex I as previously shown in mammals. To corroborate this notion, we constructed the double mutant Cyc1-1,Cox5::ble. Surprisingly, this mutant lacking both complexes III and IV is viable and essentially a phenocopy of mutant Cyc1-1 including the reversal of the phenotype towards wild-type-like characteristics by the several-fold overexpression of the AOX in mutant Cyc1-1,Cox5::ble(Gpd-Aox). Fungal specific features (not found in mammals) that must be responsible for assembly/stabilization of fungal complex I when complexes III and IV are absent, such as the presence of the AOX and complex I dimerization, are addressed and discussed. These intriguing results unequivocally prove that complexes III and IV are dispensable for assembly/stability of complex I in fungi contrary to the situation in mammals, thus highlighting the imperative to unravel the biogenesis of complex I as well as the true supramolecular organization of the respiratory chain and its functional significance in a variety of model eukaryotes. In summary, we present the first obligatorily aerobic eukaryote with an artificial, simultaneous lack of the respiratory complexes III and IV.
Collapse
Affiliation(s)
- Marc F P M Maas
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif sur Yvette, France
| | | | | | | |
Collapse
|
40
|
Kunstmann B, Osiewacz HD. Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 2008; 7:651-62. [PMID: 18616635 DOI: 10.1111/j.1474-9726.2008.00412.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PaMTH1, a putative methyltransferase previously described to increase in abundance in total protein extracts during aging of Podospora anserina is demonstrated to accumulate in the mitochondrial cell fraction of senescent cultures. The protein is localized in the mitochondrial matrix and displays a methyltransferase activity utilizing flavonoids as substrates. Constitutive over-expression of PaMth1 in P. anserina results in a reduced carbonylation of proteins and an extended lifespan without impairing vital functions suggesting a protecting role of PaMTH1 against oxidative stress.
Collapse
Affiliation(s)
- Birgit Kunstmann
- Department of Biological Sciences & Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany
| | | |
Collapse
|
41
|
Scheckhuber CQ, Osiewacz HD. Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Genet Genomics 2008; 280:365-74. [PMID: 18797929 DOI: 10.1007/s00438-008-0378-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 08/29/2008] [Indexed: 12/18/2022]
Abstract
The filamentous ascomycete Podospora anserina has been extensively studied as an experimental ageing model for more than 50 years. As a result, a huge body of data has been accumulated and various molecular pathways have been identified as part of a molecular network involved in the control of ageing and life span. The aim of this review is to summarize data on P. anserina ageing, including aspects like respiration, cellular copper homeostasis, mitochondrial DNA (mtDNA) stability/instability, mitochondrial dynamics, apoptosis, translation efficiency and pathways directed against oxidative stress. It becomes clear that manipulation of several of these pathways bears the potential to extend the healthy period of time, the health span, within the life time of the fungus. Here we put special attention on recent work aimed to identify and characterize this type of long-lived P. anserina mutants. The study of the molecular pathways which are modified in these mutants can be expected to provide important clues for the elucidation of the mechanistic basis of this type of 'healthy ageing' at the organism level.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Cluster of Excellence Macromolecular Complexes and Faculty for Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | |
Collapse
|
42
|
Scheckhuber CQ, Rödel E, Wüstehube J. Regulation of mitochondrial dynamics--characterization of fusion and fission genes in the ascomycete Podospora anserina. Biotechnol J 2008; 3:781-90. [PMID: 18428186 DOI: 10.1002/biot.200800010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The filamentous ascomycete Podospora anserina is a model system for studying aging, a complex process that is regulated by multiple factors. Among these, mitochondria were shown to be of crucial importance. Recently, it was shown that the morphology of these organelles, which is dependent on dynamic fusion and fission processes, has profound effects on P. anserina aging. To further analyze this phenomenon, we characterized molecular components of the machinery regulating the dynamic behavior of mitochondria by utilizing transgenic strains in which fission genes (PaDnm1, PaFis1 and PaMdv1) and a fusion gene (PaFzo1) are overexpressed. While overexpression of PaFis1 has no phenotypic effects in the genetic background of the wild type, it surprisingly promotes mitochondrial fusion and decreases the life span in a mutant overexpressing PaDnm1. Remarkably, when grown on synthetic medium, overexpression of PaDnm1 leads to a decreased life span compared to the wild type. Increased expression of PaMdv1 results in the formation of ring-shaped mitochondria, a morphology of these organelles that has not been previously observed in P. anserina. Transformants with elevated PaFzo1 transcript levels show no altered life span, although the age-dependent fragmentation of mitochondria is impaired.
Collapse
Affiliation(s)
- Christian Q Scheckhuber
- Johann W. Goethe-Universität, Institut für Molekulare Biowissenschaften, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
43
|
Abstract
It is a challenge in biology to explore the molecular and cellular mechanisms necessary to form a complex three-dimensional structure composed of different cell types. Interesting models to study the underlying processes are fungi that can transform their wire-like hyphal filaments into complex and sometimes container-like fruit bodies. In the past, the role of developmental triggers and transcription factors was a major focus of research on fungal model organisms. In this issue of Molecular Microbiology, Nowrousian and collaborators report that fruit body development of the model organism Sordaria macrospora includes a novel player, a specific membrane protein of the endoplasmic reticulum that is not required for vegetative growth. This finding represents an important step towards connecting regulation of development with the co-ordinated changes in cellular compartments.
Collapse
Affiliation(s)
- Silke Busch
- Institut für Molekulare Mikrobiologie und Genetik, Georg-August - Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|
44
|
Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U. The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 2007; 64:923-37. [PMID: 17501918 PMCID: PMC3694341 DOI: 10.1111/j.1365-2958.2007.05694.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Sordaria macrospora develops complex fruiting bodies (perithecia) to propagate its sexual spores. Here, we present an analysis of the sterile mutant pro41 that is unable to produce mature fruiting bodies. The mutant carries a deletion of 4 kb and is complemented by the pro41 open reading frame that is contained within the region deleted in the mutant. In silico analyses predict PRO41 to be an endoplasmic reticulum (ER) membrane protein, and a PRO41-EGFP fusion protein colocalizes with ER-targeted DsRED. Furthermore, Western blot analysis shows that the PRO41-EGFP fusion protein is present in the membrane fraction. A fusion of the predicted N-terminal signal sequence of PRO41 with EGFP is secreted out of the cell, indicating that the signal sequence is functional. pro41 transcript levels are upregulated during sexual development. This increase in transcript levels was not observed in the sterile mutant pro1 that lacks a transcription factor gene. Moreover, microarray analysis of gene expression in the mutants pro1, pro41 and the pro1/41 double mutant showed that pro41 is partly epistatic to pro1. Taken together, these data show that PRO41 is a novel ER membrane protein essential for fruiting body formation in filamentous fungi.
Collapse
Affiliation(s)
- Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Frank
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Koers
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Peter Strauch
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Weitner
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Carol Ringelberg
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jay C. Dunlap
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Jennifer J. Loros
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ulrich Kück
- Departments of Genetics and Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- For correspondence. ; Tel. (+49) 0 234 3226212; Fax (+49) 0 234 3214184
| |
Collapse
|
45
|
Groebe K, Krause F, Kunstmann B, Unterluggauer H, Reifschneider NH, Scheckhuber CQ, Sastri C, Stegmann W, Wozny W, Schwall GP, Poznanović S, Dencher NA, Jansen-Dürr P, Osiewacz HD, Schrattenholz A. Differential proteomic profiling of mitochondria from Podospora anserina, rat and human reveals distinct patterns of age-related oxidative changes. Exp Gerontol 2007; 42:887-98. [PMID: 17689904 DOI: 10.1016/j.exger.2007.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 01/07/2023]
Abstract
According to the 'free radical theory of ageing', the generation and accumulation of reactive oxygen species are key events during ageing of biological systems. Mitochondria are a major source of ROS and prominent targets for ROS-induced damage. Whereas mitochondrial DNA and membranes were shown to be oxidatively modified with ageing, mitochondrial protein oxidation is not well understood. The purpose of this study was an unbiased investigation of age-related changes in mitochondrial proteins and the molecular pathways by which ROS-induced protein oxidation may disturb cellular homeostasis. In a differential comparison of mitochondrial proteins from young and senescent strains of the fungal ageing model Podospora anserina, from brains of young (5 months) vs. older rats (17 and 31 months), and human cells, with normal and chemically accelerated in vitro ageing, we found certain redundant posttranslationally modified isoforms of subunits of ATP synthase affected across all three species. These appear to represent general susceptible hot spot targets for oxidative chemical changes of proteins accumulating during ageing, and potentially initiating various age-related pathologies and processes. This type of modification is discussed using the example of SAM-dependent O-methyltransferase from P. anserina (PaMTH1), which surprisingly was found to be enriched in mitochondrial preparations of senescent cultures.
Collapse
|
46
|
Hamann A, Brust D, Osiewacz HD. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 2007; 65:948-58. [PMID: 17627766 DOI: 10.1111/j.1365-2958.2007.05839.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Podospora anserina is a filamentous fungus with a limited lifespan. After a strain-specific period of growth, cultures turn to senescence and ultimately die. Here we provide evidence that the last step in the ageing of P. anserina is not accidental but programmed. In this study, PaAMID1, a homologue of a mammalian 'AIF-homologous mitochondrion-associated inducer of death', was analysed as a putative member of a caspase-independent signalling pathway. In addition, two metacaspases, PaMCA1 and PaMCA2, were investigated. While deletion of PaAmid1 as well as of PaMca2 was found to result in a moderate lifespan extension (59% and 78%, respectively), a 148% increase in lifespan was observed after deletion of PaMca1. Measurement of arginine-specific protease activity demonstrates a metacaspase-dependent activity in senescent but not in juvenile cultures, pointing to an activation of these proteases in the senescent stage of the life cycle. Moreover, treatment of juvenile wild-type cultures with hydrogen peroxide leads to a PaMCA1-dependent activity. The presented data strongly suggest that death of senescent wild-type cultures is triggered by an apoptotic programme induced by an age-dependent increase of reactive oxygen species during ageing of cultures and is executed after metacaspase activation.
Collapse
Affiliation(s)
- Andrea Hamann
- Department of Biosciences, Institute of Molecular Biosciences, J.W. Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|
47
|
Sellem CH, Marsy S, Boivin A, Lemaire C, Sainsard-Chanet A. A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genet Biol 2007; 44:648-58. [PMID: 17081785 DOI: 10.1016/j.fgb.2006.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
We present here the properties of a complex III loss-of-function mutant of the filamentous fungus Podospora anserina. The mutation corresponds to a single substitution in the second intron of the gene cyc1 encoding cytochrome c(1), leading to a splicing defect. The cyc1-1 mutant is long-lived, exhibits a defect in ascospore pigmentation, has a reduced growth rate and a reduced ROS production associated with a stabilisation of its mitochondrial DNA. We also show that increased longevity is linked with morphologically modified mitochondria and an increased number of mitochondrial genomes. Overexpression of the alternative oxidase rescues all these phenotypes and restores aging. Interestingly, the absence of complex III in this mutant is not paralleled with a deficiency in complex I activity as reported in mammals although the respiratory chain of P. anserina has recently been demonstrated to be organized according to the "respirasome" model.
Collapse
Affiliation(s)
- Carole H Sellem
- Centre de Génétique Moléculaire, UPR 2167, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
48
|
Osiewacz HD, Scheckhuber CQ. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic Res 2007; 40:1350-8. [PMID: 17090424 DOI: 10.1080/10715760600921153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To provide a foundation for the development of effective interventions to counteract various age-related diseases in humans, ageing processes have been extensively studied in various model organisms and systems. However, the mechanisms underlying ageing are still not unravelled in detail in any system including rather simple organisms. In this article, we review some of the molecular mechanisms that were found to affect ageing in two fungal models, the unicellular ascomycete Saccharomyces cerevisiae and the filamentous ascomycete Podospora anserina. A selection of issues like retrograde response, genomic instability, caloric restriction, mtDNA reorganisation and apoptosis is presented and discussed with special emphasis on the role reactive oxygen species (ROS) play in these diverse molecular pathways.
Collapse
Affiliation(s)
- Heinz D Osiewacz
- Institute of Molecular Biosciences, Molecular Developmental Biology, Johann Wolfgang Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
49
|
Abstract
Sch9 appears to be the Saccharomyces cerevisiae homolog of protein kinase B and is involved in the control of numerous nutrient-sensitive processes, including regulation of cell size, cell cycle progression, and stress resistance. Sch9 has also been implicated in the regulation of replicative and chronological life span. Systematic comparison of the phenotypes of sch9 and other AGC kinase mutants in fungal species with their counterparts in model eukaryotic organisms provides insight into the functions of AGC kinases. The availability of data from global studies of protein-protein interactions now makes it possible to predict and validate functional connections between Sch9, its putative substrates, and other proteins. This review highlights several emerging paradigms of AGC kinase signaling that are relevant for growth, development, and aging.
Collapse
Affiliation(s)
- Alex Sobko
- Iogen Corporation, 310 Hunt Club Road East, Ottawa, Ontario, K1V 1C1, Canada.
| |
Collapse
|
50
|
Krause F, Scheckhuber CQ, Werner A, Rexroth S, Reifschneider NH, Dencher NA, Osiewacz HD. OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina. Ann N Y Acad Sci 2006; 1067:106-15. [PMID: 16803975 DOI: 10.1196/annals.1354.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent biochemical evidence has indicated the existence of respiratory supercomplexes as well as ATP synthase oligomers in the inner mitochondrial membrane of different eukaryotes. We have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This aging model is able to respire by either the standard or the alternative pathway. In the latter, electrons are directly transferred from ubiquinol to the alternative oxidase (AOX) and thus bypass complexes III and IV. We showed that the two pathways are composed of distinct respiratory supercomplexes. These data are of significance for the understanding of both respiratory pathways as well as of life-span control and aging.
Collapse
Affiliation(s)
- Frank Krause
- Physical Biochemistry, Department of Chemistry, Darmstadt University of Technology, Germany.
| | | | | | | | | | | | | |
Collapse
|