1
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
3
|
Demoor A, Lacaze I, Ferrari R, Lalanne C, Silar P, Brun S. GUN Mutants: New Weapons To Unravel Ascospore Germination Regulation in the Model Fungus Podospora anserina. Microbiol Spectr 2023; 11:e0146122. [PMID: 36786590 PMCID: PMC10100959 DOI: 10.1128/spectrum.01461-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2023] Open
Abstract
In Podospora anserina as in many other Ascomycetes, ascospore germination is a regulated process that requires the breaking of dormancy. Despite its importance in survival and dispersal, ascospore germination in filamentous fungi has been poorly investigated, and little is known about its regulation and genetic control. We have designed a positive genetic screen that led to the isolation of mutants showing uncontrolled germination, the GUN (Germination UNcontrolled) mutants. Here, we report on the characterization of the gun1SG (Spontaneous Germination) mutant. We show that gun1SG is mutated in Pa_6_1340, the ortholog of Magnaporthe oryzae Pth2, which encodes a carnitine-acetyltransferase (CAT) involved in the shuttling of acetyl coenzyme A between peroxisomes and mitochondria and which is required for appressorium development. Bioinformatic analysis revealed that the mutated residue (I441) is highly conserved among Fungi and that the mutation has a deleterious impact on the protein function. We show that GUN1 is essential for ascospore germination and that the protein is localized both in mitochondria and in peroxisomes. Finally, epistasis studies allowed us to place GUN1 together with the PaMpk2 MAPK pathway upstream of the PaNox2/PaPls1 complex in the regulation of ascospore germination. In addition, we show that GUN1 plays a role in appressorium functioning. The pivotal role of GUN1, the ortholog of Pth2, in ascospore germination and in appressorium functioning reinforces the idea of a common genetic regulation governing both appressorium development and melanized ascospore germination. Furthermore, we characterize the second CAT encoded in P. anserina genome, Pa_3_7660/GUP1, and we show that the function of both CATs is conserved in P. anserina. IMPORTANCE The regulation of ascospore germination in filamentous fungi has been poorly investigated so far. To unravel new genes involved in this regulation pathway, we conducted a genetic screen in Podospora anserina, and we isolated 57 mutants affected in ascospore germination. Here, we describe the Germination UNcontrolled One (gun1SG) mutant, and we characterize the gene affected. GUN1 is a peroxisomal/mitochondrial carnitine-acetyltransferase required for acetyl coenzyme A shuttling between both organelles, and we show that GUN1 is a pleiotropic gene also involved in appressorium functioning similarly to its ortholog, the pathogenesis factor Pth2, in the plant pathogen Magnaporthe oryzae. Given the similarities in the regulation of appressorium development and ascospore germination, we speculate that discovering new genes controlling ascospore germination in P. anserina may lead to the discovery of new pathogenesis factors in pathogenic fungi. The characterization of GUN1, the ortholog of M. oryzae Pth2, represents a proof of concept.
Collapse
Affiliation(s)
- Alexander Demoor
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| | - Isabelle Lacaze
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| | - Roselyne Ferrari
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| | - Christophe Lalanne
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| | - Philippe Silar
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| | - Sylvain Brun
- Université Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain/UMR 8236, Paris, France
| |
Collapse
|
4
|
Abstract
Fungi exhibit an enormous variety of morphologies, including yeast colonies, hyphal mycelia, and elaborate fruiting bodies. This diversity arises through a combination of polar growth, cell division, and cell fusion. Because fungal cells are nonmotile and surrounded by a protective cell wall that is essential for cell integrity, potential fusion partners must grow toward each other until they touch and then degrade the intervening cell walls without impacting cell integrity. Here, we review recent progress on understanding how fungi overcome these challenges. Extracellular chemoattractants, including small peptide pheromones, mediate communication between potential fusion partners, promoting the local activation of core cell polarity regulators to orient polar growth and cell wall degradation. However, in crowded environments, pheromone gradients can be complex and potentially confusing, raising the question of how cells can effectively find their partners. Recent findings suggest that the cell polarity circuit exhibits searching behavior that can respond to pheromone cues through a remarkably flexible and effective strategy called exploratory polarization.
Collapse
|
5
|
Lan N, Ye S, Hu C, Chen Z, Huang J, Xue W, Li S, Sun X. Coordinated Regulation of Protoperithecium Development by MAP Kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol 2021; 12:769615. [PMID: 34899653 PMCID: PMC8662359 DOI: 10.3389/fmicb.2021.769615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.
Collapse
Affiliation(s)
- Nan Lan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiling Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun Huang
- Shandong Jinniu Group Company, Ltd., Jinan, China
| | - Wei Xue
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Belov AA, Witte TE, Overy DP, Smith ML. Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in Cryphonectria parasitica. G3-GENES GENOMES GENETICS 2021; 11:6025178. [PMID: 33561228 PMCID: PMC7849911 DOI: 10.1093/g3journal/jkaa021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023]
Abstract
The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompatibility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.
Collapse
Affiliation(s)
- Anatoly A Belov
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas E Witte
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - David P Overy
- Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada
| | - Myron L Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
8
|
Lukito Y, Lee K, Noorifar N, Green KA, Winter DJ, Ram A, Hale TK, Chujo T, Cox MP, Johnson LJ, Scott B. Regulation of host-infection ability in the grass-symbiotic fungus Epichloë festucae by histone H3K9 and H3K36 methyltransferases. Environ Microbiol 2020; 23:2116-2131. [PMID: 33350014 DOI: 10.1111/1462-2920.15370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/02/2020] [Accepted: 12/19/2020] [Indexed: 01/30/2023]
Abstract
Recent studies have identified key genes that control the symbiotic interaction between Epichloë festucae and Lolium perenne. Here we report on the identification of specific E. festucae genes that control host infection. Deletion of setB, which encodes a homologue of the H3K36 histone methyltransferase Set2/KMT3, reduced histone H3K36 trimethylation and led to severe defects in colony growth and hyphal development. The E. festucae ΔclrD mutant, which lacks the gene encoding the homologue of the H3K9 methyltransferase KMT1, displays similar developmental defects. Both mutants are completely defective in their ability to infect L. perenne. Alleles that complement the culture and plant phenotypes of both mutants also complement the histone methylation defects. Co-inoculation of either ΔsetB or ΔclrD with the wild-type strain enables these mutants to colonize the host. However, successful colonization by the mutants resulted in death or stunting of the host plant. Transcriptome analysis at the early infection stage identified four fungal candidate genes, three of which encode small-secreted proteins, that are differentially regulated in these mutants compared to wild type. Deletion of crbA, which encodes a putative carbohydrate binding protein, resulted in significantly reduced host infection rates by E. festucae.
Collapse
Affiliation(s)
- Yonathan Lukito
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Kate Lee
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Nazanin Noorifar
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Arvina Ram
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Tetsuya Chujo
- Research and Development Center, Mayekawa Mfg. Co., Ltd, Tokyo, Japan
| | - Murray P Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Linda J Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
9
|
Katayama T, Bayram Ö, Mo T, Karahoda B, Valerius O, Takemoto D, Braus GH, Kitamoto K, Maruyama JI. Novel Fus3- and Ste12-interacting protein FsiA activates cell fusion-related genes in both Ste12-dependent and -independent manners in Ascomycete filamentous fungi. Mol Microbiol 2020; 115:723-738. [PMID: 33155715 DOI: 10.1111/mmi.14639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Filamentous fungal cells, unlike yeasts, fuse during vegetative growth. The orthologs of mitogen-activated protein (MAP) kinase Fus3 and transcription factor Ste12 are commonly involved in the regulation of cell fusion. However, the specific regulatory mechanisms underlying cell fusion in filamentous fungi have not been revealed. In the present study, we identified the novel protein FsiA as an AoFus3- and AoSte12-interacting protein in the filamentous fungus Aspergillus oryzae. The expression of AonosA and cell fusion-related genes decreased upon fsiA deletion and increased with fsiA overexpression, indicating that FsiA is a positive regulator of cell fusion. In addition, the induction of cell fusion-related genes by fsiA overexpression was also observed in the Aoste12 deletion mutant, indicating that FsiA can induce the cell fusion-related genes in an AoSte12-independent manner. Surprisingly, the fsiA and Aoste12 double deletion mutant exhibited higher cell fusion efficiency and increased mRNA levels of the cell fusion-related genes as compared to the fsiA single deletion mutant, which revealed that AoSte12 represses the cell fusion-related genes in the fsiA deletion mutant. Taken together, our data demonstrate that FsiA activates the cell fusion-related genes by suppressing the negative function of AoSte12 as well as by an AoSte12-independent mechanism.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Taoning Mo
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Ireland
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, and Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Katsuhiko Kitamoto
- Pharmaceutical Medical Business Sciences, Nihon Pharmaceutical University, Tokyo, Japan
| | - Jun-Ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Jun SC, Kim JH, Han KH. The Conserved MAP Kinase MpkB Regulates Development and Sporulation without Affecting Aflatoxin Biosynthesis in Aspergillus flavus. J Fungi (Basel) 2020; 6:jof6040289. [PMID: 33207581 PMCID: PMC7711526 DOI: 10.3390/jof6040289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the MAP kinase signaling pathway plays pivotal roles in regulating the expression of genes required for growth, development, and stress response. Here, we deleted the mpkB gene (AFLA_034170), an ortholog of the Saccharomyces cerevisiae FUS3 gene, to characterize its function in Aspergillus flavus, a cosmopolitan, pathogenic, and aflatoxin-producing fungus. Previous studies revealed that MpkB positively regulates sexual and asexual differentiation in Aspergillus nidulans. In A. flavus, mpkB deletion resulted in an approximately 60% reduction in conidia production compared to the wild type without mycelial growth defects. Moreover, the mutant produced immature and abnormal conidiophores exhibiting vesicular dome-immaturity in the conidiophore head, decreased phialide numbers, and very short stalks. Interestingly, the ΔmpkB mutant could not produce sclerotia but produced aflatoxin B1 normally. Taken together, these results suggest that the A. flavus MpkB MAP kinase positively regulates conidiation and sclerotia formation but is not involved in the production of secondary metabolites such as aflatoxin B1.
Collapse
Affiliation(s)
| | - Jong-Hwa Kim
- Correspondence: (J.-H.K.); (K.-H.H.); Tel.: +82-63-290-1439 (J.-H.K.); +82-63-290-1427 (K.-H.H.)
| | - Kap-Hoon Han
- Correspondence: (J.-H.K.); (K.-H.H.); Tel.: +82-63-290-1439 (J.-H.K.); +82-63-290-1427 (K.-H.H.)
| |
Collapse
|
11
|
Carrillo AJ, Cabrera IE, Spasojevic MJ, Schacht P, Stajich JE, Borkovich KA. Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa. BMC Genomics 2020; 21:755. [PMID: 33138786 PMCID: PMC7607824 DOI: 10.1186/s12864-020-07131-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Background With 9730 protein-coding genes and a nearly complete gene knockout strain collection, Neurospora crassa is a major model organism for filamentous fungi. Despite this abundance of information, the phenotypes of these gene knockout mutants have not been categorized to determine whether there are broad correlations between phenotype and any genetic features. Results Here, we analyze data for 10 different growth or developmental phenotypes that have been obtained for 1168 N. crassa knockout mutants. Of these mutants, 265 (23%) are in the normal range, while 903 (77%) possess at least one mutant phenotype. With the exception of unclassified functions, the distribution of functional categories for genes in the mutant dataset mirrors that of the N. crassa genome. In contrast, most genes do not possess a yeast ortholog, suggesting that our analysis will reveal functions that are not conserved in Saccharomyces cerevisiae. To leverage the phenotypic data to identify pathways, we used weighted Partitioning Around Medoids (PAM) approach with 40 clusters. We found that genes encoding metabolic, transmembrane and protein phosphorylation-related genes are concentrated in subsets of clusters. Results from K-Means clustering of transcriptomic datasets showed that most phenotypic clusters contain multiple expression profiles, suggesting that co-expression is not generally observed for genes with shared phenotypes. Analysis of yeast orthologs of genes that co-clustered in MAPK signaling cascades revealed potential networks of interacting proteins in N. crassa. Conclusions Our results demonstrate that clustering analysis of phenotypes is a promising tool for generating new hypotheses regarding involvement of genes in cellular pathways in N. crassa. Furthermore, information about gene clusters identified in N. crassa should be applicable to other filamentous fungi, including saprobes and pathogens.
Collapse
Affiliation(s)
- Alexander J Carrillo
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Ilva E Cabrera
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Marko J Spasojevic
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521, USA
| | - Patrick Schacht
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, University of California, 900 University Avenue, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Francisco CS, Zwyssig MM, Palma-Guerrero J. The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biol 2020; 18:99. [PMID: 32782023 PMCID: PMC7477884 DOI: 10.1186/s12915-020-00838-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability of fungal cells to undergo cell-to-cell communication and anastomosis, the process of vegetative hyphal fusion, allows them to maximize their overall fitness. Previous studies in a number of fungal species have identified the requirement of several signaling pathways for anastomosis, including the so far best characterized soft (So) gene, and the MAPK pathway components MAK-1 and MAK-2 of Neurospora crassa. Despite the observations of hyphal fusions' involvement in pathogenicity and host adhesion, the connection between cell fusion and fungal lifestyles is still unclear. Here, we address the role of anastomosis in fungal development and asexual reproduction in Zymoseptoria tritici, the most important fungal pathogen of wheat in Europe. RESULTS We show that Z. tritici undergoes self-fusion between distinct cellular structures, and its mechanism is dependent on the initial cell density. Contrary to other fungi, cell fusion in Z. tritici only resulted in cytoplasmic mixing but not in multinucleated cell formation. The deletion of the So orthologous ZtSof1 disrupted cell-to-cell communication affecting both hyphal and germling fusion. We show that Z. tritici mutants for MAPK-encoding ZtSlt2 (orthologous to MAK-1) and ZtFus3 (orthologous to MAK-2) genes also failed to undergo anastomosis, demonstrating the functional conservation of this signaling mechanism across species. Additionally, the ΔZtSof1 mutant was severely impaired in melanization, suggesting that the So gene function is related to melanization. Finally, we demonstrated that anastomosis is dispensable for pathogenicity, but essential for the pycnidium development, and its absence abolishes the asexual reproduction of Z. tritici. CONCLUSIONS We demonstrate the role for ZtSof1, ZtSlt2, and ZtFus3 in cell fusions of Z. tritici. Cell fusions are essential for different aspects of the Z. tritici biology, and the ZtSof1 gene is a potential target to control septoria tritici blotch (STB) disease.
Collapse
Affiliation(s)
| | - Maria Manuela Zwyssig
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- New Address: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK.
| |
Collapse
|
14
|
Tanaka A, Kamiya S, Ozaki Y, Kameoka S, Kayano Y, Saikia S, Akano F, Uemura A, Takagi H, Terauchi R, Maruyama J, Hammadeh HH, Fleissner A, Scott B, Takemoto D. A nuclear protein NsiA from
Epichloë festucae
interacts with a MAP kinase MpkB and regulates the expression of genes required for symbiotic infection and hyphal cell fusion. Mol Microbiol 2020; 114:626-640. [DOI: 10.1111/mmi.14568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Aiko Tanaka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Shota Kamiya
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yoshino Ozaki
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Shinichi Kameoka
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Yuka Kayano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Sanjay Saikia
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Fumitake Akano
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
| | - Aiko Uemura
- Iwate Biotechnology Research Center Kitakami Japan
| | | | | | | | - Hamzeh Haj Hammadeh
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - André Fleissner
- Institut für Genetik Technische Universität Braunschweig Braunschweig Germany
| | - Barry Scott
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences Nagoya University Nagoya Japan
- School of Fundamental Sciences Massey University Palmerston North New Zealand
| |
Collapse
|
15
|
Abstract
Numerous cell death-controlling genes have been identified in fungi, especially in the context of conspecific nonself discrimination (allorecognition). However, our understanding of the molecular mechanisms by which these genes trigger programmed cell death (PCD) is limited, as is our knowledge about their relation to PCD pathways in other major eukaryotic kingdoms. Here, we show that the cell death-inducing RCD-1 protein from Neurospora crassa is related to the cytotoxic N-terminal domain of gasdermin, which is the executioner of inflammatory cell death reaction in mammals termed pyroptosis. Our work documents an evolutionary transkingdom relationship of cell death execution proteins between fungi and animals. Programmed cell death (PCD) in filamentous fungi prevents cytoplasmic mixing following fusion between conspecific genetically distinct individuals (allorecognition) and serves as a defense mechanism against mycoparasitism, genome exploitation, and deleterious cytoplasmic elements (i.e., senescence plasmids). Recently, we identified regulatorof cell death-1 (rcd-1), a gene controlling PCD in germinated asexual spores in the filamentous fungus Neurospora crassa. rcd-1 alleles are highly polymorphic and fall into two haplogroups in N. crassa populations. Coexpression of alleles from the two haplogroups, rcd-1–1 and rcd-1–2, is necessary and sufficient to trigger a cell death reaction. Here, we investigated the molecular bases of rcd-1-dependent cell death. Based on in silico analyses, we found that RCD-1 is a remote homolog of the N-terminal pore-forming domain of gasdermin, the executioner protein of a highly inflammatory cell death reaction termed pyroptosis, which plays a key role in mammalian innate immunity. We show that RCD-1 localizes to the cell periphery and that cellular localization of RCD-1 was correlated with conserved positively charged residues on predicted amphipathic α-helices, as shown for murine gasdermin-D. Similar to gasdermin, RCD-1 binds acidic phospholipids in vitro, notably, cardiolipin and phosphatidylserine, and interacts with liposomes containing such lipids. The RCD-1 incompatibility system was reconstituted in human 293T cells, where coexpression of incompatible rcd-1–1/rcd-1–2 alleles triggered pyroptotic-like cell death. Oligomers of RCD-1 were associated with the cell death reaction, further supporting the evolutionary relationship between gasdermin and rcd-1. This report documents an ancient transkingdom relationship of cell death execution modules involved in organismal defense.
Collapse
|
16
|
Frawley D, Stroe MC, Oakley BR, Heinekamp T, Straßburger M, Fleming AB, Brakhage AA, Bayram Ö. The Pheromone Module SteC-MkkB-MpkB-SteD-HamE Regulates Development, Stress Responses and Secondary Metabolism in Aspergillus fumigatus. Front Microbiol 2020; 11:811. [PMID: 32457716 PMCID: PMC7223695 DOI: 10.3389/fmicb.2020.00811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In order for eukaryotes to efficiently detect and respond to environmental stimuli, a myriad of protein signaling pathways are utilized. An example of highly conserved signaling pathways in eukaryotes are the mitogen-activated protein kinase (MAPK) pathways. In fungi, MAPK pathways have been shown to regulate a diverse array of biological processes, such as asexual and sexual development, stress responses and the production of secondary metabolites (SMs). In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module is utilized to regulate both development and SM production. This signaling cascade consists of the three kinases SteC, MkkB, and MpkB, as well as the SteD adaptor protein and the HamE scaffold. In this study, homologs of each of these proteins have been identified in the opportunistic human pathogen A. fumigatus. By performing epitope tagging and mass spectrometry experiments, we have shown that these proteins form a pentameric complex, similar to what is observed in A. nidulans. This complex has been shown to assemble in the cytoplasm and MpkB enters the nucleus, where it would presumably interact with various transcription factors. Pheromone module mutant strains exhibit drastic reductions in asexual sporulation, vegetative growth rate and production of SMs, such as gliotoxin. Mutants also display increased sensitivity to cell wall and oxidative stress agents. Overall, these data provide evidence of the existence of a conserved MAP kinase signaling pathway in Aspergillus species and suggest that this pathway is critical for the regulation of fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Özgür Bayram
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| |
Collapse
|
17
|
Tong X, Zhang H, Wang F, Xue Z, Cao J, Peng C, Guo J. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2020; 8:e8379. [PMID: 31988806 PMCID: PMC6970007 DOI: 10.7717/peerj.8379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is a highly valued fungus that has been used as traditional Asian medicine. This fungus is one of the most important sources of income for the nomadic populations of the Tibetan Plateau. With global warming and excessive collection, the wild O. sinensis resources declined dramatically. The cultivation of O. sinensis hasn’t been fully operational due to the unclear genetic basis of the fruiting body development. Here, our study conducted pairwise comparisons between transcriptomes acquired from different growth stages of O. sinensis including asexual mycelium (CM), developing fruiting body (DF) and mature fruiting body (FB). All RNA-Seq reads were aligned to the genome of O. sinensis CO18 prior to comparative analyses. Cluster analysis showed that the expression profiles of FB and DF were highly similar compared to CM. Alternative splicing analysis (AS) revealed that the stage-specific splicing genes may have important functions in the development of fruiting body. Functional enrichment analyses showed that differentially expressed genes (DEGs) were enriched in protein synthesis and baseline metabolism during fruiting body development, indicating that more protein and energy might be required for fruiting body development. In addition, some fruiting body development-associated genes impacted by ecological factors were up-regulated in FB samples, such as the nucleoside diphosphate kinase gene (ndk), β subunit of the fatty acid synthase gene (cel-2) and the superoxide dismutase gene (sod). Moreover, the expression levels of several cytoskeletons genes were significantly altered during all these growth stages, suggesting that these genes play crucial roles in both vegetative growth and the fruiting body development. Quantitative PCR (qPCR) was used to validate the gene expression profile and the results supported the accuracy of the RNA-Seq and DEGs analysis. Our study offers a novel perspective to understand the underlying growth stage-specific molecular differences and the biology of O. sinensis fruiting body development.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengyao Xue
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Integration of Self and Non-self Recognition Modulates Asexual Cell-to-Cell Communication in Neurospora crassa. Genetics 2019; 211:1255-1267. [PMID: 30718271 DOI: 10.1534/genetics.118.301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus Neurospora crassa is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. N. crassa cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a Pprm1-luciferase reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δham-11 mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δham-11 + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at doc-1 and doc-2, which regulate prefusion non-self recognition; cells with dissimilar doc-1 and doc-2 alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in N. crassa.
Collapse
|
19
|
Frawley D, Karahoda B, Sarikaya Bayram Ö, Bayram Ö. The HamE scaffold positively regulates MpkB phosphorylation to promote development and secondary metabolism in Aspergillus nidulans. Sci Rep 2018; 8:16588. [PMID: 30410052 PMCID: PMC6224500 DOI: 10.1038/s41598-018-34895-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are conserved signalling cascades in eukaryotes which regulate a myriad of processes in fungi from sexual reproduction to stress responses. These pathways rely on recruitment of three kinases on a scaffold protein to facilitate efficient kinase phosphorylation and subsequent downstream signalling to the nucleus. The model filamentous fungus Aspergillus nidulans utilises a MAPK pathway termed the pheromone module to regulate both development and secondary metabolism. This complex consists of the MAP3K (SteC), MAP2K (MkkB), MAPK (MpkB) and adaptor protein SteD. To date, there has been no scaffold protein identified for this MAPK pathway. In this study, we characterised a protein termed HamE, which we propose as a scaffold that regulates kinase phosphorylation and signalling in the pheromone module. Mass spectrometry analysis and BIFC experiments revealed that HamE physically interacts with both MkkB and MpkB and transiently interacts with SteC. Deletion of hamE or any of the pheromone module kinases results in reduced sporulation and complete abolishment of cleistothecia production. Mutants also exhibited reductions in expression of secondary metabolite gene clusters, including the velvet complex and sterigmatocystin genes. HamE acts as a positive regulator of MpkB phosphorylation, allowing for HamE to subsequently regulate development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland. .,Maynooth University Human Health Research Institute, Kildare, Ireland.
| |
Collapse
|
20
|
Serrano A, Illgen J, Brandt U, Thieme N, Letz A, Lichius A, Read ND, Fleißner A. Spatio-temporal MAPK dynamics mediate cell behavior coordination during fungal somatic cell fusion. J Cell Sci 2018; 131:jcs.213462. [PMID: 29592970 DOI: 10.1242/jcs.213462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/20/2018] [Indexed: 01/17/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are conserved regulators of proliferation, differentiation and adaptation in eukaryotic cells. Their activity often involves changes in their subcellular localization, indicating an important role for these spatio-temporal dynamics in signal transmission. A striking model illustrating these dynamics is somatic cell fusion in Neurospora crassa Germinating spores of this fungus rapidly alternate between signal sending and receiving, thereby establishing a cell-cell dialog, which involves the alternating membrane recruitment of the MAPK MAK-2 in both fusion partners. Here, we show that the dynamic translocation of MAK-2 is essential for coordinating the behavior of the fusion partners before physical contact. The activation and function of the kinase strongly correlate with its subcellular localization, indicating a crucial contribution of the MAPK dynamics in establishing regulatory feedback loops, which establish the oscillatory signaling mode. In addition, we provide evidence that MAK-2 not only contributes to cell-cell communication, but also mediates cell-cell fusion. The MAK-2 dynamics significantly differ between these two processes, suggesting a role for the MAPK in switching of the cellular program between communication and fusion.
Collapse
Affiliation(s)
- Antonio Serrano
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Julia Illgen
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Nils Thieme
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Anja Letz
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alexander Lichius
- Institute of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu J, Jiang C. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:552-563. [PMID: 28142217 PMCID: PMC6638064 DOI: 10.1111/mpp.12540] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1S353A allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling and subjected to a feedback regulation by TRI6, but the phosphorylation of FgCap1 at S353 is probably unrelated to the cAMP-PKA pathway because the S353A mutation only affects plant infection.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianhua Wang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
- Institute for Agri‐food Standards and Testing TechnologyShanghai Academy of Agricultural SciencesShanghai201403China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
22
|
NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. Proc Natl Acad Sci U S A 2018; 115:E2292-E2301. [PMID: 29463729 DOI: 10.1073/pnas.1719705115] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In plants and metazoans, intracellular receptors that belong to the NOD-like receptor (NLR) family are major contributors to innate immunity. Filamentous fungal genomes contain large repertoires of genes encoding for proteins with similar architecture to plant and animal NLRs with mostly unknown function. Here, we identify and molecularly characterize patatin-like phospholipase-1 (PLP-1), an NLR-like protein containing an N-terminal patatin-like phospholipase domain, a nucleotide-binding domain (NBD), and a C-terminal tetratricopeptide repeat (TPR) domain. PLP-1 guards the essential SNARE protein SEC-9; genetic differences at plp-1 and sec-9 function to trigger allorecognition and cell death in two distantly related fungal species, Neurospora crassa and Podospora anserina Analyses of Neurospora population samples revealed that plp-1 and sec-9 alleles are highly polymorphic, segregate into discrete haplotypes, and show transspecies polymorphism. Upon fusion between cells bearing incompatible sec-9 and plp-1 alleles, allorecognition and cell death are induced, which are dependent upon physical interaction between SEC-9 and PLP-1. The central NBD and patatin-like phospholipase activity of PLP-1 are essential for allorecognition and cell death, while the TPR domain and the polymorphic SNARE domain of SEC-9 function in conferring allelic specificity. Our data indicate that fungal NLR-like proteins function similar to NLR immune receptors in plants and animals, showing that NLRs are major contributors to innate immunity in plants and animals and for allorecognition in fungi.
Collapse
|
23
|
Igwe DO, Afiukwa CA, Ubi BE, Ogbu KI, Ojuederie OB, Ude GN. Assessment of genetic diversity in Vigna unguiculata L. (Walp) accessions using inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) polymorphic markers. BMC Genet 2017; 18:98. [PMID: 29149837 PMCID: PMC5693802 DOI: 10.1186/s12863-017-0567-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Assessment of genetic diversity of Vigna unguiculata (L.) Walp (cowpea) accessions using informative molecular markers is imperative for their genetic improvement and conservation. Use of efficacious molecular markers to obtain the required knowledge of the genetic diversity within the local and regional germplasm collections can enhance the overall effectiveness of cowpea improvement programs, hence, the comparative assessment of Inter-simple sequence repeat (ISSR) and Start codon targeted (SCoT) markers in genetic diversity of V. unguiculata accessions from different regions in Nigeria. Comparative analysis of the genetic diversity of eighteen accessions from different locations in Nigeria was investigated using ISSR and SCoT markers. DNA extraction was done using Zymogen Kit according to its manufacturer's instructions followed by amplifications with ISSR and SCoT and agarose gel electrophoresis. The reproducible bands were scored for analyses of dendrograms, principal component analysis, genetic diversity, allele frequency, polymorphic information content, and population structure. RESULTS Both ISSR and SCoT markers resolved the accessions into five major clusters based on dendrogram and principal component analyses. Alleles of 32 and 52 were obtained with ISSR and SCoT, respectively. Numbers of alleles, gene diversity and polymorphic information content detected with ISSR were 9.4000, 0.7358 and 0.7192, while SCoT yielded 11.1667, 0.8158 and 0.8009, respectively. Polymorphic loci were 70 and 80 in ISSR and SCoT, respectively. Both markers produced high polymorphism (94.44-100%). The ranges of effective number of alleles (Ne) were 1.2887 ± 0.1797-1.7831 ± 0.2944 and 1.7416 ± 0.0776-1.9181 ± 0.2426 in ISSR and SCoT, respectively. The Nei's genetic diversity (H) ranged from 0.2112 ± 0.0600-0.4335 ± 0.1371 and 0.4111 ± 0.0226-0.4778 ± 0.1168 in ISSR and SCoT, respectively. Shannon's information index (I) from ISSR and SCoT were 0.3583 ± 0.0639-0.6237 ± 0.1759 and 0.5911 ± 0.0233-0.6706 ± 0.1604. Total gene diversity (Ht), gene diversity within population (Hs), coefficient of gene differentiation (Gst) and level of gene flow (Nm) revealed by ISSR were 0.4498, 0.3203, 0.2878 and 1.2371 respectively, while SCoT had 0.4808, 0.4522, 0.0594 and 7.9245. CONCLUSIONS Both markers showed highest genetic diversity in accessions from Ebonyi. Our study demonstrated that SCoT markers were more efficient than ISSR for genetic diversity studies in V. unguiculata and can be integrated in the exploration of their genetic diversity for improvement and germplasm utilization.
Collapse
Affiliation(s)
- David Okeh Igwe
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, P.M.B 053, Nigeria. .,Biotechnology and Research Development Centre, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria.
| | - Celestine Azubike Afiukwa
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, P.M.B 053, Nigeria.,Biotechnology and Research Development Centre, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Benjamin Ewa Ubi
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, P.M.B 053, Nigeria
| | - Kenneth Idika Ogbu
- Department of Biotechnology, Ebonyi State University, Abakaliki, Ebonyi State, P.M.B 053, Nigeria.,Biotechnology and Research Development Centre, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun State, Nigeria
| | - George Nkem Ude
- Department of Natural Sciences, Bowie State University, 14000 Jericho Park Road, Bowie, USA
| |
Collapse
|
24
|
Gyöngyösi N, Szőke A, Ella K, Káldi K. The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model Neurospora crassa. J Biol Chem 2017; 292:14929-14939. [PMID: 28729421 DOI: 10.1074/jbc.m117.804922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence from both experimental and clinical investigations indicates a tight interaction between metabolism and circadian timekeeping; however, knowledge of the underlying mechanism is still incomplete. Metabolic compensation allows circadian oscillators to run with a constant speed at different substrate levels and, therefore, is a substantial criterion of a robust rhythm in a changing environment. Because previous data have suggested a central role of RAS2-mediated signaling in the adaptation of yeast to different nutritional environments, we examined the involvement of RAS2 in the metabolic regulation of the clock in the circadian model organism Neurospora crassa We show that, in a ras2-deficient strain, the period is longer than in the control. Moreover, unlike in the WT, in Δras2, operation of the circadian clock was affected by glucose; compared with starvation conditions, the period was longer and the oscillation of expression of the frequency (frq) gene was dampened. In constant darkness, the delayed phosphorylation of the FRQ protein and the long-lasting accumulation of FRQ in the nucleus were in accordance with the longer period and the less robust rhythm in the mutant. Although glucose did not affect the subcellular distribution of FRQ in the WT, highly elevated FRQ levels were detected in the nucleus in Δras2 RAS2 interacted with the RAS-binding domain of the adenylate cyclase in vitro, and the cAMP analogue 8-bromo-cyclic AMP partially rescued the circadian phenotype in vivo We therefore propose that RAS2 acts via a cAMP-dependent pathway and exerts significant metabolic control on the Neurospora circadian clock.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Anita Szőke
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Ella
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Krisztina Káldi
- From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| |
Collapse
|
25
|
Segorbe D, Di Pietro A, Pérez‐Nadales E, Turrà D. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity. MOLECULAR PLANT PATHOLOGY 2017; 18:912-924. [PMID: 27301316 PMCID: PMC6638227 DOI: 10.1111/mpp.12446] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 05/19/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum.
Collapse
Affiliation(s)
- David Segorbe
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
- Present address:
Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
| | - Elena Pérez‐Nadales
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
- Present address:
Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)Hospital Universitario Reina Sofía, Universidad deCórdobaEspaña
| | - David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3Universidad de Córdoba14071CórdobaSpain
| |
Collapse
|
26
|
Havlik D, Brandt U, Bohle K, Fleißner A. Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microb Cell Fact 2017; 16:128. [PMID: 28743272 PMCID: PMC5526295 DOI: 10.1186/s12934-017-0734-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background Filamentous fungi are commonly used as production hosts for bulk enzymes in biotechnological applications. Their robust and quick growth combined with their ability to secrete large amounts of protein directly into the culture medium makes fungi appealing organisms for the generation of novel production systems. The red bread mold Neurospora crassa has long been established as a model system in basic research. It can be very easily genetically manipulated and a wealth of molecular tools and mutants are available. In addition, N. crassa is very fast growing and non-toxic. All of these features point to a high but so far untapped potential of this fungus for biotechnological applications. In this study, we used genetic engineering and bioprocess development in a design-build-test-cycle process to establish N. crassa as a production host for heterologous proteins. Results The human antibody fragment HT186-D11 was fused to a truncated version of the endogenous enzyme glucoamylase (GLA-1), which served as a carrier protein to achieve secretion into the culture medium. A modular expression cassette was constructed and tested under the control of different promoters. Protease activity was identified as a major limitation of the production strain, and the effects of different mutations causing protease deficiencies were compared. Furthermore, a parallel bioreactor system (1 L) was employed to develop and optimize a production process, including the comparison of different culture media and cultivation parameters. After successful optimization of the production strain and the cultivation conditions an exemplary scale up to a 10 L stirred tank reactor was performed. Conclusions The data of this study indicate that N. crassa is suited for the production and secretion of heterologous proteins. Controlling expression by the optimized promoter Pccg1nr in a fourfold protease deletion strain resulted in the successful secretion of the heterologous product with estimated yields of 3 mg/L of the fusion protein. The fungus could easily be cultivated in bioreactors and a first scale-up was successful. The system holds therefore much potential, warranting further efforts in optimization. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0734-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Havlik
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany.,Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Navigo Proteins GmbH, Heinrich-Damerow-Str. 1, 06120, Halle (Saale), Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Kathrin Bohle
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
27
|
The molecular mechanisms of Monascus purpureus M9 responses to blue light based on the transcriptome analysis. Sci Rep 2017; 7:5537. [PMID: 28717254 PMCID: PMC5514072 DOI: 10.1038/s41598-017-05990-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/16/2017] [Indexed: 01/14/2023] Open
Abstract
Light is an important environmental factor that regulates various physiological processes of fungi. To thoroughly study the responses of Monascus to blue light, transcriptome sequencing was performed on mRNAs isolated from samples of Monascus purpureus M9 cultured under three conditions: darkness (D); exposure to blue light for 15 min/d (B15); and exposure to blue light for 60 min/d over 8 days (B60). The number of differentially expressed genes between the three pairs of samples-B15 vs D, B60 vs B15, and B60 vs D-was 1167, 1172, and 220, respectively. KEGG analysis showed the genes involved in primary metabolism including carbon and nitrogen metabolism were downregulated by B15 light treatment, whereas B15 upregulated expression of genes involved with aromatic amino acid metabolism, which associated with development, and branched chain amino acid metabolism, and fatty acid degradation, which can produce the biosynthetic precursors of pigments. When exposed to B60 conditions, genes with roles in carbohydrate metabolism and protein synthesis were upregulated as part of a stress response to blue light. Based on this study, we propose a predicted light-stimulated signal transduction pathway in Monascus. Our work is the first comprehensive investigation concerning the mechanism of Monascus responses to blue light.
Collapse
|
28
|
Daskalov A, Heller J, Herzog S, Fleißner A, Glass NL. Molecular Mechanisms Regulating Cell Fusion and Heterokaryon Formation in Filamentous Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0015-2016. [PMID: 28256191 PMCID: PMC11687462 DOI: 10.1128/microbiolspec.funk-0015-2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 12/13/2022] Open
Abstract
For the majority of fungal species, the somatic body of an individual is a network of interconnected cells sharing a common cytoplasm and organelles. This syncytial organization contributes to an efficient distribution of resources, energy, and biochemical signals. Cell fusion is a fundamental process for fungal development, colony establishment, and habitat exploitation and can occur between hyphal cells of an individual colony or between colonies of genetically distinct individuals. One outcome of cell fusion is the establishment of a stable heterokaryon, culminating in benefits for each individual via shared resources or being of critical importance for the sexual or parasexual cycle of many fungal species. However, a second outcome of cell fusion between genetically distinct strains is formation of unstable heterokaryons and the induction of a programmed cell death reaction in the heterokaryotic cells. This reaction of nonself rejection, which is termed heterokaryon (or vegetative) incompatibility, is widespread in the fungal kingdom and acts as a defense mechanism against genome exploitation and mycoparasitism. Here, we review the currently identified molecular players involved in the process of somatic cell fusion and its regulation in filamentous fungi. Thereafter, we summarize the knowledge of the molecular determinants and mechanism of heterokaryon incompatibility and place this phenomenon in the broader context of biotropic interactions and immunity.
Collapse
Affiliation(s)
- Asen Daskalov
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Jens Heller
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - N Louise Glass
- Department of Plant and Microbial Biology, The University of California, Berkeley, CA 94720
| |
Collapse
|
29
|
McCluskey K, Baker SE. Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology 2017; 8:67-83. [PMID: 30123633 PMCID: PMC6059044 DOI: 10.1080/21501203.2017.1281849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Filamentous fungi have been important as model organisms since the beginning of modern biological inquiry and have benefitted from open data since the earliest genetic maps were shared. From early origins in simple Mendelian genetics of mating types, parasexual genetics of colony colour, and the foundational demonstration of the segregation of a nutritional requirement, the contribution of research systems utilising filamentous fungi has spanned the biochemical genetics era, through the molecular genetics era, and now are at the very foundation of diverse omics approaches to research and development. Fungal model organisms have come from most major taxonomic groups although Ascomycete filamentous fungi have seen the most major sustained effort. In addition to the published material about filamentous fungi, shared molecular tools have found application in every area of fungal biology. Similarly, shared data has contributed to the success of model systems. The scale of data supporting research with filamentous fungi has grown by 10 to 12 orders of magnitude. From genetic to molecular maps, expression databases, and finally genome resources, the open and collaborative nature of the research communities has assured that the rising tide of data has lifted all of the research systems together.
Collapse
Affiliation(s)
- Kevin McCluskey
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Scott E. Baker
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
30
|
Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat Commun 2017; 8:14444. [PMID: 28176784 PMCID: PMC5309816 DOI: 10.1038/ncomms14444] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/29/2016] [Indexed: 01/27/2023] Open
Abstract
The advent of complex multicellularity (CM) was a pivotal event in the evolution of animals, plants and fungi. In the fungal Ascomycota, CM is based on hyphal filaments and arose in the Pezizomycotina. The genus Neolecta defines an enigma: phylogenetically placed in a related group containing mostly yeasts, Neolecta nevertheless possesses Pezizomycotina-like CM. Here we sequence the Neolecta irregularis genome and identify CM-associated functions by searching for genes conserved in Neolecta and the Pezizomycotina, which are absent or divergent in budding or fission yeasts. This group of 1,050 genes is enriched for functions related to diverse endomembrane systems and their organization. Remarkably, most show evidence for divergence in both yeasts. Using functional genomics, we identify new genes involved in fungal complexification. Together, these data show that rudimentary multicellularity is deeply rooted in the Ascomycota. Extensive parallel gene divergence during simplification and constraint leading to CM suggest a deterministic process where shared modes of cellular organization select for similarly configured organelle- and transport-related machineries. The fungal Ascomycota provide a model phylum to investigate the evolution of complex multicellularity. Here, the authors combine genome sequencing with comparative and functional genomics to identify diverse endomembrane related machineries associated with the gain and loss of fungal complexity.
Collapse
|
31
|
Harris SD. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 2017; 100:823-32. [DOI: 10.3852/08-177] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven D. Harris
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
32
|
Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:99. [PMID: 28435444 PMCID: PMC5397809 DOI: 10.1186/s13068-017-0789-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Despite being the most important cellulase producer, the cellulase-regulating carbon source signal transduction processes in Trichoderma reesei are largely unknown. Elucidating these processes is the key for unveiling how external carbon sources regulate cellulase formation, and ultimately for the improvement of cellulase production and biofuel production from lignocellulose. RESULTS In this work, the role of the mitogen-activated protein kinase (MAPK) signal transduction pathways on cellulase formation was investigated. The deletion of yeast FUS3-like tmk1 in T. reesei leads to improved growth and significantly improved cellulase formation. However, tmk1 deletion has no effect on the transcription of cellulase-coding genes. The involvement of the cell wall integrity maintenance governing yeast Slt2-like Tmk2 in cellulase formation was investigated by overexpressing tmk3 in T. reesei Δtmk2 to restore cell wall integrity. Transcriptional analysis found little changes in cellulase-coding genes between T. reesei parent, Δtmk2, and Δtmk2::OEtmk3 strains. Cell wall integrity decreased in T. reesei Δtmk2 over the parent strain and restored in Δtmk2::OEtmk3. Meanwhile, cellulase formation is increased in T. reesei Δtmk2 and then decreased in T. reesei Δtmk2::OEtmk3. CONCLUSIONS These investigations elucidate the role of Tmk1 and Tmk2 on cellulase formation: they repress cellulase formation, respectively, by repressing growth and maintaining cell wall integrity, while neither MAPK regulates the transcription of cellulase-coding genes. This work, together with the previous investigations, suggests that all MAPKs are involved in cellulase formation, while Tmk3 is the only MAPK involved in signal transduction for the regulation of cellulase expression on the transcriptional level.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Meiling Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
33
|
Accumulation of specific sterol precursors targets a MAP kinase cascade mediating cell-cell recognition and fusion. Proc Natl Acad Sci U S A 2016; 113:11877-11882. [PMID: 27708165 DOI: 10.1073/pnas.1610527113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sterols are vital components of eukaryotic cell membranes. Defects in sterol biosynthesis, which result in the accumulation of precursor molecules, are commonly associated with cellular disorders and disease. However, the effects of these sterol precursors on the metabolism, signaling, and behavior of cells are only poorly understood. In this study, we show that the accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain specifically disrupts cell-cell communication and fusion in the fungus Neurospora crassa Genetically identical germinating spores of this fungus undergo cell-cell fusion, thereby forming a highly interconnected supracellular network during colony initiation. Before fusion, the cells use an unusual signaling mechanism that involves the coordinated and alternating switching between signal sending and receiving states of the two fusion partners. Accumulation of only ergosterol precursors with a conjugated double bond in their aliphatic side chain disrupts this coordinated cell-cell communication and suppresses cell fusion. These specific sterol precursors target a single ERK-like mitogen-activated protein (MAP) kinase (MAK-1)-signaling cascade, whereas a second MAP kinase pathway (MAK-2), which is also involved in cell fusion, is unaffected. These observations indicate that a minor specific change in sterol structure can exert a strong detrimental effect on a key signaling pathway of the cell, resulting in the absence of cell fusion.
Collapse
|
34
|
Steffens EK, Becker K, Krevet S, Teichert I, Kück U. Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Mol Microbiol 2016; 102:792-809. [PMID: 27560538 DOI: 10.1111/mmi.13491] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
The filamentous fungus Sordaria macrospora is a model system to study multicellular development during fruiting body formation. Previously, we demonstrated that this major process in the sexual life cycle is controlled by the Zn(II)2 Cys6 zinc cluster transcription factor PRO1. Here, we further investigated the genome-wide regulatory network controlled by PRO1 by employing chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) to identify binding sites for PRO1. We identified several target regions that occur in the promoter regions of genes encoding components of diverse signaling pathways. Furthermore, we identified a conserved DNA-binding motif that is bound specifically by PRO1 in vitro. In addition, PRO1 controls in vivo the expression of a DsRed reporter gene under the control of the esdC target gene promoter. Our ChIP-seq data suggest that PRO1 also controls target genes previously shown to be involved in regulating the pathways controlling cell wall integrity, NADPH oxidase and pheromone signaling. Our data point to PRO1 acting as a master regulator of genes for signaling components that comprise a developmental cascade controlling fruiting body formation.
Collapse
Affiliation(s)
- Eva Katharina Steffens
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Sabine Krevet
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44780, Germany
| |
Collapse
|
35
|
Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa. Biosci Biotechnol Biochem 2016; 80:1843-52. [DOI: 10.1080/09168451.2016.1189321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Among three MAPK disruptants of Neurospora crassa, Δmak-1 was sensitive and Δmak-2 was hypersensitive to micafungin, a beta-1,3-glucan synthase inhibitor, than the wild-type or Δos-2 strains. We identified six micafungin-inducible genes that are involved in cell wall integrity (CWI) and found that MAK-1 regulated the transcription of non-anchored cell wall protein gene, ncw-1, and the beta-1,3-endoglucanase gene, bgt-2, whereas MAK-2 controlled the expression of the glycosylhydrolase-like protein gene, gh76-5, and the C4-dicarboxylate transporter gene, tdt-1. Western blotting analysis revealed that, in the wild-type strain, MAK-1 was constitutively phosphorylated from conidial germination to hyphal development. In contrast, the phosphorylation of MAK-2 was growth phase-dependent, and micafungin induced the phosphorylation of unphosphorylated MAK-2. It should be noted that the phosphorylation of MAK-1 was virtually abolished in the Δmak-2 strain, but was significantly induced by micafungin, suggesting functional cross talk between MAK-1 and MAK-2 signalling pathway in CWI.
Collapse
Affiliation(s)
- Masayuki Kamei
- Faculty of Life Sciences, Toyo University, Oura-gun, Japan
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | | - Fumiyasu Fukumori
- Faculty of Food and Nutritional Sciences, Toyo University, Oura-gun, Japan
| | | | | |
Collapse
|
36
|
Fleißner A, Herzog S. Signal exchange and integration during self-fusion in filamentous fungi. Semin Cell Dev Biol 2016; 57:76-83. [DOI: 10.1016/j.semcdb.2016.03.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 11/16/2022]
|
37
|
Wang CL, Shim WB, Shaw BD. The Colletotrichum graminicola striatin orthologue Str1 is necessary for anastomosis and is a virulence factor. MOLECULAR PLANT PATHOLOGY 2016; 17:931-42. [PMID: 26576029 PMCID: PMC6638439 DOI: 10.1111/mpp.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/24/2023]
Abstract
Striatin family proteins are key regulators in signalling pathways in fungi and animals. These scaffold proteins contain four conserved domains: a caveolin-binding domain, a coiled-coil motif and a calmodulin-binding domain at the N-terminus, and a WD-repeat domain at the C-terminus. Fungal striatin orthologues are associated with sexual development, hyphal growth and plant pathogenesis. In Fusarium verticillioides, the striatin orthologue Fsr1 promotes virulence in the maize stalk. The relationship between fungal striatins and pathogenicity remains largely unexplored. In this study, we demonstrate that the Colletotrichum graminicola striatin orthologue Str1 is required for full stalk rot and leaf blight virulence in maize. Pathogenicity assays show that the striatin mutant strain (Δstr1) produces functional appressoria, but infection and colonization are attenuated. Additional phenotypes of the Δstr1 mutant include reduced radial growth and compromised hyphal fusion. In comparison with the wild-type, Δstr1 also shows a defect in sexual development and produces fewer and shorter conidia. Together with the fact that F. verticillioides fsr1 can complement Δstr1, our results indicate that C. graminicola Str1 shares five phenotypes with striatin orthologues in other fungal species: hyphal growth, hyphal fusion, conidiation, sexual development and virulence. We propose that fungal striatins, like mammalian striatins, act as scaffolding molecules that cross-link multiple signal transduction pathways.
Collapse
Affiliation(s)
- Chih-Li Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| |
Collapse
|
38
|
Turina M, Rossi M, Moretti M. Investigation on the partial resistance of Cpkk2 knock out strain of Cryphonectria parasitica to Cryphonectria hypovirus 1 infection in presence of Geneticin and Geneticin resistance gene. Virus Res 2016; 219:58-61. [PMID: 26643512 DOI: 10.1016/j.virusres.2015.11.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 11/19/2022]
Abstract
We have recently characterized the central components of the three MAP kinase cascades present in Cryphonectria parasitica : the MEK genes cpkk1, cpkk2 and cpkk3. When we attempted to infect through anastomosis the three knock out strains with Cryphonectria hypovirus 1 (CHV1), only the deletion strain of Cpkk2, the yeast Ste7 homologue, involved in mating and filamentous growth, could not be infected. We then proceeded to attempt virus infection through transformation of Δcpkk2 protoplasts using an infectious cDNA clone able to establish virus infection through transformation. In this case, a very limited number of strains could be recovered as stable transformants compared to the efficiency of control transformations with plasmid carrying only the antibiotic marker. Furthermore, transformants carrying actively replicating virus could be isolated only if the selection marker Geneticin was used during the very initial selection process, and not maintained throughout the growth of the colonies. Moreover, Δcpkk2 isolates that maintained the virus lost Geneticin resistance. We therefore unveiled a specific negative interaction among virus infection, presence of Geneticin in the growth media, and lack of Cpkk2 MEK in the fungal host.
Collapse
Affiliation(s)
- Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy.
| | - Marika Rossi
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| | - Marino Moretti
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
39
|
Turrà D, Nordzieke D, Vitale S, El Ghalid M, Di Pietro A. Hyphal chemotropism in fungal pathogenicity. Semin Cell Dev Biol 2016; 57:69-75. [PMID: 27150623 DOI: 10.1016/j.semcdb.2016.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The ability to grow as filamentous hyphae defines the lifestyle of fungi. Hyphae are exposed to a variety of chemical stimuli such as nutrients or signal molecules from mating partners and host organisms. How fungi sense and process this chemical information to steer hyphal growth is poorly understood. Saccharomyces cerevisiae and Neurospora crassa have served as genetic models for the identification of cellular components functioning in chemotropism. A recent study in the pathogen Fusarium oxysporum revealed distinct MAPK pathways governing hyphal growth towards nutrient sources and sex pheromones or plant signals, suggesting an unanticipated complexity of chemosensing during fungus-host interactions.
Collapse
Affiliation(s)
- David Turrà
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Daniela Nordzieke
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Stefania Vitale
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Mennat El Ghalid
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
40
|
Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL. Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote. PLoS Biol 2016; 14:e1002431. [PMID: 27077707 PMCID: PMC4831770 DOI: 10.1371/journal.pbio.1002431] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/11/2016] [Indexed: 01/09/2023] Open
Abstract
Microorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment. Recognition and chemotropic interactions between isogenic germlings requires oscillation of the mitogen-activated protein kinase (MAPK) signal transduction protein complex (NRC-1, MEK-2, MAK-2, and the scaffold protein HAM-5) to specialized cell fusion structures termed conidial anastomosis tubes. Using a population of 110 wild N. crassa isolates, we investigated germling fusion between genetically unrelated individuals and discovered that chemotropic interactions are regulated by kind discrimination. Distinct communication groups were identified, in which germlings within one communication group interacted at high frequency, while germlings from different communication groups avoided each other. Bulk segregant analysis followed by whole genome resequencing identified three linked genes (doc-1, doc-2, and doc-3), which were associated with communication group phenotype. Alleles at doc-1, doc-2, and doc-3 fell into five haplotypes that showed transspecies polymorphism. Swapping doc-1 and doc-2 alleles from different communication group strains was necessary and sufficient to confer communication group affiliation. During chemotropic interactions, DOC-1 oscillated with MAK-2 to the tips of conidial anastomosis tubes, while DOC-2 was statically localized to the plasma membrane. Our data indicate that doc-1, doc-2, and doc-3 function as "greenbeard" genes, involved in mediating long-distance kind recognition that involves actively searching for one's own type, resulting in cooperation between non-genealogical relatives. Our findings serve as a basis for investigations into the mechanisms associated with attraction, fusion, and kind recognition in other eukaryotic species.
Collapse
Affiliation(s)
- Jens Heller
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - Jiuhai Zhao
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - Gabriel Rosenfield
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | - David J. Kowbel
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
| | | | - N. Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14. Genetics 2016; 203:319-34. [PMID: 27029735 DOI: 10.1534/genetics.115.185348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 01/10/2023] Open
Abstract
In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5.
Collapse
|
42
|
|
43
|
Corral-Ramos C, Roca MG, Di Pietro A, Roncero MIG, Ruiz-Roldán C. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy 2015; 11:131-44. [PMID: 25560310 DOI: 10.4161/15548627.2014.994413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the fungal pathogen Fusarium oxysporum, vegetative hyphal fusion triggers nuclear mitotic division in the invading hypha followed by migration of a nucleus into the receptor hypha and degradation of the resident nucleus. Here we examined the role of autophagy in fusion-induced nuclear degradation. A search of the F. oxysporum genome database for autophagy pathway components identified putative orthologs of 16 core autophagy-related (ATG) genes in yeast, including the ubiquitin-like protein Atg8, which is required for the formation of autophagosomal membranes. F. oxysporum Foatg8Δ mutants were generated in a strain harboring H1-cherry fluorescent protein (ChFP)-labeled nuclei to facilitate analysis of nuclear dynamics. The Foatg8Δ mutants did not show MDC-positive staining in contrast to the wild type and the FoATG8-complemented (cFoATG8) strain, suggesting that FoAtg8 is required for autophagy in F. oxysporum. The Foatg8Δ strains displayed reduced rates of hyphal growth, conidiation, and fusion, and were significantly attenuated in virulence on tomato plants and in the nonvertebrate animal host Galleria mellonella. In contrast to wild-type hyphae, which are almost exclusively composed of uninucleated hyphal compartments, the hyphae of the Foatg8Δ mutants contained a significant fraction of hyphal compartments with 2 or more nuclei. The increase in the number of nuclei per hyphal compartment was particularly evident after hyphal fusion events. Time-lapse microscopy analyses revealed abnormal mitotic patterns during vegetative growth in the Foatg8Δ mutants. Our results suggest that autophagy mediates nuclear degradation after hyphal fusion and has a general function in the control of nuclear distribution in F. oxysporum.
Collapse
Key Words
- Atg, autophagy-related
- BLAST, basic local alignment search tool
- CFW, calcofluor white
- ChFP, cherry fluorescent protein
- DIC, differential interference contrast
- Fusarium oxysporum
- GFP, green fluorescent protein
- HygR, hygromycin resistant
- MDC, monodansylcadaverine
- ORF, open reading frame
- PCR, polymerase chain reaction
- PDA, potato dextrose agar
- PDB, potato dextrose broth
- PMSF, phenylmethylsulfonyl fluoride
- SM, synthetic medium
- WT, wild-type
- autophagy
- filamentous fungi
- gDNA, genomic DNA
- hyphal fusion
- nuclear dynamics
- virulence
Collapse
Affiliation(s)
- Cristina Corral-Ramos
- a Departamento de Genética; Universidad de Córdoba; Campus de Excelencia Agroalimentario ; Córdoba , Spain
| | | | | | | | | |
Collapse
|
44
|
Guo L, Wenner N, Kuldau GA. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides. Fungal Biol 2015; 119:1158-1169. [PMID: 26615739 DOI: 10.1016/j.funbio.2015.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/24/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
Hyphal anastomosis is a hallmark of filamentous fungi and plays vital roles including cellular homoeostasis, interhyphal communication and nutrient translocation. Here we identify a gene, FvSO, in Fusarium verticillioides, a filamentous ascomycete causing maize ear and stalk rot and producing fumonisin mycotoxins. FvSO, like its Neurospora crassa homologue SO, is required for vegetative hyphal fusion. It is also essential for normal vegetative growth, sporulation, and pathogenesis. FvSO encodes a predicted WW domain protein and shares 70 % protein sequence identity with N. crassa SO. FvSO deletion mutants (ΔFvSO) had abnormal distribution of conidia size, and conidia of ΔFvSO germinated much later and slower than wild type. ΔFvSO was deficient in hyphal anastomosis, had slower radial growth and produced less fungal biomass than wild type. ΔFvSO were unable to perform anastomosis, a key feature of filamentous fungi. Interestingly, production of fumonisin B1 by ΔFvSO was significantly reduced compared to wild type. Additionally, ΔFvSO was nonpathogenic to corn ears, stalks and seedlings, likely due to defective growth and development. In conclusion, FvSO is essential for vegetative hyphal fusion and is required for normal vegetative growth and sporulation, normal levels of fumonisin production and pathogenicity in F. verticillioides. The pleiotropic nature of ΔFvSO phenotypes suggests that FvSO is likely involved in certain signalling pathways that regulate multiple cellular functions.
Collapse
Affiliation(s)
- Li Guo
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nancy Wenner
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gretchen A Kuldau
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
45
|
The AngFus3 Mitogen-Activated Protein Kinase Controls Hyphal Differentiation and Secondary Metabolism in Aspergillus niger. EUKARYOTIC CELL 2015; 14:602-15. [PMID: 25888553 DOI: 10.1128/ec.00018-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023]
Abstract
Adaptation to a changing environment is essential for the survival and propagation of sessile organisms, such as plants or fungi. Filamentous fungi commonly respond to a worsening of their growth conditions by differentiation of asexually or sexually produced spores. The formation of these specialized cell types is, however, also triggered as part of the general life cycle by hyphal age or density. Spores typically serve for dispersal and, therefore, translocation but can also act as resting states to endure times of scarcity. Eukaryotic differentiation in response to environmental and self-derived signals is commonly mediated by three-tiered mitogen-activated protein (MAP) kinase signaling cascades. Here, we report that the MAP kinase Fus3 of the black mold Aspergillus niger (AngFus3) and its upstream kinase AngSte7 control vegetative spore formation and secondary metabolism. Mutants lacking these kinases are defective in conidium induction in response to hyphal density but are fully competent in starvation-induced sporulation, indicating that conidiation in A. niger is triggered by various independent signals. In addition, the mutants exhibit an altered profile of volatile metabolites and secrete dark pigments into the growth medium, suggesting a dysregulation of the secondary metabolism. By assigning the AngFus3 MAP kinase pathway to the transduction of a potentially self-derived trigger, this work contributes to the unraveling of the intricate signaling networks controlling fungal differentiation. Moreover, our data further support earlier observations that differentiation and secondary metabolism are tightly linked in filamentous fungi.
Collapse
|
46
|
|
47
|
Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet 2014; 10:e1004762. [PMID: 25411845 PMCID: PMC4239118 DOI: 10.1371/journal.pgen.1004762] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022] Open
Abstract
Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. Appropriate cellular responses to external stimuli depend on the highly orchestrated activity of interconnected signaling cascades. One crucial level of control arises from the formation of discrete complexes through scaffold proteins that bind multiple components of a given pathway. Central for our understanding of these signaling platforms is the archetypical MAP kinase scaffold Ste5p, a protein that is restricted to budding yeast and close relatives. We identified HAM-5, a protein highly conserved in filamentous ascomycete fungi, as cell–cell communication-specific scaffold protein of the Neurospora crassa MAK-2 cascade (homologous to the budding yeast pheromone pathway). We also describe a network of upstream acting proteins, consisting of two Ste20-related kinases, the small G-protein RAS-2 and the adenylate cyclase capping protein CAP-1, whose signals converge on HAM-5. Our work has implications for the mechanistic understanding of MAP kinase scaffold proteins and their function during intercellular communication in eukaryotic microbes as well as higher eukaryotes.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yvonne Heilig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Sarah Ludwig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
48
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
49
|
Gruber S, Zeilinger S. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride. PLoS One 2014; 9:e111636. [PMID: 25356841 PMCID: PMC4214791 DOI: 10.1371/journal.pone.0111636] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.
Collapse
Affiliation(s)
- Sabine Gruber
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria
| | - Susanne Zeilinger
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Wien, Austria
- * E-mail:
| |
Collapse
|
50
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|