1
|
Yu M, Ma D, Eszterhas S, Rollenhagen C, Lee SA. The Early Endocytosis Gene PAL1 Contributes to Stress Tolerance and Hyphal Formation in Candida albicans. J Fungi (Basel) 2023; 9:1097. [PMID: 37998902 PMCID: PMC10672141 DOI: 10.3390/jof9111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The endocytic and secretory pathways of the fungal pathogen Candida albicans are fundamental to various key cellular processes such as cell growth, cell wall integrity, protein secretion, hyphal formation, and pathogenesis. Our previous studies focused on several candidate genes involved in early endocytosis, including ENT2 and END3, that play crucial roles in such processes. However, much remains to be discovered about other endocytosis-related genes and their contributions toward Candida albicans secretion and virulence. In this study, we examined the functions of the early endocytosis gene PAL1 using a reverse genetics approach based on CRISPR-Cas9-mediated gene deletion. Saccharomyces cerevisiae Pal1 is a protein in the early coat complex involved in clathrin-mediated endocytosis that is later internalized with the coat. The C. albicans pal1Δ/Δ null mutant demonstrated increased resistance to the antifungal agent caspofungin and the cell wall stressor Congo Red. In contrast, the null mutant was more sensitive to the antifungal drug fluconazole and low concentrations of SDS than the wild type (WT) and the re-integrant (KI). While pal1Δ/Δ can form hyphae and a biofilm, under some hyphal-inducing conditions, it was less able to demonstrate filamentous growth when compared to the WT and KI. The pal1Δ/Δ null mutant had no defect in clathrin-mediated endocytosis, and there were no changes in virulence-related processes compared to controls. Our results suggest that PAL1 has a role in susceptibility to antifungal agents, cell wall integrity, and membrane stability related to early endocytosis.
Collapse
Affiliation(s)
- Miranda Yu
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA;
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
| | - Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Christiane Rollenhagen
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Samuel A. Lee
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
2
|
Le PH, Nguyen DHK, Medina AA, Linklater DP, Loebbe C, Crawford RJ, MacLaughlin S, Ivanova EP. Surface Architecture Influences the Rigidity of Candida albicans Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:567. [PMID: 35159912 PMCID: PMC8840568 DOI: 10.3390/nano12030567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
Atomic force microscopy (AFM) was used to investigate the morphology and rigidity of the opportunistic pathogenic yeast, Candida albicans ATCC 10231, during its attachment to surfaces of three levels of nanoscale surface roughness. Non-polished titanium (npTi), polished titanium (pTi), and glass with respective average surface roughness (Sa) values of 389 nm, 14 nm, and 2 nm, kurtosis (Skur) values of 4, 16, and 4, and skewness (Sskw) values of 1, 4, and 1 were used as representative examples of each type of nanoarchitecture. Thus, npTi and glass surfaces exhibited similar Sskw and Skur values but highly disparate Sa. C. albicans cells that had attached to the pTi surfaces exhibited a twofold increase in rigidity of 364 kPa compared to those yeast cells attached to the surfaces of npTi (164 kPa) and glass (185 kPa). The increased rigidity of the C. albicans cells on pTi was accompanied by a distinct round morphology, condensed F-actin distribution, lack of cortical actin patches, and the negligible production of cell-associated polymeric substances; however, an elevated production of loose extracellular polymeric substances (EPS) was observed. The differences in the physical response of C. albicans cells attached to the three surfaces suggested that the surface nanoarchitecture (characterized by skewness and kurtosis), rather than average surface roughness, could directly influence the rigidity of the C. albicans cells. This work contributes to the next-generation design of antifungal surfaces by exploiting surface architecture to control the extent of biofilm formation undertaken by yeast pathogens and highlights the importance of performing a detailed surface roughness characterization in order to identify and discriminate between the surface characteristics that may influence the extent of cell attachment and the subsequent behavior of the attached cells.
Collapse
Affiliation(s)
- Phuc H. Le
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
- ARC Research Hub for Australian Steel Manufacturing, STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Duy H. K. Nguyen
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | - Arturo Aburto Medina
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
- ARC Research Hub for Australian Steel Manufacturing, STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Denver P. Linklater
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | | | - Russell J. Crawford
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| | | | - Elena P. Ivanova
- STEM College, School of Science, RMIT University, Melbourne, VIC 3000, Australia; (P.H.L.); (D.H.K.N.); (A.A.M.); (D.P.L.); (R.J.C.)
| |
Collapse
|
3
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
4
|
Abstract
In the last decades, Candida albicans has served as the leading causal agent of life-threatening invasive infections with mortality rates approaching 40% despite treatment. Candida albicans (C. albicans) exists in three biological phases: yeast, pseudohyphae, and hyphae. Hyphae, which represent an important phase in the disease process, can cause tissue damage by invading mucosal epithelial cells then leading to blood infection. In this review, we summarized recent results from different fields of fungal cell biology that are instrumental in understanding hyphal growth. This includes research on the differences among C. albicans phases; the regulatory mechanism of hyphal growth, extension, and maintaining cutting-edge polarity; cross regulations of hyphal development and the virulence factors that cause serious infection. With a better understanding of the mechanism on mycelium formation, this review provides a theoretical basis for the identification of targets in candidiasis treatment. It also gives some reference to the study of antifungal drugs.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
6
|
AP-2-Dependent Endocytic Recycling of the Chitin Synthase Chs3 Regulates Polarized Growth in Candida albicans. mBio 2019; 10:mBio.02421-18. [PMID: 30890602 PMCID: PMC6426607 DOI: 10.1128/mbio.02421-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human fungal pathogen Candida albicans is known to require endocytosis to enable its adaptation to diverse niches and to maintain its highly polarized hyphal growth phase. While studies have identified changes in transcription leading to the synthesis and secretion of new proteins to facilitate hyphal growth, effective maintenance of hyphae also requires concomitant removal or relocalization of other cell surface molecules. The key molecules which must be removed from the cell surface, and the mechanisms behind this, have, however, remained elusive. In this study, we show that the AP-2 endocytic adaptor complex is required for the internalization of the major cell wall biosynthesis enzyme Chs3. We demonstrate that this interaction is mediated by the AP-2 mu subunit (Apm4) YXXΦ binding domain. We also show that in the absence of Chs3 recycling via AP-2, cells have abnormal cell wall composition, defective polarized cell wall deposition, and morphological defects. The study also highlights key distinctions between endocytic requirements of growth at yeast buds compared to that at hyphal tips and different requirements of AP-2 in maintaining the polarity of mannosylated proteins and ergosterol at hyphal tips. Together, our findings highlight the importance of correct cell wall deposition in cell shape maintenance and polarized growth and the key regulatory role of endocytic recycling via the AP-2 complex.IMPORTANCE Candida albicans is a human commensal yeast that can cause significant morbidity and mortality in immunocompromised individuals. Within humans, C. albicans can adopt different morphologies as yeast or filamentous hyphae and can occupy different niches with distinct temperatures, pHs, CO2 levels, and nutrient availability. Both morphological switching and growth in different environments require cell surface remodelling, which involves both the addition of newly synthesized proteins as well as the removal of other proteins. In our study, we demonstrate the importance of an adaptor complex AP-2 in internalizing and recycling a specific cell surface enzyme to maintain effective polarized hyphal growth. Defects in formation of the complex or in its ability to interact directly with cargo inhibit enzyme uptake and lead to defective cell walls and aberrant hyphal morphology. Our data indicate that the AP-2 adaptor plays a central role in regulating cell surface composition in Candida.
Collapse
|
7
|
Lee MR, Raman N, Ortiz-Bermúdez P, Lynn DM, Palecek SP. 14-Helical β-Peptides Elicit Toxicity against C. albicans by Forming Pores in the Cell Membrane and Subsequently Disrupting Intracellular Organelles. Cell Chem Biol 2018; 26:289-299.e4. [PMID: 30581136 DOI: 10.1016/j.chembiol.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/16/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Synthetic peptidomimetics of antimicrobial peptides (AMPs) are promising antimicrobial drug candidates because they promote membrane disruption and exhibit greater structural and proteolytic stability than natural AMPs. We previously reported selective antifungal 14-helical β-peptides, but the mechanism of antifungal toxicity of β-peptides remains unknown. To provide insight into the mechanism, we studied antifungal β-peptide binding to artificial membranes and living Candida albicans cells. We investigated the ability of β-peptides to interact with and permeate small unilamellar vesicle models of fungal membranes. The partition coefficient supported a pore-mediated mechanism characterized by the existence of a critical β-peptide concentration separating low- and high-partition coefficient regimes. Live cell intracellular tracking of β-peptides showed that β-peptides translocated into the cytoplasm, and then disrupted the nucleus and vacuole sequentially, leading to cell death. This understanding of the mechanisms of antifungal activity will facilitate design and development of peptidomimetic AMPs, including 14-helical β-peptides, for antifungal applications.
Collapse
Affiliation(s)
- Myung-Ryul Lee
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Namrata Raman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patricia Ortiz-Bermúdez
- Department of Chemical Engineering, University of Puerto Rico, Mayagüez Campus, Mayagüez, Puerto Rico
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA.
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Bar-Yosef H, Gildor T, Ramírez-Zavala B, Schmauch C, Weissman Z, Pinsky M, Naddaf R, Morschhäuser J, Arkowitz RA, Kornitzer D. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1. Front Cell Infect Microbiol 2018; 8:17. [PMID: 29473018 PMCID: PMC5809406 DOI: 10.3389/fcimb.2018.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022] Open
Abstract
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | | | - Christian Schmauch
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Mariel Pinsky
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Rawi Naddaf
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Robert A Arkowitz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
10
|
Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 2017; 7:5692. [PMID: 28720834 PMCID: PMC5515890 DOI: 10.1038/s41598-017-05741-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/01/2017] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is an opportunistic pathogen, typically found as a benign commensal yeast living on skin and mucosa, but poised to invade injured tissue to cause local infections. In debilitated and immunocompromised individuals, C. albicans may spread to cause life-threatening systemic infections. Upon contact with serum and at body temperature, C. albicans performs a regulated switch to filamentous morphology, characterized by emergence of a germ tube from the yeast cell followed by mold-like growth of branching hyphae. The ability to switch between growth morphologies is an important virulence factor of C. albicans. To identify compounds able to inhibit hyphal morphogenesis, we screened libraries of existing drugs for inhibition of the hyphal switch under stringent conditions. Several compounds that specifically inhibited hyphal morphogenesis were identified. Chemogenomic analysis suggested an interaction with the endocytic pathway, which was confirmed by direct measurement of fluid-phase endocytosis in the presence of these compounds. These results suggest that the activity of the endocytic pathway, which is known to be particularly important for hyphal growth, represents an effective target for hyphae-inhibiting drugs.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel
| | - Nora Vivanco Gonzalez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion - I.I.T. and the Rappaport Institute for Research in the Medical Sciences, Haifa, 31096, Israel.
| |
Collapse
|
11
|
O’Meara TR, Veri AO, Polvi EJ, Li X, Valaei SF, Diezmann S, Cowen LE. Mapping the Hsp90 Genetic Network Reveals Ergosterol Biosynthesis and Phosphatidylinositol-4-Kinase Signaling as Core Circuitry Governing Cellular Stress. PLoS Genet 2016; 12:e1006142. [PMID: 27341673 PMCID: PMC4920384 DOI: 10.1371/journal.pgen.1006142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/03/2016] [Indexed: 12/27/2022] Open
Abstract
Candida albicans is a leading human fungal pathogen that causes life-threatening systemic infections. A key regulator of C. albicans stress response, drug resistance, morphogenesis, and virulence is the molecular chaperone Hsp90. Targeting Hsp90 provides a powerful strategy to treat fungal infections, however, the therapeutic utility of current inhibitors is compromised by toxicity due to inhibition of host Hsp90. To identify components of the Hsp90-dependent circuitry governing virulence and drug resistance that are sufficiently divergent for selective targeting in the pathogen, we pioneered chemical genomic profiling of the Hsp90 genetic network in C. albicans. Here, we screen mutant collections covering ~10% of the genome for hypersensitivity to Hsp90 inhibition in multiple environmental conditions. We identify 158 HSP90 chemical genetic interactors, most of which are important for growth only in specific environments. We discovered that the sterol C-22 desaturase gene ERG5 and the phosphatidylinositol-4-kinase (PI4K) gene STT4 are HSP90 genetic interactors under multiple conditions, suggesting a function upstream of Hsp90. By systematic analysis of the ergosterol biosynthetic cascade, we demonstrate that defects in ergosterol biosynthesis induce cellular stress that overwhelms Hsp90's functional capacity. By analysis of the phosphatidylinositol pathway, we demonstrate that there is a genetic interaction between the PI4K Stt4 and Hsp90. We also establish that Stt4 is required for normal actin polarization through regulation of Wal1, and suggest a model in which defects in actin remodeling induces stress that creates a cellular demand for Hsp90 that exceeds its functional capacity. Consistent with this model, actin inhibitors are synergistic with Hsp90 inhibitors. We highlight new connections between Hsp90 and virulence traits, demonstrating that Erg5 and Stt4 enable activation of macrophage pyroptosis. This work uncovers novel circuitry regulating Hsp90 functional capacity and new effectors governing drug resistance, morphogenesis and virulence, revealing new targets for antifungal drug development.
Collapse
Affiliation(s)
- Teresa R. O’Meara
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xinliu Li
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie Diezmann
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, United Kingdom
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Hoshi HO, Zheng L, Ohta A, Horiuchi H. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans. Biosci Biotechnol Biochem 2016; 80:1802-12. [PMID: 26927610 DOI: 10.1080/09168451.2016.1148580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.
Collapse
Affiliation(s)
- Hiro-Omi Hoshi
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Lu Zheng
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Akinori Ohta
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Hiroyuki Horiuchi
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
13
|
Douglas LM, Konopka JB. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. J Microbiol 2016; 54:178-91. [PMID: 26920878 DOI: 10.1007/s12275-016-5621-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022]
Abstract
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
Collapse
Affiliation(s)
- Lois M Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
14
|
Steinberg G. Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 2014; 20:10-8. [PMID: 24835422 PMCID: PMC4148197 DOI: 10.1016/j.mib.2014.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Hyphal growth of filamentous fungi requires microtubule-based long-distance motility of early endosomes. Since the discovery of this process in Ustilago maydis, our understanding of its molecular basis and biological function has greatly advanced. Studies in U. maydis and Aspergillus nidulans reveal a complex interplay of the motor proteins kinesin-3 and dynein, which co-operate to support bi-directional motion of early endosomes. Genetic screening has shed light on the molecular mechanisms underpinning motor regulation, revealing Hook protein as general motor adapters on early endosomes. Recently, fascinating insight into unexpected roles for endosome motility has emerged. This includes septin filament formation and cellular distribution of the machinery for protein translation.
Collapse
Affiliation(s)
- Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
15
|
Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ. The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. EUKARYOTIC CELL 2013; 12:998-1008. [PMID: 23666623 PMCID: PMC3697460 DOI: 10.1128/ec.00085-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/07/2013] [Indexed: 11/20/2022]
Abstract
In the hyphal tip of Candida albicans we have made detailed quantitative measurements of (i) exocyst components, (ii) Rho1, the regulatory subunit of (1,3)-β-glucan synthase, (iii) Rom2, the specialized guanine-nucleotide exchange factor (GEF) of Rho1, and (iv) actin cortical patches, the sites of endocytosis. We use the resulting data to construct and test a quantitative 3-dimensional model of fungal hyphal growth based on the proposition that vesicles fuse with the hyphal tip at a rate determined by the local density of exocyst components. Enzymes such as (1,3)-β-glucan synthase thus embedded in the plasma membrane continue to synthesize the cell wall until they are removed by endocytosis. The model successfully predicts the shape and dimensions of the hyphae, provided that endocytosis acts to remove cell wall-synthesizing enzymes at the subapical bands of actin patches. Moreover, a key prediction of the model is that the distribution of the synthase is substantially broader than the area occupied by the exocyst. This prediction is borne out by our quantitative measurements. Thus, although the model highlights detailed issues that require further investigation, in general terms the pattern of tip growth of fungal hyphae can be satisfactorily explained by a simple but quantitative model rooted within the known molecular processes of polarized growth. Moreover, the methodology can be readily adapted to model other forms of polarized growth, such as that which occurs in plant pollen tubes.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Wsp1 is downstream of Cin1 and regulates vesicle transport and actin cytoskeleton as an effector of Cdc42 and Rac1 in Cryptococcus neoformans. EUKARYOTIC CELL 2012; 11:471-81. [PMID: 22327008 DOI: 10.1128/ec.00011-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human Wiskott-Aldrich syndrome protein (WASP) is a scaffold linking upstream signals to the actin cytoskeleton. In response to intersectin ITSN1 and Rho GTPase Cdc42, WASP activates the Arp2/3 complex to promote actin polymerization. The human pathogen Cryptococcus neoformans contains the ITSN1 homolog Cin1 and the WASP homolog Wsp1, which share more homology with human proteins than those of other fungi. Here we demonstrate that Cin1, Cdc42/Rac1, and Wsp1 function in an effector pathway similar to that of mammalian models. In the cin1 mutant, expression of the autoactivated Wsp1-B-GBD allele partially suppressed the mutant defect in endocytosis, and expression of the constitutively active CDC42(Q61L) allele restored normal actin cytoskeleton structures. Similar phenotypic suppression can be obtained by the expression of a Cdc42-green fluorescent protein (GFP)-Wsp1 fusion protein. In addition, Rac1, which was found to exhibit a role in early endocytosis, activates Wsp1 to regulate vacuole fusion. Rac1 interacted with Wsp1 and depended on Wsp1 for its vacuolar membrane localization. Expression of the Wsp1-B-GBD allele restored vacuolar membrane fusion in the rac1 mutant. Collectively, our studies suggest novel ways in which this pathogenic fungus has adapted conserved signaling pathways to control vesicle transport and actin organization, likely benefiting survival within infected hosts.
Collapse
|
17
|
Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2011; 9:876-87. [PMID: 22048737 DOI: 10.1038/nrmicro2666] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
18
|
|
19
|
Wsp1, a GBD/CRIB domain-containing WASP homolog, is required for growth, morphogenesis, and virulence of Cryptococcus neoformans. EUKARYOTIC CELL 2011; 10:521-9. [PMID: 21357479 DOI: 10.1128/ec.00274-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human endocytic protein ITSN1 regulates actin reorganization by activating Rho family GTPases, such as Cdc42. The process is enhanced by ITSN binding of WASP, an effector of Cdc42 and a potent activator of actin polymerization. In the human pathogen Cryptococcus neoformans, endocytic protein Cin1 also interacts with Cdc42 and Wsp1, an uncharacterized WASP homolog, but the significance of these interactions remains unknown. Wsp1 contains several conserved domains, including a WASP homology 1 domain (WH1), a GTPase binding/Cdc42 and Rac interactive binding domain (GBD/CRIB), and a C-terminal domain composed of verprolin-like, central, and acidic motifs (VCA). Thus, Wsp1 exhibits domain compositions more similar to human WASP proteins than Saccharomyces cerevisiae Las17/Bee1, a WASP homolog lacking the GDB/CRIB domain. Wsp1 is not an essential protein; however, the wsp1 mutant exhibited defects in growth, cytokinesis, chitin distribution, and endocytosis and exocytosis. The wsp1 mutant was also unable to undergo genetic cross, produce the polysaccharide capsule, or secrete the enzyme urease. An in vitro phagocytosis assay showed a higher phagocytic index for the wsp1 mutant, whose ability to cause lethal infection in a murine model of cryptococcosis was also attenuated. Our studies reveal divergent evolution of WASP proteins in the fungal phylum and suggest that the conserved function of WASP proteins in the actin cytoskeleton may also impact fungal virulence.
Collapse
|
20
|
Wang P, Shen G. The endocytic adaptor proteins of pathogenic fungi: charting new and familiar pathways. Med Mycol 2011; 49:449-57. [PMID: 21254965 DOI: 10.3109/13693786.2011.553246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular transport is an essential biological process that is highly conserved throughout the eukaryotic organisms. In fungi, adaptor proteins implicated in the endocytic cycle of endocytosis and exocytosis were found to be important for growth, differentiation, and/or virulence. For example, Saccharomyces cerevisiae Pan1 is an endocytic protein that regulates membrane trafficking, the actin cytoskeleton, and signaling. In Cryptococcus neoformans, a multi-modular endocytic protein, Cin1, was recently found to have pleiotropic functions in morphogenesis, endocytosis, exocytosis, and virulence. Interestingly, Cin1 is homologous to human intersectin ITSN1, but homologs of Cin1/ITSN1 were not found in ascomycetous S. cerevisiae and Candida albicans, or zygomycetous fungi. Moreover, an Eps15 protein homologous to S. cerevisiae Pan1/Ede1 and additional relevant protein homologs were identified in C. neoformans, suggesting the existence of either a distinct endocytic pathway mediated by Cin1 or pathways by either Cin1 or/and Pan1/Ede1 homologs. Whether and how the Cin1-mediated endocytic pathway represents a unique role in pathogenesis or reflects a redundancy of a transport apparatus remains an open and challenging question. This review discusses recent findings of endocytic adaptor proteins from pathogenic fungi and provides a perspective for novel endocytic machinery operating in C. neoformans. An understanding of intracellular trafficking mechanisms as they relate to pathogenesis will likely reveal the identity of novel antifungal targets.
Collapse
Affiliation(s)
- Ping Wang
- The Research Institute for Children, New Orleans, Louisiana, USA.
| | | |
Collapse
|
21
|
Borth N, Walther A, Reijnst P, Jorde S, Schaub Y, Wendland J. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology (Reading) 2010; 156:2962-2969. [DOI: 10.1099/mic.0.041707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, a link between endocytosis and hyphal morphogenesis has been identified in Candida albicans via the Wiskott–Aldrich syndrome gene homologue WAL1. To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the C. albicans WASP-interacting protein (WIP) homologue encoded by VRP1. Deletion of both alleles of VRP1 results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant vrp1 cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in vrp1 daughter cells. The morphology of the vrp1 null mutant could be complemented by reintegration of the wild-type VRP1 gene at the BUD3 locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in C. albicans.
Collapse
Affiliation(s)
- Nicole Borth
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Andrea Walther
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Sigyn Jorde
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Yvonne Schaub
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
| | - Jürgen Wendland
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
22
|
Reijnst P, Jorde S, Wendland J. Candida albicans SH3-domain proteins involved in hyphal growth, cytokinesis, and vacuolar morphology. Curr Genet 2010; 56:309-19. [PMID: 20383711 DOI: 10.1007/s00294-010-0301-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/22/2010] [Accepted: 03/29/2010] [Indexed: 12/13/2022]
Abstract
This report describes the analyses of three Candida albicans genes that encode Src Homology 3 (SH3)-domain proteins. Homologs in Saccharomyces cerevisiae are encoded by the SLA1, NBP2, and CYK3 genes. Deletion of CYK3 in C. albicans was not feasible, suggesting it is essential. Promoter shutdown experiments of CaCYK3 revealed cytokinesis defects, which are in line with the localization of GFP-tagged Cyk3 at septal sites. Deletion of SLA1 resulted in strains with decreased ability to form hyphal filaments. The number of cortical actin patches was strongly reduced in Deltasla1 strains during all growth stages. Sla1-GFP localizes in patches that are found concentrated at the hyphal tip. Deletion of the first two SH3-domains of Sla1 still resulted in cortical localization of the truncated protein. However, the actin cytoskeleton in this strain was aberrant like in the Deltasla1 deletion mutant indicating a function of these SH3 domains to recruit actin nucleation to sites of endocytosis. Deletion of NBP2 resulted in a defect in vacuolar fusion in hyphae. Germ cells of Deltanbp2 strains lacked a large vacuole but initiated several germ tubes. The mutant phenotypes of Deltanbp2 and Deltasla1 could be corrected by reintegration of the wild-type genes.
Collapse
Affiliation(s)
- Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Valby, Copenhagen, Denmark
| | | | | |
Collapse
|
23
|
Reijnst P, Walther A, Wendland J. Functional analysis of Candida albicans genes encoding SH3-domain-containing proteins. FEMS Yeast Res 2010; 10:452-61. [DOI: 10.1111/j.1567-1364.2010.00624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
24
|
Yamamoto T, Mochida J, Kadota J, Takeda M, Bi E, Tanaka K. Initial polarized bud growth by endocytic recycling in the absence of actin cable-dependent vesicle transport in yeast. Mol Biol Cell 2010; 21:1237-52. [PMID: 20147449 PMCID: PMC2847527 DOI: 10.1091/mbc.e09-05-0412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Budding yeast mutants in assembly of actin cables, which are thought to be the only actin structures essential for budding, still could form a small bud. Mutations in actin patch endocytic machineries/endocytic recycling factors inhibited this budding, suggesting a mechanism that promotes polarized growth by local recycling of endocytic vesicles. The assembly of filamentous actin is essential for polarized bud growth in budding yeast. Actin cables, which are assembled by the formins Bni1p and Bnr1p, are thought to be the only actin structures that are essential for budding. However, we found that formin or tropomyosin mutants, which lack actin cables, are still able to form a small bud. Additional mutations in components for cortical actin patches, which are assembled by the Arp2/3 complex to play a pivotal role in endocytic vesicle formation, inhibited this budding. Genes involved in endocytic recycling were also required for small-bud formation in actin cable-less mutants. These results suggest that budding yeast possesses a mechanism that promotes polarized growth by local recycling of endocytic vesicles. Interestingly, the type V myosin Myo2p, which was thought to use only actin cables to track, also contributed to budding in the absence of actin cables. These results suggest that some actin network may serve as the track for Myo2p-driven vesicle transport in the absence of actin cables or that Myo2p can function independent of actin filaments. Our results also show that polarity regulators including Cdc42p were still polarized in mutants defective in both actin cables and cortical actin patches, suggesting that the actin cytoskeleton does not play a major role in cortical assembly of polarity regulators in budding yeast.
Collapse
Affiliation(s)
- Takaharu Yamamoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Epp E, Walther A, Lépine G, Leon Z, Mullick A, Raymond M, Wendland J, Whiteway M. Forward genetics in Candida albicans that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Mol Microbiol 2010; 75:1182-98. [PMID: 20141603 DOI: 10.1111/j.1365-2958.2009.07038.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Candida albicans is a diploid fungal pathogen lacking a defined complete sexual cycle, and thus has been refractory to standard forward genetic analysis. Instead, transcription profiling and reverse genetic strategies based on Saccharomyces cerevisiae have typically been used to link genes to functions. To overcome restrictions inherent in such indirect approaches, we have investigated a forward genetic mutagenesis strategy based on the UAU1 technology. We screened 4700 random insertion mutants for defects in hyphal development and linked two new genes (ARP2 and VPS52) to hyphal growth. Deleting ARP2 abolished hyphal formation, generated round and swollen yeast phase cells, disrupted cortical actin patches and blocked virulence in mice. The mutants also showed a global lack of induction of hyphae-specific genes upon the yeast-to-hyphae switch. Surprisingly, both arp2 Delta/Delta and arp2 Delta/Delta arp3 Delta/Delta mutants were still able to endocytose FM4-64 and Lucifer Yellow, although as shown by time-lapse movies internalization of FM4-64 was somewhat delayed in mutant cells. Thus the non-essential role of the Arp2/3 complex discovered by forward genetic screening in C. albicans showed that uptake of membrane components from the plasma membrane to vacuolar structures is not dependent on this actin nucleating machinery.
Collapse
Affiliation(s)
- Elias Epp
- Biotechnology Research Institute, National Research Council of Canada, Montréal, QC H4P 2R2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect Immun 2009; 77:4150-60. [PMID: 19596778 DOI: 10.1128/iai.00683-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Candida albicans plasma membrane plays critical roles in growth and virulence and as a target for antifungal drugs. Three C. albicans genes that encode Bin-Amphiphysin-Rvs homology domain proteins were mutated to define their roles in plasma membrane function. The deletion of RVS161 and RVS167, but not RVS162, caused strong defects. The rvs161Delta mutant was more defective in endocytosis and morphogenesis than rvs167Delta, but both were strongly defective in polarizing actin patches. Other plasma membrane constituents were still properly localized, including a filipin-stained domain at the hyphal tips. An analysis of growth under different in vitro conditions showed that the rvs161Delta and rvs167Delta mutants grew less invasively in agar and also suggested that they have defects in cell wall synthesis and Rim101 pathway signaling. These mutants were also more resistant to the antimicrobial peptide histatin 5 but showed essentially normal responses to the drugs caspofungin and amphotericin. Surprisingly, the rvs161Delta mutant was more sensitive to fluconazole, whereas the rvs167Delta mutant was more resistant, indicating that these mutations cause overlapping but distinct effects on cells. The rvs161Delta and rvs167Delta mutants both showed greatly reduced virulence in mice. However, the mutants were capable of growing to high levels in kidneys. Histological analyses of infected kidneys revealed that these rvsDelta mutants grew in a large fungal mass that was walled off by leukocytes, rather than forming disseminated microabscesses as seen for the wild type. The diminished virulence is likely due to a combination of the morphogenesis defects that reduce invasive growth and altered cell wall construction that exposes proinflammatory components to the host immune system.
Collapse
|
27
|
Abdellatif L, Bouzid S, Kaminskyj S, Vujanovic V. Endophytic hyphal compartmentalization is required for successful symbiotic Ascomycota association with root cells. ACTA ACUST UNITED AC 2009; 113:782-91. [PMID: 19269322 DOI: 10.1016/j.mycres.2009.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Root endophytic fungi are seen as promising alternatives to replace chemical fertilizers and pesticides in sustainable and organic agriculture systems. Fungal endophytes structure formations play key roles in symbiotic intracellular association with plant-roots. To compare the morphologies of Ascomycete endophytic fungi in wheat, we analyzed growth morphologies during endophytic development of hyphae within the cortex of living vs. dead root cells. Confocal laser scanning microscopy (CLSM) was used to characterize fungal cell morphology within lactofuchsin-stained roots. Cell form regularity Ireg and cell growth direction Idir, indexes were used to quantify changes in fungal morphology. Endophyte fungi in living roots had a variable Ireg and Idir values, low colonization abundance and patchy colonization patterns, whereas the same endophyte species in dead (gamma-irradiated) roots had consistent form of cells and mostly grew parallel to the root axis. Knot, coil and vesicle structures dominated in living roots, as putative symbiotic functional organs. Finally, an increased hypha septation in living roots might indicate local specialization within endophytic Ascomycota. Our results suggested that the applied method could be expanded to other septate fungal symbionts (e.g. Basidiomycota). The latter is discussed in light of our results and other recent discoveries.
Collapse
Affiliation(s)
- Lobna Abdellatif
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 College Drive, Saskatoon, SK S7N 5A8, Canada
| | | | | | | |
Collapse
|
28
|
Badrane H, Nguyen MH, Cheng S, Kumar V, Derendorf H, Iczkowski KA, Clancy CJ. The Candida albicans phosphatase Inp51p interacts with the EH domain protein Irs4p, regulates phosphatidylinositol-4,5-bisphosphate levels and influences hyphal formation, the cell integrity pathway and virulence. MICROBIOLOGY-SGM 2008; 154:3296-3308. [PMID: 18957583 DOI: 10.1099/mic.0.2008/018002-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously identified Candida albicans Irs4p as an epidermal growth factor substrate 15 homology (EH) domain-containing protein that is reactive with antibodies in the sera of patients with candidiasis and contributes to cell wall integrity, hyphal formation and virulence. In this study, we use a yeast two-hybrid method and co-immunoprecipitation to show that Irs4p physically interacts with the phosphatase Inp51p. Disruption of the Inp51p Asn-Pro-Phe (NPF) motif eliminates the interaction, suggesting that this motif is targeted by Irs4p. Both inp51 and irs4 null mutants exhibit significantly increased levels of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)] without changes in levels of other phosphoinositides. Like the irs4 mutant, the inp51 mutant demonstrates increased susceptibility to cell wall-active agents, impaired hyphal formation and abnormal chitin distribution along hyphal walls during growth within solid agar. Moreover, the inp51 and irs4 mutants overactivate the cell wall integrity pathway as measured by Mkc1p phosphorylation. As anticipated, mortality due to disseminated candidiasis is significantly attenuated among mice infected with the inp51 mutant, and tissue burdens and inflammation within the kidneys are reduced. Hyphal formation and chitin distribution in vivo are also impaired, consistent with observations of embedded growth in vitro. All phenotypes exhibited by the inp51 and irs4 mutants are rescued by complementation with the respective genes. In conclusion, our findings suggest that Irs4p binds and activates Inp51p to negatively regulate PI(4,5)P(2) levels and the cell integrity pathway, and that PI(4,5)P(2) homeostasis is important for coordinating cell wall integrity, hyphal growth and virulence under conditions of cell wall stress.
Collapse
Affiliation(s)
- Hassan Badrane
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - M Hong Nguyen
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA.,North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shaoji Cheng
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Vipul Kumar
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Kenneth A Iczkowski
- Department of Pathology, University of Colorado Health Science Center, Aurora, CO, USA
| | - Cornelius J Clancy
- North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.,Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
29
|
Abstract
Candida albicans is termed a dimorphic fungus because it proliferates in either a yeast form or a hyphal form. The switch between these forms is the result of a complex interplay of external and internal factors and is coordinated in part by polarity-regulating proteins that are conserved among eukaryotic cells. However, yeast and hyphal cells are not the only morphological states of C. albicans. The opaque form required for mating, the pseudohyphal cell, and the chlamydospore represent distinct cell types that form in response to specific genetic or environmental conditions. In addition, hyperextended buds can form as a result of various cell cycle-related stresses. Recent studies are beginning to shed light on some of the molecular controls regulating the various morphogenetic forms of this fascinating human pathogen.
Collapse
Affiliation(s)
- Malcolm Whiteway
- National Research Council of Canada, Biotechnology Research Institute, Montreal, Quebec, H4P 2R2, Canada.
| | | |
Collapse
|
30
|
Dünkler A, Wendland J. Candida albicans Rho-type GTPase-encoding genes required for polarized cell growth and cell separation. EUKARYOTIC CELL 2007; 6:844-54. [PMID: 17351079 PMCID: PMC1899239 DOI: 10.1128/ec.00201-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rho proteins are essential regulators of morphogenesis in eukaryotic cells. In this report, we investigate the role of two previously uncharacterized Rho proteins, encoded by the Candida albicans RHO3 (CaRHO3) and CaCRL1/CaRHO4 genes. The CaRHO3 gene was found to contain one intron. Promoter shutdown experiments using a MET3 promoter-controlled RHO3 revealed a strong cell polarity defect and a partially depolarized actin cytoskeleton. Hyphal growth after promoter shutdown was abolished in rho3 mutants even in the presence of a constitutively active ras1(G13V) allele, and existing germ tubes became swollen. Deletion of C. albicans RHO4 indicated that it is a nonessential gene and that rho4 mutants were phenotypically different from rho3. Two distinct phenotypes of rho4 cells were elongated cell morphology and an unexpected cell separation defect generating chains of cells. Colony morphology of crl1/rho4 resulted in a growth-dependent smooth (long cell cycle length) or wrinkled (short cell cycle length) phenotype. This phenotype was additionally dependent on the rho4 cell separation defect and was also found in a Cacht3 chitinase mutant that shows a strong cytokinesis defect. The overexpression of the endoglucanase encoding the ENG1 gene, but not CHT3, suppressed the cell separation defect of crl1/rho4 but could not suppress the cell elongation phenotype. C. albicans Crl1/Rho4 and Bnr1 both localize to septal sites in yeast and hyphal cells but not to the hyphal tip. Deletion of RHO4 and BNR1 produced similar morphological phenotypes. Based on the localization of Rho4 and on the rho4 mutant phenotype, we propose a model in which Rho4p may function as a regulator of cell polarity, breaking the initial axis of polarity found during early bud growth to promote the construction of a septum.
Collapse
Affiliation(s)
- Alexander Dünkler
- Department of Microbiology, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
31
|
Oberholzer U, Nantel A, Berman J, Whiteway M. Transcript profiles of Candida albicans cortical actin patch mutants reflect their cellular defects: contribution of the Hog1p and Mkc1p signaling pathways. EUKARYOTIC CELL 2007; 5:1252-65. [PMID: 16896210 PMCID: PMC1539150 DOI: 10.1128/ec.00385-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Candida albicans, Myo5p and Sla2p are required for the polarized localization and function of cortical actin patches, for hyphal formation, and for endocytosis. Deletion of either the MYO5 or the SLA2 gene generated a common transcriptional response that involved changes in the transcript levels of cell wall protein- and membrane protein-encoding genes. However, these profiles were distinct from those observed for a mutant with specific deletions of the actin-organizing domains of Myo5p or for wild-type cells treated with cytochalasin A, both of which also generate defects in the organization of cortical actin patches. The profiles observed for the myo5Delta and sla2Delta mutants had similarities to those of wild-type cells subjected to an osmotic shock, and the defects in cortical patch function found with myo5Delta and sla2Delta mutants, but not cortical actin patch distribution per se, affected sensitivity to various stresses, including heat and osmotic shocks and cell wall damage. Secondary effects coupled with defective endocytosis, such as lack of polarized lipid rafts and associated protein Rvs167-GFP (where GFP is green fluorescent protein) and lack of polarized wall remodeling protein GFP-Gsc1, were also observed for the myo5Delta and sla2Delta mutants. The mitogen-activated protein kinases Hog1p and Mkc1p, which mediate signaling in response to osmotic stress and cell wall damage, do not play a major role in regulating the transcript level changes in the myo5Delta and sla2Delta mutants. Hog1p was not hyperphosphorylated in the myo5Delta and sla2Delta mutants, and the transcript levels of only a subset of genes affected in the myo5Delta mutant were dependent upon the presence of Hog1p and Mkc1p. However, it appears that Hog1p and Mkc1p play important roles in the myo5Delta mutant cells because double deletion of myosin I and either Hog1p or Mkc1p resulted in very-slow-growing cells.
Collapse
Affiliation(s)
- Ursula Oberholzer
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount, Montreal H4P 2R2, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Martin R, Hellwig D, Schaub Y, Bauer J, Walther A, Wendland J. Functional analysis ofCandida albicans genes whoseSaccharomyces cerevisiae homologues are involved in endocytosis. Yeast 2007; 24:511-22. [PMID: 17431925 DOI: 10.1002/yea.1489] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PCR-based techniques for directed gene alterations have become standard tools in Candida albicans. To help to increase the speed of functional analysis of Candida albicans genes, we previously constructed and updated a modular set of pFA-plasmid vectors for PCR-based gene targeting in C. albicans. Here we report the functional analyses of C. albicans ORFs whose homologues in S. cerevisiae are involved in endocytosis, to explore their potential involvement in polarized cell growth. Three C. albicans genes, ABP1, BZZ1 and EDE1, were found to be non-essential. Yeast and hyphal morphogenesis were not affected by the individual deletions and the mutant strains appeared wild-type-like under the different growth conditions tested. On the other hand, deletion of both alleles of the C. albicans PAN1 homologue was not feasible. Promoter shut-down experiments using a MET3p-PAN1/pan1 strain indicated severe growth defects and abolished endocytosis, indicating that PAN1 is an essential gene. Subcellular distribution of CaAbp1 and CaPan1 was analysed via GFP-tagged proteins. Both proteins were found to localize at the cortex and at hyphal tips in a patch-like manner, supporting their role in endocytosis. Localization patterns of Abp1 and Pan1, however, were distinct from that of the FM4-64 stained Spitzenkörper.
Collapse
Affiliation(s)
- Ronny Martin
- Department of Microbiology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Wendland J, Hellwig D, Walther A, Sickinger S, Shadkchan Y, Martin R, Bauer J, Osherov N, Tretiakov A, Saluz HP. Use of the Porcine Intestinal Epithelium (PIE)-Assay to analyze early stages of colonization by the human fungal pathogenCandida albicans. J Basic Microbiol 2006; 46:513-23. [PMID: 17139615 DOI: 10.1002/jobm.200610167] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Virulence of C. albicans strains can be tested using a mouse model of haematogenously disseminated Candida cells. Initial steps of host-pathogen contact such as adhesion and colonization are not taken into account due to the injection of Candida cells into the blood stream. Here we describe an assay, based on the ex vivo usage of porcine intestinal epithelium (PIE), that is useful to monitor the early stages of a C. albicans infection. The ability of C. albicans to undergo morphogenetic switching between yeast and hyphal stages is thought to contribute to its virulence. We found that hyphal formation was required to allow cells to colonize the PIE. The non-filamentous mutant strains efg1/cph1 which lacks two of the central transcription factors that are required to promote hyphal growth and wal1 that carries a deletion of the C. albicans homolog of the human Wiskott-Aldrich Syndrome Protein and is deficient in endocytosis showed only weak adherence. Furthermore, the wal1 mutant was found to be reduced in virulence using the mouse tail vein injection assay. We also analyzed the colonization properties of a variety of other mutant strains carrying deletions of either secreted aspartyl proteinase (SAP)-family genes or amino acid permease encoding genes (GAP1, SSY1, and PUT4). Interestingly, the nag5 strain which lacks an N-acetylglucosamine kinase showed enhanced filamentation and invasive growth as well as increased resistance against farnesol.
Collapse
Affiliation(s)
- Jürgen Wendland
- Leibniz Institute for Natural Products Research and Infection Biology - Hans-Knöll Institute - Junior Research Group: Fungal Pathogens, Jena, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schaub Y, Dünkler A, Walther A, Wendland J. New pFA-cassettes for PCR-based gene manipulation in Candida albicans. J Basic Microbiol 2006; 46:416-29. [PMID: 17009297 DOI: 10.1002/jobm.200510133] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several modules for efficient PCR-based gene disruption have recently been introduced in Candida albicans. These are based on auxotrophic marker genes for deficient strains derived from SC5314/CAI4. Commonly used protocols for the transformation C. albicans are based either on the lithium acetate procedure or on electroporation also used for Saccharomyces cerevisiae. Here we present our updated arsenal of pFA-modules that now include the heterologous marker genes HIS1 from C. dubliniensis and LEU2 from C. maltosa (Noble and Johnson 2005) and the dominant selection marker ca SAT1 (Reuss et al. 2004). We also introduce the Ashbya gossypii TEF1 -promoter as a strong constitutive promoter. With these new elements an enlarged collection of pFA-marker and pFA-marker-promoter modules were generated containing 17 new modules. In addition, N-terminal tagging with GFP-(GA) 6 and epitope-tagging modules using the 6 x-HIS-tag were constructed. This adds to the previous modules that only enabled C-terminal GFP-tagging of genes (Gola et al. 2003). In total 29 pFA-modules are currently freely available from our lab which - together with an update on the diagnostic verification procedure - further enlarge the C. albicans molecular toolbox and enhance our capabilities to use PCR-based gene alteration methods in C. albicans.
Collapse
Affiliation(s)
- Yvonne Schaub
- Growth-Control of Fungal Pathogens, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute and Dept. of Microbiology, Friedrich-Schiller University, Jena
| | | | | | | |
Collapse
|
35
|
Virag A, Harris SD. The Spitzenkörper: a molecular perspective. ACTA ACUST UNITED AC 2006; 110:4-13. [PMID: 16378719 DOI: 10.1016/j.mycres.2005.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 09/24/2005] [Indexed: 11/29/2022]
Abstract
The Spitzenkörper is a dynamic structure present at the tips of hyphal cells with a single highly polarized growth site. It is closely connected with cell morphogenesis and polar growth, and is only present at actively growing sites. Morphogenesis of such highly polarized cells is complex, and requires the coordinated action of multiple protein complexes. We discuss the relevance of these complexes for the structure and function of the Spitzenkörper.
Collapse
Affiliation(s)
- Aleksandra Virag
- Plant Science Initiative, University of Nebraska Lincoln, 1901 Vine Street, Lincoln, NE 68588-0660, USA.
| | | |
Collapse
|
36
|
Abstract
The formation of highly polarized hyphae that grow by apical extension is a defining feature of the filamentous fungi. High-resolution microscopy and mathematical modeling have revealed the importance of the cytoskeleton and the Spitzenkorper (an apical vesicle cluster) in hyphal morphogenesis. However, the underlying molecular mechanisms remain poorly characterized. In this review, the pathways and functions known to be involved in polarized hyphal growth are summarized. A central theme is the notion that the polarized growth of hyphae is more complex than in yeast, though similar sets of core pathways are likely utilized. In addition, a model for the establishment and maintenance of hyphal polarity is presented. Key features of the model include the idea that polarity establishment is a stochastic process that occurs independent of internal landmarks. Moreover, the stabilization of nascent polarity axes may be the critical step that permits the emergence of a new hypha.
Collapse
Affiliation(s)
- Steven D Harris
- Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
37
|
Martin R, Walther A, Wendland J. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. EUKARYOTIC CELL 2005; 4:1712-24. [PMID: 16215178 PMCID: PMC1265897 DOI: 10.1128/ec.4.10.1712-1724.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Formins are downstream effector proteins of Rho-type GTPases and are involved in the organization of the actin cytoskeleton and actin cable assembly at sites of polarized cell growth. Here we show using in vivo time-lapse microscopy that deletion of the Candida albicans formin homolog BNI1 results in polarity defects during yeast growth and hyphal stages. Deletion of the second C. albicans formin, BNR1, resulted in elongated yeast cells with cell separation defects but did not interfere with the ability of bnr1 cells to initiate and maintain polarized hyphal growth. Yeast bni1 cells were swollen, showed an increased random budding pattern, and had a severe defect in cytokinesis, with enlarged bud necks. Induction of hyphal development in bni1 cells resulted in germ tube formation but was halted at the step of polarity maintenance. Bni1-green fluorescent protein is found persistently at the hyphal tip and colocalizes with a structure resembling the Spitzenkörper of true filamentous fungi. Introduction of constitutively active ras1G13V in the bni1 strain or addition of cyclic AMP to the growth medium did not bypass bni1 hyphal growth defects. Similarly, these agents were not able to suppress hyphal growth defects in the wal1 mutant which is lacking the Wiskott-Aldrich syndrome protein (WASP) homolog. These results suggest that the maintenance of polarized hyphal growth in C. albicans requires coordinated regulation of two actin cytoskeletal pathways, including formin-mediated secretion and WASP-dependent endocytosis.
Collapse
Affiliation(s)
- Ronny Martin
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Products Research and Infection Biology, Friedrich-Schiller-University, Beutenbergstr. 11a, D-07745 Jena, Germany
| | | | | |
Collapse
|
38
|
Hausauer DL, Gerami-Nejad M, Kistler-Anderson C, Gale CA. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. EUKARYOTIC CELL 2005; 4:1273-86. [PMID: 16002653 PMCID: PMC1168968 DOI: 10.1128/ec.4.7.1273-1286.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans, the most prevalent fungal pathogen of humans, causes superficial mycoses, invasive mucosal infections, and disseminated systemic disease. Many studies have shown an intriguing association between C. albicans morphogenesis and the pathogenesis process. For example, hyphal cells have been observed to penetrate host epithelial cells at sites of wounds and between cell junctions. Ras- and Rho-type GTPases regulate many morphogenetic processes in eukaryotes, including polarity establishment, cell proliferation, and directed growth in response to extracellular stimuli. We found that the C. albicans Ras-like GTPase Rsr1p and its predicted GTPase-activating protein Bud2p localized to the cell cortex, at sites of incipient daughter cell growth, and provided landmarks for the positioning of daughter yeast cells and hyphal cell branches, similar to the paradigm in the model yeast Saccharomyces cerevisiae. However, in contrast to S. cerevisiae, CaRsr1p and CaBud2p were important for morphogenesis: C. albicans strains lacking Rsr1p or Bud2p had abnormal yeast and hyphal cell shapes and frequent bends and promiscuous branching along the hypha and were unable to invade agar. These defects were associated with abnormal actin patch polarization, unstable polarisome localization at hyphal tips, and mislocalized septin rings, consistent with the idea that GTP cycling of Rsr1p stabilizes the axis of polarity primarily to a single focus, thus ensuring normal cell shape and a focused direction of polarized growth. We conclude that the Rsr1p GTPase functions as a polarity landmark for hyphal guidance and may be an important mediator of extracellular signals during processes such as host invasion.
Collapse
Affiliation(s)
- Danielle L Hausauer
- University of Minnesota, Department of Pediatrics, MMC 39, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
39
|
Dünkler A, Walther A, Specht CA, Wendland J. Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae. Fungal Genet Biol 2005; 42:935-47. [PMID: 16214381 DOI: 10.1016/j.fgb.2005.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 08/10/2005] [Accepted: 08/26/2005] [Indexed: 11/24/2022]
Abstract
Chitin synthesis and chitin degradation play an important role in cellular morphogenesis and influence the cell shape of fungal organisms. The Candida albicans genome contains four chitinase genes, CHT1, CHT2, and CHT3, which are homologous to the Saccharomyces cerevisiae CTS1 gene and C. albicans CHT4, which is homologous to S. cerevisiae CTS2. To determine which of the C. albicans CHT genes represents the functional homolog of the S. cerevisiae CTS1 gene we constructed mutants of these genes and characterized the resulting phenotypes using morphological assays such as in vivo time lapse microscopy and enzymatic assays to determine the chitinase activity. Deletion of CaCHT1 and CaCHT2 provided no phenotypic alterations in liquid culture but resulted in increased hyphal growth on solid media. Deletion of CaCHT3 generated chains of unseparated cells in the yeast growth phase strongly resembling the cts1 deletion phenotype of S. cerevisiae cells. Expression of CHT3 under control of the regulatable MAL2-promoter in C. albicans resulted in the reversion of the cell separation defect when cells were grown in maltose. Cht3, but not Cht2 when expressed in S. cerevisiae was also able to reverse the cell separation defect of the S. cerevisiae c ts1 deletion strain. Measurements of chitinase activity from yeast cells of C. albicans showed that Cht2 is bound to cells, consistent with it being GPI-anchored while Cht3 is secreted into growth medium; Cht3 is also the principal, observed activity.
Collapse
Affiliation(s)
- Alexander Dünkler
- Junior Research Group Growth-control of Fungal Pathogens, Leibniz Institute for Natural Products Research and Infection Biology, Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
40
|
Martin R, Walther A, Wendland J. Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. EUKARYOTIC CELL 2005; 3:1574-88. [PMID: 15590831 PMCID: PMC539012 DOI: 10.1128/ec.3.6.1574-1588.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1.
Collapse
Affiliation(s)
- R Martin
- Hans-Knoell Institute for Natural Products Research e.V. and Friedrich-Schiller-University Department of Microbiology, Hans-Knoell Str.2, D-07745 Jena, Germany
| | | | | |
Collapse
|
41
|
Abstract
Ashbya gossypii is a riboflavin-overproducing filamentous fungus that is closely related to unicellular yeasts such as Saccharomyces cerevisiae. With its close ties to yeast and the ease of genetic manipulation in this fungal species, A. gossypii is well suited as a model to elucidate the regulatory networks that govern the functional differences between filamentous growth and yeast growth, especially now that the A. gossypii genome sequence has been completed. Understanding these networks could be relevant to related dimorphic yeasts such as the human fungal pathogen Candida albicans, in which a switch in morphology from the yeast to the filamentous form in response to specific environmental stimuli is important for virulence.
Collapse
Affiliation(s)
- Jürgen Wendland
- Junior Research Group, Growth-control of Fungal Pathogens, Hans-Knöll Institute for Natural Products Research, Department of Microbiology, Friedrich-Schiller University, Hans-Knöll Strasse 2, D-07745 Jena, Germany.
| | | |
Collapse
|
42
|
Oberholzer U, Iouk TL, Thomas DY, Whiteway M. Functional characterization of myosin I tail regions in Candida albicans. EUKARYOTIC CELL 2005; 3:1272-86. [PMID: 15470256 PMCID: PMC522603 DOI: 10.1128/ec.3.5.1272-1286.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular motor myosin I is required for hyphal growth in the pathogenic yeast Candida albicans. Specific myosin I functions were investigated by a deletion analysis of five neck and tail regions. Hyphal formation requires both the TH1 region and the IQ motifs. The TH2 region is important for optimal hyphal growth. All of the regions, except for the SH3 and acidic (A) regions that were examined individually, were required for the localization of myosin I at the hyphal tip. Similarly, all of the domains were required for the association of myosin I with pelletable actin-bound complexes. Moreover, the hyphal tip localization of cortical actin patches, identified by both rhodamine-phalloidin staining and Arp3-green fluorescent protein signals, was dependent on myosin I. Double deletion of the A and SH3 domains depolarized the distribution of the cortical actin patches without affecting the ability of the mutant to form hyphae, suggesting that myosin I has distinct functions in these processes. Among the six myosin I tail domain mutants, the ability to form hyphae was strictly correlated with endocytosis. We propose that the uptake of cell wall remodeling enzymes and excess plasma membrane is critical for hyphal formation.
Collapse
Affiliation(s)
- Ursula Oberholzer
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 2004; 21:1133-40. [PMID: 15529464 DOI: 10.1002/yea.1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Walther A, Wendland J. Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. J Cell Sci 2004; 117:4947-58. [PMID: 15367585 DOI: 10.1242/jcs.01377] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the Ashbya gossypii Wiskott-Aldrich syndrome-like gene AgWAL1 indicates that it is required for the maintenance of polarized hyphal growth. Growth and organelle dynamics of the wild type and of wal1 and other mutant strains were monitored by in vivo (fluorescence) time-lapse microscopy. Loss of WAL1 led to slow growth and defects in polarized growth that produced swellings in subapical regions, whereas formation of hyphal tips and dichotomous tip branching occurred as in the wild-type. Few actin cables in Agwal1 cells were found to insert into the hyphal tip, but specific clustering of cortical actin patches was observed in subapical regions of hyphal tips instead of at the hyphal apex. Distribution and movement of vacuoles was observed in vivo using FM4-64. In the wild type and in the slowly growing mutant strains bem2 and cla4, which lack a Rho-GTPase-activating protein and a PAK kinase, respectively, early endosomes appeared in the hyphal tip, whereas very few early endosomes and small vacuoles were found in the wal1 mutant hyphal tips, thus linking the cortical patch defect of wal1 hyphae with the distribution of endosomes. Vivid movement of vacuoles seen in the wild type and in the bem2 mutant in subapical regions was largely reduced in the wal1 and cla4 mutants. The tubular structure of mitochondria (as visualized by DIOC6 in vivo) was similar in the wild type and the wal1 mutant, although wal1 mitochondria appeared to be larger. Interestingly, mitochondria were found to insert into the hyphal tips in both strains. Our results indicate a function for Wal1p in filamentous fungi in coordinating actin patch distribution with polarized hyphal tip growth.
Collapse
Affiliation(s)
- Andrea Walther
- Junior Research Group: Growth-control of Fungal Pathogens, Hans-Knöll Institute for Natural Products Research, Friedrich-Schiller University, Hans-Knöll Strasse 2, 07745 Jena, Germany
| | | |
Collapse
|
45
|
Abstract
The human fungal pathogen Candida albicans has many morphological forms. Recent advances in genomics and cell biology are providing an improved understanding of the molecular regulation of cell shape, and providing insights into the relationships between morphogenesis and virulence. This understanding may improve our ability to develop strategies to combat Candida infections.
Collapse
Affiliation(s)
- Malcolm Whiteway
- Health Sector, Biotechnology Research Institute, 6100 Royalmount, Montreal, H4P 2R2, Canada.
| | | |
Collapse
|