1
|
Zou Z, Chen X, Weng X, Guo Y, Guan Y, Zhang L. Rho4 interacts with BbGDI and is essential for the biocontrol potential of Beauveria bassiana by maintaining intracellular redox homeostasis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106145. [PMID: 39477598 DOI: 10.1016/j.pestbp.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 11/07/2024]
Abstract
Rho4 is a member of the Rho-family small GTPases. In this study, we revealed the function of Rho4 and explored its mechanism involved in intracellular redox homeostasis in Beauveria bassiana, one of the most widely utilized filamentous entomopathogenic fungi. The disruption of Rho4 in B. bassiana resulted in significant phenotypic changes, such as fungal virulence, growth rate on different media, thermotolerance, germination, and conidiation. Integrated analysis of proteomic and transcriptomic data unveiled differential expression patterns of various redox-related genes and proteins in Δrho4, including the down-regulation of GST shown in proteomic and transcriptomic data, and the down-regulated gene expression levels of NOX, SOD, CAT, and GR in the transcriptome. Based on the bi-omics analysis, we focused on the impact of Rho4 in maintaining intracellular redox homeostasis. A decreased ROS content observed in Δrho4 might be attributed to the reduced NOX activity, which subsequently affects the GSH-producing/consuming metabolisms, with the attenuated activities of GR and GST. The imbalanced redox homeostasis also resulted in the reduced enzyme activities of SOD and CAT. Exogenous oxides could partially complement the ROS level and rescue the growth defect in Δrho4 to a certain extent. Besides, BbGDI was initially identified as an interacting protein of Rho4 in entomopathogenic fungi. Our results provide a comprehensive understanding of the function and regulating mechanism of Rho4 in B. bassiana.
Collapse
Affiliation(s)
- Zhenyu Zou
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xiaonuo Chen
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Xiaojun Weng
- Fuzhou Longxiang Shengke Technologies Limited, Fuzhou 350001, China.
| | - Yuhan Guo
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; National University of Singapore, Singapore 117544, Singapore.
| | - Longbin Zhang
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
2
|
Ornelas-Llamas MM, Pérez-Mozqueda LL, Callejas-Negrete OA, Castro-Longoria E. RHO-3 plays a significant role in hyphal extension rate, conidiation, and the integrity of the Spitzenkörper in Neurospora crassa. Fungal Genet Biol 2024; 171:103873. [PMID: 38266703 DOI: 10.1016/j.fgb.2024.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
The Rho family of monomeric GTPases act as signaling proteins to establish and maintain cell polarity and other essential cellular processes. Rho3 is a GTPase of the Rho family that is exclusive of fungi that regulate cell polarity in yeast. However, studies have yet to explore its function in filamentous fungi. In this work, we investigated the role of RHO-3 in the model organism Neurospora crassa. Confocal microscopy analysis revealed that RHO-3 localizes in the outer region of the Spitzenkörper (Spk), in the plasma membrane from region II to the beginning of region III, and in the septa of mature hyphae. The phenotypic effect of the rho-3 deletion was analyzed. The results revealed that the rho-3 null strain showed severe defects in growth rate, aerial hyphae length, and conidia production. The organization of the Spk is also affected in the absence of RHO-3. Co-expression analysis of GFP-RHO-3 with glucan synthase 1 (GS-1-mChFP) and chitin synthase 1 (CHS-1-mChFP) revealed that RHO-3 localizes in the external region of the Spk in the macrovesicles zone. In summary, our results suggest that RHO-3 is not essential for the polarized growth of hyphae but plays a significant role in hyphal extension rate, conidiation, sexual reproduction and the integrity of the Spk, possibly regulating the delivery of macrovesicles to the apical dome.
Collapse
Affiliation(s)
- Martha M Ornelas-Llamas
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Luis L Pérez-Mozqueda
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico; Center for Wine and Vine Studies (CEVIT), Technical and Higher Education Center (CETYS), Ensenada, Baja California, Mexico
| | - Olga A Callejas-Negrete
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico.
| |
Collapse
|
3
|
The Small Ras Superfamily GTPase Rho4 of the Maize Anthracnose Fungus Colletotrichum graminicola Is Required for β-1,3-glucan Synthesis, Cell Wall Integrity, and Full Virulence. J Fungi (Basel) 2022; 8:jof8100997. [PMID: 36294561 PMCID: PMC9604917 DOI: 10.3390/jof8100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Small Ras superfamily GTPases are highly conserved regulatory factors of fungal cell wall biosynthesis and morphogenesis. Previous experiments have shown that the Rho4-like protein of the maize anthracnose fungus Colletotrichum graminicola, formerly erroneously annotated as a Rho1 protein, physically interacts with the β-1,3-glucan synthase Gls1 (Lange et al., 2014; Curr. Genet. 60:343–350). Here, we show that Rho4 is required for β-1,3-glucan synthesis. Accordingly, Δrho4 strains formed distorted vegetative hyphae with swellings, and exhibited strongly reduced rates of hyphal growth and defects in asexual sporulation. Moreover, on host cuticles, conidia of Δrho4 strains formed long hyphae with hyphopodia, rather than short germ tubes with appressoria. Hyphopodia of Δrho4 strains exhibited penetration defects and often germinated laterally, indicative of cell wall weaknesses. In planta differentiated infection hyphae of Δrho4 strains were fringy, and anthracnose disease symptoms caused by these strains on intact and wounded maize leaf segments were significantly weaker than those caused by the WT strain. A retarded disease symptom development was confirmed by qPCR analyses. Collectively, we identified the Ras GTPase Rho4 as a new virulence factor of C. graminicola.
Collapse
|
4
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
5
|
Plaza V, Silva-Moreno E, Castillo L. Breakpoint: Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection. Curr Protein Pept Sci 2021; 21:227-244. [PMID: 31490745 DOI: 10.2174/1389203720666190906165111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/17/2019] [Indexed: 01/09/2023]
Abstract
The cell wall that surrounds fungal cells is essential for their survival, provides protection against physical and chemical stresses, and plays relevant roles during infection. In general, the fungal cell wall is composed of an outer layer of glycoprotein and an inner skeletal layer of β-glucans or α- glucans and chitin. Chitin synthase genes have been shown to be important for septum formation, cell division and virulence. In the same way, chitin can act as a potent elicitor to activate defense response in several plant species; however, the fungi can convert chitin to chitosan during plant infection to evade plant defense mechanisms. Moreover, α-1,3-Glucan, a non-degradable polysaccharide in plants, represents a key feature in fungal cell walls formed in plants and plays a protective role for this fungus against plant lytic enzymes. A similar case is with β-1,3- and β-1,6-glucan which are essential for infection, structure rigidity and pathogenicity during fungal infection. Cell wall glycoproteins are also vital to fungi. They have been associated with conidial separation, the increase of chitin in conidial cell walls, germination, appressorium formation, as well as osmotic and cell wall stress and virulence; however, the specific roles of glycoproteins in filamentous fungi remain unknown. Fungi that can respond to environmental stimuli distinguish these signals and relay them through intracellular signaling pathways to change the cell wall composition. They play a crucial role in appressorium formation and penetration, and release cell wall degrading enzymes, which determine the outcome of the interaction with the host. In this review, we highlight the interaction of phypatophogen cell wall and signaling pathways with its host and their contribution to fungal pathogenesis.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | - Evelyn Silva-Moreno
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
6
|
Actin Is Required for Cellular Development and Virulence of Botrytis cinerea via the Mediation of Secretory Proteins. mSystems 2020; 5:5/1/e00732-19. [PMID: 32098836 PMCID: PMC7043344 DOI: 10.1128/msystems.00732-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cytoskeleton is an important network that exists in cells of all domains of life. In eukaryotic cells, actin is a vital component of the cytoskeleton. Here, we report that BcactA, an actin protein in B. cinerea, can affect the growth, sporulation, and virulence of B. cinerea. Furthermore, iTRAQ-based proteomic analysis showed that BcactA affects the abundance of 40 extracellular proteins, including 11 down-accumulated CWDEs. Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), contributed to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating extracellular virulence factors. These findings unveil previously unknown functions of BcactA in mediating growth, sporulation, and virulence of B. cinerea. Actin is a vital component of the cytoskeleton of living cells and is involved in several complex processes. However, its functions in plant-pathogenic fungi are largely unknown. In this paper, we found that deletion of the Botrytis cinerea actin gene bcactA reduced growth and sporulation of B. cinerea and lowered virulence. Based on iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analysis, we compared changes of the secretome in ΔbcactA and wild-type strains. A total of 40 proteins exhibited significant differences in abundance in ΔbcactA mutants compared with the wild type. These proteins included 11 down-accumulated cell wall-degrading enzymes (CWDEs). Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), were found to contribute to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating the secretion of extracellular virulence factors. These findings unveil previously unknown functions of BcactA to mediate the virulence of B. cinerea and provide new mechanistic insights into the role of BcactA in the complex pathogenesis of B. cinerea. IMPORTANCE The cytoskeleton is an important network that exists in cells of all domains of life. In eukaryotic cells, actin is a vital component of the cytoskeleton. Here, we report that BcactA, an actin protein in B. cinerea, can affect the growth, sporulation, and virulence of B. cinerea. Furthermore, iTRAQ-based proteomic analysis showed that BcactA affects the abundance of 40 extracellular proteins, including 11 down-accumulated CWDEs. Among them, two CWDEs, cellobiohydrolase (BcCBH) and β-endoglucanase (BcEG), contributed to the virulence of B. cinerea, indicating that bcactA plays a crucial role in regulating extracellular virulence factors. These findings unveil previously unknown functions of BcactA in mediating growth, sporulation, and virulence of B. cinerea.
Collapse
|
7
|
Wang Q, Coleman JJ. CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum. Fungal Genet Biol 2019; 126:17-24. [PMID: 30738140 DOI: 10.1016/j.fgb.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
Abstract
Fusarium oxysporum is an economically important pathogen that widely exists in the environment and is capable of causing serious problems in crop production and animal/human health. One important step for characterization of a fungal protein with an unknown function is to determine its subcellular localization within the cell. To facilitate the study of important functional regulators or key virulence factors, we developed a CRISPR/Cas9-mediated endogenous gene tagging (EGT) system based on two different strategies, homology-independent targeted integration (HITI) and homology-dependent recombination integration (HDRI). The HITI strategy was able to facilitate integration of a large DNA fragment, ∼8 kb in length, into the genome of F. oxysporum at the sgRNA cleavage site, and was used to insert a C-terminal 3×sGFP tag to the FoCHS5 gene and a N-terminal mCherry tag to the FoSSO2 gene. The HDRI strategy was used to tag the paralogous gene, FoSSO1, with a C-terminal mCherry marker. FoChs5-3×sGFP localized to conidia, some septa, and fungal tips. A majority of the FoSso1-mCherry was distributed in the conidia, septum, and hyphae that were distal from the fungal tips. While FoSso1-mCherry showed a very weak fluorescent signal at the fungal tips, mCherry-FoSso2 accumulated in the plasma membrane of conidia, germlings, fungal tips, hyphae, and phialides, suggesting FoSSO1 and FoSSO2 are regulated differently during fungal development. These results indicate this EGT system is efficient and can be another molecular tool to resolve the function(s) of proteins and infection strategies of F. oxysporum.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn Alabama 36849, United States
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn Alabama 36849, United States.
| |
Collapse
|
8
|
Fu T, Kim JO, Han JH, Gumilang A, Lee YH, Kim KS. A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2018; 34:470-479. [PMID: 30588220 PMCID: PMC6305172 DOI: 10.5423/ppj.oa.04.2018.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 05/15/2023]
Abstract
The rice blast pathogen Magnaporthe oryzae is a global threat to rice production. Here we characterized RHO2 gene (MGG_02457) that belongs to the Rho GTPase family, using a deletion mutant. This mutant ΔMorho2 exhibited no defects in conidiation and germination but developed only 6% of appressoria in response to a hydrophobic surface when compared to the wild-type progenitor. This result indicates that MoRHO2 plays a role in appressorium development. Furthermore, exogenous cAMP treatment on the mutant led to appressoria that exhibited abnormal morphology on both hydrophobic and hydrophilic surfaces. These outcomes suggested the involvement of MoRHO2 in cAMP-mediated appressorium development. ΔMorho2 mutation also delayed the development of appressorium-like structures (ALS) at hyphal tips on hydrophobic surface, which were also abnormally shaped. These results suggested that MoRHO2 is involved in morphological development of appressoria and ALS from conidia and hyphae, respectively. As expected, ΔMorho2 mutant was defective in plant penetration, but was still able to cause lesions, albeit at a reduced rate on wounded plants. These results implied that MoRHO2 plays a role in M. oryzae virulence as well.
Collapse
Affiliation(s)
- Teng Fu
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Joon-Oh Kim
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Joon-Hee Han
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Adiyantara Gumilang
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, and Center for Fungal Genetic Resources, Seoul National University, Seoul 08826,
Korea
| | - Kyoung Su Kim
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
- Corresponding author: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
9
|
Jackson-Hayes L, Atiq Z, Betton B, Freyaldenhoven WT, Myers L, Olsen E, Hill TW. Aspergillus nidulans protein kinase C forms a complex with the formin SepA that is involved in apical growth and septation. Fungal Genet Biol 2018; 122:21-30. [PMID: 30391723 DOI: 10.1016/j.fgb.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 10/27/2022]
Abstract
The Aspergillus nidulans orthologue of Protein kinase C (PkcA) and the A. nidulans formin SepA participate in polarized growth. PkcA localizes to growing hyphal apices and septation sites, and amino acid sequences within PkcA that are required for PkcA to localize to these sites of cell wall synthesis have been identified. SepA is associated with the contractile actomyosin ring (CAR), and it localizes at hyphal tips in association with the Spitzenkörper (SPK) and as an apical dome. A mutation in the sepA gene (sepA1) renders A. nidulans aseptate at elevated temperature. Progress towards understanding the spatiotemporal relationship between PkcA and SepA during polarized growth is presented here. Fluorescent chimeras of PkcA and SepA strongly overlapped in some hyphal tips in a dome pattern, while other tips displayed SepA SPK and PkcA dome localization within the same tip. At septation sites PkcA and SepA consistently colocalized through late stages of CAR constriction. Bimolecular fluorescence complementation experimental results provide evidence that SepA and PkcA are both present in complexes at both hyphal tip domes and at cortical rings. A Gal4-based yeast two-hybrid analysis confirmed the physical interaction between SepA and PkcA, and indicted that the FH2 domain of SepA is involved in its physical interaction with PkcA. A functional interaction between PkcA and SepA was shown through complementation of the pkcA calC2 mutant's hypersensitivity to cell wall perturbing agents by overexpressed sepA and by the ability of the sepA1 mutation to block PkcA's ability to form cortical rings. Taken together these results suggest that a PkcA/SepA complex is involved in polarized growth. Through experiments using the actin disrupter latrunculin B, evidence is presented suggesting that actin plays a role in the PkcA/SepA complex.
Collapse
Affiliation(s)
- Loretta Jackson-Hayes
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA.
| | - Zainab Atiq
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Brianna Betton
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - W Toler Freyaldenhoven
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Lance Myers
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Elisabet Olsen
- Department of Chemistry, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| | - Terry W Hill
- Biochemistry and Molecular Biology Program, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA; Department of Biology, Rhodes College, 2000 N. Parkway, Memphis, TN 38112, USA
| |
Collapse
|
10
|
Zhang C, Luo Z, He D, Su L, Yin H, Wang G, Liu H, Rensing C, Wang Z. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Fusarium graminearum. Front Microbiol 2018; 9:1209. [PMID: 29930543 PMCID: PMC5999796 DOI: 10.3389/fmicb.2018.01209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/17/2018] [Indexed: 11/24/2022] Open
Abstract
Rho GTPases are signaling macromolecules that are associated with developmental progression and pathogenesis of Fusarium graminearum. Generally, enzymatic activities of Rho GTPases are regulated by Rho GTPase guanine nucleotide exchange factors (RhoGEFs). In this study, we identified a putative RhoGEF encoding gene (FgBUD3) in F. graminearum database and proceeded further by using a functional genetic approach to generate FgBUD3 targeted gene deletion mutant. Phenotypic analysis results showed that the deletion of FgBUD3 caused severe reduction in growth of FgBUD3 mutant generated during this study. We also observed that the deletion of FgBUD3 completely abolished sexual reproduction and triggered the production of abnormal asexual spores with nearly no septum in ΔFgbud3 strain. Further results obtained from infection assays conducted during this research revealed that the FgBUD3 defective mutant lost its pathogenicity on wheat and hence, suggests FgBud3 plays an essential role in the pathogenicity of F. graminearum. Additional, results derived from yeast two-hybrid assays revealed that FgBud3 strongly interacted with FgRho4 compared to the interaction with FgRho2, FgRho3, and FgCdc42. Moreover, we found that FgBud3 interacted with both GTP-bound and GDP-bound form of FgRho4. From these results, we subsequently concluded that, the Rho4-interacting GEF protein FgBud3 crucially promotes vegetative growth, asexual and sexual development, cell division and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Chengkang Zhang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zenghong Luo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongdong He
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Su
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Yin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guo Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.,J. Craig Venter Institute, La Jolla, CA, United States
| | - Zonghua Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
12
|
Harris SD. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 2017; 100:823-32. [DOI: 10.3852/08-177] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven D. Harris
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
13
|
Xu X, Wang Y, Tian C, Liang Y. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet Biol 2016; 96:12-24. [PMID: 27670809 DOI: 10.1016/j.fgb.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022]
Abstract
Rho GTPases regulate morphology and multiple cellular functions such as asexual development, polarity establishment, and differentiation in fungi. To determine the roles of CgRhoB, a Rho GTPase protein, here we characterized CgRhoB in the poplar anthracnose fungus Colletotrichum gloeosporioides. First of all, we determined that conidial germination was inhibited and intracellular cyclic AMP (cAMP) level was increased in the CgRhoB deletion mutants. Loss of CgRhoB resulted in shorter germ tubes and enhanced appressoria formation after germination on the hydrophobic surface. Exogenous addition of cAMP to the wild type generated the similar phenotypes of ΔCgRhoB inoculated in CM liquid. Furthermore, deletion of CgRhoB had discernible effect upon the sensitivity of C. gloeosporioides to cell wall perturbing agents and altered the distribution of chitin on the cell wall. H2O2 sensitivity assay showed the hypersensitive effect on the oxidative stress, and transcriptional analysis revealed that transcription of genes involved in peroxidase activities was altered in the mutants. Finally, virulence assay revealed that CgRhoB was required for pathogenicity. Taken together, our results showed that CgRhoB was associated with appressoria formation and pathogenicity, and affected cAMP level and stress pathways.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing, China.
| |
Collapse
|
14
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Pérez P, Portales E, Santos B. Rho4 interaction with exocyst and septins regulates cell separation in fission yeast. MICROBIOLOGY-SGM 2015; 161:948-959. [PMID: 25724972 DOI: 10.1099/mic.0.000062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Rho GTPases are small proteins present in all eukaryotic cells, from yeast to mammals, with a function in actin organization and morphogenetic processes. Schizosaccharomyces pombe Rho4 is not essential but it displays a role during cell separation at high temperature. In fact, Rho4 is involved in the secretion of the hydrolytic enzymes that are required for cell septum degradation during this process. In rho4Δ cells, vesicles accumulate in the septum area and the glucanases Eng1 and Agn1 are not secreted to the culture medium. The localization of Eng1 and Agn1 depends on the exocyst and the septins. The exocyst is a conserved multiprotein complex important for the targeting and fusion of Golgi-derived vesicles with the plasma membrane. Septins are a family of GTP-binding proteins conserved in eukaryotes that function during cytokinesis. Here we show that Rho4 is required for the proper localization of the exocyst and septins at high temperature. Moreover, pull-down experiments demonstrate that Rho4 can interact with exocyst subunits, such as Sec8 and Exo70, and septin proteins, such as Spn3. We observe that Sec8 preferentially binds to activated GTP-Rho4, suggesting that Sec8 could be an effector of this GTPase. We propose that the interaction of Rho4 with the exocyst and septins confers a precise regulation for the secretion of glucanases at the appropriate place and time during the cell cycle.
Collapse
Affiliation(s)
- Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| | - Elvira Portales
- Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| | - Beatriz Santos
- Departamento de Microbiología y Genética, Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain.,Instituto de Biología Funcional y Genómica (IBFG), CSIC/Universidad de Salamanca, Avd. Zacarías González s/n, 37007 Salamanca, Spain
| |
Collapse
|
16
|
Ruiz-Roldán C, Pareja-Jaime Y, González-Reyes JA, Roncero MIG. The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:55-68. [PMID: 25271883 DOI: 10.1094/mpmi-07-14-0205-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe oryzae Con7p, Con7-1, plus two identical copies of Con7-2. Targeted deletion of con7-1 produced nonpathogenic mutants with altered morphogenesis, including defects in cell wall structure, polar growth, hyphal branching, and conidiation. By contrast, simultaneous inactivation of both con7-2 copies caused no detectable defects in the resulting mutants. Comparative microarray-based gene expression analysis indicated that Con7-1 modulates the expression of a large number of genes involved in different biological functions, including host-pathogen interactions, morphogenesis and development, signal perception and transduction, transcriptional regulation, and primary and secondary metabolism. Taken together, our results point to Con7-1 as general regulator of morphogenesis and virulence in F. oxysporum.
Collapse
|
17
|
Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 2014; 9:e110603. [PMID: 25333968 PMCID: PMC4204872 DOI: 10.1371/journal.pone.0110603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 01/01/2023] Open
Abstract
Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.
Collapse
Affiliation(s)
- Jennifer L. Chinnici
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Ci Fu
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Lauren M. Caccamise
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Jason W. Arnold
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Protein phosphatase 2A (PP2A) regulatory subunits ParA and PabA orchestrate septation and conidiation and are essential for PP2A activity in Aspergillus nidulans. EUKARYOTIC CELL 2014; 13:1494-506. [PMID: 25280816 DOI: 10.1128/ec.00201-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4',6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans.
Collapse
|
19
|
Rho GTPase-phosphatidylinositol phosphate interplay in fungal cell polarity. Biochem Soc Trans 2014; 42:206-11. [PMID: 24450653 DOI: 10.1042/bst20130226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rho G-proteins and phosphatidylinositol phosphates, which are important for exocytosis, endocytosis and cytoskeleton organization, are key regulators of polarized growth in a range of organisms. The aim of the present brief review is to highlight recent findings and their implications with respect to the functions and interplay between Rho G-proteins and phosphatidylinositol phosphates in highly polarized fungal filamentous growth.
Collapse
|
20
|
Qiu L, Wang JJ, Ying SH, Feng MG. Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance ofBeauveria bassianaby balancing cell cycle-required cyclin-dependent kinase 1 activity. Environ Microbiol 2014; 17:1119-33. [DOI: 10.1111/1462-2920.12530] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lei Qiu
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Juan-Juan Wang
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Sheng-Hua Ying
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou Zhejiang 310058 China
| |
Collapse
|
21
|
Delgado-Álvarez DL, Bartnicki-García S, Seiler S, Mouriño-Pérez RR. Septum development in Neurospora crassa: the septal actomyosin tangle. PLoS One 2014; 9:e96744. [PMID: 24800890 PMCID: PMC4011870 DOI: 10.1371/journal.pone.0096744] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 12/05/2022] Open
Abstract
Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa.
Collapse
Affiliation(s)
- Diego Luis Delgado-Álvarez
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| | - Salomón Bartnicki-García
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología, Centro de Educación Científica y de Educación Superior de Ensenada, Ensenada, B. C. México
| |
Collapse
|
22
|
Proper actin ring formation and septum constriction requires coordinated regulation of SIN and MOR pathways through the germinal centre kinase MST-1. PLoS Genet 2014; 10:e1004306. [PMID: 24762679 PMCID: PMC3998894 DOI: 10.1371/journal.pgen.1004306] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/25/2014] [Indexed: 12/17/2022] Open
Abstract
Nuclear DBF2p-related (NDR) kinases constitute a functionally conserved protein family of eukaryotic regulators that control cell division and polarity. In fungi, they function as effector kinases of the morphogenesis (MOR) and septation initiation (SIN) networks and are activated by pathway-specific germinal centre (GC) kinases. We characterized a third GC kinase, MST-1, that connects both kinase cascades. Genetic and biochemical interactions with SIN components and life cell imaging identify MST-1 as SIN-associated kinase that functions in parallel with the GC kinase SID-1 to activate the SIN-effector kinase DBF-2. SID-1 and MST-1 are both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner. Aberrant cortical actomyosin rings are formed in Δmst-1, which resulted in mis-positioned septa and irregular spirals, indicating that MST-1-dependent regulation of the SIN is required for proper formation and constriction of the septal actomyosin ring. However, MST-1 also interacts with several components of the MOR network and modulates MOR activity at multiple levels. MST-1 functions as promiscuous enzyme and also activates the MOR effector kinase COT-1 through hydrophobic motif phosphorylation. In addition, MST-1 physically interacts with the MOR kinase POD-6, and dimerization of both proteins inactivates the GC kinase hetero-complex. These data specify an antagonistic relationship between the SIN and MOR during septum formation in the filamentous ascomycete model Neurospora crassa that is, at least in part, coordinated through the GC kinase MST-1. The similarity of the SIN and MOR pathways to the animal Hippo and Ndr pathways, respectively, suggests that intensive cross-communication between distinct NDR kinase modules may also be relevant for the homologous NDR kinases of higher eukaryotes. Cytokinesis is a fundamental cellular process essential for cell proliferation of uni- and multicellular organisms. The molecular pathways that regulate cytokinesis are highly complex and involve a large number of components that form elaborate interactive networks. The fungal septation initiation network (SIN) functions as tripartite kinase cascade that connects cell cycle progression with the control of cell division. Mis-regulation of the homologous Hippo pathway in animals results in excessive proliferation and formation of tumors, underscoring the conservation and importance of these kinase networks. A second morphogenesis (MOR) pathway involves homologous components and is controlling cell polarity in fungi and higher eukaryotes. Here we show that the promiscuous functioning Ste20-related kinase MST-1 has a dual role in regulating SIN and MOR network function. Moreover, SIN and MOR coordination through MST-1 can be achieved in an enzyme-independent manner through hetero-dimerization of germinal centre kinases, providing an additional level for activity regulation of signaling networks that is not dependent on phosphate transfer. Given the functional conservation of NDR kinase signaling modules and their regulation, our work may define general mechanisms by which NDR kinase pathway are coordinated in fungi and higher eukaryotes.
Collapse
|
23
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Zhang C, Wang Y, Wang J, Zhai Z, Zhang L, Zheng W, Zheng W, Yu W, Zhou J, Lu G, Shim WB, Wang Z. Functional characterization of Rho family small GTPases in Fusarium graminearum. Fungal Genet Biol 2013; 61:90-9. [DOI: 10.1016/j.fgb.2013.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
|
25
|
Heilig Y, Schmitt K, Seiler S. Phospho-regulation of the Neurospora crassa septation initiation network. PLoS One 2013; 8:e79464. [PMID: 24205386 PMCID: PMC3804505 DOI: 10.1371/journal.pone.0079464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/28/2013] [Indexed: 01/04/2023] Open
Abstract
Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.
Collapse
Affiliation(s)
- Yvonne Heilig
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Stephan Seiler
- Institute for Biology II – Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
26
|
Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleißner A, Valerius O, Seiler S. HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 2013; 90:796-812. [PMID: 24028079 DOI: 10.1111/mmi.12399] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2013] [Indexed: 12/20/2022]
Abstract
Intercellular communication and somatic cell fusion are important for fungal colony establishment, multicellular differentiation and have been associated with host colonization and virulence of pathogenic species. By a combination of genetic, biochemical and live cell imaging techniques, we characterized the Neurospora crassa STRIPAK complex that is essential for self-signalling and consists of the six proteins HAM-2/STRIP, HAM-3/striatin, HAM-4/SLMAP, MOB-3/phocein, PPG-1/PP2A-C and PP2A-A. We describe that the core STRIPAK components HAM-2 and HAM-3 are central for the assembly of the complex at the nuclear envelope, while the phosphatase PPG-1 only transiently associates with this central subcomplex. Our data connect the STRIPAK complex with two MAP kinase pathways: (i) nuclear accumulation of the cell wall integrity MAP kinase MAK-1 depends on the functional integrity of the STRIPAK complex at the nuclear envelope, and (ii) phosphorylation of MOB-3 by the MAP kinase MAK-2 impacts the nuclear accumulation of MAK-1. In summary, these data support a model, in which MAK-2-dependent phosphorylation of MOB-3 is part of a MAK-1 import mechanism. Although self-communication remained intact in the absence of nuclear MAK-1 accumulation, supporting the presence of multiple mechanisms that co-ordinate robust intercellular communication, proper fruiting body morphology was dependent on the MAK-2-phosphorylated N-terminus of MOB-3.
Collapse
Affiliation(s)
- Anne Dettmann
- Institute for Biology II - Molecular Plant Physiology, Albert-Ludwigs University Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Gong T, Liao Y, He F, Yang Y, Yang DD, Chen XD, Gao XD. Control of polarized growth by the Rho family GTPase Rho4 in budding yeast: requirement of the N-terminal extension of Rho4 and regulation by the Rho GTPase-activating protein Bem2. EUKARYOTIC CELL 2013; 12:368-77. [PMID: 23264647 PMCID: PMC3571307 DOI: 10.1128/ec.00277-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, Rho4 GTPase partially plays a redundant role with Rho3 in the control of polarized growth, as deletion of RHO4 and RHO3 together, but not RHO4 alone, caused lethality and a loss of cell polarity at 30°C. Here, we show that overexpression of the constitutively active rho4(Q131L) mutant in an rdi1Δ strain caused a severe growth defect and generated large, round, unbudded cells, suggesting that an excess of Rho4 activity could block bud emergence. We also generated four temperature-sensitive rho4-Ts alleles in a rho3Δ rho4Δ strain. These mutants showed growth and morphological defects at 37°C. Interestingly, two rho4-Ts alleles contain mutations that cause amino acid substitutions in the N-terminal region of Rho4. Rho4 possesses a long N-terminal extension that is unique among the six Rho GTPases in the budding yeast but is common in Rho4 homologs in other yeasts and filamentous fungi. We show that the N-terminal extension plays an important role in Rho4 function since rho3Δ rho4(Δ)(61) cells expressing truncated Rho4 lacking amino acids (aa) 1 to 61 exhibited morphological defects at 24°C and a growth defect at 37°C. Furthermore, we show that Rho4 interacts with Bem2, a Rho GTPase-activating protein (RhoGAP) for Cdc42 and Rho1, by yeast two-hybrid, bimolecular fluorescence complementation (BiFC), and glutathione S-transferase (GST) pulldown assays. Bem2 specifically interacts with the GTP-bound form of Rho4, and the interaction is mediated by its RhoGAP domain. Overexpression of BEM2 aggravates the defects of rho3Δ rho4 mutants. These results suggest that Bem2 might be a novel GAP for Rho4.
Collapse
Affiliation(s)
- Ting Gong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Richthammer C, Enseleit M, Sanchez-Leon E, März S, Heilig Y, Riquelme M, Seiler S. RHO1 and RHO2 share partially overlapping functions in the regulation of cell wall integrity and hyphal polarity in Neurospora crassa. Mol Microbiol 2012; 85:716-33. [DOI: 10.1111/j.1365-2958.2012.08133.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS. Ras and Rho small G proteins: insights from the Schizophyllum commune genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 2012; 28:61-100. [PMID: 22616482 DOI: 10.5661/bger-28-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Unlike in animal cells and yeasts, the Ras and Rho small G proteins and their regulators have not received extensive research attention in the case of the filamentous fungi. In an effort to begin to rectify this deficiency, the genome sequence of the basidiomycete mushroom Schizophyllum commune was searched for all known components of the Ras and Rho signalling pathways. The results of this study should provide an impetus for further detailed investigations into their role in polarized hyphal growth, sexual reproduction and fruiting body development. These processes have long been the targets for genetic and cell biological research in this fungus.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biology, University of Turku, Biocity A, Tykistökatu 6A, FI-20520 Turku, Finland
| | | | | | | | | |
Collapse
|
32
|
Calvert MEK, Wright GD, Leong FY, Chiam KH, Chen Y, Jedd G, Balasubramanian MK. Myosin concentration underlies cell size-dependent scalability of actomyosin ring constriction. ACTA ACUST UNITED AC 2012; 195:799-813. [PMID: 22123864 PMCID: PMC3257563 DOI: 10.1083/jcb.201101055] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rate of actomyosin ring constriction in cells of different sizes correlates with myosin motor concentration in Neurospora crassa cells, leading to increased division rates in larger cells during cytokinesis. In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types.
Collapse
Affiliation(s)
- Meredith E K Calvert
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore 117604.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lichius A, Yáñez-Gutiérrez ME, Read ND, Castro-Longoria E. Comparative live-cell imaging analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa reveal novel features of the filamentous fungal polarisome. PLoS One 2012; 7:e30372. [PMID: 22291944 PMCID: PMC3265482 DOI: 10.1371/journal.pone.0030372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.
Collapse
Affiliation(s)
- Alexander Lichius
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mario E. Yáñez-Gutiérrez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
- * E-mail:
| |
Collapse
|
34
|
Araujo-Palomares CL, Richthammer C, Seiler S, Castro-Longoria E. Functional characterization and cellular dynamics of the CDC-42 - RAC - CDC-24 module in Neurospora crassa. PLoS One 2011; 6:e27148. [PMID: 22087253 PMCID: PMC3210136 DOI: 10.1371/journal.pone.0027148] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/11/2011] [Indexed: 11/18/2022] Open
Abstract
Rho-type GTPases are key regulators that control eukaryotic cell polarity, but their role in fungal morphogenesis is only beginning to emerge. In this study, we investigate the role of the CDC-42 – RAC – CDC-24 module in Neurospora crassa. rac and cdc-42 deletion mutants are viable, but generate highly compact colonies with severe morphological defects. Double mutants carrying conditional and loss of function alleles of rac and cdc-42 are lethal, indicating that both GTPases share at least one common essential function. The defects of the GTPase mutants are phenocopied by deletion and conditional alleles of the guanine exchange factor (GEF) cdc-24, and in vitro GDP-GTP exchange assays identify CDC-24 as specific GEF for both CDC-42 and RAC. In vivo confocal microscopy shows that this module is organized as membrane-associated cap that covers the hyphal apex. However, the specific localization patterns of the three proteins are distinct, indicating different functions of RAC and CDC-42 within the hyphal tip. CDC-42 localized as confined apical membrane-associated crescent, while RAC labeled a membrane-associated ring excluding the region labeled by CDC42. The GEF CDC-24 occupied a strategic position, localizing as broad apical membrane-associated crescent and in the apical cytosol excluding the Spitzenkörper. RAC and CDC-42 also display distinct localization patterns during branch initiation and germ tube formation, with CDC-42 accumulating at the plasma membrane before RAC. Together with the distinct cellular defects of rac and cdc-42 mutants, these localizations suggest that CDC-42 is more important for polarity establishment, while the primary function of RAC may be maintaining polarity. In summary, this study identifies CDC-24 as essential regulator for RAC and CDC-42 that have common and distinct functions during polarity establishment and maintenance of cell polarity in N. crassa.
Collapse
Affiliation(s)
- Cynthia L. Araujo-Palomares
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada Baja California, México
| | - Corinna Richthammer
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany
| | - Stephan Seiler
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany
- * E-mail: (SS); (EC-L)
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada Baja California, México
- * E-mail: (SS); (EC-L)
| |
Collapse
|
35
|
Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2011; 9:876-87. [PMID: 22048737 DOI: 10.1038/nrmicro2666] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
36
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
37
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
38
|
Harris SD. Hyphal morphogenesis: an evolutionary perspective. Fungal Biol 2011; 115:475-84. [PMID: 21640312 DOI: 10.1016/j.funbio.2011.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 12/20/2022]
Abstract
Two modes of cellular morphogenesis predominate within the fungal kingdom; yeast growth and hyphal growth. The availability of complete genome sequences that span the kingdom has made possible the use of comparative approaches that address important questions regarding the evolution of these growth modes. These comparisons have also emphasized the point that not all hyphae are the same despite outward appearances. Topics considered here include the origins of hyphal growth, as well as the potential causes of and the consequences resulting from the loss of hyphal growth in yeast lineages. The mechanisms that enable distinct morphological outputs (i.e., yeast vs. hyphae) using an essentially identical inventory of gene products are also considered. Finally, processes implicated in the regulation of hyphal tip complexes are addressed from an evolutionary perspective.
Collapse
Affiliation(s)
- Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, E126 Beadle Center, Lincoln, NE 68506, USA.
| |
Collapse
|
39
|
|
40
|
Kwon MJ, Arentshorst M, Roos ED, van den Hondel CAMJJ, Meyer V, Ram AFJ. Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol 2011; 79:1151-67. [DOI: 10.1111/j.1365-2958.2010.07524.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
A mutant defective in sexual development produces aseptate ascogonia. EUKARYOTIC CELL 2010; 9:1856-66. [PMID: 20952581 DOI: 10.1128/ec.00186-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from the vegetative to the sexual cycle in filamentous ascomycetes is initiated with the formation of ascogonia. Here, we describe a novel type of sterile mutant from Sordaria macrospora with a defect in ascogonial septum formation. This mutant, named pro22, produces only small, defective protoperithecia and carries a point mutation in a gene encoding a protein that is highly conserved throughout eukaryotes. Sequence analyses revealed three putative transmembrane domains and a C-terminal domain of unknown function. Live-cell imaging showed that PRO22 is predominantly localized in the dynamic tubular and vesicular vacuolar network of the peripheral colony region close to growing hyphal tips and in ascogonia; it is absent from the large spherical vacuoles in the vegetative hyphae of the subperipheral region of the colony. This points to a specific role of PRO22 in the tubular and vesicular vacuolar network, and the loss of intercalary septation in ascogonia suggests that PRO22 functions during the initiation of sexual development.
Collapse
|
42
|
Seiler S, Justa-Schuch D. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 2010; 78:1058-76. [PMID: 21091496 DOI: 10.1111/j.1365-2958.2010.07392.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis is essential for cell proliferation, yet its molecular description is challenging, because >100 conserved proteins must be spatially and temporally co-ordinated. Despite the high importance of a tight co-ordination of cytokinesis with chromosome and organelle segregation, the mechanism for determining the cell division plane is one of the least conserved aspects of cytokinesis in eukaryotic cells. Budding and fission yeast have developed fundamentally distinct mechanisms to ensure proper nuclear segregation. The extent to which these pathways are conserved in multicellular fungi remains unknown. Recent progress indicates common components, but different mechanisms that are required for proper selection of the septation site in the different groups of Ascomycota. Cortical cues are used in yeast- and filament-forming species of the Saccharomycotina clade that are established at the incipient bud site or the hyphal tip respectively. In contrast, septum formation in the filament-forming Pezizomycotina species Aspergillus nidulans and Neurospora crassa seems more closely related to the fission yeast programme in that they may combine mitotic signals with a cell end-based marker system and Rho GTPase signalling. Thus, significant differences in the use and connection of conserved signalling modules become apparent that reflect the phylogenetic relationship of the analysed models.
Collapse
Affiliation(s)
- Stephan Seiler
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | |
Collapse
|
43
|
Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 2010; 47:573-86. [PMID: 20302965 DOI: 10.1016/j.fgb.2010.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/14/2023]
Abstract
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.
Collapse
|
44
|
Justa-Schuch D, Heilig Y, Richthammer C, Seiler S. Septum formation is regulated by the RHO4-specific exchange factors BUD3 and RGF3 and by the landmark protein BUD4 in Neurospora crassa. Mol Microbiol 2010; 76:220-35. [PMID: 20199606 DOI: 10.1111/j.1365-2958.2010.07093.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rho GTPases have multiple, yet poorly defined functions during cytokinesis. By screening a Neurospora crassa knock-out collection for Rho guanine nucleotide exchange factor (GEF) mutants that phenocopy rho-4 defects (i.e. lack of septa, slow growth, abnormal branching and cytoplasmic leakage), we identified two strains defective in homologues of Bud3p and Rgf3 of budding and fission yeast respectively. The function of these proteins as RHO4-specific GEFs was determined by in vitro assays. In vivo microscopy suggested that the two GEFs and their target GTPase act as two independent modules during the selection of the septation site and the actual septation process. Furthermore, we determined that the N. crassa homologue of the anillinrelated protein BUD4 is required for septum initiation and that its deficiency leads to typical rho4 defects. Localization of BUD4 as a cortical ring prior to septation initiation was independent of functional BUD3 or RGF3. These data position BUD4 upstream of both RHO4 functions in the septation process and make BUD4 a prime candidate for a cortical marker protein involved in the selection of future septation sites. The persistence of both BUD proteins and of RHO4 at the septal pore suggests additional functions of these proteins at mature septa.
Collapse
Affiliation(s)
- Daniela Justa-Schuch
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
The ability of fungi to generate polarized cells with a variety of shapes likely reflects precise temporal and spatial control over the formation of polarity axes. The bud site selection system of Saccharomyces cerevisiae represents the best-understood example of such a morphogenetic regulatory system. However, the extent to which this system is conserved in the highly polarized filamentous fungi remains unknown. Here, we describe the functional characterization and localization of the Aspergillus nidulans homolog of the axial bud site marker Bud3. Our results show that AnBud3 is not required for polarized hyphal growth per se, but is involved in septum formation. In particular, our genetic and biochemical evidence implicates AnBud3 as a guanine nucleotide exchange factor for the GTPase Rho4. Additional results suggest that the AnBud3-Rho4 module acts downstream of the septation initiation network to mediate recruitment of the formin SepA to the site of contractile actin ring assembly. Our observations provide new insight into the signaling pathways that regulate septum formation in filamentous fungi.
Collapse
|
46
|
Abstract
This study demonstrates the utility of Lifeact for the investigation of actin dynamics in Neurospora crassa and also represents the first report of simultaneous live-cell imaging of the actin and microtubule cytoskeletons in filamentous fungi. Lifeact is a 17-amino-acid peptide derived from the nonessential Saccharomyces cerevisiae actin-binding protein Abp140p. Fused to green fluorescent protein (GFP) or red fluorescent protein (TagRFP), Lifeact allowed live-cell imaging of actin patches, cables, and rings in N. crassa without interfering with cellular functions. Actin cables and patches localized to sites of active growth during the establishment and maintenance of cell polarity in germ tubes and conidial anastomosis tubes (CATs). Recurrent phases of formation and retrograde movement of complex arrays of actin cables were observed at growing tips of germ tubes and CATs. Two populations of actin patches exhibiting slow and fast movement were distinguished, and rapid (1.2 microm/s) saltatory transport of patches along cables was observed. Actin cables accumulated and subsequently condensed into actin rings associated with septum formation. F-actin organization was markedly different in the tip regions of mature hyphae and in germ tubes. Only mature hyphae displayed a subapical collar of actin patches and a concentration of F-actin within the core of the Spitzenkörper. Coexpression of Lifeact-TagRFP and beta-tubulin-GFP revealed distinct but interrelated localization patterns of F-actin and microtubules during the initiation and maintenance of tip growth.
Collapse
|
47
|
The NDR kinase DBF-2 is involved in regulation of mitosis, conidial development, and glycogen metabolism in Neurospora crassa. EUKARYOTIC CELL 2009; 9:502-13. [PMID: 19966031 DOI: 10.1128/ec.00230-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurospora crassa dbf-2 encodes an NDR (nuclear Dbf2-related) protein kinase, homologous to LATS1, a core component of the Hippo pathway. This pathway plays important roles in restraining cell proliferation and promoting apoptosis in differentiating cells. Here, we demonstrate that DBF-2 is involved in three fundamental processes in a filamentous fungus: cell cycle regulation, glycogen biosynthesis, and conidiation. DBF-2 is predominantly localized to the nucleus, and most (approximately 60%) dbf-2 null mutant nuclei are delayed in mitosis, indicating that DBF-2 activity is required for properly completing the cell cycle. The dbf-2 mutant exhibits reduced basal hyphal extension rates accompanied by a carbon/nitrogen ratio-dependent bursting of hyphal tips, vast glycogen leakage, defects in aerial hypha formation, and impairment of all three asexual conidiation pathways in N. crassa. Our findings also indicate that DBF-2 is essential for sexual reproduction in a filamentous fungus. Defects in other Hippo and glycogen metabolism pathway components (mob-1, ccr-4, mst-1, and gsk-3) share similar phenotypes such as mitotic delay and decreased CDC-2 (cell division cycle 2) protein levels, massive hyphal swellings, hyphal tip bursting, glycogen leakage, and impaired conidiation. We propose that DBF-2 functions as a link between Hippo and glycogen metabolism pathways.
Collapse
|
48
|
Ziv C, Kra-Oz G, Gorovits R, März S, Seiler S, Yarden O. Cell elongation and branching are regulated by differential phosphorylation states of the nuclear Dbf2-related kinase COT1 in Neurospora crassa. Mol Microbiol 2009; 74:974-89. [PMID: 19818014 DOI: 10.1111/j.1365-2958.2009.06911.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysfunction of the Neurospora crassa nuclear Dbf2-related kinase COT1 leads to cessation of tip extension and massive induction of new sites of growth. To determine the role phosphorylation plays in COT1 function, we mutated COT1 residues corresponding to positions of highly conserved nuclear Dbf2-related phosphorylation sites. Analyses of the point-mutation cot-1 strains (mimicking non- and constitutively phosphorylated states) indicate the involvement of COT1 phosphorylation in the regulation of hyphal elongation and branching as well as asexual development by altering cell wall integrity and actin organization. Phosphorylation of COT1's activation segment (at Ser417) is required for proper in vitro kinase activity, but has only a limited effect on hyphal growth. In marked contrast, even though phosphorylation of the C-terminal hydrophobic motif (at Thr589) is crucial for all COT1 functions in vivo, the lack of Thr589 phosphorylation did not significantly affect in vitro COT1 kinase activity. Nevertheless, its regulatory role has been made evident by the significant increase observed in COT1 kinase activity when this residue was substituted in a manner mimicking constitutive phosphorylation. We conclude that COT1 regulates elongation and branching in an independent manner, which is determined by its phosphorylation state.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Plant Pathology and Microbiology, The Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Vogt N, Seiler S. The RHO1-specific GTPase-activating protein LRG1 regulates polar tip growth in parallel to Ndr kinase signaling in Neurospora. Mol Biol Cell 2008; 19:4554-69. [PMID: 18716060 DOI: 10.1091/mbc.e07-12-1266] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulation of Rho GTPase signaling is critical for cell shape determination and polarity. Here, we investigated the role of LRG1, a novel member of the GTPase-activating proteins (GAPs) of Neurospora crassa. LRG1 is essential for apical tip extension and to restrict excessive branch formation in subapical regions of the hypha and is involved in determining the size of the hyphal compartments. LRG1 localizes to hyphal tips and sites of septation via its three LIM domains. The accumulation of LRG1 as an apical cap is dependent on a functional actin cytoskeleton and active growth, and is influenced by the opposing microtubule-dependent motor proteins dynein and kinesin-1. Genetic evidence and in vitro GTPase assays identify LRG1 as a RHO1-specific GAP affecting several output pathways of RHO1, based on hyposensitivity to the glucan inhibitor caspofungin, synthetic lethality with a hyperactive beta1,3-glucan synthase mutant, altered PKC/MAK1 pathway activities, and hypersensitivity to latrunculin A. The morphological defects of lrg-1 are highly reminiscent to the Ndr kinase/RAM pathway mutants cot-1 and pod-6, and genetic evidence suggests that RHO1/LRG1 function in parallel with COT1 in coordinating apical tip growth.
Collapse
Affiliation(s)
- Nico Vogt
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie, Universität Göttingen, D-37077 Göttingen, Germany
| | | |
Collapse
|