1
|
Fayed B. Nanoparticles in the battle against Candida auris biofilms: current advances and future prospects. Drug Deliv Transl Res 2025; 15:1496-1512. [PMID: 39589626 PMCID: PMC11968567 DOI: 10.1007/s13346-024-01749-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Candida auris has emerged as a significant global health threat due to its multidrug resistance and ability to form robust biofilms, particularly on medical devices and hospital surfaces. Biofilms protect C. auris from antifungal treatments and the host immune response, making infections persistent and difficult to control. This review explores the potential of nanoparticles to overcome the limitations of traditional antifungal therapies in combating C. auris biofilms. Nanoparticles, with their unique physicochemical properties, offer promising strategies to penetrate biofilm matrices, deliver antifungal agents, and disrupt biofilm structure. Various types of nanoparticles, including metallic, polymeric, lipid-based, and cyclodextrin-based, demonstrate enhanced biofilm penetration and antifungal activity. Their ability to generate reactive oxygen species, disrupt cell adhesion, and release antifungals in a controlled manner makes them ideal candidates for biofilm-targeted therapies. This review presents the current advancements in nanoparticle-based solutions, emphasizing the need for further research into their mechanisms of action, safety, and clinical application. By addressing the challenge of C. auris biofilms specifically, this review provides a critical synthesis of existing knowledge and identifies future directions for developing effective antifungal therapies using nanotechnology.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Giza, Egypt.
| |
Collapse
|
2
|
Kula P, Barszczewska-Rybarek I, Mertas A, Chladek G. Effect of the Incorporation of an Innovative Monomer with a Quaternary Ammonium Group into a Temporary Soft Liner on Its Biological and Physicochemical Properties. Molecules 2025; 30:941. [PMID: 40005251 PMCID: PMC11857937 DOI: 10.3390/molecules30040941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
The colonizing of temporary soft lining materials in the oral cavity by yeast-like fungi, particularly Candida albicans, poses a significant risk of complications during prosthetic treatment. Various experimental materials incorporating antimicrobial additives, such as drugs, natural oils, and inorganic particles, have been tested. However, these components are not chemically bonded to a polymer network, making them prone to being easily released into the surrounding environment. This study aimed to evaluate experimental soft lining materials containing liquid components with 2-(methacryloyloxy)ethyl-2-decylhydroxyethylmethylammonium bromide, a monomethacrylate monomer with a quaternary ammonium group, added at concentrations of 8.54%, 8.75%, and 14.90% by weight. The adherence of Candida albicans, cytotoxicity, glass transition temperature (Tg), sorption (WS), solubility (WSL), Shore A hardness (SHA), tensile strength (TS), and tensile bond strength (TBS) were tested. Two tested materials did not show cytotoxicity for the 2-day undiluted extracts. The Candida albicans adhesions were reduced for two materials. The SHA values compared to the control were varied but all decreased with time. WS and WSL increased compared to the control. The TBS values were at an acceptable level.
Collapse
Affiliation(s)
- Patrycja Kula
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland; (P.K.); (I.B.-R.)
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland; (P.K.); (I.B.-R.)
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland;
| | - Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A Str., 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Pang LM, Zeng G, Chow EWL, Xu X, Li N, Kok YJ, Chong SC, Bi X, Gao J, Seneviratne CJ, Wang Y. Sdd3 regulates the biofilm formation of Candida albicans via the Rho1-PKC-MAPK pathway. mBio 2025; 16:e0328324. [PMID: 39688394 PMCID: PMC11796410 DOI: 10.1128/mbio.03283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans, the most frequently isolated fungal pathogen in humans, forms biofilms that enhance resistance to antifungal drugs and host immunity, leading to frequent treatment failure. Understanding the molecular mechanisms governing biofilm formation is crucial for developing anti-biofilm therapies. In this study, we conducted a genetic screen to identify novel genes that regulate biofilm formation in C. albicans. One identified gene is ORF19.6693, a homolog of the Saccharomyces cerevisiae SDD3 gene. The sdd3∆/∆ mutant exhibited severe defects in biofilm formation and significantly reduced chitin content in the cell wall. Overexpression of the constitutively active version of the Rho1 GTPase Rho1G18V, an upstream activator of the protein kinase C (PKC)-mitogen-activated protein kinase (MAPK) cell-wall integrity pathway, rescued these defects. Affinity purification, mass spectrometry, and co-immunoprecipitation revealed Sdd3's physical interaction with Bem2, the GTPase-activating protein of Rho1. Deletion of SDD3 significantly reduced the amount of the active GTP-bound form of Rho1, thereby diminishing PKC-MAPK signaling and downregulating chitin synthase genes CHS2 and CHS8. Taken together, our studies identify a new biofilm regulator, Sdd3, in C. albicans that modulates Rho1 activity through its inhibitory interaction with Bem2, thereby regulating the PKC-MAPK pathway to control chitin biosynthesis, which is critical for biofilm formation. As an upstream component of the pathway and lacking a homolog in mammals, Sdd3 has the potential to serve as an antifungal target for biofilm infections.IMPORTANCEThe human fungal pathogen Candida albicans is categorized as a critical priority pathogen on the World Health Organization's Fungal Priority Pathogens List. A key virulence attribute of this pathogen is its ability to form biofilms on the surfaces of indwelling medical devices. Fungal cells in biofilms are highly resistant to antifungal drugs and host immunity, leading to treatment failure. This study conducted a genetic screen to discover novel genes that regulate biofilm formation. We found that deletion of the SDD3 gene caused severe biofilm defects. Sdd3 negatively regulates the Rho1 GTPase, an upstream activator of the protein kinase C-mitogen-activated protein kinase pathway, through direct interaction with Bem2, the GTPase-activating protein of Rho1, resulting in a significant decrease in chitin content in the fungal cell wall. This chitin synthesis defect leads to biofilm formation failure. Given its essential role in biofilm formation, Sdd3 could serve as an antifungal target for biofilm infections.
Collapse
Affiliation(s)
- Li Mei Pang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Singapore, Singapore
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eve Wai Ling Chow
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoli Xu
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ning Li
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Shu Chen Chong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Beijing, China
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Singapore, Singapore
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
- School of Dentistry, The University of Queensland, St Lucia, Australia
| | - Yue Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Ramos LS, Barbosa PF, Lorentino CM, Lima JC, Braga AL, Lima RV, Giovanini L, Casemiro AL, Siqueira NL, Costa SC, Rodrigues CF, Roudbary M, Branquinha MH, Santos AL. The multidrug-resistant Candida auris, Candida haemulonii complex and phylogenetic related species: Insights into antifungal resistance mechanisms. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100354. [PMID: 39995443 PMCID: PMC11847750 DOI: 10.1016/j.crmicr.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
The rise of multidrug-resistant (MDR) fungal pathogens poses a serious global threat to human health. Of particular concern are Candida auris, the Candida haemulonii complex (which includes C. haemulonii sensu stricto, C. duobushaemulonii and C. haemulonii var. vulnera), and phylogenetically related species, including C. pseudohaemulonii and C. vulturna. These emerging, widespread, and opportunistic pathogens have drawn significant attention due to their reduced susceptibility to commonly used antifungal agents, particularly azoles and polyenes, and, in some cases, therapy-induced resistance to echinocandins. Notably, C. auris is classified in the critical priority group on the World Health Organization's fungal priority pathogens list, which highlights fungal species capable of causing systemic infections with significant mortality and morbidity risks as well as the challenges posed by their MDR profiles, limited treatment and management options. The mechanisms underlying antifungal resistance within these emerging fungal species is still being explored, but some advances have been achieved in the past few years. In this review, we compile current literature on the distribution of susceptible and resistant clinical strains of C. auris, C. haemulonii complex, C. pseudohaemulonii and C. vulturna across various antifungal classes, including azoles (fluconazole, voriconazole, itraconazole), polyenes (amphotericin B), echinocandins (caspofungin, micafungin, anidulafungin), and pyrimidine analogues (flucytosine). We also outline the main antifungal resistance mechanisms identified in planktonic cells of these yeast species. Finally, we explore the impact of biofilm formation, a classical virulence attribute of fungi, on antifungal resistance, highlighting the resistance mechanisms associated with this complex microbial structure that have been uncovered to date.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Pedro F. Barbosa
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Carolline M.A. Lorentino
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Joice C. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Antonio L. Braga
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Raquel V. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Lucas Giovanini
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Ana Lúcia Casemiro
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Nahyara L.M. Siqueira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Stefanie C. Costa
- Laboratório de Resistência Bacteriana, Departamento de Patologia, Universidade Federal do Espírito Santo (UFES), Vitória, Brasil
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maryam Roudbary
- Sydney Infectious Diseases Institute, University of Sydney, Australia
- Westmead Hospital, NSW Health, Sydney, Australia
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| | - André L.S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Sağsöz NP, Güven L, Gür B, Sezer CV, Cengiz M, Orhan F, Barış Ö. Different essential oils can inhibit Candida albicans biofilm formation on acrylic resin by suppressing aspartic proteinase: In vitro and in silico approaches. Clin Oral Investig 2025; 29:94. [PMID: 39875714 DOI: 10.1007/s00784-024-06039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients. OBJECTIVE The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico. MATERIALS AND METHODS Essential oil contents with anticandidal potential were determined by Gas Chromatography-Mass Spectrometry. Following C. albicans adhesion, PMMA samples were treated independently with Corega® and each essential oil. The anticandidal activity of the essential oils was determined by spectrophotometric absorbance measurement at 600 nm, taking into account the cultures of each sample. The cytotoxicity evaluation of essential oils was performed by MTT Colorimetric assay. The software package AutoDockTools (1.5.6) was used for the in silico studies. The effect of essential oil content on the inhibition of Secreted aspartic proteinase (SAP2) was evaluated considering the Ligand@SAP2 complex formation. RESULTS 2% of CMEO and 5% of SAEO exhibited higher anticandidal activity than Corega® (p < 0.05), whereas Corega® had higher anticandidal activity than 2% and 5% of CSEO (p < 0.05). The cytotoxicity of essential oils on NIH/3T3 cells after 24 h was found to be 2.41 for CSEO, 2.84 for CMEO, and 2.85 µg/mL for SAEO. The results of the in silico study showed that citronellol from CMEO, chavibetol (m-eugenol) from SAEO and β-pinene from CSEO each had the highest effect on the inhibition of SAP2. The highest binding affinity value was found for citronellol at -5.3 kcal/mol. CONCLUSIONS The biofilm formation of C. albicans onto acrylic resin was inhibited by CMEO, SAEO and CSEO at a concentration of 2% through in vitro assay. The most effective inhibition was determined to be due to citronellol in CMEO through in silico analysis.
Collapse
Affiliation(s)
- Nurdan Polat Sağsöz
- Department of Prosthodontics, Faculty of Dentistry, Atatürk University, Erzurum, Türkiye.
| | - Leyla Güven
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ataturk University, Erzurum, Türkiye.
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Türkiye
| | - Canan Vejselova Sezer
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Türkiye
| | - Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Türkiye
| | - Figen Orhan
- Vocational School of Health Services, Ataturk University, Erzurum, Türkiye
| | - Özlem Barış
- Department of Biology, Science Faculty, Atatürk University, Erzurum, Türkiye
- Department of Biology, Science Faculty, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic
| |
Collapse
|
6
|
Rodrigues MIDS, Cruz GHRD, Lucini F, Almeida AMD, Pereira FF, Ramalho RT, Simionatto S, Rossato L. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host for the study of pathogenicity in Candida auris. Microb Pathog 2025; 198:107115. [PMID: 39536838 DOI: 10.1016/j.micpath.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Candida auris, a multidrug-resistant fungal pathogen, has emerged as a significant global health threat due to its high transmission and mortality rates, especially in healthcare settings. OBJECTIVE This study aimed to establish the larvae of the coleopteran Tenebrio molitor (mealworm) as an in vivo model to evaluate the virulence of different C. auris strains. METHODS T. molitor larvae were inoculated with varying doses and strains of C. auris. Mortality rates were monitored, melanization responses, and phenoloxidase activity were assessed. Histopathological analyses were conducted to observe tissue invasion by the yeast cells. Additionally, a biofilm formation test was included as a complementary analysis to determine if biofilm production would influence the virulence of the C. auris strains. RESULTS A dose-dependent increase in mortality was observed, with the highest fungal load leading to the highest mortality rates. The study also revealed significant differences in virulence among the strains, with those from Kuwait and the reference strain CBS 10913 showing the highest pathogenicity. Melanization rates were significantly higher in infected larvae, indicating an active immune response. The histopathological analysis revealed the presence of C. auris cells within the tissue of T. molitor larvae. However, the biofilm formation complementary test did not show a significant difference in virulence among the different clades of C. auris. CONCLUSION The T. molitor model effectively demonstrated the pathogenic potential and virulence differences of C. auris strains. Strains from Kuwait and the reference strain CBS 10913 exhibited the highest virulence, causing 100 % mortality within 24 h. The model also highlighted significant biofilm formation and melanization responses, correlating with fungal burden. This insect model provides a valuable and cost-effective tool for preliminary virulence screening of clinical yeast strains, offering insights into host-pathogen interactions and the potential for evaluating antifungal treatments in vivo.
Collapse
Affiliation(s)
| | | | - Fabíola Lucini
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Alexandre Moreira de Almeida
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Fabricio Fagundes Pereira
- Department of Biological and Environmental Science, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Rondon Tosta Ramalho
- Health and Development in the Midwest Region, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Luana Rossato
- Health Science Research Laboratory, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
7
|
Yazdanpanah S, Shafiekhani M, Emami M, Khodadadi H, Pakshir K, Zomorodian K. Exploring the anti-biofilm and gene regulatory effects of anti-inflammatory drugs on Candida albicans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03727-y. [PMID: 39731595 DOI: 10.1007/s00210-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method. Biofilm formation in C. albicans was evaluated using XTT reduction assay following exposure to different concentrations of drugs. Additionally, the expression of adhesin-related genes (ALS1, ALS3), hyphal cell wall specific genes (EAP1, HWP1), secreted aspartyl proteinase (SAP4, SAP6), and morphogenesis pathway regulatory gene (EFG1) was analyzed using quantitative RT-PCR. Betamethasone and dexamethasone markedly inhibited C. albicans biofilm formation by up to 80% at a concentration of 2 mg/mL. Moreover, the inhibition of C. albicans biofilm formation was significant at concentrations ranging from 0.6 to 10 mg/mL for piroxicam and from 0.75 to 12 mg/mL for diclofenac. The expression of key genes involved in biofilm formation including EFG1, HWP1, and ALS3 was all downregulated under hyphae-inducing conditions. Moreover, the expression proteinase genes of C. albicans were upregulated following exposure with corticosteroids. The data obtained provides valuable insights into the antifungal potential of anti-inflammatory drugs. Our novel findings indicate the downregulation of several Candida genes that are crucial for morphogenesis, pathogenesis, and biofilm formation. However, further research is necessary to fully elucidate the clinical applications and effectiveness of anti-inflammatory drugs as alternative or adjunctive therapies for Candida infections.
Collapse
Affiliation(s)
- Somayeh Yazdanpanah
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Dos Santos GG, Zangirolami AC, Ferreira Vicente ML, Bagnato VS, Blanco KC. Photodynamic therapy as a potential approach for preventing fungal spread associated with the use of endotracheal tubes. Photochem Photobiol 2024. [PMID: 39710601 DOI: 10.1111/php.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Fungal infections related to biofilm formation on medical devices, such as endotracheal tubes (ETTs), pose significant health risks, especially during intubation procedures where fungi like Candida spp. can migrate into the lower respiratory tract. This study explores the use of Photodynamic Therapy (PDT) to prevent fungal cell migration from ETT surfaces to lungs, focusing on the role of curcumin as a photosensitizer. ETTs were coated with varying concentrations of curcumin, and biofilm formation was measured after applying PDT with a 50 J/cm2 irradiation dose. The study found that ETTs functionalized with a one-third concentration of CUR reduced biofilm formation by 1.78 Log, significantly lowering microbial load and potentially decreasing hospital-acquired infections. Confocal fluorescence microscopy confirmed that PDT damaged the biofilm's extracellular matrix and caused detachment of dead fungal cells. Moreover, the fluorescence analysis reveals the photodegradation behavior of the photosensitizer within the tube, providing critical insights into its stability and durability, which are essential for evaluating the long-term applicability of these tubes in clinical settings. These results suggest PDT as a promising strategy to reduce fungal infections in high-risk patients, offering potential for future clinical application in preventing device-associated infections.
Collapse
Affiliation(s)
| | | | | | | | - Kate Cristina Blanco
- São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
Miedema TP, Grooters KE, Cleary IA. The Effects of Carbonate on Candida albicans Filamentation, Biofilm Formation, and Antifungal Resistance. Microbiologyopen 2024; 13:e70008. [PMID: 39535494 PMCID: PMC11558181 DOI: 10.1002/mbo3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Candida albicans, a member of the normal microbial population of healthy humans, is an opportunistic pathogen that can cause serious disease in immunocompromised patients. An important virulence factor of C. albicans is the formation of biofilms. These organized communities of cells are efficient at attaching to host cells and implanted medical devices. Carbonate has been studied as an agricultural antifungal agent, and here we demonstrate that carbonate can affect filamentation, biofilm formation, and antifungal drug resistance in C. albicans.
Collapse
Affiliation(s)
- Trenton P. Miedema
- Department of Biomedical SciencesGrand Valley State UniversityAllendaleMichiganUSA
| | - Kayla E. Grooters
- Department of Biomedical SciencesGrand Valley State UniversityAllendaleMichiganUSA
- Department of MedicineWestern Michigan University Homer Stryker M.D. School of MedicineKalamazooMichiganUSA
| | - Ian A. Cleary
- Department of Biomedical SciencesGrand Valley State UniversityAllendaleMichiganUSA
| |
Collapse
|
10
|
Alshahrani MM. Antifungal potential of marine bacterial compounds in inhibiting Candida albicans Yck2 to overcome echinocandin resistance: a molecular dynamics study. Front Pharmacol 2024; 15:1459964. [PMID: 39484169 PMCID: PMC11525067 DOI: 10.3389/fphar.2024.1459964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Candida albicans (C. albicans), a common fungal pathogen, poses a significant threat to immunocompromised individuals, particularly due to the emergence of resistance against echinocandins, a primary class of antifungal agents. Yck2 protein, a key regulator of cell wall integrity and signaling pathways in C. albicans, was targeted to overcome this resistance. A virtual screening was used to identify Yck2 inhibitors from marine bacterial compounds. Further re-docking, molecular dynamics simulations, and various analyses such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, free binding energy calculations, and RG-RMSD-based free energy landscape were conducted to evaluate the efficacy and stability of the identified compounds. Among the compounds screened, CMNPD27166 and CMNPD27283 emerged as the most promising candidates, demonstrating superior binding affinities, enhanced stability, and favorable interaction dynamics with Yck2, surpassing both the control and other compounds in efficacy. In contrast, CMNPD19660 and CMNPD24402, while effective, showed lesser potential. These findings highlight the utility of computational drug discovery techniques in identifying and optimizing potential therapeutic agents and suggest that marine-derived molecules could significantly impact the development of novel antifungal therapies. Further experimental validation of the leading candidates, CMNPD27166 and CMNPD27283, is recommended to confirm their potential as effective antifungal agents against echinocandin-resistant C. albicans infections.
Collapse
|
11
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
12
|
Wint WY, Miyanohara M, Terada-Ito C, Yamada H, Ryo K, Murata T. Effects of Sucrose and Farnesol on Biofilm Formation by Streptococcus mutans and Candida albicans. Microorganisms 2024; 12:1737. [PMID: 39203579 PMCID: PMC11357214 DOI: 10.3390/microorganisms12081737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Candida albicans (C. albicans) and Streptococcus mutans (S. mutans) are frequently detected in the plaque biofilms of children with early childhood caries. This study investigated the effects of sucrose and farnesol on biofilm formation by the oral pathogens S. mutans and C. albicans, including their synergistic interactions. Biofilm formation dynamics were monitored using the Cell Index (CI). The CI for S. mutans increased in the brain-heart infusion medium, peaking at 10 h; however, the addition of sucrose reduced the CI. For C. albicans yeast cells, the CI increased at sucrose concentrations > 0.5%, peaking at 2 h. Mixed cultures of S. mutans and C. albicans yeast cells showed significantly higher CI values in the presence of sucrose, suggesting a synergistic effect on biofilm formation. Farnesol consistently suppressed biofilm formation by C. albicans yeast cells, even in the presence of sucrose, and higher farnesol concentrations resulted in greater inhibition. Regarding C. albicans hyphal cells, sucrose did not enhance biofilm formation, whereas farnesol significantly reduced biofilm formation at all concentrations tested. These findings elucidate the complex roles of sucrose and farnesol in biofilm formation by S. mutans and C. albicans and emphasize the potential of farnesol as an effective oral biofilm inhibitor.
Collapse
Affiliation(s)
- Wit Yee Wint
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan; (M.M.); (H.Y.); (K.R.); (T.M.)
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan;
| | - Mayu Miyanohara
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan; (M.M.); (H.Y.); (K.R.); (T.M.)
| | - Chika Terada-Ito
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan;
| | - Hidenori Yamada
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan; (M.M.); (H.Y.); (K.R.); (T.M.)
| | - Koufuchi Ryo
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan; (M.M.); (H.Y.); (K.R.); (T.M.)
| | - Takatoshi Murata
- Department of Oral Health Science, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan; (M.M.); (H.Y.); (K.R.); (T.M.)
| |
Collapse
|
13
|
Ansari MA, Alomary MN. Bioinspired ferromagnetic NiFe 2O 4 nanoparticles: Eradication of fungal and drug-resistant bacterial pathogens and their established biofilm. Microb Pathog 2024; 193:106729. [PMID: 38851363 DOI: 10.1016/j.micpath.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Nickel ferrite nanoparticles (NiFe2O4 NPs) were synthesized using the medicinally important plant Aloe vera leaf extract, and their structural, morphological, and magnetic properties were characterized by x-ray diffraction (XRD), fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive x-ray (EDX), and vibrating sample magnetometer (VSM). The synthesized NPs were soft ferromagnetic and spinel in nature, with an average particle size of 22.2 nm. To the best of our understanding, this is the first comprehensive investigation into the antibacterial, anticandidal, antibiofilm, and antihyphal properties of NiFe2O4 NPs against C. albicans as well as drug-resistant gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and gram-negative multidrug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa) bacteria. NiFe2O4 NPs showed potent antimicrobial activity (MIC 1.6-2 mg/mL) against the test pathogens. NiFe2O4 NPs at 0.5 mg/mL suppressed biofilm formation by 49.5-53.1 % in test pathogens. The study found that the NPs not only prevent the formation of biofilm, but also eliminate existing mature biofilms by 50.5-75.79 % at 0.5 mg/mL, which was further validated by SEM. SEM examination revealed a reduction in the number of cells that form biofilms and adhere to the surface. Additionally, it considerably impeded the colonization and aggregation of the biofilm strains on the glass surface. Light microscopic examination demonstrated that NPs effectively prevent the expansion of hyphae, filaments, and yeast-to-hyphae transformation in C. albicans, resulting in a substantial decrease in their ability to cause infection. Moreover, SEM images of the treated cells exhibited the presence of wrinkles, deformities, and impaired cell walls, which suggests an alteration and instability of the membrane. This study demonstrated the efficacy of the greenly manufactured NPs in suppressing the proliferation of candida, drug-resistant bacteria, and their preexisting biofilms, as well as yeast-to-hyphae transformation. Therefore, these NPs with broad spectrum applications could be utilized in health settings to mitigate biofilm-related health conditions caused by pathogenic microbial strains.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia.
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 11442, Saudi Arabia
| |
Collapse
|
14
|
Liu Y, Li R, Zhang Y, Jiao S, Xu T, Zhou Y, Wang Y, Wei J, Du W, Fujita M, Du Y, Wang ZA. Unveiling the inverse antimicrobial impact of a hetero-chitooligosaccharide on Candida tropicalis growth and biofilm formation. Carbohydr Polym 2024; 333:121999. [PMID: 38494241 DOI: 10.1016/j.carbpol.2024.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Chitosan and chitooligosaccharide (COS) are renowned for their potent antimicrobial prowess, yet the precise antimicrobial efficacy of COS remains elusive due to scant structural information about the utilized saccharides. This study delves into the antimicrobial potential of COS, spotlighting a distinct hetero-chitooligosaccharide dubbed DACOS. In contrast to other COS, DACOS remarkably fosters the growth of Candida tropicalis planktonic cells and fungal biofilms. Employing gradient alcohol precipitation, DACOS was fractionated, unveiling diverse structural characteristics and differential impacts on C. tropicalis. Notably, in a murine model of systemic candidiasis, DACOS, particularly its 70 % alcohol precipitates, manifests a promotive effect on Candida infection. This research unveils a new pathway for exploring the intricate nexus between the structural attributes of chitosan oligosaccharides and their physiological repercussions, underscoring the imperative of crafting chitosan and COS with meticulously defined structural configurations.
Collapse
Affiliation(s)
- Yangyang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122,China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruilian Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tong Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhang Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College, 100730 Beijing, China; Department of Gastroenterology, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Yujing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Du
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122,China; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Esfandiary MA, Khosravi AR, Asadi S, Nikaein D, Hassan J, Sharifzadeh A. Antimicrobial and anti-biofilm properties of oleuropein against Escherichia coli and fluconazole-resistant isolates of Candida albicans and Candida glabrata. BMC Microbiol 2024; 24:154. [PMID: 38704559 PMCID: PMC11069153 DOI: 10.1186/s12866-024-03305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.
Collapse
Affiliation(s)
- Mohammad Ali Esfandiary
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Ali Reza Khosravi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran.
| | - Sepideh Asadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Donya Nikaein
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| | - Jalal Hassan
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, PO Box: 14155-6453, Tehran, Iran
| |
Collapse
|
16
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
17
|
Cosio T, Pica F, Fontana C, Pistoia ES, Favaro M, Valsecchi I, Zarabian N, Campione E, Botterel F, Gaziano R. Stephanoascus ciferrii Complex: The Current State of Infections and Drug Resistance in Humans. J Fungi (Basel) 2024; 10:294. [PMID: 38667965 PMCID: PMC11050938 DOI: 10.3390/jof10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the incidence of fungal infections in humans has increased dramatically, accompanied by an expansion in the number of species implicated as etiological agents, especially environmental fungi never involved before in human infection. Among fungal pathogens, Candida species are the most common opportunistic fungi that can cause local and systemic infections, especially in immunocompromised individuals. Candida albicans (C. albicans) is the most common causative agent of mucosal and healthcare-associated systemic infections. However, during recent decades, there has been a worrying increase in the number of emerging multi-drug-resistant non-albicans Candida (NAC) species, i.e., C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. auris, and C. ciferrii. In particular, Candida ciferrii, also known as Stephanoascus ciferrii or Trichomonascus ciferrii, is a heterothallic ascomycete yeast-like fungus that has received attention in recent decades as a cause of local and systemic fungal diseases. Today, the new definition of the S. ciferrii complex, which consists of S. ciferrii, Candida allociferrii, and Candida mucifera, was proposed after sequencing the 18S rRNA gene. Currently, the S. ciferrii complex is mostly associated with non-severe ear and eye infections, although a few cases of severe candidemia have been reported in immunocompromised individuals. Low susceptibility to currently available antifungal drugs is a rising concern, especially in NAC species. In this regard, a high rate of resistance to azoles and more recently also to echinocandins has emerged in the S. ciferrii complex. This review focuses on epidemiological, biological, and clinical aspects of the S. ciferrii complex, including its pathogenicity and drug resistance.
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Carla Fontana
- Laboratory of Microbiology and BioBank, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy;
| | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Marco Favaro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Isabel Valsecchi
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Nikkia Zarabian
- School of Medicine and Health Sciences, George Washington University, 2300 I St NW, Washington, DC 20052, USA
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Françoise Botterel
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| |
Collapse
|
18
|
Bharti S, Singh B, Kumar S, Kumar R, Kumar J. Synthesis of bio-stabilized silver nanoparticles using Roccella montagnei, their anticandidal capacities & potential to inhibit the virulence factors in fluconazole-resistant Candida albicans. World J Microbiol Biotechnol 2024; 40:158. [PMID: 38592601 DOI: 10.1007/s11274-024-03928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024]
Abstract
Candida species is the causative agent in approximately 80% of invasive mycoses and drug-resistant Candida albicans is among the four strains of 'critical priority group' framed by WHO. Lichens are endowed with some rare phytochemicals and a plethora of therapeutics viz. antifungal capacities of Roccella montagnei. Biosynthesis of silver nanoparticles (AgNPs) using lichen could offer an eco-friendly, and cost-effective alternative against emerging 'microbial resistance.' Therefore, the objective was to biosynthesize silver nanoparticles (Rm-AgNPs) using a Hydro-alcoholic (1:1) extract of R. montagnei to develop a potent anticandidal agent against Fluconazole-resistant C. albicans NBC099. UV-Spectroscopy identified AgNPs specific-peak of Rm-AgNPs at 420-440 nm and FTIR revealed the presence of amines, alcohol, aromatic compounds, and acids. SEM and TEM analysis indicated that Rm-AgNPs are spherical shaped with a size range of 10-50 nm. Zetasizer analysis indicated that particles are highly stable and have a mean hydrodynamic diameter of 116 nm with a zeta potential charge of - 41 mV. XRD analysis suggested face centered cubic crystal lattice structure. Results indicated that Rm-AgNPs strongly inhibited the growth of NBC099 at a minimum inhibitory concentration (IC50) of ≤ 15 µg. C. albicans culture treated with Rm-AgNPs at concentrations below IC50, down-regulates the production of different virulence factors in NBC099, viz. hyphal formation (> 85%), biofilms production (> 80%), phospholipase, esterase, proteinase activity. The apoptosis assay demonstrated the Rm-AgNPs induced apoptosis in NBC099 cells via oxidative stress. Interestingly, Rm-AgNPs showed negligible cytotoxicity (< 6%) in murine RAW 246.7 macrophage cells at a concentration above 15 µg/mL. Therefore, Rm-AgNPs have been offered as an anti-candida alternative that can be utilized to improve the efficacy of already available medications.
Collapse
Affiliation(s)
- Shweta Bharti
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Lucknow, India
| | - Balwant Singh
- Department of Biotechnology, Bundelkhand University, Jhansi, India
| | - Sanket Kumar
- Department of Botany, School of Sciences, IFTM University, Moradabad, 244102, India
| | - Rajesh Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Lucknow, India
| | - Jatinder Kumar
- CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu & Kashmir, India.
| |
Collapse
|
19
|
Oliveira LT, Marcos CM, Cabral AKLF, Medina-Alarcón KP, Pires RH, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides spp.: the structural characterization of extracellular matrix, expression of glucan synthesis and associated genes and adhesins during biofilm formation. Front Microbiol 2024; 15:1354140. [PMID: 38516014 PMCID: PMC10955377 DOI: 10.3389/fmicb.2024.1354140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.
Collapse
Affiliation(s)
- Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Laboratory of Medical Mycology, School of Pharmaceutical Sciences, Federal University of Amazonas-UFAM, Manaus, Brazil
| | - Kaila Petronila Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, University of Franca, Franca, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | |
Collapse
|
20
|
Ajetunmobi OH, Badali H, Romo JA, Ramage G, Lopez-Ribot JL. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023; 5:100126. [PMID: 37193227 PMCID: PMC10182175 DOI: 10.1016/j.bioflm.2023.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Virtually all Candida species linked to clinical candidiasis are capable of forming highly resistant biofilms on different types of surfaces, which poses an additional significant threat and further complicates therapy of these infections. There is a scarcity of antifungal agents, and their effectiveness, particularly against biofilms, is limited. Here we provide a historical perspective on antifungal agents and therapy of Candida biofilms. As we reflect upon the past, consider the present, and look towards the future of antifungal therapy of Candida biofilms, we believe that there are reasons to remain optimistic, and that the major challenges of Candida biofilm therapy can be conquered within a reasonable timeframe.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus A. Romo
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Gordon Ramage
- Glasgow Biofilm Research Network, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author. Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
21
|
Bravo-Chaucanés CP, Chitiva LC, Vargas-Casanova Y, Diaz-Santoyo V, Hernández AX, Costa GM, Parra-Giraldo CM. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023; 13:1729. [PMID: 38136600 PMCID: PMC10742119 DOI: 10.3390/biom13121729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Plant-derived compounds have proven to be a source of inspiration for new drugs. In this study, piperine isolated from the fruits of Piper nigrum showed anti-Candida activity. Furthermore, the mechanisms of action of piperine and its impact on virulence factors in Candida albicans, which have not been comprehensively understood, were also assessed. Initially, piperine suppressed the hyphal transition in both liquid and solid media, hindered biofilm formation, and resulted in observable cell distortions in scanning electron microscope (SEM) samples, for both fluconazole-sensitive and fluconazole-resistant C. albicans strains. Additionally, the morphogenetic switches triggered by piperine were found to rely on the activity of mutant C. albicans strains. Secondly, piperine treatment increased cell membrane permeability and disrupted mitochondrial membrane potential, as evidenced by propidium iodine and Rhodamine 123 staining, respectively. Moreover, it induced the accumulation of intracellular reactive oxygen species in C. albicans. Synergy was obtained between the piperine and the fluconazole against the fluconazole-sensitive strain. Interestingly, there were no hemolytic effects of piperine, and it resulted in reduced cytotoxicity on fibroblast cells at low concentrations. The results suggest that piperine could have a dual mode of action inhibiting virulence factors and modulating cellular processes, leading to cell death in C. albicans.
Collapse
Affiliation(s)
- Claudia Patricia Bravo-Chaucanés
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Yerly Vargas-Casanova
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Valentina Diaz-Santoyo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
| | - Andrea Ximena Hernández
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Geison M. Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (L.C.C.); (A.X.H.); (G.M.C.)
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, DC, Colombia; (C.P.B.-C.); (Y.V.-C.); (V.D.-S.)
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
22
|
Patil R, Hindlekar A, Jadhav GR, Mittal P, Humnabad V, Di Blasio M, Cicciù M, Minervini G. Comparative evaluation of effect of sodium hypochlorite and chlorhexidine in dental unit waterline on aerosolized bacteria generated during dental treatment. BMC Oral Health 2023; 23:865. [PMID: 37964280 PMCID: PMC10647182 DOI: 10.1186/s12903-023-03585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND In dentistry, nosocomial infection poses a great challenge to clinicians. The microbial contamination of water in dental unit waterlines (DUWLs) is ubiquitous. Such infected DUWLs can transmit oral microbes in the form of aerosols. Previous studies have suggested treating DUWLs with various disinfectants to reduce cross-contamination. The literature lacks a comparative evaluation of the effect of the use of 0.2% chlorhexidine (CHX) and 0.1% sodium hypochlorite (NaOCl) in DUWLs on aerosolized bacteria generated during dental procedures. OBJECTIVE To compare the effect of NaOCl and CHX in DUWLs on aerosolized bacteria generated during restorative and endodontic procedures. MATERIALS AND METHODS A total of 132 patients were equally divided into three groups (n = 44 in each group) according to the content of DUWL as follows. Group I-0.1% NaOCl Group II-0.2% CHX Group III-distilled water (Positive control) One-way ANOVA was performed and the Kruskal-Wallis test was used for intergroup comparison. RESULTS For the restorative procedure, inter-group comparison of mean colony-forming units (CFU) scores showed a statistically significant difference between the groups (p - .001) with the score of group 3 higher than group 2 followed by group 1. For the endodontics, an inter-group comparison of CFU scores showed a statistically significant difference between the groups (p - .003) with the mean score in group 1 being the lowest and group 3 being the highest. CONCLUSION The addition of NaOCl or CHX in DUWLs shows an effective reduction in aerosolized bacteria compared to distilled water.
Collapse
Affiliation(s)
- Rutuja Patil
- Department of Conservative Dentistry and Endodontics, Dr D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune -18, India
| | - Ajit Hindlekar
- Department of Conservative Dentistry and Endodontics, Dr D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune -18, India
| | | | - Priya Mittal
- Department of Conservative Dentistry and Endodontics, Swargiya Dadasaheb Kalmegh Smruti Dental College & Hospital, Nagpur, India
| | - Vamshi Humnabad
- Department of Conservative Dentistry and Endodontics, Dr D. Y. Patil Dental College & Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune -18, India
| | - Marco Di Blasio
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, 43126, Parma, Italy.
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123, Catania, Italy
| | - Giuseppe Minervini
- Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences Saveetha University, Chennai, India.
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
23
|
Bezerra FM, Rocchetti TT, Lima SL, Yu MCZ, da Matta DA, Höfling-Lima AL, Melo ASA, de Oliveira LA. Candida species causing fungal keratitis: molecular identification, antifungal susceptibility, biofilm formation, and clinical aspects. Braz J Microbiol 2023; 54:629-636. [PMID: 37055625 PMCID: PMC10235373 DOI: 10.1007/s42770-023-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
The study aimed to evaluate the clinical aspects, molecular identification, biofilm formation, and antifungal susceptibility profile of Candida species isolated from fungal keratitis. Thirteen Candida isolates from 13 patients diagnosed with Candida keratitis were retrieved and grown in pure culture. Species identification was performed by micromorphology analysis and ITS-rDNA sequencing. The broth microdilution method tested the minimum inhibitory concentration (MIC) of four antifungal drugs (fluconazole, amphotericin B, voriconazole, and anidulafungin). The biofilms were cultured and incubated with antifungal drugs for 24 h. The XTT reduction assay measured the biofilm activity. Biofilm MICs were calculated based on a 50% reduction in metabolic activity compared with the activity of the drug-free control. Among isolates, two were C. albicans, 10 were C. parapsilosis (sensu stricto), and one was C. orthopsilosis. All isolates were classified as susceptible or intermediate to all four antifungal drugs. Four isolates were very low biofilm producers (30%). Nine isolates were biofilm producers, and all biofilm samples were unsusceptible to all drugs tested. Previous ocular surgery was the most common underlying condition for fungal keratitis (84.6%), and C. parapsilosis was the most frequent Candida species (76.9%). Four patients (30.7%) needed keratoplasty, whereas two (15.3%) required evisceration. The biofilm formation ability of Candida isolates decreased antifungal susceptibility compared with planktonic cells. Despite in vitro antifungal susceptibility, almost half of the patients were unresponsive to clinical treatment and needed surgery.
Collapse
Affiliation(s)
- Fernanda M Bezerra
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Talita T Rocchetti
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Soraia L Lima
- Special Laboratory of Mycology, Federal University of São Paulo, São Paulo, Federal University of São Paulo, São Paulo, Brazil
| | - Maria Cecília Z Yu
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Daniel A da Matta
- Special Laboratory of Mycology, Federal University of São Paulo, São Paulo, Federal University of São Paulo, São Paulo, Brazil
| | - Ana Luisa Höfling-Lima
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Analy S A Melo
- Special Laboratory of Mycology, Federal University of São Paulo, São Paulo, Federal University of São Paulo, São Paulo, Brazil
| | - Lauro A de Oliveira
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Chrószcz-Porębska MW, Barszczewska-Rybarek IM, Kazek-Kęsik A, Ślęzak-Prochazka I. Cytotoxicity and Microbiological Properties of Copolymers Comprising Quaternary Ammonium Urethane-Dimethacrylates with Bisphenol A Glycerolate Dimethacrylate and Triethylene Glycol Dimethacrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103855. [PMID: 37241482 DOI: 10.3390/ma16103855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Using dental composite restorative materials with a copolymeric matrix chemically modified towards bioactive properties can help fight secondary caries. In this study, copolymers of 40 wt.% bisphenol A glycerolate dimethacrylate, 40 wt.% quaternary ammonium urethane-dimethacrylates (QAUDMA-m, where m represents 8, 10, 12, 14, 16 and 18 carbon atoms in the N-alkyl substituent), and 20 wt.% triethylene glycol dimethacrylate (BG:QAm:TEGs) were tested for (i) cytotoxicity on the L929 mouse fibroblast cell line; (ii) fungal adhesion, fungal growth inhibition zone, and fungicidal activity against C. albicans; and (iii) bactericidal activity against S. aureus and E. coli. BG:QAm:TEGs had no cytotoxic effects on L929 mouse fibroblasts because the reduction of cell viability was less than 30% compared to the control. BG:QAm:TEGs also showed antifungal activity. The number of fungal colonies on their surfaces depended on the water contact angle (WCA). The higher the WCA, the greater the scale of fungal adhesion. The fungal growth inhibition zone depended on the concentration of QA groups (xQA). The lower the xQA, the lower the inhibition zone. In addition, 25 mg/mL BG:QAm:TEGs suspensions in culture media showed fungicidal and bactericidal effects. In conclusion, BG:QAm:TEGs can be recognized as antimicrobial biomaterials with negligible biological patient risk.
Collapse
Affiliation(s)
- Marta W Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Izabela M Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Izabella Ślęzak-Prochazka
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 Str., 44-100 Gliwice, Poland
| |
Collapse
|
25
|
Wang M, Gu K, Wan M, Gan L, Chen J, Zhao W, Shi H, Li J. Hydrogen peroxide enhanced photoinactivation of Candida albicans by a novel boron-dipyrromethene (BODIPY) derivative. Photochem Photobiol Sci 2023:10.1007/s43630-023-00408-2. [PMID: 37022583 DOI: 10.1007/s43630-023-00408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
Photodynamic inactivation (PDI) has received increasing attention as a promising approach to combat Candida albicans infections. This study aimed to evaluate the synergistic effect of a new BODIPY (4,4-difluoro-boradiazaindacene) derivative and hydrogen peroxide on C. albicans. BDP-4L in combination with H2O2 demonstrated enhanced photokilling efficacy. In suspended cultures of C. albicans, the maximum decrease was 6.20 log and 2.56 log for PDI using BDP-4L (2.5 μM) with or without H2O2, respectively. For mature C. albicans biofilms, 20 μM BDP-4L plus H2O2 eradicated C. albicans, causing an over 6.7 log count reduction in biofilm-associated cells, while only a reduction of ~ 1 log count was observed when H2O2 was omitted. Scanning electron microscopy analysis and LIVE/DEAD assays suggested that PDI using BDP-4L plus H2O2 induced more damage to the cell membrane. Correspondingly, amplification of nucleic acids release was observed in biofilms treated with the combined PDI. Additionally, we also discovered that the addition of hydrogen peroxide potentiated the generation of 1O2 in PDI using the singlet oxygen sensor green probe. Collectively, BDP-4L combined with H2O2 presents a promising approach in the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Mengran Wang
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Kedan Gu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, No.150, Rd. Fucheng, Hangzhou, 310000, China
| | - Miyang Wan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Lu Gan
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Jingtao Chen
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| | - Hang Shi
- Department of Stomatology, Huashan Hospital, Fudan University, No.12, Rd. Wulumuqi, Shanghai, 200000, China.
| | - Jiyang Li
- School of Pharmacy, Fudan University, No.826, Rd. Zhangheng, Shanghai, 200000, China.
| |
Collapse
|
26
|
Prasad P, Tippana M. Morphogenic plasticity: the pathogenic attribute of Candida albicans. Curr Genet 2023; 69:77-89. [PMID: 36947241 DOI: 10.1007/s00294-023-01263-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.
Collapse
Affiliation(s)
- Priya Prasad
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| | - Meena Tippana
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| |
Collapse
|
27
|
do Rosário Esteves Guimarães C, de Freitas HF, Barros TF. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 2023; 54:37-52. [PMID: 36576671 PMCID: PMC9944165 DOI: 10.1007/s42770-022-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords "antibiofilm," "candida albicans," "compound," and "molecule" with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.
Collapse
Affiliation(s)
- Carolina do Rosário Esteves Guimarães
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Tânia Fraga Barros
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil.
| |
Collapse
|
28
|
Chudzik-Rząd B, Zalewski D, Kasela M, Sawicki R, Szymańska J, Bogucka-Kocka A, Malm A. The Landscape of Gene Expression during Hyperfilamentous Biofilm Development in Oral Candida albicans Isolated from a Lung Cancer Patient. Int J Mol Sci 2022; 24:ijms24010368. [PMID: 36613809 PMCID: PMC9820384 DOI: 10.3390/ijms24010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The filamentation ability of Candida albicans represents one of the main virulence factors allowing for host tissue penetration and biofilm formation. The aim of this paper was to study the genetic background of the hyperfilamentous biofilm development in vitro in C. albicans isolated from the oral cavity of a lung cancer patient. Analyzed C. albicans isolates (CA1, CA2, CA3) were chosen based on their different structures of mature biofilm. The CA3 isolate possessing hyperfilamentation properties and forming high biofilm was compared with CA1 and CA2 isolates exhibiting low or average biofilm-forming ability, respectively. The detailed biofilm organization was studied with the use of confocal scanning laser microscopy. The whole transcriptome analysis was conducted during three stages of biofilm development (24 h, 48 h, 72 h). In contrast to CA1 and/or CA2 isolate, the CA3 isolate was characterized by a significant upregulation of genes encoding for cell wall proteins (HWP1, PGA13, PGA44, ALS3) and candidalysin (ECE1), as well as being involved in iron metabolism (FRE1, ALS3), sulfur metabolism (HAL21), the degradation of aromatic compounds (HQD2), and membrane transport (DIP5, PHO89, TNA1). In contrast, some genes (SCW11, FGR41, RBE1) in the CA3 were downregulated. We also observed the overexpression of a few genes over time-mainly FRE1, ATX1, CSA2 involved in iron metabolism. This is the first insight into the potential function of multiple genes in the hyperfilamentous biofilm formation in C. albicans, primarily isolated from host tissue, which may have an important clinical impact on cancer patients. Moreover, the presented data can lay the foundation for further research on novel pathogen-specific targets for antifungal drugs.
Collapse
Affiliation(s)
- Beata Chudzik-Rząd
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Daniel Zalewski
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Martyna Kasela
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
- Correspondence: (M.K.); (A.M.); Tel.: +48-81448-7100 (M.K. & A.M.)
| | - Rafał Sawicki
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Jolanta Szymańska
- Department of Comprehensive Paediatric and Adult Dentistry, Medical University of Lublin, 6 Chodźki St., 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
- Correspondence: (M.K.); (A.M.); Tel.: +48-81448-7100 (M.K. & A.M.)
| |
Collapse
|
29
|
Benziane MY, Bendahou M, Benbelaïd F, Khadir A, Belhadef H, Benaissa A, Ouslimani S, Mahdi F, Muselli A. Efficacy of endemic Algerian essential oils against single and mixed biofilms of Candida albicans and Candida glabrata. Arch Oral Biol 2022; 145:105584. [DOI: 10.1016/j.archoralbio.2022.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
30
|
Colombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, Meto A, Peppoloni S, Blasi E. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14146. [PMID: 36361021 PMCID: PMC9657062 DOI: 10.3390/ijerph192114146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.
Collapse
Affiliation(s)
- Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eva Pericolini
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
31
|
Kim YG, Lee JH, Park S, Khadke SK, Shim JJ, Lee J. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes. Microbiol Spectr 2022; 10:e0253622. [PMID: 36190417 PMCID: PMC9602536 DOI: 10.1128/spectrum.02536-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for candidiasis. The pathogen readily forms antifungal agent-resistant biofilms on implanted medical devices or human tissue. Morphologic transition from yeast to filamentous cells and subsequent biofilm formation is a key virulence factor and a prerequisite for biofilm development by C. albicans. We investigated the antibiofilm and antifungal activities of 18 hydroquinones against fluconazole-resistant C. albicans. Tetrachlorohydroquinone (TCHQ) at subinhibitory concentrations (2 to 10 μg/mL) significantly inhibited C. albicans biofilm formation with an MIC of 50 μg/mL, whereas the backbone hydroquinone did not (MIC > 400 μg/mL), and it markedly inhibited cell aggregation and hyphal formation. Transcriptomic analyses showed that TCHQ downregulated the expressions of several hyphae-forming and biofilm-related genes (ALS3, ECE1, HWP1, RBT5, and UME6) but upregulated hyphae- and biofilm-inhibitory genes (IFD6 and YWP1). Furthermore, it prevented C. albicans biofilm development on porcine skin and at concentrations of 20 to 50 μg/mL was nontoxic to the nematode Caenorhabditis elegans and did not adversely affect Brassica rapa seed germination and growth. This study indicates that hydroquinones, particularly TCHQ, diminish the virulence, biofilm formation, and animal tissue adhesion of C. albicans, which suggests hydroquinones should be considered potential candidate antifungal agents against drug-resistant C. albicans strains. IMPORTANCE Persistence in chronic infections by Candida albicans is due to its ability of biofilm formation that endures conventional antifungals and host immune systems. Hence, the inhibition of biofilm formation and virulence characteristics is another mean of addressing infections. This study is a distinctive one since 18 hydroquinone analogues were screened and TCHQ efficiently inhibited the biofilm formation by C. albicans with significantly changed expressional profile of hyphae-forming and biofilm-related genes. The antibiofilm efficacy was confirmed using a porcine skin model and chemical toxicity was investigated using plant seed germination and nematode models. Our findings reveal that TCHQ can efficiently control the C. albicans biofilms and virulence characteristics.
Collapse
Affiliation(s)
- Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sunyoung Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
32
|
Application of the Mutant Libraries for Candida albicans Functional Genomics. Int J Mol Sci 2022; 23:ijms232012307. [PMID: 36293157 PMCID: PMC9603287 DOI: 10.3390/ijms232012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.
Collapse
|
33
|
Hrichi S, Chaâbane-Banaoues R, Alibrando F, Altemimi AB, Babba O, Majdoub YOE, Nasri H, Mondello L, Babba H, Mighri Z, Cacciola F. Chemical Composition, Antifungal and Anti-Biofilm Activities of Volatile Fractions of Convolvulus althaeoides L. Roots from Tunisia. Molecules 2022; 27:6834. [PMID: 36296427 PMCID: PMC9609869 DOI: 10.3390/molecules27206834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Raja Chaâbane-Banaoues
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Filippo Alibrando
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Oussama Babba
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| | - Habib Nasri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Luigi Mondello
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Hamouda Babba
- Laboratory of Parasitology and Mycology (LP3M), Department of Clinical Biology, Faculty of Pharmacy of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Zine Mighri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
34
|
de Siqueira VM, da Silva BGM, Passos JCDS, Pinto AP, da Rocha JBT, Alberto-Silva C, Costa MS. (MeOPhSe)2, a synthetic organic selenium compound, inhibits virulence factors of Candida krusei: Adherence to cervical epithelial cells and biofilm formation. J Trace Elem Med Biol 2022; 73:127019. [PMID: 35709560 DOI: 10.1016/j.jtemb.2022.127019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/26/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Systemic candidiasis is produced by Candida albicans or non-albicans Candida species, opportunistic fungi that produce both superficial and invasive infections. Despite the availability of a wide range of antifungal agents for the treatment of candidiasis, failure of therapy is observed frequently, which opens new avenues in the field of alternative therapeutic strategies. METHODS The effects of p,p'-methoxyl-diphenyl diselenide [(MeOPhSe)2], a synthetic organic selenium (organochalcogen) compound, were investigated on virulence factors of C. krusei and compared with its antifungal effects on the virulence factors related to adhesion to cervical epithelial cell surfaces with C. albicans. RESULTS (MeOPhSe)2, a compound non-toxic in epithelial (HeLa) and fibroblastic (Vero) cells, inhibited the growth in a dose-dependent manner and changed the kinetics parameters of C. krusei and, most importantly, extending the duration of lag phase of growth, inhibiting biofilm formation, and changing the structure of biofilm. Also, (MeOPhSe)2 reduced C. albicans and C. krusei adherence to cervical epithelial cells, an important factor for the early stage of the Candida-host interaction. The reduction was 37.24 ± 2.7 % in C. krusei (p = 0.00153) and 32.84 ± 3.2 % in C. albicans (p = 0.0072) at 20 µM (MeOPhSe)2, and the effect is in a concentration-dependent manner. Surprisingly, the antifungal potential on adhesion was similar between both species, indicating the potential of (MeOPhSe)2 as a promising antifungal drug against different Candida infections. CONCLUSION Overall, we demonstrated the potential of (MeOPhSe)2 as an effective antifungal drug against the virulence factors of Candida species.
Collapse
Affiliation(s)
- Victor Mendes de Siqueira
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Bruna Graziele Marques da Silva
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Juliene Cristina da Silva Passos
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | - Ana Paula Pinto
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil
| | | | - Carlos Alberto-Silva
- Natural and Humanities Sciences Center, Experimental Morphophysiology Laboratory Federal University of ABC (UFABC), Rua Arcturus, no 03, Bloco Delta, São Bernardo do Campo, SP 09606-070, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, São José dos Campos, SP 2911, Brazil.
| |
Collapse
|
35
|
Impact of Gamma Irradiation on the Properties of Magnesium-Doped Hydroxyapatite in Chitosan Matrix. MATERIALS 2022; 15:ma15155372. [PMID: 35955308 PMCID: PMC9369862 DOI: 10.3390/ma15155372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
This is the first report regarding the effect of gamma irradiation on chitosan-coated magnesium-doped hydroxyapatite (xMg = 0.1; 10 MgHApCh) layers prepared by the spin-coating process. The stability of the resulting 10 MgHApCh gel suspension used to obtain the layers has been shown by ultrasound measurements. The presence of magnesium and the effect of the irradiation process on the studied samples were shown by X-ray photoelectron spectroscopy (XPS). The XPS results obtained for irradiated 10 MgHApCh layers suggested that the magnesium and calcium contained in the surface layer are from tricalcium phosphate (TCP; Ca3(PO4)2) and hydroxyapatite (HAp). The XPS analysis has also highlighted that the amount of TCP in the surface layer increased with the irradiation dose. The energy-dispersive X-ray spectroscopy (EDX) evaluation showed that the calcium decreases with the increase in the irradiation dose. In addition, a decrease in crystallinity and crystallite size was highlighted after irradiation. By atomic force microscopy (AFM) we have obtained images suggesting a good homogeneity of the surface of the non-irradiated and irradiated layers. The AFM results were also sustained by the scanning electron microscopy (SEM) images obtained for the studied samples. The effect of gamma-ray doses on the Fourier transform infrared spectroscopy (ATR-FTIR) spectra of 10 MgHApCh composite layers was also evaluated. The in vitro antifungal assays proved that 10 MgHApCh composite layers presented a strong antifungal effect, correlated with the irradiation dose and incubation time. The study of the stability of the 10 MgHApCh gel allowed us to achieve uniform and homogeneous layers that could be used in different biomedical applications.
Collapse
|
36
|
Sucupira PHF, Moura TR, Gurgel ILS, Pereira TTP, Padovan ACB, Teixeira MM, Bahia D, Soriani FM. In vitro and in vivo Characterization of Host–Pathogen Interactions of the L3881 Candida albicans Clinical Isolate. Front Microbiol 2022; 13:901442. [PMID: 35898912 PMCID: PMC9309619 DOI: 10.3389/fmicb.2022.901442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is a human commensal fungus and the etiologic agent of nosocomial infections in immunocompromised individuals. Candida spp. is the most studied human fungal pathogen, and the mechanisms by which this fungus can evade the immune system affecting immunosuppressed individuals have been extensively studied. Most of these studies focus on different species of Candida, and there is much to be understood in virulence variability among lineages, specifically different C. albicans clinical isolates. To better understand the main mechanisms of its virulence variability modulated in C. albicans clinical isolates, we characterized L3881 lineage, which has been previously classified as hypovirulent, and SC5314 lineage, a virulent wild-type control, by using both in vitro and in vivo assays. Our findings demonstrated that L3881 presented higher capacity to avoid macrophage phagocytosis and higher resistance to oxidative stress than the wild type. These characteristics prevented higher mortality rates for L3881 in the animal model of candidiasis. Conversely, L3881 has been able to induce an upregulation of pro-inflammatory mediators both in vitro and in vivo. These results indicated that in vitro and in vivo functional characterizations are necessary for determination of virulence in different clinical isolates due to its modulation in the host–pathogen interactions.
Collapse
Affiliation(s)
- Pedro H. F. Sucupira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tauany R. Moura
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella L. S. Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tassia T. P. Pereira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C. B. Padovan
- Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diana Bahia
- Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico M. Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico M. Soriani,
| |
Collapse
|
37
|
Priya A, Pandian SK. Biofilm and hyphal inhibitory synergistic effects of phytoactives piperine and cinnamaldehyde against Candida albicans. Med Mycol 2022; 60:6602366. [PMID: 35661216 DOI: 10.1093/mmy/myac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
Oral candidiasis, the most common mycotic infection of the human oral cavity is non-life-threatening yet if untreated may advance as systemic infections. Ability of Candida albicans to adapt sessile lifestyle imparts resistance to drugs and host immunity. Consequently, due to limited effectiveness of conventional antifungal treatment, novel therapeutic strategies are required. In the present study, synergistic interaction of phytochemicals, piperine and cinnamaldehyde against the biofilm and hyphal of C. albicans was evaluated. Minimum inhibitory concentration (MIC) and biofilm inhibitory concentration (BIC) of piperine and cinnamaldehyde against C. albicans were analysed through microbroth dilution assay and crystal violet staining method, respectively. Combinatorial biofilm and hyphal inhibitory effect were investigated through checkerboard assay. In vitro results were validated through gene expression analysis. BIC of piperine and cinnamaldehyde was determined to be 32 µg/mL and 64 µg/mL, respectively. Interaction between these two phytocomponents was found to be synergistic and six different synergistic antibiofilm combinations were identified. Microscopic analysis of biofilm architecture also evidenced the biofilm and surface adherence inhibitory potential of piperine and cinnamaldehyde combinations. Phenotypic switching between yeast and hyphal morphological forms was influenced by synergistic combinations. qPCR analysis corroborated the results of in vitro activities. nrg1 and trp1, the negative transcriptional regulators of filamentous growth were upregulated whereas other genes that are involved in biofilm formation, filamentous growth, adhesion etc were found to be downregulated. These proficient phytochemical combinations provide a new therapeutic avenue for the treatment of biofilm associated oral candidiasis and to combat the recurrent infections due to antibiotic resistance.
Collapse
Affiliation(s)
- Arumugam Priya
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | | |
Collapse
|
38
|
Qian Z, Mengxun Z, Yingchao W, Tingting Z, Roujuan W, Shuhong W, Yi D, Ruirui Y, Peng Y, Yifan S, Yunshi Z, Xun S, Yaping G, Zhendan H, Tie C, Chenyang L. Natural Compound 2-Chloro-1,3-dimethoxy-5-methylbenzene, Isolated from Hericium Erinaceus, Inhibits Fungal Growth by Disrupting Membranes and Triggering Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6444-6454. [PMID: 35580153 DOI: 10.1021/acs.jafc.2c01417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, 2-chloro-1,3-dimethoxy-5-methylbenzene (CDM), a natural product with anti-Candida albicans activity, was discovered from the Hericium erinaceus mycelium. The minimum inhibitory concentration of CDM was 62.5 μg/mL. Moreover, structural analogues of CDM obtained from chemical synthesis were applied to explore the structure-activity relationship (SAR) of CDM against C. albicans. It was found that methoxy groups, halogen atoms (except fluorine atoms), and methoxy-meta-position methyl groups in the structure of CDM were the key active groups. Furthermore, we investigated the anti-C. albicans mechanism of CDM. Experiments suggested that CDM destroyed the cell membrane of C. albicans, including the cytoplasmic membrane and mitochondrial membrane, and caused the accumulation of reactive oxygen species and mitochondrial dysfunction, which ultimately led to apoptosis of C. albicans. In addition, CDM had no toxicity on human normal gastric mucosal epithelial cells exposed to a concentration of 125 μg/mL. Experiments showed that CDM reduced the damage of C. albicans to the visceral tissue of infected mice and improved the survival rate of mice. Our research provides a scientific basis for the discovery of effective and safe anti-C. albicans drugs from H. erinaceus.
Collapse
Affiliation(s)
- Zhang Qian
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhang Mengxun
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Yingchao
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhen Tingting
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Roujuan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Wang Shuhong
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Du Yi
- University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Yu Ruirui
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Yi Peng
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Song Yifan
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Zhi Yunshi
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Song Xun
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Guo Yaping
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - He Zhendan
- Guangdong Province Department of Pharmacology, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Chen Tie
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| | - Li Chenyang
- Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
39
|
da Silva BGM, Pinto AP, Passos JCDS, da Rocha JBT, Alberto-Silva C, Costa MS. Diphenyl diselenide suppresses key virulence factors of Candida krusei, a neglected fungal pathogen. BIOFOULING 2022; 38:427-440. [PMID: 35670068 DOI: 10.1080/08927014.2022.2084388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Candida krusei is a candidiasis etiological agent of relevance in the clinical setting because of its intrinsic resistance to fluconazole. Also, it has opened up new paths in the area of alternative therapeutic techniques. This project demonstrated the effects of diphenyl diselenide (PhSe)2 and p-cloro diphenyl diselenide (pCl-PhSe)2, two organochalcogen compounds, on relevant virulence factors for the early stage of the C. krusei host interaction and infection process. Both compounds inhibited adherence of C. krusei to both polystyrene surfaces and cervical epithelial cells and biofilm formation; the structure of the biofilm was also changed in a dose-dependent manner. In addition, both compounds inhibited C. krusei growth, but (PhSe)2 significantly increased the time duration of the lag phase and delayed the start of the exponential phase in growth kinetics. (PhSe)2 has more potential antifungal activity than (pCl-PhSe)2 in inhibiting the adherence to epithelial cells, biofilm formation, and growth of C. krusei.
Collapse
Affiliation(s)
| | - Ana Paula Pinto
- Instituto de Pesquisa e Desenvolvimento-IP&D, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| | | | - João Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, São Paulo, Brazil
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Sciences Center (CCNH), Federal University of ABC-UFABC, São Paulo, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa e Desenvolvimento-IP&D, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, Brazil
| |
Collapse
|
40
|
The antifungal and antibiofilm activity of Cymbopogon nardus essential oil and citronellal on clinical strains of Candida albicans. Braz J Microbiol 2022; 53:1231-1240. [PMID: 35386096 PMCID: PMC9433487 DOI: 10.1007/s42770-022-00740-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/19/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE This study investigated the antifungal and antibiofilm activity of Cymbopogon nardus essential oil (EO) and its major compound, citronellal, in association with miconazole and chlorhexidine on clinical strains of Candida albicans. The likely mechanism(s) of action of C. nardus EO and citronellal was further determined. MATERIALS AND METHODS The EO was chemically characterized by gas chromatography coupled with mass spectrometry (GC-MS). The antifungal activity (MIC/MFC) and antibiofilm effects of C. nardus EO and citronellal were determined by the microdilution method, and their likely mechanism(s) of action was determined by the sorbitol and ergosterol assays. Then, the samples were tested for a potential association with standard drugs through the checkerboard technique. Miconazole and chlorhexidine were used as positive controls and the assays were performed in triplicate. RESULTS The GC-MS analysis tentatively identified citronellal as the major compound in C. nardus EO. Both samples showed antifungal activity, with MIC of 256 µg/mL, as compared to 128 µg/mL and 8 µg/mL of miconazole and chlorhexidine, respectively. C. nardus EO and citronellal effectively inhibited biofilm formation (p < 0.05) and disrupted preformed biofilms (p < 0.0001). They most likely interact with the cell membrane, but not the cell wall, and did not present any synergistic activity when associated with standard drugs. CONCLUSION C. nardus EO and citronellal showed strong in vitro antifungal and antibiofilm activity on C. albicans. CLINICAL RELEVANCE Natural products have been historically bioprospected for novel solutions to control fungal biofilms. Our data provide relevant insights into the potential of C. nardus EO and citronellal for further clinical testing. However, additional bioavailability and toxicity studies must be carried out before these products can be used for the chemical control of oral biofilms.
Collapse
|
41
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Appraisal of Cinnamaldehyde Analogs as Dual-Acting Antibiofilm and Anthelmintic Agents. Front Microbiol 2022; 13:818165. [PMID: 35369516 PMCID: PMC8966877 DOI: 10.3389/fmicb.2022.818165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cinnamaldehyde has a broad range of biological activities, which include antibiofilm and anthelmintic activities. The ever-growing problem of drug resistance and limited treatment options have created an urgent demand for natural molecules with antibiofilm and anthelmintic properties. Hence, we hypothesized that molecules with a scaffold structurally similar to that of cinnamaldehyde might act as dual inhibitors against fungal biofilms and helminths. In this regard, eleven cinnamaldehyde analogs were tested to determine their effects on fungal Candida albicans biofilm and nematode Caenorhabditis elegans. α-Methyl and trans-4-methyl cinnamaldehydes efficiently inhibited C. albicans biofilm formation (>90% inhibition at 50 μg/mL) with minimum inhibitory concentrations (MICs) of ≥ 200 μg/mL and 4-bromo and 4-chloro cinnamaldehydes exhibited anthelmintic property at 20 μg/mL against C. elegans. α-Methyl and trans-4-methyl cinnamaldehydes inhibited hyphal growth and cell aggregation. Scanning electron microscopy was employed to determine the surface architecture of C. albicans biofilm and cuticle of C. elegans, and confocal laser scanning microscopy was used to determine biofilm characteristics. The perturbation in gene expression of C. albicans was investigated using qRT-PCR analysis and α-methyl and trans-4-methyl cinnamaldehydes exhibited down-regulation of ECE1, IFD6, RBT5, UCF1, and UME6 and up-regulation of CHT4 and YWP1. Additionally, molecular interaction of these two molecules with UCF1 and YWP1 were revealed by molecular docking simulation. Our observations collectively suggest α-methyl and trans-4-methyl cinnamaldehydes are potent biofilm inhibitors and that 4-bromo and 4-chloro cinnamaldehydes are anthelmintic agents. Efforts are required to determine the range of potential therapeutic applications of cinnamaldehyde analogs.
Collapse
Affiliation(s)
- Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
42
|
Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Commun Biol 2022; 5:292. [PMID: 35361876 PMCID: PMC8971432 DOI: 10.1038/s42003-022-03228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Microbial drug resistance is an emerging global challenge. Current drug resistance assays tend to be simplistic, ignoring complexities of resistance manifestations and mechanisms, such as multicellularity. Here, we characterize multicellular and molecular sources of drug resistance upon deleting the AMN1 gene responsible for clumping multicellularity in a budding yeast strain, causing it to become unicellular. Computational analysis of growth curve changes upon drug treatment indicates that the unicellular strain is more sensitive to four common antifungals. Quantitative models uncover entwined multicellular and molecular processes underlying these differences in sensitivity and suggest AMN1 as an antifungal target in clumping pathogenic yeasts. Similar experimental and mathematical modeling pipelines could reveal multicellular and molecular drug resistance mechanisms, leading to more effective treatments against various microbial infections and possibly even cancers. Combined growth curve experiments and quantitative modeling reveal antifungal responses of planktonic yeast, providing a future framework to examine antimicrobial drug resistance.
Collapse
|
43
|
Anti-Candida Properties of Gossypium hirsutum L.: Enhancement of Fungal Growth, Biofilm Production and Antifungal Resistance. Pharmaceutics 2022; 14:pharmaceutics14040698. [PMID: 35456532 PMCID: PMC9031239 DOI: 10.3390/pharmaceutics14040698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Candida is a genus of yeasts with notable pathogenicity and significant ability to develop antimicrobial resistance. Gossypium hirsutum L., a medicinal plant that is traditionally used due to its antimicrobial properties, has demonstrated significant antifungal activity. Therefore, this study investigated the chemical composition and anti-Candida effects of aqueous (AELG) and hydroethanolic (HELG) extracts obtained from the leaves of this plant. (2) Methods: The extracts were chemically characterized by UPLC–QTOF-MS/MS, and their anti-Candida activities were investigated by analyzing cell viability, biofilm production, morphological transition, and enhancement of antifungal resistance. (3) Results: The UPLC–QTOF-MS/MS analysis revealed the presence of twenty-one compounds in both AELG and HELG, highlighting the predominance of flavonoids. The combination of the extracts with fluconazole significantly reduced its IC50 values against Candida albicans INCQS 40006, Candida tropicalis INCQS 40042, and C. tropicalis URM 4262 strains, indicating enhanced antifungal activity. About biofilm production, significant inhibition was observed only for the AELG-treated C. tropicalis URM 4262 strain in comparison with the untreated control. Accordingly, this extract showed more significant inhibitory effects on the morphological transition of the INCQS 40006 and URM 4387 strains of C. albicans (4) Conclusions: Gossypium hirsutum L. presents promising antifungal effects, that may be potentially linked to the combined activity of chemical constituents identified in its extracts.
Collapse
|
44
|
Rashid S, Correia-Mesquita TO, Godoy P, Omran RP, Whiteway M. SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:764711. [PMID: 35350439 PMCID: PMC8957876 DOI: 10.3389/fcimb.2022.764711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a highly conserved, multiprotein co-activator complex that consists of five distinct modules. It has two enzymatic functions, a histone acetyltransferase (HAT) and a deubiquitinase (DUB) and plays a central role in processes such as transcription initiation, elongation, protein stability, and telomere maintenance. We analyzed conditional and null mutants of the SAGA complex module components in the fungal pathogen Candida albicans; Ngg1, (the HAT module); Ubp8, (the DUB module); Tra1, (the recruitment module), Spt7, (the architecture module) and Spt8, (the TBP interaction unit), and assessed their roles in a variety of cellular processes. We observed that spt7Δ/Δ and spt8Δ/Δ strains have a filamentous phenotype, and both are highly invasive in yeast growing conditions as compared to the wild type, while ngg1Δ/Δ and ubp8Δ/Δ are in yeast-locked state and non-invasive in both YPD media and filamentous induced conditions compared to wild type. RNA-sequencing-based transcriptional profiling of SAGA mutants reveals upregulation of hyphal specific genes in spt7Δ/Δ and spt8Δ/Δ strains and downregulation of ergosterol metabolism pathway. As well, spt7Δ/Δ and spt8Δ/Δ confer susceptibility to antifungal drugs, to acidic and alkaline pH, to high temperature, and to osmotic, oxidative, cell wall, and DNA damage stresses, indicating that these proteins are important for genotoxic and cellular stress responses. Despite having similar morphological phenotypes (constitutively filamentous and invasive) spt7 and spt8 mutants displayed variation in nuclear distribution where spt7Δ/Δ cells were frequently binucleate and spt8Δ/Δ cells were consistently mononucleate. We also observed that spt7Δ/Δ and spt8Δ/Δ mutants were quickly engulfed by macrophages compared to ngg1Δ/Δ and ubp8Δ/Δ strains. All these findings suggest that the SAGA complex modules can have contrasting functions where loss of Spt7 or Spt8 enhances filamentation and invasiveness while loss of Ngg1 or Ubp8 blocks these processes.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
45
|
Wang Y, Guo Y, Jin Y, Wang Y, Wang C. Mechanical properties, corrosion resistance, and anti-adherence characterization of pure titanium fabricated by casting, milling, and selective laser melting. J Biomed Mater Res B Appl Biomater 2022; 110:1523-1534. [PMID: 35226794 DOI: 10.1002/jbm.b.35014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/27/2021] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
Milling and selective laser melting (SLM) technology have become new options for removable partial denture (RPD) processing. However, whether milling and SLM technology has an impact on the properties of RPD remains unclear, which is also the aim of our study. To investigate the effects of milling and SLM technology on pure titanium, mechanical property, corrosion resistance, and anti-adherence of specimens were evaluated, and specimens processed by lost-wax casting were used as control. Compared with casting and milling groups, the SLM group showed enhanced Vickers hardness (402.1 ± 13.0 HV), tensile stress (694.4 ± 4.5 MPa), and larger electrochemical capacitance arc radius compared with casting and milling groups. A series of adhesion-related genes (Als1, Als3, and HWP1) of Candida albicans cultured on SLM specimens were upregulated for more than two times that of casting and milling groups. However, images from scanning electron microscopy and confocal laser scanning microscopy exhibited similar biofilm morphology and biomass of C. albicans on a titanium disk processed by casting, milling, and SLM. Dwindled water contact angle (64.7 ± 0.6°) and higher TiO2 constituents (40.82%) in the SLM group might lead to the incompatibility of genetic expression and biofilm generation. Our findings indicated that SLM is an ideal process to produce titanium dentures, providing a reference on the selection of processing technology for dentists.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yanyang Guo
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Peng Z, Tang J. Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Front Microbiol 2022; 12:783010. [PMID: 35185813 PMCID: PMC8847744 DOI: 10.3389/fmicb.2021.783010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The large mortality and morbidity rate of C. albicans infections is a crucial problem in medical mycology. Because the generation of biofilms and drug resistance are growing concerns, the growth of novel antifungal agents and the looking for newer objectives are necessary. In this review, inhibitors of C. albicans biofilm generation and molecular mechanisms of intestinal epithelial barrier protection are elucidated. Recent studies on various transcription elements; quorum-sensing molecules; host responses to adherence; and changes in efflux pumps, enzymes, bud to hyphal transition, and lipid profiles have increased the knowledge of the intricate mechanisms underlying biofilm resistance. In addition, the growth of novel biomaterials with anti-adhesive nature, natural products, drugs, bioactive compounds, proteins, lipids, and carbohydrates are being researched. Recently, more and more attention has been given to various metal nanoparticles that have also appeared as antibiofilm agents in C. albicans. The intestinal epithelial obstacle exerts an crucial effect on keeping intestinal homeostasis and is increasingly associated with various disorders associated with the intestine such as inflammatory bowel disease (IBD), irritable bowel syndrome, metabolic syndrome, allergies, hepatic inflammation, septic shock, etc. However, whether their involvement in the prevention of other intestinal disorders like IBD are useful in C. albicans remains unknown. Further studies must be carried out in order to validate their inhibition functions in intestinal C. albicans. This provides innovates ideas for intestinal C. albicans treatment.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Zhang J, Gong H, Liao M, Li Z, Schweins R, Penny J, Lu JR. How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility? J Colloid Interface Sci 2022; 608:193-206. [PMID: 34626966 DOI: 10.1016/j.jcis.2021.09.170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/31/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
HYPOTHESIS The widespread and prolonged use of antifungal antibiotics has led to the rapid emergence of multidrug resistant Candida species that compromise current treatments. Natural and synthetic antimicrobial peptides (AMPs) offer potential alternatives but require further development to overcome some of their current drawbacks. AMPs kill pathogenic fungi by permeabilising their membranes but it remains unclear how AMPs can be designed to maximise their antifungal potency whilst minimising their toxicity to host cells. EXPERIMENTS We have designed a group of short (IIKK)3 AMPs via selective terminal modifications ending up with different amphiphilicities. Their antifungal performance was assessed by minimum inhibition concentration (MICs) and dynamic killing to 4 Candida strains and Cryptococcus neoformans, and the minimum biofilm-eradicating concentrations to kill 95% of the C. albicans biofilms (BEC95). Different antifungal actions were interpreted on the basis of structural disruptions of the AMPs to small unilamellar vesicles from fluorescence leakage, Zeta potential, small angle neutron scattering (SANS) and molecular dynamics simulations (MD). FINDING AMPs possess high antifungal activities against the Candida species and Cryptococcus neoformans; some of them displayed faster dynamic killing than antibiotics like amphotericin B. G(IIKK)3I-NH2 and (IIKK)3II-NH2 were particularly potent against not only planktonic microbes but also fungal biofilms with low cytotoxicity to host cells. It was found that their high selectivity and fast action were well correlated to their fast membrane lysis, evident from data measured from Zeta potential measurements, SANS and MD, and also consistent with the previously observed antibacterial and anticancer performance. These studies demonstrate the important role of colloid and interface science in further developing short, potent and biocompatible AMPs towards clinical treatments via structure design and optimization.
Collapse
Affiliation(s)
- Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Mingrui Liao
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Zongyi Li
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Oxford Road, The University of Manchester, Manchester M13 9PL, UK
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
48
|
Li Y, Liu Y, Sun Y, Ma S, Ma C, Zhou H, Chen G, Liu L, Cai D. Study on the mechanism of Yupingfeng powder in the treatment of immunosuppression based on UPLC⁃QTOF⁃MS, network pharmacology and molecular biology verification. Life Sci 2022; 289:120211. [PMID: 34875251 DOI: 10.1016/j.lfs.2021.120211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
AIMS The current study aims to investigate the effect of Yupingfeng (YPF) powder on immunosuppression, and explore the possible mechanisms. MAIN METHODS Firstly, the monomer components of YPF powder were analyzed by UPLC-QTOF-MS combined with UNIFI automatic analysis platform, then the mechanism of YPF on immunosuppressive treatment was investigated using network pharmacological method, and finally the prediction was verified in a Candida albicans (Can)-induced immunosuppressive BALB/c mouse model. KEY FINDINGS 98 monomer compounds in YPF were obtained. Through virtual analysis and screening on the oral utilization and drug likeness properties of the components, 47 effective components were got. 9 core targets obtained were enriched in IL-17 signaling pathway. In the mouse model, YPF could reduce the number of Can and alleviate Can-induced inflammation in the kidney effectively, upregulate Can-induced low proportion of CD4+/CD8+ of splenic lymphocytes, and increase Can-induced low activity of IL-17 pathway. SIGNIFICANCE These results demonstrate that YPF could improve the immunity of Can-induced immunosuppression in BALB/c mice through upregulating the activity of IL-17 pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, PR China; Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Yongsheng Liu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China
| | - Shumei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China
| | - Chunmei Ma
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China
| | - Huiping Zhou
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Gui'e Chen
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang 524005, Guangdong, PR China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai 200437, PR China.
| | - De Cai
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
49
|
Uppuluri P. A Simple Method for Growth of Candida albicans Biofilms Under Continuous Media Flow and for Recovery of Biofilm Dispersed Cells. Methods Mol Biol 2022; 2542:219-224. [PMID: 36008667 DOI: 10.1007/978-1-0716-2549-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Majority of nosocomial infections are associated with biofilms growing on indwelling medical devices. These biofilms are nourished by a continuous flow of body fluids and subjected to shear stress forces. Cells dispersed from C. albicans biofilms are highly virulent and developmentally distinct from their parent biofilms. To study biofilm dispersed cells, it becomes imperative to isolate newly dispersed cells using a flow biofilm model. In this chapter, we detail the methods underlying assembly and workings of a simple flow biofilm model using materials commonly available in most microbiological laboratories. Biofilms developed using this system are robust and particularly suitable for studies requiring large amounts of biofilm (dispersed) cells for downstream analyses. Importantly, this apparatus mimics in vivo flow conditions, thereby making it a physiologically relevant model.
Collapse
Affiliation(s)
- Priya Uppuluri
- David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, USA.
- Division of Infectious Disease, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
| |
Collapse
|
50
|
Application of proper orthogonal decomposition for evaluation of coherent structures and energy contents in microbial biofilms. METHODS IN MICROBIOLOGY 2022; 194:106420. [DOI: 10.1016/j.mimet.2022.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
|