1
|
Link F, Jung S, Malzer X, Zierhut F, Konle A, Borges A, Batters C, Weiland M, Poellmann M, Nguyen AB, Kullmann J, Veigel C, Engstler M, Morriswood B. The actomyosin system is essential for the integrity of the endosomal system in bloodstream form Trypanosoma brucei. eLife 2024; 13:RP96953. [PMID: 39570285 PMCID: PMC11581428 DOI: 10.7554/elife.96953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The actin cytoskeleton is a ubiquitous feature of eukaryotic cells, yet its complexity varies across different taxa. In the parasitic protist Trypanosoma brucei, a rudimentary actomyosin system consisting of one actin gene and two myosin genes has been retained despite significant investment in the microtubule cytoskeleton. The functions of this highly simplified actomyosin system remain unclear, but appear to centre on the endomembrane system. Here, advanced light and electron microscopy imaging techniques, together with biochemical and biophysical assays, were used to explore the relationship between the actomyosin and endomembrane systems. The class I myosin (TbMyo1) had a large cytosolic pool and its ability to translocate actin filaments in vitro was shown here for the first time. TbMyo1 exhibited strong association with the endosomal system and was additionally found on glycosomes. At the endosomal membranes, TbMyo1 colocalised with markers for early and late endosomes (TbRab5A and TbRab7, respectively), but not with the marker associated with recycling endosomes (TbRab11). Actin and myosin were simultaneously visualised for the first time in trypanosomes using an anti-actin chromobody. Disruption of the actomyosin system using the actin-depolymerising drug latrunculin A resulted in a delocalisation of both the actin chromobody signal and an endosomal marker, and was accompanied by a specific loss of endosomal structure. This suggests that the actomyosin system is required for maintaining endosomal integrity in T. brucei.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Felix Zierhut
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Christopher Batters
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Monika Weiland
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Mara Poellmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - An Binh Nguyen
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Johannes Kullmann
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Claudia Veigel
- Ludwig-Maximilians-Universität München, Department of Cellular Physiology, Biomedical Centre (BMC)Planegg-MartinsriedGermany
- Center for Nanosciences (CeNS)MünchenGermany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
2
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
3
|
Link F, Borges A, Karo O, Jungblut M, Müller T, Meyer-Natus E, Krüger T, Sachs S, Jones NG, Morphew M, Sauer M, Stigloher C, McIntosh JR, Engstler M. Continuous endosomes form functional subdomains and orchestrate rapid membrane trafficking in trypanosomes. eLife 2024; 12:RP91194. [PMID: 38619530 PMCID: PMC11018342 DOI: 10.7554/elife.91194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Alyssa Borges
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Oliver Karo
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Marvin Jungblut
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Thomas Müller
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Elisabeth Meyer-Natus
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Timothy Krüger
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Stefan Sachs
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | - Nicola G Jones
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| | - Mary Morphew
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Sauer
- Department of Biotechnology & Biophysics, Biocentre, University of WürzburgWürzburgGermany
| | | | - J Richard McIntosh
- Molecular, Cellular & Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Markus Engstler
- Department of Cell & Developmental Biology, Biocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
4
|
Schichler D, Konle A, Spath EM, Riegler S, Klein A, Seleznev A, Jung S, Wuppermann T, Wetterich N, Borges A, Meyer-Natus E, Havlicek K, Pérez Cabrera S, Niedermüller K, Sajko S, Dohn M, Malzer X, Riemer E, Tumurbaatar T, Djinovic-Carugo K, Dong G, Janzen CJ, Morriswood B. Characterisation of TbSmee1 suggests endocytosis allows surface-bound cargo to enter the trypanosome flagellar pocket. J Cell Sci 2023; 136:jcs261548. [PMID: 37737012 PMCID: PMC10652038 DOI: 10.1242/jcs.261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
All endocytosis and exocytosis in the African trypanosome Trypanosoma brucei occurs at a single subdomain of the plasma membrane. This subdomain, the flagellar pocket, is a small vase-shaped invagination containing the root of the single flagellum of the cell. Several cytoskeleton-associated multiprotein complexes are coiled around the neck of the flagellar pocket on its cytoplasmic face. One of these, the hook complex, was proposed to affect macromolecule entry into the flagellar pocket lumen. In previous work, knockdown of T. brucei (Tb)MORN1, a hook complex component, resulted in larger cargo being unable to enter the flagellar pocket. In this study, the hook complex component TbSmee1 was characterised in bloodstream form T. brucei and found to be essential for cell viability. TbSmee1 knockdown resulted in flagellar pocket enlargement and impaired access to the flagellar pocket membrane by surface-bound cargo, similar to depletion of TbMORN1. Unexpectedly, inhibition of endocytosis by knockdown of clathrin phenocopied TbSmee1 knockdown, suggesting that endocytic activity itself is a prerequisite for the entry of surface-bound cargo into the flagellar pocket.
Collapse
Affiliation(s)
- Daja Schichler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Antonia Konle
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Eva-Maria Spath
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sina Riegler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alexandra Klein
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Anna Seleznev
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sisco Jung
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Timothy Wuppermann
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Noah Wetterich
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Alyssa Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Elisabeth Meyer-Natus
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Katharina Havlicek
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | | | - Korbinian Niedermüller
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Maximilian Dohn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Xenia Malzer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Emily Riemer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Tuguldur Tumurbaatar
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- European Molecular Biology Laboratory (EMBL) Grenoble, 38000 Grenoble, France
| | - Gang Dong
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Christian J. Janzen
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Brooke Morriswood
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Perdomo D, Berdance E, Lallinger-Kube G, Sahin A, Dacheux D, Landrein N, Cayrel A, Ersfeld K, Bonhivers M, Kohl L, Robinson DR. TbKINX1B: a novel BILBO1 partner and an essential protein in bloodstream form Trypanosoma brucei. Parasite 2022; 29:14. [PMID: 35262485 PMCID: PMC8906236 DOI: 10.1051/parasite/2022015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/20/2022] [Indexed: 12/17/2022] Open
Abstract
The flagellar pocket (FP) of the pathogen Trypanosoma brucei is an important single copy structure that is formed by the invagination of the pellicular membrane. It is the unique site of endo- and exocytosis and is required for parasite pathogenicity. The FP consists of distinct structural sub-domains with the least explored being the flagellar pocket collar (FPC). TbBILBO1 is the first-described FPC protein of Trypanosoma brucei. It is essential for parasite survival, FP and FPC biogenesis. In this work, we characterize TbKINX1B, a novel TbBILBO1 partner. We demonstrate that TbKINX1B is located on the basal bodies, the microtubule quartet (a set of four microtubules) and the FPC in T. brucei. Down-regulation of TbKINX1B by RNA interference in bloodstream forms is lethal, inducing an overall disturbance in the endomembrane network. In procyclic forms, the RNAi knockdown of TbKINX1B leads to a minor phenotype with a small number of cells displaying epimastigote-like morphologies, with a misplaced kinetoplast. Our results characterize TbKINX1B as the first putative kinesin to be localized both at the basal bodies and the FPC with a potential role in transporting cargo along with the microtubule quartet.
Collapse
Affiliation(s)
- Doranda Perdomo
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Elodie Berdance
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Gertrud Lallinger-Kube
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Annelise Sahin
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Denis Dacheux
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
- Institut Polytechnique de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Nicolas Landrein
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Anne Cayrel
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Klaus Ersfeld
- Department of Genetics, Bldg. NW1, University of Bayreuth, Universitätsstraße 30 95440 Bayreuth Germany
| | - Mélanie Bonhivers
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| | - Linda Kohl
- UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, CP52 61 rue Buffon 75231 Paris Cedex 05 France
| | - Derrick R. Robinson
- University of Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234 33000 Bordeaux France
| |
Collapse
|
6
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Halliday C, de Castro-Neto A, Alcantara CL, Cunha-E-Silva NL, Vaughan S, Sunter JD. Trypanosomatid Flagellar Pocket from Structure to Function. Trends Parasitol 2021; 37:317-329. [PMID: 33308952 DOI: 10.1016/j.pt.2020.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.
Collapse
Affiliation(s)
- Clare Halliday
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Artur de Castro-Neto
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Carolina L Alcantara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Narcisa L Cunha-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
8
|
Umaer K, Bangs JD. Late ESCRT machinery mediates the recycling and Rescue of Invariant Surface Glycoprotein 65 in Trypanosoma brucei. Cell Microbiol 2020; 22:e13244. [PMID: 32618070 DOI: 10.1111/cmi.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
The Endosomal Sorting Complex Required for Transport machinery consists of four protein complexes (ESCRT 0-IV) and the post ESCRT ATPase Vps4. ESCRT mediates cargo delivery for lysosomal degradation via formation of multivesicular bodies. Trypanosoma brucei contains orthologues of ESCRT I-III and Vps4. Trypanosomes also have an ubiquitinylated invariant surface glycoprotein (ISG65) that is delivered to the lysosome by ESCRT, however, we previously implicated TbVps4 in rescue and recycling of ISG65. Here we use conditional silencing to investigate the role of TbVps24, a phosphoinositide-binding ESCRT III component, on protein trafficking. TbVps24 localises to the TbRab7+ late endosome, and binds PI(3,5)P2 , the product of the TbFab1 kinase, both of which also localise to late endosomes. TbVps24 silencing is lethal, and negatively affects biosynthetic trafficking of the lysosomal markers p67 and TbCathepsin L. However, the major phenotype of silencing is accelerated degradation and depletion of the surface pool of ISG65. Thus, TbVps24 silencing phenocopies that of TbVps4 in regard to ISG65 trafficking. This presents a paradox since we have previously found that depletion of TbFab1 completely blocks ISG65 turnover. We propose a model in which late ESCRT components operate at two sites, one PI(3,5)P2 -dependent (degradation) and one PI(3,5)P2 -independent (recycling), to regulate ISG65 homeostasis.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| |
Collapse
|
9
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
10
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
11
|
Umaer K, Bush PJ, Bangs JD. Rab11 mediates selective recycling and endocytic trafficking in Trypanosoma brucei. Traffic 2018; 19:406-420. [PMID: 29582527 DOI: 10.1111/tra.12565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/21/2023]
Abstract
Trypanosoma brucei possesses a streamlined secretory system that guarantees efficient delivery to the cell surface of the critical glycosyl-phosphatidylinositol (GPI)-anchored virulence factors, variant surface glycoprotein (VSG) and transferrin receptor (TfR). Both are thought to be constitutively endocytosed and returned to the flagellar pocket via TbRab11+ recycling endosomes. We use conditional knockdown with established reporters to investigate the role of TbRab11 in specific endomembrane trafficking pathways in bloodstream trypanosomes. TbRab11 is essential. Ablation has a modest negative effect on general endocytosis, but does not affect turnover, steady state levels or surface localization of TfR. Nor are biosynthetic delivery to the cell surface and recycling of VSG affected. TbRab11 depletion also causes increased shedding of VSG into the media by formation of nanotubes and extracellular vesicles. In contrast to GPI-anchored cargo, TbRab11 depletion reduces recycling of the transmembrane invariant surface protein, ISG65, leading to increased lysosomal turnover. Thus, TbRab11 plays a critical role in recycling of transmembrane, but not GPI-anchored surface proteins. We proposed a two-step model for VSG turnover involving release of VSG-containing vesicles followed by GPI hydrolysis. Collectively, our results indicate a critical role of TbRab11 in the homeostatic maintenance of the secretory/endocytic system of bloodstream T. brucei.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| | - Peter J Bush
- South Campus Instrument Center, School of Dental Medicine, University at Buffalo (SUNY), Buffalo, New York
| | - James D Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York
| |
Collapse
|
12
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Abstract
Lysosomes play important roles in autophagy, not only in autophagosome degradation, but also in autophagy initiation. In Trypanosoma brucei, an early divergent protozoan parasite, we discovered a previously unappreciated function of the acidocalcisome, a lysosome-related organelle characterized by acidic pH and large content of Ca(2+) and polyphosphates, in autophagy regulation. Starvation- and chemical-induced autophagy is accompanied with acidocalcisome acidification, and blocking the acidification completely inhibits autophagosome formation. Blocking acidocalcisome biogenesis by depleting the adaptor protein-3 complex, which does not affect lysosome biogenesis or function, also inhibits autophagy. Overall, our results support the role of the acidocalcisome, a conserved organelle from bacteria to human, as a relevant regulator in autophagy.
Collapse
Key Words
- AO, acridine orange
- AP-3, adaptor protein-3
- ATG, autophagy-related
- BODIPY-CQ, BODIPY-chloroquine
- BafA1, bafilomycin A1
- CQ, chloroquine
- DAPI, 4′, 6-diamidino-2-phenylindole
- MTORC1, mechanistic target of rapamycin complex 1
- PPi, pyrophosphate
- PtdIns3K, phosphatidylinositol 3-kinase
- PtdIns3P, phosphatidylinositol 3-phosphate
- RNAi, RNA interference
- T. brucei, Trypanosoma brucei
- TOR, target of rapamycin
- TbVMA1, the subunit A of V-H+-ATPase in Trypanosoma brucei
- TbVP1, vacuolar pyrophosphatase in Trypanosoma brucei
- TbVPH1, the α, subunit of V-H+-ATPase in Trypanosoma brucei
- Tbβ3, the β3 subunit of adaptor protein-3 complex in Trypanosoma brucei
- Tbδ, the δ, subunit of adaptor protein-3 complex in Trypanosoma brucei
- Trypanosoma brucei
- V-H+-ATPase, vacuolar-type H+-ATPase
- V-PPase, vacuolar pyrophophatase
- acidity
- acidocalcisome
- autophagy
- coumarin-CQ, coumarin-chloroquine
- lysosome-related organelle
- polyP, polyphosphate
- protozoan parasite
Collapse
Affiliation(s)
- Feng-Jun Li
- a Department of Biological Sciences ; National University of Singapore ; Singapore
| | | |
Collapse
|
14
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
15
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
16
|
Manna PT, Boehm C, Leung KF, Natesan SK, Field MC. Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol 2014; 30:251-8. [PMID: 24731931 PMCID: PMC4007029 DOI: 10.1016/j.pt.2014.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored.
Collapse
Affiliation(s)
- Paul T Manna
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Cordula Boehm
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Senthil Kumar Natesan
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
17
|
The ancient small GTPase Rab21 functions in intermediate endocytic steps in trypanosomes. EUKARYOTIC CELL 2013; 13:304-19. [PMID: 24376004 DOI: 10.1128/ec.00269-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endocytosis is an essential process in nearly all eukaryotic cells, including the African trypanosome Trypanosoma brucei. Endocytosis in these organisms is exclusively clathrin mediated, although several lineage-specific features indicate that precise mechanisms are distinct from those of higher eukaryotes. T. brucei Rab21 is a member of an ancient, pan-eukaryotic, endocytic Rab clade that is retained by trypanosomes. We show that T. brucei Rab21 (TbRab21) localizes to endosomes, partially colocalizing with TbRab5A, TbRab28, and TbVps23, the latter two being present at late endosomes. TbRab21 expression is essential for cellular proliferation, and its suppression results in a partial block in traffic to the lysosome. RNA interference (RNAi)-mediated knockdown of TbRab21 had no effect on TbRab5A expression or location but did result in decreased in trans expression of ESCRT (trypanosome endosomal sorting complex required for transport) components and TbRab28, while knockdown of ESCRT subunit TbVps23 resulted in decreased TbRab21 expression. These data suggest that TbRab21 acts downstream of TbRab5A and functions in intimate connection with the trypanosome ESCRT system.
Collapse
|
18
|
Castillo-Acosta VM, Vidal AE, Ruiz-Pérez LM, Van Damme EJM, Igarashi Y, Balzarini J, González-Pacanowska D. Carbohydrate-binding agents act as potent trypanocidals that elicit modifications in VSG glycosylation and reduced virulence in Trypanosoma brucei. Mol Microbiol 2013; 90:665-79. [PMID: 23926900 DOI: 10.1111/mmi.12359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2013] [Indexed: 01/19/2023]
Abstract
The surface of Trypanosoma brucei is covered by a dense coat of glycosylphosphatidylinositol-anchored glycoproteins. The major component is the variant surface glycoprotein (VSG) which is glycosylated by both paucimannose and oligomannose N-glycans. Surface glycans are poorly accessible and killing mediated by peptide lectin-VSG complexes is hindered by active endocytosis. However, contrary to previous observations, here we show that high-affinity carbohydrate binding agents bind to surface glycoproteins and abrogate growth of T. brucei bloodstream forms. Specifically, binding of the mannose-specific Hippeastrum hybrid agglutinin (HHA) resulted in profound perturbations in endocytosis and parasite lysis. Prolonged exposure to HHA led to the loss of triantennary oligomannose structures in surface glycoproteins as a result of genetic rearrangements that abolished expression of the oligosaccharyltransferase TbSTT3B gene and yielded novel chimeric enzymes. Mutant parasites exhibited markedly reduced infectivity thus demonstrating the importance of specific glycosylation patterns in parasite virulence.
Collapse
Affiliation(s)
- Víctor M Castillo-Acosta
- Instituto de Parasitología y Biomedicina 'López-Neyra'. Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n 18016, Armilla, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
Silverman JS, Muratore KA, Bangs JD. Characterization of the late endosomal ESCRT machinery in Trypanosoma brucei. Traffic 2013; 14:1078-90. [PMID: 23905922 DOI: 10.1111/tra.12094] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022]
Abstract
The multivesicular body (MVB) is a specialized Rab7+ late endosome (LE) containing multiple intralumenal vesicles that function in targeting ubiquitinylated cell surface proteins to the lysosome for degradation. African trypanosomes lack a morphologically well-defined MVB, but contain orthologs of the ESCRT (Endosomal Sorting Complex Required for Transport) machinery that mediates MVB formation. We investigate the role of TbVps23, an early ESCRT component, and TbVps4, the terminal ESCRT ATPase, in lysosomal trafficking in bloodstream form trypanosomes. Both localize to the TbRab7+ LE and RNAi silencing of each rapidly blocks growth. TbVps4 silencing results in approximately threefold accumulation of TbVps23 at the LE, consistent with blocking terminal ESCRT disassembly. Trafficking of endocytic and biosynthetic cargo, but not default lysosomal reporters, is also negatively affected. Others reported that TbVps23 mediates ubiquitin-dependent lysosomal degradation of invariant surface glycoproteins (ISG65) (Leung et al., Traffic 2008;9:1698-1716). In contrast, we find that TbVps23 ablation does not affect ISG65 turnover, while TbVps4 silencing markedly enhances lysosomal degradation. We propose several models to accommodate these results, including that the ESCRT machinery actually retrieves ISG65 from the LE to earlier endocytic compartments, and in its absence ISG65 traffics more efficiently to the lysosome. Overall, these results confirm that the ESCRT machinery is essential in Trypanosoma brucei and plays important and novel role(s) in LE function in trypanosomes.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), 138 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA; Current address: Monsanto Company, Mailstop LS2A, 800 N Lindbergh Blvd, Saint Louis, MO 63167, USA
| | | | | |
Collapse
|
20
|
Adung'a VO, Gadelha C, Field MC. Proteomic analysis of clathrin interactions in trypanosomes reveals dynamic evolution of endocytosis. Traffic 2013; 14:440-57. [PMID: 23305527 DOI: 10.1111/tra.12040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/07/2013] [Accepted: 01/10/2012] [Indexed: 01/09/2023]
Abstract
Endocytosis is a vital cellular process maintaining the cell surface, modulating signal transduction and facilitating nutrient acquisition. In metazoa, multiple endocytic modes are recognized, but for many unicellular organisms the process is likely dominated by the ancient clathrin-mediated pathway. The endocytic system of the highly divergent trypanosomatid Trypanosoma brucei exhibits many unusual features, including a restricted site of internalization, dominance of the plasma membrane by GPI-anchored proteins, absence of the AP2 complex and an exceptionally high rate. Here we asked if the proteins subtending clathrin trafficking in trypanosomes are exclusively related to those of higher eukaryotes or if novel, potentially taxon-specific proteins operate. Co-immunoprecipitation identified twelve T. brucei clathrin-associating proteins (TbCAPs), which partially colocalized with clathrin. Critically, eight TbCAPs are restricted to trypanosomatid genomes and all of these are required for robust cell proliferation. A subset, TbCAP100, TbCAP116, TbCAP161 and TbCAP334, were implicated in distinct endocytic steps by detailed analysis of knockdown cells. Coupled with the absence of orthologs for many metazoan and fungal endocytic factors, these data suggest that clathrin interactions in trypanosomes are highly lineage-specific, and indicate substantial evolutionary diversity within clathrin-mediated endocytosis mechanisms across the eukaryotes.
Collapse
Affiliation(s)
- Vincent O Adung'a
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | | |
Collapse
|
21
|
Kramer S, Bannerman-Chukualim B, Ellis L, Boulden EA, Kelly S, Field MC, Carrington M. Differential localization of the two T. brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS One 2013; 8:e54004. [PMID: 23382864 PMCID: PMC3559699 DOI: 10.1371/journal.pone.0054004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
The number of paralogs of proteins involved in translation initiation is larger in trypanosomes than in yeasts or many metazoan and includes two poly(A) binding proteins, PABP1 and PABP2, and four eIF4E variants. In many cases, the paralogs are individually essential and are thus unlikely to have redundant functions although, as yet, distinct functions of different isoforms have not been determined. Here, trypanosome PABP1 and PABP2 have been further characterised. PABP1 and PABP2 diverged subsequent to the differentiation of the Kinetoplastae lineage, supporting the existence of specific aspects of translation initiation regulation. PABP1 and PABP2 exhibit major differences in intracellular localization and distribution on polysome fractionation under various conditions that interfere with mRNA metabolism. Most striking are differences in localization to the four known types of inducible RNP granules. Moreover, only PABP2 but not PABP1 can accumulate in the nucleus. Taken together, these observations indicate that PABP1 and PABP2 likely associate with distinct populations of mRNAs. The differences in localization to inducible RNP granules also apply to paralogs of components of the eIF4F complex: eIF4E1 showed similar localization pattern to PABP2, whereas the localisation of eIF4E4 and eIF4G3 resembled that of PABP1. The grouping of translation initiation as either colocalizing with PABP1 or with PABP2 can be used to complement interaction studies to further define the translation initiation complexes in kinetoplastids.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Louise Ellis
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Steve Kelly
- Department of Plant Sciences, University of Oxford, and Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes. EUKARYOTIC CELL 2012; 12:330-42. [PMID: 23264644 DOI: 10.1128/ec.00273-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.
Collapse
|
23
|
Adung'a VO, Field MC. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes. Exp Parasitol 2012; 133:255-64. [PMID: 23220323 PMCID: PMC3593210 DOI: 10.1016/j.exppara.2012.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/06/2023]
Abstract
Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P.
Collapse
Affiliation(s)
- Vincent O Adung'a
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
24
|
Affinity is an important determinant of the anti-trypanosome activity of nanobodies. PLoS Negl Trop Dis 2012; 6:e1902. [PMID: 23166849 PMCID: PMC3499403 DOI: 10.1371/journal.pntd.0001902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/01/2012] [Indexed: 02/03/2023] Open
Abstract
Background The discovery of Nanobodies (Nbs) with a direct toxic activity against African trypanosomes is a recent advancement towards a new strategy against these extracellular parasites. The anti-trypanosomal activity relies on perturbing the highly active recycling of the Variant-specific Surface Glycoprotein (VSG) that occurs in the parasite's flagellar pocket. Methodology/Principal Findings Here we expand the existing panel of Nbs with anti-Trypanosoma brucei potential and identify four categories based on their epitope specificity. We modified the binding properties of previously identified Nanobodies Nb_An05 and Nb_An33 by site-directed mutagenesis in the paratope and found this to strongly affect trypanotoxicity despite retention of antigen-targeting properties. Affinity measurements for all identified anti-trypanosomal Nbs reveal a strong correlation between trypanotoxicity and affinity (KD), suggesting that it is a crucial determinant for this activity. Half maximal effective (50%) affinity of 57 nM was calculated from the non-linear dose-response curves. In line with these observations, Nb humanizing mutations only preserved the trypanotoxic activity if the KD remained unaffected. Conclusions/Significance This study reveals that the binding properties of Nanobodies need to be compatible with achieving an occupancy of >95% saturation of the parasite surface VSG in order to exert an anti-trypanosomal activity. As such, Nb-based approaches directed against the VSG target would require binding to an accessible, conserved epitope with high affinity. Nanobodies, antigen binding fragments derived from a non-conventional class of antibodies in camelids, were previously shown to exert a direct activity against African trypanosomes without the need of a toxin. Their mode-of-action relies on interference with the highly active recycling of the Variant-specific Surface Glycoprotein (VSG) that occurs in the flagellar pocket of the parasite. By expanding the panel of anti-trypanosomal Nanobodies and by modification of their binding properties through site-directed mutagenesis, we have been able to show a strong correlation between their trypanotoxic activity and affinity for the cognate antigen. From these studies it was calculated that the parasite surface saturation needs to exceed 95% in order to achieve this anti-trypanosomal effect of Nanobodies, which can be considered as a critical cut-off value for future Nanobody-based or other small molecule drug approaches against the VSG target.
Collapse
|
25
|
Silverman JS, Schwartz KJ, Hajduk SL, Bangs JD. Late endosomal Rab7 regulates lysosomal trafficking of endocytic but not biosynthetic cargo in Trypanosoma brucei. Mol Microbiol 2011; 82:664-78. [PMID: 21923766 DOI: 10.1111/j.1365-2958.2011.07842.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present the first functional analysis of the small GTPase, TbRab7, in Trypanosoma brucei. TbRab7 defines discrete late endosomes closely juxtaposed to the terminal p67(+) lysosome. RNAi indicates that TbRab7 is essential in bloodstream trypanosomes. Initial rates of endocytosis were unaffected, but lysosomal delivery of cargo, including tomato lectin (TL) and trypanolytic factor (TLF) were blocked. These accumulate in a dispersed internal compartment of elevated pH, likely derived from the late endosome. Surface binding of TL but not TLF was reduced, suggesting that cellular distribution of flagellar pocket receptors is differentially regulated by TbRab7. TLF activity was reduced approximately threefold confirming that lysosomal delivery is critical for trypanotoxicity. Unexpectedly, delivery of endogenous proteins, p67 and TbCatL, were unaffected indicating that TbRab7 does not regulate biosynthetic lysosomal trafficking. Thus, unlike mammalian cells and yeast, lysosomal trafficking of endocytosed and endogenous proteins occur via different routes and/or are regulated differentially. TbRab7 silencing had no effect on a cryptic default pathway to the lysosome, suggesting that the default lysosomal reporters p67ΔTM, p67ΔCD and VSGΔGPI do not utilize the endocytic pathway as previously proposed. Surprisingly, conditional knockout indicates that TbRab7 may be non-essential in procyclic insect form trypanosomes.
Collapse
Affiliation(s)
- Jason S Silverman
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
26
|
Stijlemans B, Caljon G, Natesan SKA, Saerens D, Conrath K, Pérez-Morga D, Skepper JN, Nikolaou A, Brys L, Pays E, Magez S, Field MC, De Baetselier P, Muyldermans S. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 2011; 7:e1002072. [PMID: 21698216 PMCID: PMC3116811 DOI: 10.1371/journal.ppat.1002072] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/04/2011] [Indexed: 11/19/2022] Open
Abstract
The African trypanosome Trypanosoma brucei, which persists within the bloodstream of the mammalian host, has evolved potent mechanisms for immune evasion. Specifically, antigenic variation of the variant-specific surface glycoprotein (VSG) and a highly active endocytosis and recycling of the surface coat efficiently delay killing mediated by anti-VSG antibodies. Consequently, conventional VSG-specific intact immunoglobulins are non-trypanocidal in the absence of complement. In sharp contrast, monovalent antigen-binding fragments, including 15 kDa nanobodies (Nb) derived from camelid heavy-chain antibodies (HCAbs) recognizing variant-specific VSG epitopes, efficiently lyse trypanosomes both in vitro and in vivo. This Nb-mediated lysis is preceded by very rapid immobilisation of the parasites, massive enlargement of the flagellar pocket and major blockade of endocytosis. This is accompanied by severe metabolic perturbations reflected by reduced intracellular ATP-levels and loss of mitochondrial membrane potential, culminating in cell death. Modification of anti-VSG Nbs through site-directed mutagenesis and by reconstitution into HCAbs, combined with unveiling of trypanolytic activity from intact immunoglobulins by papain proteolysis, demonstrates that the trypanolytic activity of Nbs and Fabs requires low molecular weight, monovalency and high affinity. We propose that the generation of low molecular weight VSG-specific trypanolytic nanobodies that impede endocytosis offers a new opportunity for developing novel trypanosomiasis therapeutics. In addition, these data suggest that the antigen-binding domain of an anti-microbial antibody harbours biological functionality that is latent in the intact immunoglobulin and is revealed only upon release of the antigen-binding fragment. Haemoparasites, such as African trypanosomes, have developed potent immune evasion mechanisms to avoid antibody-mediated elimination. Consequently, trypanosome surface antigen-specific immunoglobulins in the absence of complement are non-trypanocidal. In contrast, certain monovalent nanobodies (Nb), monomeric antigen-binding domains derived from camelid Heavy-Chain Antibodies (HCAb) and which have a much lower molecular weight (15 kDa) than classical antibodies (150 kDa), efficiently lyse trypanosomes both in vitro and in vivo. This is surprising as classically immunoglobulin effector functions are mediated via the Fc-domain, which is absent from the Nb. We demonstrate that the Nb-mediated trypanolysis depends on the low molecular weight, monovalency and high affinity and is associated with loss of motility, a major block to endocytosis, energy depletion and cell death. Overall, targeting the parasite surface with low molecular weight, high affinity Nbs is sufficient to exert a direct therapeutic action. Therefore, the exploitation of Nbs against African trypanosomiasis represents a novel therapeutic strategy. Furthermore, demonstration that a high affinity antigen-binding Nb or Fab fragment lacking an effector domain (i.e., Fc-domain or an attached toxin) can exert a direct biological function, suggests that intact antibodies likely harbour latent functionality which only become revealed upon removal of the Fc-domain.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/pharmacology
- Antibodies, Protozoan/therapeutic use
- Antibody Affinity
- Cells, Cultured
- Down-Regulation/drug effects
- Endocytosis/drug effects
- Humans
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Nanoparticles
- Trypanocidal Agents/pharmacology
- Trypanocidal Agents/therapeutic use
- Trypanosoma brucei brucei/immunology
- Trypanosoma brucei brucei/metabolism
- Trypanosoma brucei brucei/physiology
- Trypanosoma brucei brucei/ultrastructure
- Trypanosomiasis, African/immunology
- Trypanosomiasis, African/metabolism
- Trypanosomiasis, African/therapy
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rab11 function in Trypanosoma brucei: identification of conserved and novel interaction partners. EUKARYOTIC CELL 2011; 10:1082-94. [PMID: 21642507 DOI: 10.1128/ec.05098-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Ras-like GTPase Rab11 is implicated in multiple aspects of intracellular transport, including maintenance of plasma membrane composition and cytokinesis. In metazoans, these functions are mediated in part via coiled-coil Rab11-interacting proteins (FIPs) acting as Rab11 effectors. Additional interaction between Rab11 and the exocyst subunit Sec15 connects Rab11 with exocytosis. We find that FIPs are metazoan specific, suggesting that other factors mediate Rab11 functions in nonmetazoans. We examined Rab11 interactions in Trypanosoma brucei, where endocytosis is well studied and the role of Rab11 in recycling well documented. TbSec15 and TbRab11 interact, demonstrating evolutionary conservation. By yeast two-hybrid screening, we identified additional Rab11 interaction partners. Tb927.5.1640 (designated RBP74) interacted with both Rab11 and Rab5. RBP74 shares a coiled-coil architecture with metazoan FIPs but is unrelated by sequence and appears to play a role in coordinating endocytosis and recycling. A second coiled-coil protein, Tb09.211.4830 (TbAZI1), orthologous to AZI1 in Homo sapiens, interacts exclusively with Rab11. AZI1 is restricted to taxa with motile cilia/flagella. These data suggest that Rab11 functions are mediated by evolutionarily conserved (i.e., AZI1 and Sec15) and potentially lineage-specific (RBP74) interactions essential for the integration of the endomembrane system.
Collapse
|
28
|
Natesan SKA, Black A, Matthews KR, Mottram JC, Field MC. Trypanosoma brucei brucei: endocytic recycling is important for mouse infectivity. Exp Parasitol 2011; 127:777-83. [PMID: 21256128 PMCID: PMC3080601 DOI: 10.1016/j.exppara.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 01/08/2011] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Endocytosis in the African trypanosome, Trypanosoma brucei, is intimately involved in maintaining homeostasis of the cell surface proteome, morphology of the flagellar pocket and has recently been demonstrated as a bona fide drug target. RNAi-mediated knockdown of many factors required for endocytic transport, including several small GTPases, the major coat protein clathrin and a clathrin-associated receptor, epsinR, results in rapid cell death in vitro. Rapid loss of viability in vitro precludes meaningful investigation by RNAi of the roles of trypanosome endocytosis in vivo. Here we have sought to address this issue using strategies designed to produce milder effects on the endocytic system than complete functional ablation. We created a trypanosome clathrin heavy chain hemizygote and several lines expressing mutant forms of Rab5 and Rab11, described previously. All are viable in in vitro culture, with negligible impact to proliferative rates or cell cycle. Clathrin hemizygotes express clathrin heavy chain at ∼50% of wild type levels, but despite this demonstrate no defect to growth in mice, while none of the Rab5 mutants affected proliferation in vivo, despite clear evidence for effects on endocytosis. By contrast we find that expressing a dominantly active Rab11 mutant led to compromised growth in mice. These data indicate that trypanosomes likely tolerate the effects of partly decreased clathrin expression and alterations in early endocytosis, but are more sensitive to alterations in the recycling arm of the pathway.
Collapse
|
29
|
Wang YN, Wang M, Field MC. Trypanosoma brucei: trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. Exp Parasitol 2010; 125:208-21. [PMID: 20109450 PMCID: PMC2877885 DOI: 10.1016/j.exppara.2010.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 12/22/2022]
Abstract
In Trypanosoma brucei the GPI-anchored variant surface glycoprotein (VSG) represents approximately 90% of cell surface protein and a major proportion of endoplasmic reticulum (ER) biosynthetic output. We identified four trypanosomatid-specific genes encoding candidate ER-resident proteins; all were required for normal proliferation. For Tb11.01.2640 and Tb11.01.8120, an increase in VSG abundance was found on silencing, while the protein products localized to the ER; we designated these ERAP32 and ERAP18 for ER-associated protein of 32kDa and 18kDa. Silencing ERAP32 or ERAP18 did not alter expression levels of ISG65 or ISG75, the major surface trans-membrane domain proteins. Surface biotinylation or immunoflorescence did not identify intracellular VSG accumulation, while FACS and fluorescence microscopy indicated that the cells were not increased in size, arguing for increased VSG density on the cell surface. Therefore, ERAP32 and ERAP18 are trypanosome-specific ER-localized proteins with a major role in VSG protein export and, contrary to current paradigms, VSG is not saturated on the cell surface.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ming Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
30
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
31
|
Benz C, Engstler M, Hillmer S, Clayton C. Depletion of 14-3-3 proteins in bloodstream-form Trypanosoma brucei inhibits variant surface glycoprotein recycling. Int J Parasitol 2009; 40:629-34. [PMID: 19925803 DOI: 10.1016/j.ijpara.2009.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/14/2009] [Accepted: 10/27/2009] [Indexed: 02/03/2023]
Abstract
Bloodstream-form Trypanosoma brucei have two 14-3-3 proteins, which are required for parasite multiplication. We here describe the effects of 14-3-3 depletion on vesicular transport of variant surface glycoprotein (VSG). 14-3-3 depletion had no detectable effect on de novo synthesis and trafficking of VSG to the cell surface, or on VSG endocytosis. Despite strong inhibition of cell division, the flagellar pocket was not enlarged and the ultrastructure of internal organelles appeared normal. The Rab11-positive recycling endosome compartment was, however, fivefold smaller than normal, and the rate of return of recycling VSG to the surface was correspondingly reduced. Down-regulating 14-3-3 also prevented enlargement of the flagellar pocket by clathrin depletion. These results suggest that there is a remarkably specific requirement for 14-3-3 in normal functioning of the Rab11-positive recycling endosome compartment.
Collapse
Affiliation(s)
- Corinna Benz
- Zentrum für Molekulare Biologie der Universität Heidelberg, ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Natesan SKA, Peacock L, Leung KF, Matthews KR, Gibson W, Field MC. The trypanosome Rab-related proteins RabX1 and RabX2 play no role in intracellular trafficking but may be involved in fly infectivity. PLoS One 2009; 4:e7217. [PMID: 19787065 PMCID: PMC2748683 DOI: 10.1371/journal.pone.0007217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/03/2009] [Indexed: 01/17/2023] Open
Abstract
Background Rab GTPases constitute the largest subgroup of the Ras superfamily and are primarily involved in vesicle targeting. The full extent of Rab family function is unexplored. Several divergent Rab-like proteins are known but few have been characterized. In Trypanosoma brucei there are sixteen Rab genes, but RabX1, RabX2 and RabX3 are divergent within canonical sequence regions. Where known, trypanosome Rab functions are broadly conserved when orthologous relationships may be robustly established, but specific functions for RabX1, X2 and X3 have yet to be determined. RabX1 and RabX2 originated via tandem duplication and subcellular localization places RabX1 at the endoplasmic reticulum, while RabX2 is at the Golgi complex, suggesting distinct functions. We wished to determine whether RabX1 and RabX2 are involved in vesicle transport or other cellular processes. Methodology/Principal Findings Using comparative genomics we find that RabX1 and RabX2 are restricted to trypanosomatids. Gene knockout indicates that RabX1 and RabX2 are non-essential. Simultaneous RNAi knockdown of both RabX1 and RabX2, while partial, was also non-lethal and may suggest non-redundant function, consistent with the distinct locations of the proteins. Analysis of the knockout cell lines unexpectedly failed to uncover a defect in exocytosis, endocytosis or in the morphology or location of multiple markers for the endomembrane system, suggesting that neither RabX1 nor RabX2 has a major role in intracellular transport. However, it was apparent that RabX1 and RabX2 knockout cells displayed somewhat enhanced survival within flies. Conclusions/Significance RabX1 and RabX2, two members of the trypanosome Rab subfamily, were shown to have no major detectable role in intracellular transport, despite the localization of each gene product to highly specific endomembrane compartments. These data extend the functional scope of Rab proteins in trypanosomes to include non-canonical roles in differentiation-associated processes in protozoa.
Collapse
Affiliation(s)
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keith R. Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Gabernet-Castello C, Dacks JB, Field MC. The single ENTH-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 2009; 10:894-911. [PMID: 19416477 DOI: 10.1111/j.1600-0854.2009.00910.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epsin N-terminal homology (ENTH) domains occur in proteins of either the epsin or epsin-related (epsinR) form. They principally function in clathrin-mediated trafficking and membrane deformation. Both epsin and epsinR possess clathrin-binding motifs, but only epsin incorporates a ubiquitin-interaction motif (UIM). To better understand the origins of ENTH-domain proteins and their functions, we performed detailed comparative genomics and phylogenetics on the epsin family. The epsin ENTH-UIM configuration is an architecture restricted to yeast and animals. Further, we undertook functional analysis in Trypanosoma brucei (T. brucei), a divergent organism possessing a single ENTH-domain protein (TbEpsinR). TbEpsinR has a cellular location similar to both epsin and epsinR at plasma membrane clathrin budding sites and endosomal compartments, and associates with clathrin, as demonstrated by coimmunoprecipitation. Knockdown of TbEpsinR leads to a significant decrease in the intracellular pools of multiple surface antigens, without affecting bulk membrane internalization. Therefore, despite lacking the UIM, TbEpsinR maintains a similar role to metazoan epsin in endocytosis and participates as a clathrin-associated adaptor. We suggest that recruitment of a UIM to the ENTH-domain proteins was not essential for participation in endocytosis of ubiquitylated molecules, and is presumably a specific innovation restricted to higher eukaryotes.
Collapse
|
34
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, Zhou M, Craik CS, Caffrey CR, McKerrow JH. A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 2008; 283:28934-43. [PMID: 18701454 PMCID: PMC2570886 DOI: 10.1074/jbc.m805824200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Indexed: 01/19/2023] Open
Abstract
Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.
Collapse
Affiliation(s)
- Theresa C O'Brien
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California 94158-2550, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 2008; 9:298. [PMID: 18573209 PMCID: PMC2443814 DOI: 10.1186/1471-2164-9-298] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and approximately 10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. RESULTS 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor. CONCLUSION While trypanosomes regulate mRNA abundance to effect the major changes accompanying differentiation, a given differentiated state appears transcriptionally inflexible. The implications of the absence of a transcriptome response in trypanosomes for both virulence and models of life cycle progression are discussed.
Collapse
Affiliation(s)
- V Lila Koumandou
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
37
|
Peck RF, Shiflett AM, Schwartz KJ, McCann A, Hajduk SL, Bangs JD. The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. Mol Microbiol 2008; 68:933-46. [PMID: 18430083 DOI: 10.1111/j.1365-2958.2008.06195.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
RNAi knockdown was employed to study the function of p67, a lysosome-associated membrane protein (LAMP)-like type I transmembrane lysosomal glycoprotein in African trypanosomes. Conditional induction of p67 dsRNA resulted in specific approximately 90% reductions in de novo p67 synthesis in both mammalian bloodstream and procyclic insect-stage parasites. Bloodstream cell growth was severely retarded with extensive death after > 24 h of induction. Biosynthetic trafficking of residual p67, and of the soluble lysosomal protease trypanopain, were unimpaired. Endocytosis of tomato lectin, a surrogate receptor-mediated cargo, was only mildly impaired (approximately 20%), but proper lysosomal targeting was unaffected. p67 ablation had dramatic effects on lysosomal morphology with gross enlargement (four- to fivefold) and internal membrane profiles reminiscent of autophagic vacuoles. Ablation of p67 expression rendered bloodstream trypanosomes refractory to lysis by human trypanolytic factor (TLF), a lysosomally activated host innate immune mediator. Similar effects on lysosomal morphology and TLF sensitivity were also obtained by two pharmacological agents that neutralize lysosomal pH--chloroquine and bafilomycin A1. Surprisingly, however, lysosomal pH was not affected in ablated cells suggesting that other physiological alterations must account for increased resistance to TLF. These results indicate p67 plays an essential role in maintenance of normal lysosomal structure and physiology in bloodstream-stage African trypanosomes.
Collapse
Affiliation(s)
- Ronald F Peck
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
38
|
Developmental regulation of gene expression in trypanosomatid parasitic protozoa. Curr Opin Microbiol 2008; 10:569-77. [PMID: 18177626 DOI: 10.1016/j.mib.2007.10.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 12/21/2022]
Abstract
Kinetoplastids branched early from the eukaryotic lineage and include several parasitic protozoan species. Up to several hundred kinetoplastid genes are co-transcribed into polycistronic RNAs and individual mRNAs are resolved by coupled co-transcriptional trans-splicing of a universal splice-leader RNA (SL-RNA) and 3'-end maturation processes. Protein-coding genes lack RNA polymerase II promoters. Consequently, most of gene regulation in these organisms occurs post-transcriptionally. Over the last few years, many more genes that are regulated at the mRNA stability level and a few at the translation level have been reported. Almost all major trypanosome homologues of yeast/mammalian mRNA degradation enzymes have been functionally characterized and major pathways identified. Novel paradigms have also recently emerged: regulated post-transcriptional processing of cytoplasmic RNAs, SL-RNA transcriptional silencing-mediated global stress response, and Leishmania-specific large-scale modulation of post-transcriptional gene expression via inactive degenerated retroelements. Several of these developments have greatly benefited from the recently completed genomic sequences and functional genomic studies.
Collapse
|
39
|
Abstract
Trypanosomatids are protozoan parasites, of interest due to both their disease burden and deeply divergent position within the eukaryotic lineage. The African trypanosome, Trypanosoma brucei, has emerged as a very amenable model system, with a considerable toolbox of methods available, including inducible overexpression, RNA interference, and a completed genome. Here we describe some of the special considerations that need to be addressed when studying trypanosome gene function, and in particular small GTPases; we provide protocols for transfection, RNA interference, overexpression and basic transport assays, in addition to an overview of available vectors, cell lines, and strategies.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
40
|
Abstract
Cytotoxic T lymphocytes (CTLs) play a critical role in the immune system; they are able to recognize and destroy virally infected and tumorigenic cells. Specific recognition of MHC class I-peptide complexes by the T cell receptor (TcR) results in precise delivery of lytic granules to the target cell, sparing neighboring cells and the CTL itself. Over the past 10 years various studies have eludicated the mechanisms that lead to the rapid polarization of the secretory apparatus in CTLs. These studies highlight similarities and differences between polarity and secretory mechanisms seen in other cell types and developmental systems. This review focuses on recent advances in our understanding of the molecular basis of polarized secretion from CTLs and the novel mechanism used by these cells to deliver their lethal hit.
Collapse
Affiliation(s)
- Jane C Stinchcombe
- Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, England
| | | |
Collapse
|
41
|
Allen CL, Liao D, Chung WL, Field MC. Dileucine signal-dependent and AP-1-independent targeting of a lysosomal glycoprotein in Trypanosoma brucei. Mol Biochem Parasitol 2007; 156:175-90. [PMID: 17869353 DOI: 10.1016/j.molbiopara.2007.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/26/2007] [Accepted: 07/30/2007] [Indexed: 12/19/2022]
Abstract
Sorting of trans-membrane proteins destined for the lysosome is achieved by selective inclusion into post-Golgi transport vesicles. In higher eukaryotes sorting may be mediated by a peptidic motif, principally acidic clusters and tyrosine- or dileucine-based cytoplasmic signals or by inclusion of mannose-6-phosphate (M6P) into the N-glycans of lysosomal proteins. In African trypanosomes a major lysosomal trans-membrane protein is CB-1/p67. The cytoplasmic domain of p67 lacks tyrosine and lysine, but does contain a canonical dileucine sequence embedded within an acidic region. AP-1, -3 and -4 adaptin complexes, which recognise tyrosine- and dileucine-sorting signals, are encoded by the trypanosome genome, but the genes for M6P-receptors or activities required to produce M6P are absent, suggesting that lysosomal delivery of p67 is most likely adaptin-mediated. By construction of p67 reporter constructs we show that the dileucine signal is necessary and sufficient for efficient lysosomal delivery of a trans-membrane protein in bloodstream stage trypanosomes. However, this targeting does not require AP-1, as knockdown of the trypanosome gamma-adaptin subunit by RNAi has no detectable effect on the location or maturation of p67. These data suggest that p67 is targeted to the lysosome by dileucine-dependent but AP-1-independent mechanisms.
Collapse
Affiliation(s)
- Clare L Allen
- The Molteno Building, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
42
|
Natesan SKA, Peacock L, Matthews K, Gibson W, Field MC. Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. EUKARYOTIC CELL 2007; 6:2029-37. [PMID: 17905918 PMCID: PMC2168407 DOI: 10.1128/ec.00213-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.
Collapse
Affiliation(s)
- Senthil Kumar A Natesan
- The Molteno Building, Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Lu S, Suzuki T, Iizuka N, Ohshima S, Yabu Y, Suzuki M, Wen L, Ohta N. Trypanosoma bruceivacuolar protein sorting 41 (VPS41) is required for intracellular iron utilization and maintenance of normal cellular morphology. Parasitology 2007; 134:1639-47. [PMID: 17577424 DOI: 10.1017/s0031182007003046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYProcyclic forms ofTrypanosoma brucei bruceiremain and propagate in the midgut of tsetse fly where iron is rich. Additional iron is also required for their growth inin vitroculture. However, little is known about the genes involved in iron metabolism and the mechanism of iron utilization in procyclic-form cells. Therefore, we surveyed the genes involved in iron metabolism in theT. b. bruceigenome sequence database. We found a potential homologue of vacuole protein sorting 41 (VPS41), a gene that is required for high-affinity iron transport inSaccharomyces cerevisiaeand cloned the full-length gene (TbVPS41). Complementation analysis of TbVPS41 in ΔScvps41yeast cells showed that TbVPS41 could partially suppress the inability of ΔScvps41yeast cells to grow on low-iron medium, but it could not suppress the fragmented vacuole phenotype. Further RNA interference (RNAi)-mediated gene knock-down in procyclic-form cells resulted in a significant reduction of growth in low-iron medium; however, no change in growth was observed in normal culture medium. Transmission electron microscopy showed that RNAi causedT. b. bruceicells to have larger numbers of small intracellular vesicles, similar to the fragmented vacuoles observed in ΔScvps41yeast cells. The present study demonstrates that TbVPS41 plays an important role in the intracellular iron utilization system as well as in the maintenance of normal cellular morphology.
Collapse
Affiliation(s)
- S Lu
- Department of Molecular Parasitology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Trypanosomes are members of the kinetoplastida, a group of divergent protozoan parasites responsible for considerable morbidity and mortality worldwide. These organisms have highly complex life cycles requiring modification of their cell surface together with engagement of immune evasion systems to effect survival; both processes intimately involve the membrane trafficking system. The completion of three trypanosomatid and several additional protist genomes in the last few years is providing an exciting opportunity to evaluate, at the molecular level, the evolution and diversity of membrane trafficking across deep evolutionary time as well as to analyse in unprecedented detail the membrane trafficking systems of trypanosomes.
Collapse
Affiliation(s)
- Mark C Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
45
|
Price HP, Stark M, Smith DF. Trypanosoma brucei ARF1 plays a central role in endocytosis and golgi-lysosome trafficking. Mol Biol Cell 2006; 18:864-73. [PMID: 17182848 PMCID: PMC1805098 DOI: 10.1091/mbc.e06-08-0736] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ADP ribosylation factor (Arf)1 orthologue in the divergent eukaryote Trypanosoma brucei (Tb) shares characteristics with both Arf1 and Arf6 and has a vital role in intracellular protein trafficking. TbARF1 is Golgi localized in trypanosomes but associates with the plasma membrane when expressed in human cells. Depletion of TbARF1 by RNA interference causes a major decrease in endocytosis, which correlates with Rab5 dissociation from early endosomes. Although the Golgi remains intact, parasites display enlarged flagellar pockets and intracellular flagella. An increase in active GTP-bound TbARF1 in bloodstream parasites is rapidly lethal, correlating with a defect in Golgi-to-lysosome transport. We conclude that the essential Golgi-localizing T. brucei ARF1 has a primary role in the maintenance of both post-Golgi transport and endocytosis and that it is significantly divergent from other characterized ARFs.
Collapse
Affiliation(s)
| | - Meg Stark
- Technology Facility, Department of Biology, University of York, Heslington, York YO10 5YW, United Kingdom
| | | |
Collapse
|
46
|
Hall BS, Gabernet-Castello C, Voak A, Goulding D, Natesan SK, Field MC. TbVps34, the trypanosome orthologue of Vps34, is required for Golgi complex segregation. J Biol Chem 2006; 281:27600-12. [PMID: 16835237 DOI: 10.1074/jbc.m602183200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositides are important regulators of numerous cellular functions. The yeast class III phosphatidylinositol 3-kinase Vps34p, and its human orthologue hVPS34, are implicated in control of several key pathways, including endosome to lysosome transport, retrograde endosome to Golgi traffic, multivesicular body formation, and autophagy. We have identified the Vps34p orthologue in the African trypanosome, TbVps34. Knockdown of TbVps34 expression by RNA interference induces a severe growth defect, with a post-mitotic block to cytokinesis accompanied by a variety of morphological abnormalities. GFP2xFYVE, a chimeric protein that specifically binds phosphatidylinositol 3-phosphate, localizes to the trypanosome endosomal system and is delocalized under TbVps34 RNA interference (RNAi), confirming that TbVps34 is an authentic phosphatidylinositol 3-kinase. Expression of GFP2xFYVE enhances the TbVps34 RNAi-associated growth defect, suggesting a synthetic interaction via competition for phosphatidylinositol 3-phosphate-binding sites with endogenous FYVE domain proteins. Endocytosis of a fluid phase marker is unaffected by TbVps34 RNAi, but receptor-mediated endocytosis of transferrin and transport of concanavalin A to the lysosome are both impaired, confirming a role in membranous endocytic trafficking for TbVps34. TbVps34 knockdown inhibits export of variant surface glycoprotein, indicating a function in exocytic transport. Ultrastructural analysis revealed a highly extended Golgi apparatus following TbVps34 RNAi, whereas expression of the Golgi marker red fluorescent protein-GRASP (Grp1 (general receptor for phosphoinositides-1)-associated scaffold protein) demonstrated that trypanosomes are able to duplicate the Golgi complex but failed to complete segregation during mitosis, despite faithful replication and segregation of basal bodies and the kinetoplast. These observations implicate TbVps34 as having a role in coordinating segregation of the Golgi complex at cell division.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
| | | | | | | | | | | |
Collapse
|
47
|
Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH, Mottram JC. Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 2006; 119:1105-17. [PMID: 16507595 DOI: 10.1242/jcs.02809] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei possesses five metacaspase genes. Of these, MCA2 and MCA3 are expressed only in the mammalian bloodstream form of the parasite, whereas MCA5 is expressed also in the insect procyclic form. Triple RNAi analysis showed MCA2, MCA3 and MCA5 to be essential in the bloodstream form, with parasites accumulating pre-cytokinesis. Nevertheless, triple null mutants (deltamca2/3deltamca5) could be isolated after sequential gene deletion. Thereafter, deltamca2/3deltamca5 mutants were found to grow well both in vitro in culture and in vivo in mice. We hypothesise that metacaspases are essential for bloodstream form parasites, but they have overlapping functions and their progressive loss can be compensated for by activation of alternative biochemical pathways. Analysis of deltamca2/3deltamca5 revealed no greater or lesser susceptibility to stresses reported to initiate programmed cell death, such as treatment with prostaglandin D2. The metacaspases were found to colocalise with RAB11, a marker for recycling endosomes. However, variant surface glycoprotein (VSG) recycling processes and the degradation of internalised anti-VSG antibody were found to occur similarly in wild type, deltamca2/3deltamca5 and triple RNAi induced parasites. Thus, the data provide no support for the direct involvement of T. brucei metacaspases in programmed cell death and suggest that the proteins have a function associated with RAB11 vesicles that is independent of known recycling processes of RAB11-positive endosomes.
Collapse
Affiliation(s)
- Matthew J Helms
- Wellcome Centre for Molecular Parasitology, The Anderson College, University of Glasgow, Glasgow G11 6NU, UK
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
A fusion of cutting-edge research in cell biology, developmental biology and immunology made the recent workshop on Membrane Dynamics in Endocytosis an outstanding success. Members of an increasingly diverse community converged upon the small town of Sant Feliu de Guixols on the coast of Spain, between September 17-22, 2005, to discuss common themes emerging from their studies on membrane transport. Organized by Margaret Robinson (Cambridge, UK) and Howard Riezman (Geneva, Switzerland), the meeting covered diverse topics that highlighted essential roles for endocytosis during cell growth, development and parasitic invasion.
Collapse
Affiliation(s)
- Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Nelson Biological Laboratories Room A307, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
49
|
Chenik M, Chaabouni N, Ben Achour-Chenik Y, Ouakad M, Lakhal-Naouar I, Louzir H, Dellagi K. Identification of a new developmentally regulated Leishmania major large RAB GTPase. Biochem Biophys Res Commun 2006; 341:541-8. [PMID: 16430865 DOI: 10.1016/j.bbrc.2006.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 01/04/2006] [Indexed: 12/18/2022]
Abstract
Here, we describe for the first time a Leishmania specific gene encoding a large 610 amino-acid RAB GTPase (LmLRAB). LmLRAB displays high homologies with the RAB GTPase protein family between amino acids 34 and 284. It contains characteristic signatures of RAB proteins: 4 GTP binding domains, 5 RAB specific domains, 3 RAB subfamily-specific domains, and a prenylation site. lmlrab is a single copy gene, transcribed as a 3.5 kb mRNA, highly conserved in Leishmania species, and encodes a protein doublet of approximately 75 kDa. Immunofluorescence microscopy using LmLRAB-specific antibodies demonstrated that LmLRAB is confined in a structure adjacent to the kinetoplast probably corresponding to an early endosomal/golgi apparatus localization. Interestingly, using quantitative real-time RT-PCR, we showed that the lmlrab gene is up-regulated twice in amastigotes relative to promastigotes. These findings suggest that LmLRAB may play a potential role in Leishmania pathogenicity.
Collapse
Affiliation(s)
- Mehdi Chenik
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur 1002 Tunis-Belvédère, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jiang SY, Ramachandran S. Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics 2005; 24:235-51. [PMID: 16332933 DOI: 10.1152/physiolgenomics.00210.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both small GTPase and its activating protein (GAP) superfamilies exist in various eukaryotes. The small GTPases regulate a wide variety of cellular processes by cycling between active GTP- and inactive GAP-bound conformations. The GAPs promote GTPase inactivation by stimulating the GTP hydrolysis. In this study, we identified 111 small GTPases and 85 GAPs in rice, 65 GAPs in Arabidopsis, 90 small GTPases in Drosophila melanogaster, and 35 GAPs in Saccharomyces cerevisiaeby genome-wide analysis. We then analyzed and compared a total of 498 small GTPases and 422 GAPs from these four eukaryotic and human genomes. Both animals and yeast genomes contained five families of small GTPases and their GAPs. However, plants had only four of these five families because of a lack of the Ras and RasGAP genes. Small GTPases were conserved with common motifs, but GAPs exhibited higher and much more rapid divergence. On the basis of phylogenetic analysis of all small GTPases and GAPs in five eukaryotic organisms, we estimated that their ancestors had small sizes of small GTPases and GAPs and their large-scale expansions occurred after the divergence from their ancestors. Further investigation showed that genome duplications represented the major mechanism for such expansions. Nonsynonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analyses showed that most of the divergence due to a positive selection occurred in common ancestors, suggesting a major functional divergence in an ancient era.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | | |
Collapse
|